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Abstract

Like every type of human activity, research is intertwined with knowledge
and experience. It aims at systematic exploration of phenomena in order to
expand views and possibilities of solving a particular problem. In computer
vision, the conventional way of measuring the distance between two objects is
to find a pair of closest points belonging to them. When using the Euclidean
metric, the equidistant set of a point is a circle. This thesis presents the alter-
native solutions (with an emphasis on 2D space), involving the implications for
shape representation and description. They rely on other types of equidistant
sets: conics (ellipse and hyperbola) and generalized conics (multifocal ellipse
and hyperbola).

The first solution rests on the fact that a circle is a special case of an
ellipse, implying a pair of coinciding focal points. Among the variety of
ellipse properties, a constant distance sum to the pair of focal points enables
defining a metric. It measures the distance between a point and a line segment
bounded by the focal points. This metric defines an increment in the line
segment length when moving from one focal point to another through the
point of interest. The immediate advantages over the classical approach are
computational efficiency and independence of the line segment discretization.

The second solution exhibits the key property of multifocal ellipse – each
of its points has the same distance sum to the set of focal points. This concept
alternatively defines the distance from a point to the collection of points.
Such an interpretation is valuable in optimization problems, which can, in
turn, benefit from efficient image processing techniques for solving their tasks.

The third solution reflects a necessity in image processing techniques like
skeletonization not only to find the distance to an object but also to find
a set of points that are equidistant from a pair of objects. By definition,
a multifocal hyperbola contains the points that have a constant difference
between the distance sums to the pair of point sets. Assuming the focal point
to be any geometric shape, the multifocal hyperbola with the associated zero
distance value is an equidistant set to the pair of objects.

The central notion behind this thesis is a generalization. Starting with a
circle, a special case of an ellipse, it considers a generalized conic – a further
conceptual extension. This transformation is reflected in the analysis of
the geometric properties of these curves: from the conventional facts to the
innovative findings. Such an approach enables explaining the existing and
proposed methodologies through a prism of the single theoretical framework.
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CHAPTER 1

Introduction

Do not disturb my circles!

Archimedes of Syracuse

Digitization of real-world objects considers simplifying their original prop-
erties in a format that a computer can process. Among the great variety
of pictorial aspects, like color, texture, and motion, shape characterizes a
silhouette. In this context, a 2D shape is a binary image defining a projection
extent of 3D object onto a 2D plane. Processing the complete collection
of shape pixels is a computationally expensive and cumbersome procedure.
Thus, the shape is commonly further simplified by selecting an appropriate
representation covering only the essential characteristics [47]. The result of
this process is known as shape representation. It plays a crucial role in a broad
spectrum of applications: document analysis, tumor recognition, analysis of
particle trajectories, computer-aided design of mechanical parts and buildings,
analysis of human gait, and fingerprint/face/iris detection [47].

This thesis explores the geometrical properties of conic sections (ellipse,
hyperbola) and generalized conics (egg-shape, hyperbolic shape, multifocal
ellipse, multifocal hyperbola). Such properties are analyzed from the computer
vision perspective to enrich the capabilities of existing 2D shape representation
methods. For example, one of the basic representations bounds the shape
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(a) circle (b) ellipse (c) egg-shape (d) multifocal
hyperbola

Figure 1.1: Representing the shape with a primitive

with a geometric primitive [47]. In Figure 1.1a, the shape (blue) is represented
by a circle (red), which requires the center position (green) and the radius to
express the complete area of pixels. Since the shape is elongated, the circle
contains a lot of background pixels. An ellipse (Figure 1.1b) is defined by
the pair of focal points (green) and the distance value. Compared to the
circle, the ellipse better approximates the shape and reflects its orientation
and elongation. Providing the weight to one of the focal points creates an
egg-shape (Figure 1.1c). It improves the ellipse representation by encoding
additional semantic information – the shape becomes narrower while moving
from top to bottom. Finally, having two sets of focal points, where one
is considered as positively weighted (green) and the other – as negatively
weighted (yellow), generates a multifocal hyperbola (Figure 1.1d). In contrast
to the above primitives, it characterizes the shape concavity. In this example,
the circle is the most compact representation, whereas the ellipse, egg-shape,
and multifocal hyperbola contain less outliers and provide more semantic
information.

Any point in space is mapped to a unique ellipse generated from a given
pair of points [78]. This geometric property is used to compute a distance
from a point to a line segment. Figure 1.2 illustrates two house shapes (blue).
The wall is approximated by a line segment with two endpoints (red circles).
Assuming the endpoints as focal points enables associating each pixel with a
parameter of an ellipse that contains this pixel (left house in Figure 1.2). In
classical aproaches, the line segment is expressed by all points belonging to
it. The distance values propagate from these points as circles, and each pixel
is mapped to a radius of a smallest circle (right house in Figure 1.2). The
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Figure 1.2: Distance from the house wall. The colors indicate distance values

clear benefits of ellipse-based metric are the independence of line segment
discretization and computational simplicity. The applications include space
tessellation (Chapter 6), shape representation with skeletons (Chapter 7),
shape smoothing, and optimal path planning (Chapter 8). In addition, the
ellipse-based metric enriches the classical representations by reflecting the
relative line segment length.

1.1 Criteria for Shape Representation
A vast number of shape representation methods in the literature are broadly
classified as contour-based and region-based [109,143,213]. The distinction lies
in using points on the shape boundary [23,155] or also in its interior [28,29,180].
Costa et al. [47] distinguish the third group of approaches – transform-based.
They cover techniques such as Fourier transform and represent the shape by
the transform coefficients. Assuming the possibility of shape reconstruction
from its representation, the methods are categorized as information preserving
and information non-preserving [47,109]. The shape representation provides a
basis for extracting semantically meaningful information for characterization,
classification, or recognition. A process of collecting quantitative information
about the object from its representation is called characterization or shape
description. A selection of shape descriptor is influenced by the requirements
of particular applications, desirable shape properties, and subjective factors,
such as preferences and experience of researchers. The shape descriptors
involve numeric characteristics, like an area, a perimeter, a thickness, a
curvature of parts, and many more, which reasonably represent sufficient and
relevant information for further analysis.

Several authors [33,114,208] defined a set of criteria to support systematic
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evaluation of various shape representations. The considered properties are
qualitative, rather than quantitative, measures. Marr and Nishihara [114]
emphasized the properties related to computational parameters (accessibility),
robustness (sensitivity, stability), and applicability (scope and uniqueness)
of methods. Brady [33] focused on relation between the global and local
representations by considering characteristics such as propagation, rich local
support, smooth extension and subsumption. Yang et al. [208] provided the
requirements for efficiency and perceptual similarity with human intuition.
Regarding the existing evaluation schemes [33,114,208], this thesis takes the
following criteria into consideration:

• scope of representation defining shape classes where the corresponding
technique is applicable;

• uniqueness indicating the presence of one-to-one mapping between the
shape representation/description and the shape;

• invariance to transformations, such as translation, rotation, and scaling;

• stability/robustness to the impact of noise and occlusions;

• accuracy to preserve subtle shape details;

• efficiency in terms of computational complexity;

• abstraction of the representation to multiple scales or hierarchical levels.

1.2 Generalized Conics in Shape
Representation

This thesis introduces the region- and contour-based shape representation
and description concepts that rely on the geometric properties of conics and
their generalizations. It explains the existing and proposed methods within
the single theoretical framework. The central source of inspiration behind this
work is the generalization property of ellipse: it can degenerate into a point,
a line segment, and a circle. The metric Confocal-Ellipse-based Distance
(CED) uses this property to measure the distance between a point and a line
segment (Chapter 4-5).

13



CED provides valuable advantages over the classical space tessellation
method called Voronoi Diagram (VD) (Chapter 6). The proposed Elliptic
Line Voronoi Diagram (ELVD) avoids the decomposition of line segments
with common endpoint since the obtained Voronoi edge does not contain an
area. ELVD is a representation that implicitly prioritizes the acute angles and
comparably long line segments. This property mitigates the effect of outliers
and noise in skeletonization (Chapter 7) and is beneficial in the applications
such as optimal path planning and contour smoothing (Chapter 8).

Generalizing the properties of conic sections by considering infinitely
many focal points results in a powerful geometric object called generalized
conic (Chapter 3). The discovered and derived properties broaden the scopes
of shape representation and description. For instance, the new types of
primitives, namely an egg-shape and a hyperbolic shape with corner, expand
the possibilities to represent the shape. Compared to the ellipse, they require
only one additional parameter – a weight at one of the focal points. Another
example adopts the convexity property of multifocal ellipse to solve the
optimization problems, such as optimal facility location (Chapter 8).

1.3 Structure of the Thesis and Contributions
Formalization of real-world scenarios in computer vision enforces a transition
from continuous to discrete space. In particular, discrete geometry is a study
of combinatorial, geometric, and topological properties of objects like points,
lines, rectangles, ellipses, spheres, and cubes that are used in contrast to
smooth surfaces [38]. Digital geometry is a branch of discrete geometry
that has an expanding role in computer vision and computer graphics. It
analyzes digitized objects (for instance, two-dimensional (2D) images and
three-dimensional (3D) samples of the surface of the scanned objects) from
the point of graph-theoretical and combinatorial concepts [94].

The necessity to develop computationally efficient data structures and
algorithms for inherently geometric problems gave rise to computational
geometry as an independent discipline in the 1970s. The fundamental concepts
developed in this field are successfully used in various domains: robotics,
computer graphics, geographic information systems, computer-aided design
and manufacturing, and pattern recognition [49]. As a result, the term
computational geometry has multiple domain-specific connotations [58, 62,
63, 118, 122, 151, 174]. In this thesis, the definition is adopted from [151]
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and [174] and considers a systematic study of data structures and algorithms
for geometric problems from the point of their computational complexity. The
synergy of the two disciplines, discrete and computational geometry, bridges
the gap between mathematics and computer science [52]. For a problem
that is geometric in nature, a successful application-driven solution takes two
considerations into account [49]:

1. Understanding of geometric properties that are useful for the given
problem.

2. Finding the appropriate data structures and algorithmic techniques that
enable efficient usage of the above properties.

In relation to the thesis, Chapter 2 starts with the formal definitions of the
basic mathematical notions that are sufficient for following the discussion. It
further introduces the conic sections and their relevant properties. Chapter 3
expands the discussion towards the generalized conics. It presents not only
the facts mentioned in the existing literature but also the geometric findings
with a practical value in the computer vision domain.

Chapter 4 discusses the proposed metric, called Confocal-Ellipse-based
Distance (CED), that computes the distance between a point and a line
segment. Its properties are analyzed through a comparison with the classical
approach, the Hausdorff Distance (HD). Afterwards, the chapter explores the
properties of the distance field, the Confocal Elliptic Field (CEF), that relies
on CED as a proximity measure. Eventually, the properties of generalized
conics provide a basis for the creation of the Confocal Multifocal Elliptic
Field (CMEF) and the Confocal Multifocal Hyperbolic Field (CMHF).

Chapter 5 establishes a connection between CEF and digital space. To
compute the distance fields, it is proposed to apply the classical image
processing technique, called Distance Transform (DT). In this regard, the
resultant representation has the name Confocal Elliptic Field in terms of
DT (CEFDT). Due to the discrete nature of the approach, the properties
of the original CEF are revisited. The underlying concept behind CEFDT
is not limited to the use of the Euclidean distance. Therefore, CEFDT is
discussed in relation to the metric impact on the resultant representation
after substituting the Euclidean distance with City-Block and Chessboard.

Chapters 6 and 7 gain a deeper insight into the properties of CEF. The
proposed Elliptic Line Voronoi Diagram (ELVD) and Elliptic Line Voronoi
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Skeleton (ELVS) can be considered generalizations of the classical Voronoi
Diagram (VD) and Voronoi Skeleton (VS).

The presented theoretical findings have a potential to be applied in the
computer vision domain. Chapter 8 exemplifies the practical problems where
the advantage of the developed techniques can be vividly illustrated.

This thesis summarizes the research work published in proceedings of
the international conferences together with additional findings that improve
understanding of the content:

1. Aysylu Gabdulkhakova, Walter G. Kropatsch: Confocal Ellipse-based
Distance and Confocal Elliptical Field for polygonal shapes. In Pro-
ceedings of the International Conference on Pattern Recognition, pages
3025–3030, 2018 [66]

2. Aysylu Gabdulkhakova, Maximilian Langer, Bernhard W. Langer, Wal-
ter G. Kropatsch: Line Voronoi Diagrams Using Elliptical Distances. In
Proceedings of the Joint IAPR International Workshop on Structural,
Syntactic, and Statistical Pattern Recognition, pages 258–267, 2018 [69]

3. Aysylu Gabdulkhakova, Walter G. Kropatsch: Generalized conics: prop-
erties and applications. In Proceedings of the International Conference
on Pattern Recognition, pages 10728–10735, 2020 [67]

4. Aysylu Gabdulkhakova, Walter G. Kropatsch: Generalized conics with
the sharp corners. In Proceedings of the Iberoamerican Congress on
Pattern Recognition, pages 419–429, 2021 [68]

The present work covers a wide range of topics starting with the theoretical
discussions and finishing with the practical applications. Despite such a variety,
the core value behind this thesis is the introduction of the generalized conics
into the field of computer vision. The contributions can be listed as follows:

1. study of the geometric properties of conic sections and generalized
conics;

2. analysis of an egg-shape and a hyperbolic shape with corners, and
introduction of the method for deriving their parameters;

3. introduction of the metric CED and analysis of its properties;
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4. introduction of the distance fields CEF, CMEF, and CMHF;

5. introduction of the discrete distance fields CEFDT, CMEFDT, and
CMHFDT;

6. analysis of CEFDT under City-Block and Chessboard distances;

7. reconsideration of CEF from the point of ELVD and analysis of the
properties;

8. reconsideration of CEF from the point of ELVS and analysis of the
properties;

9. comparison of the proposed representations with the state-of-the-art;

10. demonstration of the computer vision applications using the derived
concepts.
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CHAPTER 2

Conics in Analytic Geometry

This chapter covers the mathematical notions and properties underlying this
research work. In the beginning, it introduces the basic concepts that give a
solid foundation to follow the discussion about conics with a special emphasis
on an ellipse and a hyperbola. The description of each type of conics accounts
for nomenclature and geometric properties. In particular, the definitions
of ellipse and hyperbola are the keystones to the proposed metric, whereas
the concept of confocal conics - to the proposed distance field. Despite the
variety of geometry branches, here, the focus is on the Euclidean and analytic
geometry which are necessary for computer vision.

2.1 Preliminaries
This section briefly introduces the definitions and notations that facilitate
understanding of the work.

Definition 1 (Euclidean space). Euclidean space is the finite N-dimensional
vector space, RN , with a scalar (or dot) product. The scalar product is a
function ⟨, ⟩ : RN× RN→ R, such that for any elements x, y, z ∈ RN the
following axioms hold true:

1. ⟨x, y⟩ = ⟨y, x⟩ – symmetry
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2. ⟨x + z, y⟩ = ⟨x, y⟩+ ⟨z, y⟩ – distributivity

3. ⟨αx, y⟩ = α⟨x, y⟩, α ∈ R – linearity in the first argument

4. ⟨x, x⟩ ≥ 0, ⟨x, x⟩ = 0⇔ x = 0 – positive-definiteness

Definition 2 (Point). A point P is a primitive notion in the Euclidean space
that has no dimensional attributes, like length, area, or volume.

Definition 3 (Line segment). A line segment PQ is a straight path connecting
a pair of points P and Q. It has a one-dimensional attribute which is a length.

A coordinate system is a method that enables defining the position of
a point in space numerically. Such a concept makes it possible to solve
geometric problems analytically.

Definition 4 (Cartesian coordinates). A Cartesian coordinate system (also
called rectangular coordinates) defines N mutually perpendicular axes with
the common origin O. A point is defined by an N-tuple of real numbers
P = (p1, p2, ..., pN), called coordinates, that express the signed distances from
the origin.

The Euclidean distance (also referred to as L2-metric) measures the line
segment length in the Cartesian coordinates.

Definition 5 (Euclidean distance). The Euclidean distance between two
points in the Euclidean space, P = (p1, p2, ..., pN) and Q = (q1, q2, ..., qN), is
defined as:

d2(P, Q) =
√

(p1 − q1)2 + (p2 − q2)2 + ... + (pN − qN)2 (2.1)

Definition 6 (Barycentric coordinates). A barycentric coordinate system
defines a point with the reference to an N-simplex expressed by the vertices
V1, V2, . . . , VN+1. If placing the masses m1, m2, ..., mN+1 at the vertices
makes P the center of mass of the N-simplex (or the barycenter), then the
(N + 1)-tuple (m1 : m2 : ... : mN+1) is called homogeneous barycentric
coordinates.

Property 1 (Multiplying the barycentric coordinates by a non-zero constant).
The points P = (m1 : m2 : ... : mN+1) and Q = (km1 : km2 : ... : kmN+1) are
the same, thus, multiplying the barycentric coordinates by the non-zero scalar
value k has no effect [46].
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Figure 2.1: Interpreting the barycentric coordinates by the areas of sub-
triangles

Property 2 (Geometric interpretation of the barycentric coordinates). Let
P = (mA : mB : mC) be the barycenter of the 2-simplex formed by the vertices
A, B, and C with the corresponding masses mA, mB, and mC. The areas
of the sub-triangles △PBC, △PAC, and △PAB are proportional to the
barycentric coordinates of P (Figure 2.1) [46]:

mA = ∆P BC

∆ABC

, mB = ∆P AC

∆ABC

, mC = ∆P AB

∆ABC

(2.2)

Definition 7 (Metric). A metric is a function RN = RN× RN → R such
that every two elements X, Y ∈ RN are associated with a unique non-negative
number, which satisfies the following conditions (axioms of the metric space):

1. non-negativity: ρ(X, Y ) ≥ 0

2. identity of indiscernibles: ρ(X, Y ) = 0⇐⇒ X = Y

3. symmetry: ρ(X, Y ) = ρ(Y, X)

4. triangle inequality: ρ(X, Y ) + ρ(Y, Z) ≥ ρ(X, Z), ∀Z ∈ RN

Definition 8 (Level set). A level set is defined by the points where the given
function takes on a particular value.

2.2 Conic Sections
The classical definition of conic sections, or conics, considers an intersection
of a plane with a (circular) double napped cone [78].
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Definition 9 (Right circular cone). Consider a triangle △AV V ′ with the
right angle V̂ V ′A. Rotating △AV V ′ about V V ′ creates a right circular cone.
The point V is called vertex and a line containing V V ′ is called cone axis.

Definition 9 describes a special cone that is sufficient for the discussion of
conic sections. The general definition is provided in [70].

Definition 10 (Double napped cone). A double napped cone is a surface
obtained by placing a pair of cones in a way that their vertices and axes
coincide. In this case, each cone is called nappe.

Definition 11 (Conic section). A conic section, or a conic, is a curve formed
at the intersection of a double napped cone with a plane that does not pass
through its vertex [78].

Figure 2.2 shows the intersections (red) of the double napped right cir-
cular cone (blue) with the plane (gray). Slicing one nappe produces either
an ellipse (Figure 2.2a) or a parabola (Figure 2.2c). A circle is a special
case of the ellipse, obtained by cutting the nappe perpendicularly to the
cone axis (Figure 2.2b). The plane intersection with both nappes creates a
hyperbola (Figure 2.2d). In this thesis, a focus is on the ellipse and hyperbola.

(a) ellipse (b) circle (c) parabola (d) hyperbola

Figure 2.2: The conic sections

2.2.1 Parabola
Visually, a parabola is a U -shaped curve that is mirror-symmetric with regard
to some axis (Figure 2.3a). Here, l expresses a fixed line called directrix, while
F is a fixed point called focus. The point V , called vertex, is an intersection
between the parabola and its symmetry axis. The line segment between the
focus and the vertex, f = d2(F, V ), defines the focal distance. Consider now
the formal definition of this conic section.
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Definition 12 (Parabola). A parabola, denoted as P(F, l), is the locus of
points equidistant from both - the focus F and the directrix l:

P(F, l) = {P ∈ R2 : d2(P, F ) = inf{d2(P, L) | L ∈ l}} (2.3)

(a) translation by (x0, y0) (b) counterclockwise rotation by α

Figure 2.3: The parabola in the 2D Cartesian coordinate system

This is illustrated in Figure 2.3a. Let V be the vertex, P - an arbitrary
point of the parabola, F - the focus, l - the directrix. Then, Definition 12 leads
to the following equalities: d2(V, L1) = d2(V, F ) and d2(P, L2) = d2(P, F ).

Implicit Representation

The parabola rotated by the angle θ in the counterclockwise direction with
the vertex V (x0, y0), as shown in Figure 2.3b, is implicitly defined as:

((x− x0) sin α + (y − y0) cos α)2 = 4f((x− x0) cos α− (y − y0) sin α) (2.4)

Explicit Representation

Alternatively, the parabola is defined in the parametric form:{
x− x0 = ft(t cos α− 2 sin α)
y − y0 = ft(t sin α + 2 cos α)

, (2.5)

where t is a parameter that ranges from −∞ to +∞.
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(a) translation by (x0, y0) (b) counterclockwise rotation by α

Figure 2.4: The ellipse in the 2D Cartesian coordinate system

2.2.2 Ellipse
The ellipse in the 2D Cartesian coordinate system is shown in Figure 2.4a. It
has two axes, major and minor, that intersect at the center O. The halves
of the major and minor axes are referred to as semi-major and semi-minor
axes correspondingly. The major axis has a length of 2a and passes through
the focal points F1 and F2, which are located symmetrically at the distance
f from the center. The minor axis is perpendicular to the major axis and has
a length of 2b. Formally this type of conic is defined below.
Definition 13 (Ellipse). An ellipse, denoted as E(F1, F2; a), is the locus of
points such that the sum of their distances to two focal points F1 and F2 is
constant:

E(F1, F2; a) = {P ∈ R2 : d2(P, F1) + d2(P, F2) = 2a} (2.6)

The following equation makes a link between the parameters a, b, and f :

a2 = b2 + f 2 (2.7)

Another way to relate these parameters is connected to eccentricity, denoted
as ε. It shows the degree of ellipse elongation and is formally defined as:

0 ≤ ε =

√
a2 − b2

a
= f

a
< 1 (2.8)
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As follows from (2.7) and (2.8), the length of the semi-major axis satisfies the
condition a > f = 1

2d2(F1, F2). In the special cases, the ellipse degenerates
into a circle (f = 0, ε = 0, b = a) and into a line segment (f → a, ε → 1,
b→ 0).

Definition 14 (Circle). A circle, denoted as C(O; r), is the locus of points
which distance to the point O is constant:

C(O; r) = {P ∈ R2 : d2(P, O) = r} (2.9)

Implicit Representation

Consider the ellipse in the 2D Cartesian coordinate system rotated by the angle
α in the counterclockwise direction about its center at O(x0, y0) (Figure 2.4b).
Then, each point P (x, y) ∈ R2 of the ellipse satisfies the following equation:

((x− x0) cos α− (y − y0) sin α)2

a2 + ((x− x0) sin α + (y − y0) cos α)2

b2 = 1
(2.10)

Explicit Representation

Alternatively, the ellipse is parametrically defined as:{
x− x0 = a cos θ cos α− b sin θ sin α
y − y0 = a cos θ sin α + b sin θ cos α

, (2.11)

where θ is a parameter that ranges from 0 to 2π.

2.2.3 Hyperbola
As illustrated in Figure 2.5a, the hyperbola contains two non-intersecting
curves, called branches [78]. Observe the shortest line segment connecting the
branches. Its two endpoints, V1 and V2, are called vertices, and its midpoint
O is called center. Notice the two lines intersecting each other at the center.
While moving away from the center, they approach the hyperbola branches.
These lines are called asymptotes. The hyperbola has two axes: transverse and
conjugate [108]. The transverse axis is formed by the line segment connecting
the vertices V1 and V2. This line segment has a length of 2a. The conjugate
axis is perpendicular to the transverse axis. Here, b is the distance between
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(a) translation by (x0, y0) (b) counterclockwise rotation by α

Figure 2.5: The hyperbola in the 2D Cartesian coordinate system

the vertex and intersection point of the two lines: the asymptote and tangent
to the hyperbola branch passing through that vertex. The focal points, F1
and F2, belong to the line containing the vertices. They are symmetric to
each other with respect to the center. The half of the distance between the
focal points is denoted as f . The hyperbola branches are symmetric regarding
the transverse and conjugate axes [78].
Definition 15 (Hyperbola). A hyperbola, denoted as H(F1, F2; a), is the locus
of points with the constant absolute difference between the distances to the
focal points F1 and F2:

H(F1, F2; a) = {P ∈ R2 : |d2(P, F1)− d2(P, F2)| = 2a } (2.12)

Compared to the ellipse (2.7), the relation between a, b, and f is:

f 2 = a2 + b2 (2.13)

The eccentricity value of hyperbola, ε, is computed as:

1 < ε =

√
a2 + b2

a
= f

a
(2.14)

When ε tends to 1, the branches flatten along the line containing the
transverse axis. With the growth of ε to infinity, the branches approach lines
parallel to the conjugate axis until they degenerate into the line.
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Property 3. The tangent to a hyperbola branch at the vertex is perpendicular
to the transverse axis [108].

Implicit Representation

Assume the hyperbola rotated by α degrees in the counterclockwise direction
about its center at O(x0, y0) (Figure 2.5b). Each of its points P (x, y) ∈ R2

satisfies the equation:

((x− x0) cos α− (y − y0) sin α)2

a2 − ((x− x0) sin α + (y − y0) cos α)2

b2 = 1
(2.15)

Explicit Representation

The parametric form defining the hyperbola is:{
x− x0 = ±a cosh θ cos α− b sinh θ sin α
y − y0 = ±a cosh θ sin α + b sinh θ cos α

, (2.16)

where the parameter θ ∈ R.

2.3 Confocal Conics
The previous section discusses each conic section and its properties individually.
Here, in contrast, the focus is on a family of conics that share the same focal
points and have various associated sums of the distances (Figure 2.6a).

Definition 16 (Confocal ellipses (or hyperbolas)). The ellipses (or hyperbolas)
sharing the common focal points, F1 and F2, are called confocal ellipses (or
hyperbolas).

As follows from Definition 16, when related to the confocal ellipses (or
hyperbolas), the original ellipse or hyperbola notation E(F1, F2; a)/H(F1, F2; a)
is simplified by using only the parameter a. In other words, E(a)/H(a).

Property 4 (Uniqueness of confocal ellipse and hyperbola passing through a
point). Given any point P ∈ R2 there is exactly one level set from the family
of confocal ellipses (hyperbolas) that passes through it [78]:
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(a) confocal conics
(b) orthogonality of the tangents at
P

Figure 2.6: The confocal ellipses (solid) and hyperbolas (dashed) from the
focal points F1 and F2. Here, P is an intersection point of the ellipse and the
hyperbola

⋃
a>f

E(a) = R2 (2.17)
⋃

0<a<f

H(a) = R2 (2.18)

Property 5 (Confocal ellipse and hyperbola intersect orthogonally). The
tangents to the confocal ellipse and hyperbola at the point of their intersection
are mutually orthogonal [78] (Figure 2.6b).

According to Properties 4 and 5, the families of confocal ellipses and
hyperbolas form the orthogonal coordinate system, called elliptic coordinate
system [78]. It has an application in, for instance, astronomy [50] and
physics [188,196].
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CHAPTER 3

Generalized Conics in

Analytic Geometry

This chapter is based on the following publications:
Aysylu Gabdulkhakova, Walter G. Kropatsch:
Generalized conics: properties and applications. In Proceedings of the Inter-
national Conference on Pattern Recognition, pages 10728–10735, 2020 [67]
Aysylu Gabdulkhakova, Walter G. Kropatsch:
Generalized conics with the sharp corners. In Proceedings of the Iberoamerican
Congress on Pattern Recognition, pages 419–429, 2021 [68]

The conics can be generalized into a class of higher-order curves by taking
infinitely many focal points. Each focal point is associated with a real number
that reflects its weight. First generalization modifies Definition 13 to have a
constant sum of the weighted distances to the set of focal points [71,75,120,172].
Second generalization is based on Definition 15 and takes two sets of focal
points with weights. A level set satisfies the constant absolute difference of
weighted distance sums to the points in these sets [71, 120]. In the literature,
there is a variety of other generalizations. Nagy et al. [127,201] introduced an
additional division of the constant sum by the set size, so the level sets reflect
the average distances to the set of focal points. Glaeser et al. [71] considered
the weighted distance sums, as well as the weighted sums of distance products.
Lamé curves [99] show a different way of generalization by substituting the
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degree of 2 in the equation (2.10) with the degree of N , where N is a rational
number. In the special case, where N is strictly greater than 2 [74], these
curves are referred to as superellipses. By increasing the degree, the shape
gradually transforms to a rectangle [83]. As compared to the generalized
conics, superellipses neither consider varying the number of focal points, nor
preserve the constant distance sum to focal points. The latter is clear on
an example of a square (the special case of a rectangle): a distance from its
center to a point at a corner is greater than to any other point of this square.

Regarding the naming conventions, the generalized conics are referred to as
polyconics [120] or multifocal curves [71]. For the constant weighted distance
sums, there exist works about polyellipses [120], multifocal ellipses [60, 71],
n-ellipses [172], Tschirnhaus´sche Kurven [194], k-ellipses [131], egglipses [164],
Cartesian ovals [206] and ovals [116]. For the constant absolute differences
of weighted sums, there are references to generalized [75] and multifocal [71]
hyperbolas. This thesis respects the following nomenclature. The generalized
conics are curves satisfying the equidistance properties of conics applied to
sets of focal points. To distinguish various types of the generalized conics and
emphasize the fact of having multiple focal points, it is proposed to use the
terms multifocal ellipse and multifocal hyperbola for the generalizations of an
ellipse and a hyperbola respectively.

The original motivation to study the topic appeared in the mathematical
community. Nowadays, the generalized conics are applied in approximation
theory [60], optimization problems [198,199,204], geometric tomography [201],
and architecture [147]. This chapter discusses the geometrical properties of
multifocal ellipses and hyperbolas, and presents the findings from the shape
representation perspective.

3.1 Multifocal Ellipse
Definition 17 (Multifocal ellipse). A multifocal ellipse, ME(w1F1, ..., wNFN ; c),
is a generalization of the ellipse (the weights w1, w2, ..., wN are positive real
numbers). It is a locus of points with a constant weighted distance sum to its
N focal points:

ME(w1F1, ..., wNFN ; c) = {P ∈ R2 :
N∑

i=1
wid2(P, Fi) = c} (3.1)

Figure 3.1 shows the multifocal ellipses from the three focal points, F1,
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(a) w1 = w2 = w3 = 1 (b) w1 = 0.8, w2 = 0.2, and w3 = 1

Figure 3.1: The multifocal ellipses, having the form ME(w1F1, w2F2, w3F3; c),
that pass through the point P in the 2D Cartesian coordinate system

F2, and F3. Here, an arbitrary point P ∈ R2 plays the anchor role in the
exemplification of the respective level set. Observe the change of the multifocal
ellipse passing through P , when the focal points have identical (Figure 3.1a)
and various (Figure 3.1b) weights.

Property 6 (Convexity and compactness of multifocal ellipse). A multifocal
ellipse ME(w1F1, ..., wNFN ; c) is convex and compact [139].

Property 7 (Global minimum for non-collinear focal points). (3.1) reaches the
global minimum at one point when the focal points are non-collinear [139] (the
point M in Figure 3.2a).

Property 8 (Global minimum for odd number of collinear focal points).
(3.1) reaches the global minimum at FN+1

2
if N is an odd number of ordered

collinear focal points [139,172] (the point F3 in Figure 3.2b).

Property 9 (Global minimum for even number of collinear focal points). (3.1)
reaches the global minimum at all points of FN

2
FN

2 +1 if N is an even number
of ordered collinear focal points [172] (the line segment F3F4 in Figure 3.2c).

When dividing (3.1) by N , every point is mapped to arithmetic mean of
the distances to the given set of focal points [127]. Together with Properties 6
to 9 it makes the multifocal ellipses useful for optimization tasks, such as
Fermat-Torricelli [198,199] and Weber [204] problems. In the literature, this
task is also referred to as an optimal facility location problem [24] and is
featured in Section 8.3.
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(a) non-collinear foci: at M (b) odd number of collinear foci: at F3

(c) even number of collinear foci: at F3F4

Figure 3.2: The global minimum (minima) for the various sets of focal points

Property 10 (Multifocal ellipse tends to a circle at infinity). The multifocal
ellipse approaches a circle when it infinitely grows in size.

Property 10 stems from the observation that every focal point inside a
finite area of R2 has the same distance to the points infinitely far away in
space. Thus, these points are perceived as one. With regard to (3.1), the
multifocal ellipse that is defined from a single focal point approaches a circle.

3.2 Multifocal Hyperbola
Definition 18 (Multifocal hyperbola). A multifocal hyperbola, denoted as
MH(w1F1, ..., wNFN |ν1G1, ..., νMGM ; c), is a generalization of a hyperbola. It
is defined on two sets of focal points, F1, ..., FN and G1, ..., GM , with positive
weights, w1, ..., wN and ν1, ..., νM and expresses a locus of points such that the
following absolute difference of the distance sums remains constant:
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(a) w1 = w2 = ν1 = 1 (b) w1 = 0.8, w2 = 0.2, and ν1 = 1

Figure 3.3: The multifocal hyperbolas, having the form
MH(w1F1, w2F2|ν1G1; c), that pass through the point P in the 2D
Cartesian coordinate system

MH(w1F1, ..., wNFN |ν1G1, ..., νMGM ; c) =

{P ∈ R2 : |
N∑

i=1
wid2(P, Fi)−

M∑
j=1

νjd2(P, Gj)| = c}
(3.2)

For simplicity, the points F1, ..., FN are referred to as positively weighted,
and the points G1, ..., GM – as negatively weighted.

Figure 3.3 demonstrates the examples of multifocal hyperbolas. The first
set of focal points contains F1 and F2, whereas the second set – G1. The level
sets are passing through the arbitrary point P ∈ R2. Notice the difference
between Figures 3.3a and 3.3b caused by the weights at the focal points. As
can be concluded from (3.1) and (3.2), a multifocal hyperbola is a multifocal
ellipse that accepts weights with the opposite signs, namely plus and minus.
Nevertheless, this statement is questionable, and Properties 6 to 9 are not
fulfilled for the multifocal hyperbola.

Let F = {w1F1, ..., wNFN} and G = {ν1G1, ..., νMGM} denote the sets
of focal points with weights. By omitting the absolute value in (3.2), the
multifocal hyperbola expresses the space tessellation. The points with positive
values are closer to G; the points with negative values – closer to F ; the
points with zero values are equidistant to both sets, F and G.

As can be noted from Definition 17 and 18, the multifocal ellipse defined
by the set J = F ∪G has several associated multifocal hyperbolas depending
on the elements in sets F and G.
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Property 11 (Number of multifocal hyperbolas for N focal points). For the
set of N focal points, there exist (2N−1 − 1) multifocal hyperbolas.

Proof. Each focal point belongs to one of the two groups. So the problem
of finding the number of multifocal hyperbolas reduces to the combinatorial
task of splitting the set into two non-intersecting subsets. Together, such
subsets form the original set. Each of them contains at least one and at most
N − 1 elements. The order of the elements does not matter. The number of
k-combinations of an N -element set, for 1 ≤ k ≤ N − 1, is:

N−1∑
k=1

(
N

k

)
=

N∑
k=0

(
N

k

)
−
(

N

N

)
−
(

N

0

)
(3.3)

According to the properties of binomial coefficients,
(

N
N

)
=
(

N
0

)
= 1 and

N∑
k=0

(
N
k

)
= 2N [35]. Next, (3.3) shows the total number of subsets of the

N -element set, excluding the situations when one subset is empty or contains
all elements. The initial problem searches for the pairs of subsets forming
the original set. Selecting k elements is the same as not selecting N − k
elements. The symmetry property [35] states that

(
N
k

)
=
(

N
N−k

)
. In relation

to the initial problem, (3.3) is divided by two. In other words, the number of
multifocal hyperbolas for the set of N focal points equals:

N−1∑
k=1

(
N
k

)
2 = 2N−1 − 1 (3.4)
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(a) confocal multifocal conics (b) angle between the tangents at P

Figure 3.4: The confocal multifocal ellipses (solid) and hyperbolas (dashed)
from the focal points F1 and F2 with the weights w1 = 0.7 and w2 = 1
correspondingly. The point P is taken arbitrarily

3.3 Confocal Generalized Conics
Similar to Section 2.3, it is possible to define confocal multifocal ellipses and
hyperbolas.

Definition 19 (Confocal multifocal ellipses (or hyperbolas)). If multifocal
ellipses (or hyperbolas) share the common focal points and their corresponding
weights, then they are called confocal multifocal ellipses (or hyperbolas).

The original notations of multifocal ellipse (or hyperbola) can be simplified
by using only one parameter, c, that defines the distance value: ME(c)/MH(c)
correspondingly.

Property 12 (Uniqueness of confocal multifocal ellipse and hyperbola passing
through a point). Given any point P ∈ R2, there is exactly one level set from
a family of confocal multifocal ellipses (or hyperbolas) that passes through it.

As opposed to conics, Property 5 is not necessarily met in the case of
families of confocal multifocal ellipses and hyperbolas. For example, in
Figure 3.4b, the angle formed by the tangents to the multifocal ellipse and
hyperbola at the point P is not right.
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3.4 Generalized Conics with Sharp Corners
From the shape representation perspective, it is important to have a formal
description of curves that can be potentially generated. This section focuses
on the situation when the level sets contain sharp corners.

Definition 20 (Corner). A point of a curve, where the left-hand tangent
differs from the right-hand tangent, is called corner.

To simplify the discussion about the properties, it is proposed to normalize
the weights. Each of the N weights is divided by the maximum value among
them, max(w1, w2, . . . , wN):

wi = wi

max(w1, w2, . . . , wN) , i ∈ [1 . . . N ] (3.5)

Hence, the weight values range in the half-closed interval (0, 1].

3.4.1 Multifocal Ellipse with Sharp Corner
Property 13 (Location of a corner in a multifocal ellipse). If a multifocal
ellipse has a corner, it is located only at a focal point. Such a level set is
expressed either by a closed curve smooth everywhere except for one corner or
by a closed sequence of smooth arcs connected at the corners.

Proof. As stated in Definition 17, each point P = (x, y) of the multifocal
ellipse is mapped to the weighted distance sum to the N -element set of focal
points. Let Fi = (xi, yi) be the i-th focal point, i ∈ [1 . . . N ]. Hence, (3.1) is
expressed with regard to (2.1) as:

ME(w1F1, ..., wNFN ; c) = {P ∈ R2 :
N∑

i=1
wi

√
(x− xi)2 + (y − yi)2 = c} (3.6)

(3.6) defines a continuous function that is not differentiable at P coinciding
with one of the focal points (same reasoning for the non-weighted case is
in [131]). Thus, when present, the corner is at the focal point.

Consider the example. Figure 3.5a illustrates three level sets generated
from the focal points F1, F2, and F3 with the respective weights w1, w2, and
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(a) w1 = w2 = w3 = 1 (b) w1 = 0.46, w2 = 1, w3 = 0.93

(c) w1 = 0.608, w2 = 0.83, w3 = 1 (d) w1 = 0.46, w2 = 1, w3 = 0.75, w4 = 1

Figure 3.5: The multifocal ellipses with the corners at the focal points

w3. Each of these level sets is a closed curve with the corner at one of the
focal points. When changing the values of weights (Figure 3.5b), the focal
points F1 and F3 become connected by a closed sequence of arcs and form
the level set with two corners at F1 and F3. In Figure 3.5c, the focal points
F1, F2, and F3 express the corners of the level set containing a closed set of
arcs. Similarly, in Figure 3.5d, the focal points F1, F2, and F3 correspond to
the corners of the same level set. The focal point F4 corresponds to the global
minimum, thus, its level set contains only the point F4 and no corner.
Definition 21 (Convex hull). Given a set of points, the convex hull is its
smallest convex subset that encloses all the elements.
Property 14 (Number of corners in a multifocal ellipse). A multifocal ellipse
from N focal points has up to N corners passing through those focal points.
Proof. As Property 13 states, the corner is located only at the focal point.
Thus, the number of corners cannot exceed the number of focal points. In the
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case of a single focal point, there exist no level set with a corner. According
to Property 6, the multifocal ellipse is convex. Hence, when the focal points
form the convex hull, it is possible to generate up to N corners in the same
level set. The focal points outside the convex hull are either a global minimum
or a part of a different level set. It results in less than N corners in the same
level set.

For instance, let the multifocal ellipse contain three focal points forming
the convex hull. Varying the weights generates the level sets containing
one (Figure 3.5a), two (Figure 3.5b), and three (Figure 3.5c) corners. In
general, the maximum number of corners connected by a single level set equals
the number of focal points forming a convex hull (Figure 3.5d). Here, the
focal point F4 is inside the convex hull and is the global minimum.

Property 15 (Uniqueness of weights in a multifocal ellipse passing through
all the focal points). Consider a set of N focal points forming a convex
hull. There exists a unique set of normalized weights that corresponds to the
multifocal ellipse passing through all these focal points.

Proof. Property 15 can be proven by induction.

1. N = 1 : Consider a multifocal ellipse containing a single focal point.
According to the normalization strategy, its weight w is always 1. Thus,
Property 15 holds true.

2. N = 2 : Consider a pair of focal points with the normalized weights w1
and w2, where w1 = 1. The level set connecting the focal points has
the distance value D. The distance between the focal points is l. Then,
according to (3.1):{

w1 · 0 + w2 · l = D

w1 · l + w2 · 0 = D
⇐⇒

{
w2 · l = D

w2 · 0 = D− l
(3.7)

The above system of linear equations can be expressed in a matrix form:(
l
0

)(
w2
)

=
(

D
D− l

)
(3.8)

The system of linear equations has a unique solution if the matrix
rank equals the number of unknown variables. So does the rank of the
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Figure 3.6: The triangle formed by the focal points F1, F2, and F3

augmented matrix [129]. The rank of the matrix in (3.8) is 1 since the
last row contains zero. It suffices to prove that the rank of the augmented
matrix also equals 1. By definition, the rank equals the number of rows
of the largest submatrix with a non-zero determinant [129]:∣∣∣∣∣ l D

0 D− l

∣∣∣∣∣ (3.9)

As can be seen, it is an upper-triangular matrix. Its determinant equals
the product of the main diagonal elements [129]. Hence, the system of
linear equations does not have any solution if (D − l) · l ̸= 0. Since l
is greater than 0, the equality to zero is achieved when (D − l) = 0,
or D = l. It is a unique solution corresponding to the ellipse that is
degenerated into a line segment.

3. N = 3 : Consider the triplet of focal points with the normalized weights
w1, w2, and w3, where w1 = 1. Let l1, l2, and l3 express the pairwise
distances between the focal points (Figure 3.6), and D to be the distance
value of the level set connecting them. The corresponding system of
linear equations is:

w1 · 0 + w2 · l1 + w3 · l2 = D

w1 · l1 + w2 · 0 + w3 · l3 = D

w1 · l2 + w2 · l3 + w3 · 0 = D

⇐⇒


w2 · l1 + w3 · l2 = D

w2 · 0 + w3 · l3 = D− l1

w2 · l3 + w3 · 0 = D− l2

(3.10)

(3.10) in the matrix form is expressed as:l1 l2
0 l3
l3 0

(w2
w3

)
=

 D
D− l1
D− l2

 (3.11)
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First, the rank of the matrix is computed as follows:l1 l2
0 l3
l3 0

 | · 1
l1
| · 1

l3
| · 1

l3

(3.12a)

⇒

1 l2
l1

0 1
1 0


←−

−1

+

(3.12b)

⇒

1 l2
l1

0 1
0 − l2

l1


| ·− l1

l2

(3.12c)

⇒

1 l2
l1

0 1
0 1

 (3.12d)

In (3.12d), the last line can be removed. It leads to the rank being
equal to 2. Second, by applying the same operations, the augmented
matrix becomes: l1 l2 D

0 l3 D− l1
l3 0 D− l2

 (3.13a)

⇒


1 l2

l1
D
l1

0 1 D−l1
l3

1 0 D−l2
l3


←−

−1

+

(3.13b)

⇒


1 l2

l1
D
l1

0 1 D−l1
l3

0 − l2
l1

D−l2
l3
− D

l1


| · l1

l2

(3.13c)

⇒


1 l2

l1
D
l1

0 1 D−l1
l3

0 −1 (D−l2
l3
− D

l1
) · l1

l2


←−+

(3.13d)

⇒


1 l2

l1
D
l1

0 1 D−l1
l3

0 0 (D−l2
l3
− D

l1
) · l1

l2
+ D−l1

l3

 (3.13e)
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The determinant equals the product of the diagonal elements [129].
Thus, the unique solution is obtained when:

(D− l2
l3

− D

l1
) · l1

l2
+ D− l1

l3
= 0⇐⇒ D = 2l1l2

l1 + l2 − l3
(3.14)

Otherwise, there is no solution.

4. N = k + 1 : Assume Property 15 is true for N = k. So, the augmented
matrix is: 

1 l12 l13 . . . l1k D1
0 1 l23 . . . l2k D2

. . .
0 0 0 . . . 1 Dk−1
0 0 0 . . . 0 Dk

 (3.15)

Here, Di is the distance value, and lmn is the variable coefficient after
applying the Gaussian elimination [129], 1 ≤ i, n ≤ k, 1 ≤ m ≤ k − 2.
There is the unique level set passing through k focal points, only if
Dk = 0, otherwise – no solution.
Adding the extra column and row in (3.15) corresponding to the (k+1)st
focal point results in:

1 l12 l13 . . . l1k l1k+1 D1
0 1 l23 . . . l2k l2k+1 D2

. . .
0 0 0 . . . 1 lk−1k+1 Dk−1
0 0 0 . . . 0 lkk+1 Dk

lk+11 lk+12 lk+13 . . . lk+1k 0 Dk+1

 | · 1
lkk+1

(3.16a)

⇒



1 l12 l13 . . . l1k l1k+1 D1
0 1 l23 . . . l2k l2k+1 D2

. . .
0 0 0 . . . 1 lk−1k+1 Dk−1
0 0 0 . . . 0 1 Dk

lkk+1

lk+11 lk+12 lk+13 . . . lk+1k 0 Dk+1


(3.16b)

As observed in (3.16b), the variable coefficients in the last row can
be eliminated by consecutive multiplication-subtraction of the above k
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rows: 

1 l12 l13 . . . l1k l1k+1 D1
0 1 l23 . . . l2k l2k+1 D2

. . .
0 0 0 . . . 1 lk−1k+1 Dk−1
0 0 0 . . . 0 1 Dk

lkk+1

0 0 0 . . . 0 0 D′
k+1


(3.17)

If D′
k+1 = 0, there is only one combination of the normalized weights

{1, w2, . . . , wk+1}, such that the multifocal ellipse connects all (k + 1)
focal points. Otherwise, such a level set does not exist.

3.4.2 Multifocal Hyperbola with Sharp Corner
As opposed to multifocal ellipses, which generate convex level sets, multifocal
hyperbolas enable getting concave corners. Let F = {w1F1, w2F2} and
G = {ν1G1} be the sets of focal points producing the confocal multifocal
hyperbolas (Figure 3.7). One of the level sets, MH(cG1), contains a concave
corner at G1. Another level set, MH(cF1), passes through F1 and has the
convex corner at that focal point. Eventually, the level set corresponding to
F2, MH(cF2), is the focal point itself.

Figure 3.7: The confocal multifocal hyperbolas with the corners at F1 and G1

Property 16 (Multifocal hyperbola containing a focal point and a curve).
A multifocal hyperbola can contain a focal point and a curve that are not
connected.

This statement is exemplified in Figure 3.8. Consider the two sets of focal
points: F = {w1F1, w2F2, w3F3} and G = {ν1G1}. Each member of the family
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(a) confocal multifocal hyperbolas in 3D (b) level sets (top view)

Figure 3.8: The confocal multifocal hyperbolas passing through the focal
points

of confocal multifocal hyperbolas is denoted as MH(w1F1, w2F2, w3F3|ν1G1; c).
In the presence of a negatively weighted G1, multiple level sets contain two
disconnected elements: a focal point and a curve. Let the level set passing
through F1 be denoted as MH(cF1), through F2 – MH(cF2), through F3 –
MH(cF3), and, eventually, through G1 – MH(cG1). The 3D representation of
the level sets has two axes that define the spatial location of the points and one
axis – their distance value (Figure 3.8a). Figure 3.8b shows the top view on
the level sets passing through the focal points. In this scenario, the positively
weighted focal points (F1, F2, and F3) are the local/global minima, whereas
G1 is the local maximum. As can be observed, the level set passing through
the global minimum F2 contains only the focal point itself. The distance
value of the local minimum F3 is also present in the region surrounding F2.
Hence, the level set MH(cF3) has two disconnected components: the point F3
and the curve around F2. The level set passing through F1 contains also the
curve surrounding F2 and F3. Finally, the level set MH(cG1) contains G1 and
the curve surrounding all the positively weighted focal points.

Property 17 (Multifocal hyperbola does not pass through all focal points).
There is no multifocal hyperbola connecting all positively and negatively
weighted focal points.

Property 17 stems from the fact that a multifocal hyperbola maps each
point in space to either of the two multifocal ellipses. As a result, there
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can be no level set connecting positively and negatively weighted points
simultaneously. In this case, one of the level sets would cross the zero-curve
– the level set containing the points equidistant to both multifocal ellipses.
Eventually, the point(s) at the intersection would be associated with two
distance values, which is not possible because of Property 12.

3.5 Changing Angle at a Corner
The complexity of generalized conics increases with a number of focal points.
For example, the degree of a polynomial defining the multifocal ellipse with
N focal points equals 2N if N is odd, and 2N −

(
N

N/2

)
if N is even [131].

The existing works derive the parameters of generalized conics in the special
cases, such as egglipse [164]. This section discusses the multifocal ellipses and
hyperbolas that are generated from a pair of weighted focal points, namely an
egg-shape and a hyperbolic shape (Figure 3.9). In particular, it establishes
the formal correspondence between the angles and weights at corners.

(a) egg-shape having the sharp corner
at F2, α = 62◦, µ = 0.47

(b) hyperbolic shape having the sharp
corner at F2, β = 118◦, µ = 0.47

Figure 3.9: The egg-shape and the hyperbolic shape with the focal points at
F1 and F2. The lower half shows the level sets, and the upper half shows the
curve parameters
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3.5.1 Egg-Shape
According to (3.1), the multifocal ellipse with the pair of focal points F1 and F2
and the respective weights w1 and w2 can be defined as:

ME(w1F1, w2F2; c) = {P ∈ R2 : w1d2(P, F1) + w2d2(P, F2) = c} (3.18)

After normalization (3.5), there remains a single weight 0 < µ = min(w1,w2)
max(w1,w2) ≤ 1.

Assume that the smaller weight corresponds to F2, then:

ME(F1, µF2; c) = {P ∈ R2 : d2(P, F1) + µd2(P, F2) = c} (3.19)

Besides the special case, when the multifocal ellipses are ellipses (µ = 1), the
level sets resemble an egg-shape with various sharpness.

Figure 3.9a exemplifies the level sets generated from the pair of focal
points F1 and F2, where the latter has the weight µ = 0.47. The level set
with the corner passes through the focal point F2. The angle at the corner
equals 2α = 124◦.

Theorem 1 (Global minimum for an egg-shape). (3.19) reaches the global
minimum at the focal point with the largest associated weight.

Proof. Assume the egg-shape, ME(F1, µF2; c), where 0 < µ < 1. To prove the
theorem, estimate the distance value of an arbitrary point P depending on
its location (Figure 3.10):

1. P is located to the left of F1: d2(P, F1) + µd2(P, F2)

2. P is located at F1: µd2(F1, F2)

3. P is located between F1 and F2: d2(P, F1) + µd2(P, F2)

4. P is located at F2: d2(F1, F2)

5. P is located to the right of F2: d2(P, F1) + µd2(P, F2)

Proof by contradiction. Let the global minimum be located not at F1, but
at some point P to the left of F1 (case 1). The distance value at P must be
less than at F1:

d2(P, F1) + µd2(P, F2) < µd2(F1, F2) (3.20)
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Figure 3.10: The regions, where an arbitrary point P is located relatively to
F1 and F2

Since P is located to the left of F1, the angle F̂2F1P ranges from 90◦ to
180◦. By the triangle property [146], the longest side is opposite to the largest
angle, thus, µd2(P, F2) > µd2(F1, F2). When applied to (3.20), d2(P, F1)
becomes negative which is a contradiction. Similarly, it is possible to show
that the global minimum cannot be located to the right of F2 (case 5).

Let P be in the region bounded by the half-planes passing through F1
and F2 (case 3). If P belongs to the line segment F1F2, then d2(P, F1) +
µd2(P, F2) > µd2(F1, F2) since µ < 1. Otherwise, P and the focal points form
a triangle. According to the triangle inequality [38], d2(P, F1) + d2(P, F2) >
d2(F1, F2). Hence, d2(P, F1) + µd2(P, F2) > µd2(F1, F2).

Finally, P cannot be located at F2 (case 4) since d2(F1, F2) > µd2(F1, F2).
As can be observed, the minimum value among all the regions is achieved

when the point P coincides with the focal point F1 (case 2).

Theorem 2 (Angle at a corner of an egg-shape). Consider the egg-shape
ME(F1, µF2; c) with the sharp corner. The normalized weight (µ) of the focal
point F2 equals approximately the cosine of half of the angle at the corner (α).
Proof. Let ME(F1, µF2; c) be the egg-shape that has the sharp corner at
F2 (Figure 3.9a). Here, F1 and F2 are the focal points, P is infinitely close to
F2 and is a part of the corner. Assume the following notations: d2(F1, P ) = n,
d2(F2, P ) = m, d2(F1, F2) = 2f , and F̂1F2P = α. According to Definition 17,
all points of the egg-shape are mapped to the same distance value. It equals
the length of the line segment F1F2:

d2(F1, F2) + µd2(F2, F2) = d2(F1, F2) = 2f (3.21)
Consider now substituting P in (3.21):

d2(F1, P ) + µd2(F2, P ) = 2f (3.22)
n + µm = 2f (3.23)

=⇒ n = 2f − µm (3.24)
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By considering the triangle △F1PF2 and the law of cosines [149], it is possible
to derive the alternative estimate of n:

m2 + 4f 2 − 4mf cos α = n2 (3.25)

Substitution of n estimate from (3.24) in (3.25) results in:

m2 + 4f 2 − 4mf cos α = 4f 2 − 4µmf + m2µ2 (3.26)

=⇒ m = 4f(µ− cos α)
µ2 − 1 (3.27)

As discussed, the point P is infinitely close to F2 in continuous space. So,
in discrete space, the length of m converges to zero. It leads to further
simplification of (3.27):

m = 4f(µ− cos α)
µ2 − 1 = 0 (3.28)

=⇒ µ = cos α (3.29)

(3.29) establishes the direct dependency between the angle at the corner of
the egg-shape and the weight of the corresponding focal point.

Theorem 2 enables rewriting (3.19) by considering the angle 2α at the
corner:

d2(F1, P ) + cos α · d2(F2, P ) = d2(F1, F2) (3.30)
On one side, (3.30) has an important implication for shape representation:
compared to an ellipse, an egg-shape has one additional parameter which
explicitly defines the angle at its corner. On the other side, it is possible to
derive the parameters of the egg-shape with the corner if the curve satisfies
(3.30). Refer to Figure 3.9a. The symmetry axis passes through F2 and bisects
the corner creating two congruent angles α. The point M is the intersection
point of the symmetry axis and the egg-shape. This information is sufficient
to derive the distance between the focal points by substituting M in (3.30):

d2(F1, F2) = d2(M, F2) · (1 + cos α)
2 (3.31)

Finally, F1 can be found as the point on the symmetry axis that is inside the
egg-shape at the distance d2(F1, F2) from F2.
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3.5.2 Hyperbolic Shape
Analogically to the egg-shape, it is possible to formalize the correspondence
between the angle and the weight at a corner of a hyperbolic shape. According
to (3.2), the weighted multifocal hyperbola with two focal points, F1 and F2,
and their respective weights, w1 and w2, can be defined as follows:

MH(w1F1|w2F2; c) = {P ∈ R2 : |w1d2(P, F1)− w2d2(P, F2)| = c} (3.32)

Using the normalization strategy (3.5) enables keeping only the single weight
parameter 0 < µ = min(w1,w2)

max(w1,w2) ≤ 1. In particular, when µ = 1, the level
sets are hyperbolas. Assume the smaller weight corresponds to the point
F2 (Figure 3.9b), then (3.32) becomes:

MH(F1|µF2; c) = {P ∈ R2 : |d2(P, F1)− µd2(P, F2)| = c} (3.33)

Theorem 3 (Angle at a corner of a hyperbolic shape). Consider the hyperbolic
shape MH(F1|µF2; c) with the corner. The normalized weight (µ) of the focal
point F2 equals approximately minus the cosine of half of the angle at the
corner (β).

Proof. Let MH(F1|µF2; c) be the hyperbolic shape with the sharp corner at
F2 (Figure 3.9b). The point P is infinitely close to F2 and belongs to the
corner. Consider the following notations: d2(F1, P ) = n, d2(F2, P ) = m,
d2(F1, F2) = 2f , and F̂1F2P = β. According to (3.33), the distance value at
F2 equals:

|d2(F1, F2)− µd2(F2, F2)| = d2(F1, F2) = 2f (3.34)

Analogically to the proof for an egg-shape, the estimate of n after substituting
the point P in (3.34) is:

n = 2f + µm (3.35)

Similarly, consider the law of cosines [149] for the triangle △F1PF2 and
substitute n by the estimate from (3.35). It leads to the following relation:

m = −4f(µ + cos β)
µ2 − 1 (3.36)

Since m is infinitely small, it is possible to assign it to zero in discrete space:
µ = − cos β. As a result, the angle at the corner of the hyperbolic shape has
the direct dependency on the weight of the corresponding focal point.

47



One implication of Theorem 3 is the possibility to rewrite (3.33) more
intuitively. If the angle at the concave corner equals 2β, then the level set
passing through the corresponding focal point F2 satisfies:

d2(F1, P ) + cos β · d2(F2, P ) = d2(F1, F2) (3.37)

Another implication is connected to shape representation domain. Compared
to an ellipse, a hyperbolic shape generated from the pair of focal points
requires only one additional parameter – the angle at the corner. Hence,
given a curve that satisfies (3.37), it is possible to derive its parameters.
Consider the level set illustrated in Figure 3.9b. The symmetry axis intersects
the hyperbolic shape at F2 and M and bisects the corner creating a pair of
congruent angles β. Then, the distance between the focal points according to
(3.37) equals:

d2(F1, F2) = d2(M, F2) · (1 + cos β)
2 (3.38)

Consequently, the remaining focal point F1 is at the distance d2(F1, F2) when
moving along the symmetry axis from F2 to M . Apparently, there is a
similarity between (3.31) and (3.38). Although, the convexity of the egg-
shape implies a positive cos α, whereas the concavity in the hyperbolic shape
requires a negative cos β.

3.6 Summary
A number of focal points highly influences the complexity of generalized conics.
It implies the idea of focusing on particular scenarios prior to creating a general
picture. This chapter limits the research scope to multifocal ellipses and
hyperbolas with corners and contributes to the state of the art by analysing
their properties from shape representation perspective. For instance, the
established correspondence between the angle at the corner of an egg-shape (or
a hyperbolic shape) and the weight of the focal point enables using that
primitives instead of an ellipse for representing shapes with convex or concave
sharp corners. The correspondence between the weights of more than two
focal points and the angles at the corners is the question for future research.
The uniqueness of the normalized weights passing through all the focal points
of the multifocal ellipse is a potential key to tackle that problem.

48



CHAPTER 4

Distance Fields based on the Properties of

Generalized Conics

This chapter is based on the following publications:
Aysylu Gabdulkhakova, Walter G. Kropatsch:
Confocal Ellipse-based Distance and Confocal Elliptical Field for polygonal
shapes. In Proceedings of the International Conference on Pattern Recognition,
pages 3025–3030, 2018 [66]
Aysylu Gabdulkhakova, Maximilian Langer, Bernhard W. Langer,
Walter G. Kropatsch:
Line Voronoi Diagrams Using Elliptical Distances. In Proceedings of the
Joint IAPR International Workshop on Structural, Syntactic, and Statistical
Pattern Recognition, pages 258–267, 2018 [69]
Aysylu Gabdulkhakova, Walter G. Kropatsch:
Generalized conics: properties and applications. In Proceedings of the Inter-
national Conference on Pattern Recognition, pages 10728–10735, 2020 [67]

A distance field is an implicit space representation. It specifies for each
point its proximity to a set of objects with regard to a distance function [27].
The existing approaches measure the distance between a pair of points. The
object or its boundary is decomposed into a set of points, and the proximity
is the distance to the closest element from this set.
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The present work provides the alternative views to this problem. First,
the Confocal-Ellipse-based Distance (CED) measures the distance between a
pair of confocal ellipses. Assume, one of the ellipses degenerates into a line
segment bounded by the focal points. The second ellipse is expressed by the
set of points that it passes through. These assumptions enable computing the
distance between the point and the line segment by defining the latter only
by its endpoints. A part of this chapter analyzes the geometrical properties of
the distance field generated from CED – the Confocal Elliptic Field (CEF).

Second, by referring to the generalized conics, the proximity to the set
of objects can be measured as the distance sum to all objects in this set.
This idea is reflected in the Confocal Multifocal Elliptic Field (CMEF). The
difference between two CMEFs produces the Confocal Multifocal Hyperbolic
Field (CMHF) expressing the proximity to the pair of object sets.

4.1 Distance from a Point to a Line Segment
This section presents the new metric for computing the distance between a
point and a line segment based on the properties of confocal ellipses. The
comparison with the state-of-the-art approach, the Hausdorff Distance (HD),
regards representation of level sets.

4.1.1 Hausdorff Distance (HD)
A classical way to measure the distance between a point and a line segment
is to use the Hausdorff Distance (HD).

Definition 22 (Hausdorff Distance). The Hausdorff Distance (HD) between
an arbitrary point P ∈ R2 and a line segment l equals the shortest distance
between P and a point L ∈ l with regard to a selected metric (for example,
Euclidean):

dHD(P, l) = inf{d2(P, L) | L ∈ l} (4.1)

Figure 4.1 illustrates the HD level sets. Let the line segment l contain
N points, l = {L1, . . . , LN}. The orange and blue curves are the level sets
with the distance values r1 and r2 respectively. The intuition of the level
set is a fusion of the circles with the given radii (r1 or r2) and the centers at
Li, i ∈ [1 . . . N ]. Figure 4.1 exemplifies two circles with the centers at L1 and
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LN and radii r1 and r2. The dashed curves show the circle arcs that are not
part of the HD level sets.

Figure 4.1: The HD level sets (orange and blue solid curves)

4.1.2 Confocal-Ellipse-based Distance (CED)
According to Property 4 of confocal ellipses, it is ensured that each point on
a 2D plane has a single distance value associated with it. This fact enables
introducing a metric.

Definition 23 (Confocal-Ellipse-based Distance). Let the distance between
two confocal ellipses, E(a1) and E(a2), be called the Confocal-Ellipse-based
Distance (CED), dCED : R2 × R2 → R. It is an absolute difference between
the lengths of major axes, 2a1 and 2a2, of these ellipses:

dCED(E(a1), E(a2)) = 2|a1 − a2| (4.2)

Figure 4.2 shows the corresponding CED level sets (solid orange and blue
curves) that are confocal ellipses. The dashed line segments demonstrate the
distances from an arbitrary point of a level set to the focal points F1 and F2.
In relation to (4.2), the length sum of orange and blue dashed line segments
equals 2a1 and 2a2 respectively.

Figure 4.2: The CED level sets (orange and blue solid curves)
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Theorem 4 (CED is a metric). CED is a metric.

Proof. Consider E(a1) and E(a2) to be confocal ellipses. By Definition 7, the
proposed distance must satisfy the metric conditions:

1. non-negativity,
dCED(E(a1), E(a2)) ≥ 0
By definition, the absolute value is non-negative. Thus, 2|a1 − a2| ≥ 0.

2. identity of indiscernibles,
dCED(E(a1), E(a2)) = 0⇔ E(a1) = E(a2)

(a) Let dCED(E(a1), E(a2)) = 0.
Then: 2|a1 − a2| = 0 =⇒ a1 = a2 =⇒ E(a1) = E(a2).

(b) Let E(a1) = E(a2).
Then: a1 = a2 =⇒ 2|a1 − a2| = 0 =⇒ dCED(E(a1), E(a2)) = 0.

3. symmetry,
dCED(E(a1), E(a2)) = dCED(E(a2), E(a1))
By definition,
dCED(E(a1), E(a2)) = 2|a1 − a2| = 2|a2 − a1| = dCED(E(a2), E(a1)).

4. triangle inequality,
dCED(E(a1), E(a2)) ≤ dCED(E(a1), E(a3)) + dCED(E(a2), E(a3))
2|a1 − a2| ≤ 2|a1 − a3|+ 2|a2 − a3|
Substitution of the absolute values by respecting the value correspon-
dence leads to valid inequalities. Hence, this property is met.

According to (2.6), an ellipse degenerates into a line segment when the
major axis length equals the focal distance. In (4.2), let one of the confocal
ellipses, for example, E(a2), be the line segment F1F2 connecting its focal
points F1 and F2. Hence, a2 = f . Then, for each point on E(a1), the distance
to any point on E(a2) with regard to CED equals:

dCED(E(a1), E(f)) = 2|a1 − f | (4.3)

(4.3) results in zero values of dCED(E(a1), E(f)) for all points belonging
to F1F2. So, CED is a valid metric for measuring the distance from the
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line segment F1F2 to any point in space. In this case, the point defines the
confocal ellipse (with semi-major axis length of a1) that goes through it.

Definition 24 (Distance from a point to a line segment in terms of CED).
The distance from point P ∈ R2 to line segment l =F1F2 in terms of CED is:

dCED(P, l) = dCED(E(a0), E(aP )) (4.4)

In (4.4), E(aP ) is a unique ellipse passing through P with the focal points
F1 and F2. The length of its semi-major axis is aP . E(a0) is the ellipse
degenerated into the line segment with the focal points F1 and F2, thus,
a0 = d2(F1,F2)

2 . In other words, a0 is half of the length of the line segment
connecting the focal points F1 and F2.

Alternatively, dCED(P, l) can be defined by the sum and difference of the
Euclidean distances with regard to (2.6) as follows:

dCED(P, l) = d2(P, F1) + d2(P, F2)− d2(F1, F2) (4.5)

Subtraction of a0 normalizes the distance function by mitigating its depen-
dence on the line segment length.

4.1.3 Comparison between HD and CED
As can be seen in Figures 4.1 and 4.2, for the line segment, CED and
HD produce different level sets: confocal ellipses and a convex envelope of
circles, respectively. To compute a CED distance field it suffices to have two
parameters – locations of the focal points. In contrast, HD takes into account
each point of the line segment. If there is HD distance field containing confocal
ellipses, then computing the representation could be optimized by using CED.
Let the HD distance values be propagated from the ellipse boundary towards
the interior. The resultant level sets are compared to the family of confocal
ellipses generated from the focal points of that ellipse.

In Figure 4.3a, the bold green ellipse, E(F1, F2; a), has the foci at F1 and
F2. In the corresponding family of confocal ellipses (solid green), the lengths
of major and minor axes are changing while keeping the distance between
the focal points constant. According to (2.7) and (2.8), it leads to various
eccentricity values of confocal ellipses. The HD level sets propagated from
E(F1, F2; a) are elliptic (dashed red in Figure 4.3a). These level sets have
a constant offset with respect to each other, which leads to the constant
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(a) DT2 and confocal
ellipses

(b) normals to DT2
level sets

(c) normals to confocal
ellipses

Figure 4.3: DT2 of the ellipse and the corresponding confocal ellipses

eccentricity and a unique pair of focal points for each level set. The smallest
distance value increment follows the direction of the normal to the level set
at that point [73]. Following the normals of the consecutive confocal ellipses
forms the hyperbola branches (dashed red in Figure 4.3c). The normals to
the HD level sets form the rays (dashed red in Figure 4.3b). So, the HD
representation of the ellipse cannot be simplified by using CED .

Both HD and CED are extendable to higher dimensions. In 3D, the
representation of the distance values is obtained by rotation about the line
segment F1F2. For HD, the resultant 3D volume comprises two half-spheres
and a cylinder. For CED, it is an ellipsoid of revolution (Figure 4.4), namely
a prolate spheroid, with the median and minor axes having an equal length.

Figure 4.4: The example of CED level sets in 3D
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The latter is proven by considering the cross sections passing through the line
segment F1F2. Due to the constant distance sum to two focal points, in each
plane, the generated curve is an ellipse with the same parameters a and b.

4.2 Confocal Elliptic Field (CEF)
A distance field associates each point in space with its distance to a closest
element from a set of objects [27]. Depending on a metric the level sets
vary. When applying the Euclidean metric, the distance field is referred to as
the Euclidean Distance Field (DF2). In the simplest case, the set of objects
contains a point, and the level sets are concentric circles with the center at
that point. Thanks to (2.6) and (2.12), a combination of DF2s produces the
distance fields containing confocal conics.

Definition 25 (Confocal ellipses from two points). Let F = {F1, F2} be
the set of two points. The sum of DF2s generated from F1 and F2 creates a
distance field containing confocal ellipses (Figure 4.5).

Figure 4.5: The distance field containing confocal ellipses

Definition 26 (Confocal hyperbolas from two points). Let F = {F1, F2}
be the set of two points. The difference of DF2s generated from F1 and F2
produces the distance field containing confocal hyperbolas (Figure 4.6).
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Figure 4.7: The distance field of the line segment with dCED as a metric

Figure 4.6: The distance field containing confocal hyperbolas

Compared to Definition 25, dCED from (4.5) additionally subtracts the
line segment length which, in fact, is present in the distance field.

Property 18 (Distance value that equals the line segment length). The
distance value of F2 in DF2 of F1 equals the length of the line segment F1F2.
And vice versa.

Definition 27 (Distance field of a line segment under CED). The distance
field of F1F2 under dCED equals subtraction of the line segment length from
the sum of DF2s generated from F1 and F2 (Figure 4.7). The level sets are
confocal ellipses.

In the special case, when the line segment degenerates into a point (for
instance, the endpoints of F1F2 are identical), the distance field of confocal
ellipses degenerates into the doubled DF2 of this point.

Subtraction of d2(F1, F2) has a normalization effect – the distance values
at the points belonging to F1F2 are zero. Therefore, it is possible to combine
multiple distance fields corresponding to various line segments. Applying the
minimum operation to a collection of such distance fields presents the way to
find the distance from a point to a set of line segments. It implies the notion
of Confocal Elliptic Field (CEF).
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Definition 28 (Confocal Elliptic Field). Consider a set F containing N line
segments and points defined as line segments with coinciding endpoints. Each
point in the Confocal Elliptic Field (CEF) is associated with the distance
value to the closest element in F with respect to CED (refer to (4.5)):

CEF = {P ∈ R2 : inf{dCED(P, li) | li ∈ F , i ∈ [1, ..., N ]}} (4.6)

In other words, in CEF, there is a mapping between each point P ∈ R2

and the smallest value from the set of distance fields. CEF tessellates the
space according to proximity of points to the set of line segments and points.

Definition 29 (Receptive field). Consider a set F containing N line segments
and points defined as line segments with coinciding endpoints. CEF is a
distance field generated from F . A set of points that have the distance to a
line segment li ∈ F smaller or equal than the distance to any other lj ∈ F ,
i, j ∈ [1, . . . , N ], j ̸= i defines the receptive field Ri:

Ri
i∈[1,...,N ]

= {P ∈ R2 : CEF(P )− dCED(P, li) = 0 | li ∈ F} (4.7)

4.2.1 Separating Curve
A set of points in CEF has an identical value in several receptive fields. Such
points are equidistant from at least two elements in the set F .

Definition 30 (Separating curve). A separating curve, denoted as Sij, visually
divides the receptive fields Ri and Rj associated with various objects. It is a
zero level set when taking the difference between these receptive fields:

Sij
i,j∈[1,...,N ];

i ̸=j

= {P ∈ R2 : P ∈ (Ri ∩Rj = 0)} (4.8)

The geometric nature of the separating curve depends on the mutual
arrangement and the type of objects in the set F . Here, the object can be
a line segment or a point. Concerning the mutual arrangement, the objects
can intersect or overlap each other, lie on parallel lines, be at a distance from
each other, and connect into a polygon. In this regard, the separating curve
in CEF is either a bisector, a hyperbola branch, or a higher-order curve. It
suffices to demonstrate the types of separating curves on an example of two
objects. When the set F contains more than two elements, the separating
curves are computed for each pair independently and then combined.
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Bisector

There are three configurations when the separating curve is a bisector. First,
consider the set F= {F1, F2} containing the pair of points. Each point creates
the distance field of concentric circles (Figure 4.8). Let P ∈ R2be an arbitrary
point on the separating curve, and Q ∈ R2 be the point on the separating
curve that belongs to F1F2. From Definition 30, F1P=F2P= r, as well as
F1Q=F2Q. The triangle △F1PF2 has two equal sides leading to PQ being
a bisector [145]. Since this is valid for any P ̸= Q, the resultant separating
curve is the perpendicular bisector to F1F2 (Figure 4.8).

Figure 4.8: CEF of the pair of points. The separating curve is a bisector

Second, the separating curve is the bisector when the line segments share
a common endpoint and have the same length (Figure 4.9a). Consider the
set F= {(F1, F2), (F2, F3)} and an arbitrary point P ∈R2 belonging to the
separating curve. From (4.5):{

dCED(P, l1) = d2(P, F1) + d2(P, F2)− d2(F1, F2)
dCED(P, l2) = d2(P, F3) + d2(P, F2)− d2(F2, F3)

(4.9)

Since for the separating curve dCED(P, l1)=dCED(P, l2) and the lengths
of the line segments are the same, d2(F1, F2) = d2(F2, F3), then d2(P, F1) =
d2(P, F3). Hence, such points P form the isosceles triangle △F1PF3, and the
resultant separating curve is the bisector that passes through the common
point – F2.

Finally, in certain scenarios, the bisector delineates the line segments of
the same length without a common endpoint. They can belong to the same
line (Figure 4.9b) or to the distinct lines, such that the shortest paths between
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(a) (b)

(c) (d)

Figure 4.9: CEF of the pair of line segments. The separating curve is a
bisector

the endpoints (F1F3 and F2F4 in Figure 4.9c and 4.9d) are parallel to each
other and are perpendicular to the midline.

Hyperbola Branch

If two line segments with different lengths share a common endpoint, the
separating curve is a hyperbola branch that passes through this common
point (Figure 4.10). Consider the set F = {(F1, F2), (F2, F3)} and an arbitrary
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(a) (b)

Figure 4.10: CEF of the pair of line segments. The separating curve is a
hyperbola branch

point P ∈R2 that belongs to the separating curve. According to (4.5):{
dCED(P, l1) = d2(P, F1) + d2(P, F2)− d2(F1, F2)
dCED(P, l2) = d2(P, F2) + d2(P, F3)− d2(F2, F3)

(4.10)

Equalizing dCED(P, l1) and dCED(P, l2) leads to:

d2(P, F1)− d2(P, F3) = d2(F1, F2)− d2(F2, F3) (4.11)

(4.11) defines the hyperbola branch with the focal points F1 and F3 passing
through the common point F2. The position of F2 influences the curvature of
the hyperbola (Figure 4.10).

Multifocal Hyperbola Branch

In the remaining cases (Figure 4.11), the separating curve is a multifocal
hyperbola branch (higher-order curve). In Figure 4.11a, the form of separating
curve depends on the mutual arrangement of line segments (for instance,
parallel to each other, non-intersecting, and intersecting) and on their length.
The line segment with the greater length has the greater receptive field in
the resultant CEF. In Figure 4.11b, the form of the separating curve depends
on the position of the point relative to the line segment.
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(a) (b)

Figure 4.11: CEF of (a) the pair of line segments and (b) the point and the
line segment. The separating curve is a multifocal hyperbola branch

4.2.2 Properties of CEF
Depending on the type of objects and their mutual arrangement, CEF is
characterized by specific geometrical properties.

Property 19 (CEF of a point). CEF generated from the point F ∈ R2

contains concentric circles with the center at F .

Proof. From (4.5) and (4.6), CEF of a single point equals:

CEF = {P ∈ R2 : d2(P, F ) + d2(P, F )− d2(F, F )} (4.12)

(4.12) defines doubled DF2 of a point. Thus, CEF contains concentric circles.

Property 20 (CEF of a line segment). CEF of the line segment F1F2 contains
confocal ellipses with the focal points at F1 and F2 ∈ R2.

Proof. According to Definition 27, dCED generates the distance field containing
confocal ellipses. So does CEF of this distance field.

Property 21 (CEF values at the points of a line segment). The distance
values along the line segment F1F2 equal zero:

CEF((1− λ)F1 + λF2) = 0, ∀λ ∈ [0, 1] (4.13)
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Proof. For each point belonging to the line segment F1F2, the distance sum
to the endpoints equals the length of F1F2. Regarding (4.5), CEF at these
points is zero.

Property 22 (CEF of the elements contained in a line segment). CEF of N
line segments and points contained in the line segment F1F2 is CEF generated
only from F1F2.

Proof. Consider the pair of line segments F1F2 and F3F4, such that F3F4⊂F1F2
and the points are ordered as F1, F3, F4, F2. The length of F1F2 is the sum of
lengths of the line segments F1F3, F3F4, and F4F2:

d2(F1, F2) = d2(F1, F3) + d2(F3, F4) + d2(F4, F2) (4.14)

For the proof, it suffices to show that CEF of F1F2 and F3F4 is the distance
field generated by F1F2. By contradiction, from (4.5) and (4.6), for any point
P ∈ R2, the following must be true:

d2(P, F1) + d2(P, F2)− d2(F1, F2) > d2(P, F3) + d2(P, F4)− d2(F3, F4)
(4.15)

According to (4.14), it is possible to simplify (4.15):

d2(P, F1) + d2(P, F2)− d2(F1, F3)− d2(F4, F2) > d2(P, F3) + d2(P, F4) (4.16)

First, let the point P be a part of F1F2. According to Property 21, in the
distance field of F1F2, all the points belonging to this line segment have zero
distance values. In the distance field of F3F4, the distance values along F3F4
are zero, and the distance values along F1F3 and F4F2 are greater than zero.
Thus, there is a contradiction in (4.15).

Second, let the point P be to the left of F1 on the line containing F1F2.
Therefore, d2(P, F3) − d2(P, F1) = d2(F1, F3) and d2(P, F2) − d2(P, F4) =
d2(F4, F2), resulting in (4.16) becoming

−d2(F1, F3) + d2(F4, F2) > d2(F1, F3) + d2(F4, F2) (4.17)

(4.17) and, consequently, (4.15) are false. Contradiction. If the point P is to
the right of F2 and is on the line containing F1F2, the reasoning is similar.

Third, let the point P be not on the line segment F1F2. Permutation in
(4.16) leads to:

d2(P, F1)− d2(P, F3) + d2(P, F2)− d2(P, F4) > d2(F1, F3) + d2(F4, F2) (4.18)
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Figure 4.12: CMEF computed for the triplet of points with the corresponding
weights w1 = 0.3, w2 = 0.5, and w3 = 0.7

According to the triangle inequality [38],

d2(F1, F3) ≥ | d2(P, F1)− d2(P, F3)| (4.19)

d2(F4, F2) ≥ | d2(P, F2)− d2(P, F4)| (4.20)
Hence, (4.18) and, consequently, (4.15) does not hold. Contradiction.

Similarly, it can be shown that CEF of the line segment F1F2 and the
point F5 ⊂F1F2 is the distance field of F1F2.

4.3 Confocal Multifocal Elliptic and
Hyperbolic Fields (CMEF and CMHF)

With the reference to Definitions 17 to 19, the distance fields containing
confocal multifocal ellipses and hyperbolas can be computed as a combination
of multiple DF2s.

Definition 31 (Confocal Multifocal Elliptic Field). Let F = {F1, F2, . . . , FN}
be the set of N points with the positive weights w1, w2, . . . , wN . The sum of
weighted DF2s generated from F1, F2, . . . , FN produces the distance field of
confocal multifocal ellipses (Figure 4.12), called Confocal Multifocal Elliptic
Field (CMEF).

The example is illustrated in Figure 4.12. The DF2s are generated from
the triplet of points F1, F2, and F3. Then, each point in these fields is
multiplied by the corresponding weight, w1, w2, or w3. Finally, CMEF is
computed by assigning to each point the sum of its values in the weighted
distance fields.
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Definition 32 (Confocal Multifocal Hyperbolic Field). Consider two sets
of focal points F = {F1, F2, . . . , FN} and G = {G1, G2, . . . , GM}. These
points have the positive weights w1, w2, . . . , wN and ν1, ν2, . . . , νM respectively.
The subtraction from the sum of weighted DF2s generated from F the sum
of weighted DF2s generated from G produces the distance field of confocal
multifocal hyperbolas (Figure 4.13), called Confocal Multifocal Hyperbolic
Field (CMHF).

Figure 4.13: CMHF from the two sets of points F = {F1, F2} and G = {G1}
with the corresponding weights w1 = 0.3, w2 = 0.5, and ν1 = 0.7

An example in Figure 4.13 takes the point sets F = {F1, F2} and G = {G1}.
First, DF2s are computed for each points F1, F2, and G1 and multiplied by
the corresponding weight w1 = 0.3, w2 = 0.5, and ν1 = 0.7. Then, for each
point in space, the distance values from DF2s associated with the set F are
added, whereas with the set G – subtracted.

4.4 Summary
This chapter illustrates how the identified geometrical properties of conics
and generalized conics are applied to shape representation. In relation to the
distance fields, the essence of the multifocal ellipses is to define the proximity
to the objects, whereas the multifocal hyperbolas establish the tessellation
of the space. A distinct feature of CEF is the impact mitigation for the
elements contained inside a line segment (Property 22). Despite the number
of elements, there will be no corresponding separating curve indicating their
presence. An interpretation of the proposed distance fields by a combination
of DF2s enables an efficient representation. The discussed CEF has potential
applications in classification and skeletonization, whereas CMEF and CMHF
are suitable for optimization problems (like optimal facility location) and
shape representation.
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CHAPTER 5

Generating CEF, CMEF, and CMHF with

Distance Transform

This chapter is based on the following publications:
Aysylu Gabdulkhakova, Walter G. Kropatsch:
Confocal Ellipse-based Distance and Confocal Elliptical Field for polygonal
shapes. In Proceedings of the International Conference on Pattern Recognition,
pages 3025–3030, 2018 [66]
Aysylu Gabdulkhakova, Maximilian Langer, Bernhard W. Langer,
Walter G. Kropatsch:
Line Voronoi Diagrams Using Elliptical Distances. In Proceedings of the
Joint IAPR International Workshop on Structural, Syntactic, and Statistical
Pattern Recognition, pages 258–267, 2018 [69]
Aysylu Gabdulkhakova, Walter G. Kropatsch:
Generalized conics: properties and applications. In Proceedings of the Inter-
national Conference on Pattern Recognition, pages 10728–10735, 2020 [67]

Digital geometry deals with N -dimensional digital spaces and is referred to
as the geometry of the computer screen [92]. It adapts fundamental concepts
of Euclidean geometry to the discrete case while considering a sampling of
the Euclidean space. The transformation of a continuous function into a
discrete form that can be processed by a computer is called digitization [94].
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In 2D space, the result consists of pixels (Figure 5.1a). It creates a finite
data structure defining a regular orthogonal grid. The shape digitization is
performed at the cost of accuracy. For example, a line segment becomes a
finite set of tiles [34], which is still perceived as a connected line segment by
humans (Figure 5.1b).

The key principle of digital geometry is to take a notion in Euclidean
geometry and see if it remains valid in its digital interpretation [92]. According
to this principle, the present chapter revisits the properties and definitions of
the Confocal Elliptic Field (CEF), Confocal Multifocal Elliptic Field (CMEF),
and Confocal Multifocal Hyperbolic Field (CMHF) from the image processing
perspective and introduces efficient algorithms for their computation based
on the Distance Transform (DT).

(a) pixel (white) (b) digitized line segment
(green)

Figure 5.1: The objects in the digital space

5.1 Preliminaries
While switching to the digital space, it is necessary to provide alternative
definitions of the notions defined for the Euclidean space (Chapter 2). Here,
the space is transformed to a digital image, whereas a point - to a pixel.

Definition 33 (2D digital image). A 2D digital image, I2, is a function
defined on a finite regular orthogonal subset of Z2

≥0 as follows:

I2 : Z2
≥0 → RN , (5.1)

where Z2
≥0 corresponds to the coordinate set, and RN - to the value set.
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(a) 4-connectivity (b) 8-connectivity (c) City-Block (d) Chessboard

Figure 5.2: Distance value propagation depending on the connectivity type

Definition 34 (Pixel). The smallest unit of a 2D digital image is called pixel.
It is characterized by a pair of non-negative integer coordinates and a value.
The value can be expressed by, for instance, a single integer (for example, a
binary image) or by a vector of integers (for example, an RGB image).

A 2D digital image is a discrete set of pixels. Hereafter, the pixels are
assumed to form a rectangular sampling grid. In the computer vision domain,
a binary image contains two types of pixels: (1) feature (foreground) elements
- pixels having a value 1, (2) non-feature (background) elements - pixels having
a value 0 [179].

In image processing, the distance between two pixels reflects spatial
information (for example, the distance from the non-feature element to
the closest feature element) [29] or characteristic information (for instance,
the probability that the non-feature element belongs to the set of feature
elements) [113]. This thesis focuses on spatial information.

Such a spatial distance relies on the type of pixel connectivity and the
metric. The connectivity type influences the distance value propagation
towards the other pixels in an image. In a 2D image, 4-connectivity considers
the adjacent pixels to be in the horizontal and vertical directions (Figure 5.2a).
In the case of 8-connectivity, the pixel additionally has neighbors in the
diagonal direction (Figure 5.2b). The examples of 4- and 8-connectivity-based
distance value propagations are used in the City-Block (Figure 5.2c) and
Chessboard (Figure 5.2d) metrics, respectively [29].

5.2 Distance Transform (DT)
Chapter 4 introduced the distance fields based on the properties of conics
and generalized conics. In order to compute such fields in the discrete space
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efficiently, it is proposed to apply the classical image processing approach
called Distance Transform (DT) [29].

Definition 35 (Distance Transform). Consider a 2D binary image I2
binary and

the set of feature elements F . The Distance Transform (DT) is an operator
that assigns to each pixel in I2

binary the distance value to the nearest feature
element with regard to the selected metric (dx):

DF = {P ∈ I2
binary : min{dx(P, F )|F ∈ F}} (5.2)

Note, for feature elements DF equals zero. As follows from the definition,
the selected metric highly influences the properties of the resultant distance
field. In the computer vision community, the Euclidean distance plays a crucial
role since providing invariance under rotation, translation, and bending in
2D but not under scaling [148].

DT is a global operation whichx is computationally expensive [29]. A direct
implementation of the Euclidean Distance Transform (DT2) has a complexity
of O(N4) [186]. Thus, the early approaches aimed at efficient solutions
at the cost of approximating the Euclidean distance [157, 158]. Maurer et
al. [115] introduced the algorithm to compute the exact DT2 in linear time,
whereas Ciesielski et al. [42] further improved this method. Various authors
approached DT2 in 3D space [30,136].

DT is successfully applied in a wide variety of applications, such as image
segmentation, object recognition, image matching, skeletonization, and shape
analysis [42]. Concerning shape analysis, the distances are propagated from
the interior of shape to its borders. Hence, to capture the shape structure, it
is preferred to use the inverse DT by complementing the binary image [161].
Meyer et al. [121] took the discontinuities in the inverse DT2 values to detect
the boundaries of distinct overlapping objects. When applied to the problem
of overlapping elliptic shapes, Talbot et al. [195] introduced Elliptical Distance
Transform (LDT). Here, the Euclidean distance is substituted by the standard
2D harmonic oscillator equation. The optimization of the LDT series with
various eccentricity and orientation parameters enables detecting the minimal
set of maximal ellipses that cover the shape. The distance values are computed
for the pairs of points. The next section introduces the DT-based method to
generate CEF, CMEF, and CMHF.
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5.3 CEF in Digital Space
DT makes it possible to adapt the continuous notions into digital space. In
this regard, consider the interpretations of Definitions 25 to 30.

Definition 36 (Confocal ellipses from two pixels with DT2). Let F = {F1, F2}
be the pair of pixels in a 2D binary image I2

binary. Confocal ellipses in the
digital space are the sum of DT2s generated from F1 and F2:

DEF1F2 = {P ∈ I2
binary : DF1(P ) +DF2(P )} (5.3)

Strand [190] presented the idea of taking the sum of distance fields. It
aimed at finding a minimal path between two pixels. Though, the resultant
distance field was not analyzed and used from the geometrical perspective of
confocal ellipses.

Definition 37 (Confocal hyperbolas from two pixels with DT2). Consider
the set of two pixels F = {F1, F2} in a 2D binary image I2

binary. Confocal
hyperbolas in digital space are obtained as the difference of the DT2s generated
from F1 and F2:

DHF1F2 = {P ∈ I2
binary : DF1(P )−DF2(P )} (5.4)

Property 23 (Distance value that equals the line segment length in DT2).
Let DF1(P ) and DF2(P ) be DT2s of the pixels from the set F= {F1, F2}. The
length of F1F2 equals the distance value of F1 in DF2, or the distance value
of F2 in DF1 :

DF1(F2) = DF2(F1) = d2(F1, F2) (5.5)

Definition 38 (Distance field of a line segment under CED with DT2).
Consider the line segment defined by two endpoints F= {(F1, F2)}. The
distance field of confocal ellipses with respect to CED using DT2 is then
expressed as DEF1F2:

DEF1F2 = {P ∈ I2
binary : DEF1F2(P )−DEF1F2(F1) = (5.6)

= DEF1F2(P )−DEF1F2(F2) = (5.7)
= DF1(P ) +DF2(P )−DF1(F2) = (5.8)
= DF1(P ) +DF2(P )−DF2(F1)} (5.9)
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The substantial difference between DEF1F2 and DEF1F2 is the subtraction
of the F1F2 length. In DEF1F2 , the distance value of its pixels is normalized
and is independent from the distance between F1 and F2. So it is possible
to combine multiple distance fields by, for example, applying the minimum
operation to each pixel.

Definition 39 (Confocal Elliptic Field in terms of DT2). Given the set of
line segments and points defined as line segments with coinciding endpoints.,
F= {(F1, F2), (F3, F4), ..., (FN−1, FN)}, the Confocal Elliptic Field in terms
of DT2 (CEFDT2) is obtained by the pixel-wise minimum operation that is
applied to the distance fields DEF1F2,..., DEFN−1FN

:

CEFDT2(P ) = {P ∈ I2
binary : min{DEFi−1Fi

(P )| i = [2, 3, . . . , N ]}} (5.10)

Property 24 (CEFDT2 values at the pixels of a line segment). Let DEF1F2

be the distance field from the set F= {(F1, F2)}. The distance values of the
pixels belonging to the digital line segment F1F2 are less than or equal to
threshold τ :

DEF1F2((1− λ)F1 + λF2) ≤ τ <

√
2

2 pixel_edge_length, ∀λ ∈ [0, 1] (5.11)

Proof. As opposed to the continuous case, the space discretization leads to
an accuracy problem (Figure 5.3a). The pixel C belonging to the digital line
segment AB (green) has an offset from the line segment connecting A and
B (black). In other words, according to Definition 38, there is a difference
between d2(C, A)+d2(C, B) and d2(A, B). This problem can be formulated
using an ellipse (Figure 5.3b). Let A and B be the focal points, so d2(A, B)
equals 2f . Then C is a point on the ellipse. CC ′ with the length δ denotes the
offset of C from AB. The point C ′ splits AB into two parts having the lengths
(2f −m) and m. The right triangles △AC ′C and △BC ′C enable expressing
d2(C, A) and d2(C, B) by

√
(2f −m)2 + δ2 and

√
m2 + δ2 respectively. So

the aim is to find a maximal value of the following function:

τ(δ, f, m) =
√

(2f −m)2 + δ2 +
√

m2 + δ2 − 2f (5.12)
To do so, it suffices to estimate the values of δ, m, and f . Assume that f

is fixed. What are the values of m and δ that maximize the sum of d2(C, A)
and d2(C, B)? For the triangle △ABC, CC ′ expresses an altitude. Increasing
δ leads to a larger area of △ABC, thus, a larger product of d2(C, A) and
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(a) (b) (c)

Figure 5.3: Discrepancy between digital and continuous line segments

d2(C, B), and, consequently, a larger sum of d2(C, A) and d2(C, B) [70]. For
a digital line segment, the maximal value of δ is

√
2

2 pixel_edge_length. It
equals the maximal error within the pixel that corresponds to the distance
between a center and a corner [100].

As for m, the position of C ′ also influences the sum of d2(C, A) and
d2(C, B). The length of a semi-minor axis of the ellipse corresponds to a
radius of its largest inscribed circle [154]. It means, in Figure 5.3c, δ3 > δ2 > δ1.
Thus, the sum of d2(C, A) and d2(C, B) increases with the decrease of m.

Under the above assumptions, (5.12) reaches the largest value, when m = 0
and δ =

√
2

2 pixel_edge_length. After substitution, (5.12) becomes:

τ(f) =
√

4f 2 + (
√

2
2 pixel_edge_length)2 +

√
2

2 pixel_edge_length− 2f

(5.13)

(5.13) defines a hypothetical situation creating a triangle with a right angle
ÂBC. The minimal error related to such a triangle is the maximal error for τ .
Consider changing f . The minimal value of 2f is the distance between centers
of two horizontally (or vertically) adjacent pixels, or pixel_edge_length.
Substituting into (5.13), makes τ equal to:

τ = (
√

3
2 +
√

2
2 − 1)pixel_edge_length (5.14)

The maximal value of f is infinity:
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lim
f→∞

τ(f) = lim
f→∞

(
√

4f 2 + 1
2 − (2f −

√
2

2 ))pixel_edge_length = (5.15)

= lim
f→∞

(
√

4f 2 + 1
2)2 − (2f −

√
2

2 )2√
4f 2 + 1

2 + (2f −
√

2
2 )

pixel_edge_length = (5.16)

= lim
f→∞

4f 2 + 1
2 − (4f 2 − 4

√
2

2 f + 1
2)√

4f 2 + 1
2 + (2f −

√
2

2 )
pixel_edge_length = (5.17)

= lim
f→∞

4
√

2
2 f√

4f 2 + 1
2 + (2f −

√
2

2 )
pixel_edge_length = (5.18)

= lim
f→∞

4
√

2
2 f

f(
√

4 + 1
2f2 + 2−

√
2

2f
))

pixel_edge_length = (5.19)

=
√

2
2 pixel_edge_length (5.20)

As observed in (5.14) and (5.20), with an increase of f , the error decreases.
Hence, using the threshold τ<

√
2

2 pixel_edge_length enables handling the
numerical error.

Definition 40 (Receptive field in terms of DT2). Consider CEFDT2 generated
from the set F containing N line segments and points defined as line segments
with coinciding endpoints. The receptive field DRi ∈ I2

binary of the i-th line
segment, li, is the set of pixels, where the absolute difference between CEFDT2

and DE li is less than or equal to threshold τ :

DRi
i∈[1,...,N ]

= {P ∈ I2
binary : |CEFDT2(P )−DE li(P )| ≤ τ | li ∈ F} (5.21)

(5.21) creates an image where pixels with a distance value less than or
equal to τ correspond to the receptive field DRi. The remaining pixels are
assigned to a value that ensures the difference between various receptive fields
by more than τ . The threshold τ affects a size of the receptive field: it becomes
larger by increasing the τ . Setting τ to zero might cause discontinuities in a
separating curve, since the receptive fields might not have pixels in common.

In the digital space, the definition of a separating curve (Definition 30)
remains the same under the condition that the threshold τ is accounted. The
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separating curve between a pair of receptive fields contains only the pixels
belonging to the overlap of these receptive fields.

Definition 41 (Separating curve in terms of DT2). Consider the pair of
receptive fields DRi and DRj, DRi ̸= DRj. The separating curve, DS ij, is
the set of pixels where the absolute difference between these receptive fields is
less than or equal to threshold τ :

DS ij
i,j∈[1,...,N ];

i ̸=j

= {P ∈ I2
binary : (|DRi(P )−DRj(P )| ≤ τ)} (5.22)

5.4 CMEF and CMHF in Digital Space
Analogically to CEF, the continuous notions of CMEF and CMHF are revisited.
This section redefines the above concepts with the use of DT.

Definition 42 (Confocal Multifocal Elliptic Field in terms of DT2). Consider
the set of points, F= {F1, F2, ..., FN}, and the corresponding DT2s containing
concentric circles, DF1, DF2,. . . , DFN

. Each distance field is multiplied by the
corresponding positive weight w1, w2, . . . , wN . The Confocal Multifocal Elliptic
Field in terms of DT2 (CMEFDT2) is computed as a pixel-wise sum among
all the weighted distance fields:

CMEFDT2 = {P ∈ I2
binary :

N∑
i=1

wiDFi
(P ) | i = [1, . . . , N ]} (5.23)

Definition 43 (Confocal Multifocal Hyperbolic Field in terms of DT2).
Consider the two sets, F= {F1, F2, ..., FN} and G= {G1, G2, ..., GM}. DF1,
DF2,. . . , DFN

, computed from the elements in F , are linked to the positive
weights w1, w2, . . . , wN , whereas DG1, DG2,. . . , DGM

from G elements are
associated with the positive weights ν1, ν2, . . . , νM . The Confocal Multifocal
Hyperbolic Field in terms of DT2 (CMHFDT2) equals the pixel-wise difference
between the sums of weighted distance fields:

CMHFDT2 = {P ∈ I2
binary :

N∑
i=1

wiDFi
(P )−

M∑
j=1

νjDGj
(P ) | i = [1, . . . , N ],

j = [1, . . . , M ]}
(5.24)
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(a) Euclidean (DT2) (b) City-Block (DT1) (c) Chessboard (DT∞)

Figure 5.4: The distance fields of the single point using the various metrics

5.5 CEFDT under the Various Metrics
According to Definition 38, CEFDT2 relies on the Euclidean distance. In
principle, it is possible to use other metrics. This section illustrates and
compares the results of applying the grid-based metrics such as the City-
Block and Chessboard distances.

The City-Block distance (also referred to as Manhattan, or L1-metric) in
2D considers the 4-connectivity distance value propagation. In other words,
it measures the route length between two points along the regular grid at the
right angles [98].

Definition 44 (City-Block distance). Given the pixels P = (xP , yP ) and
Q = (xQ, yQ), the City-Block distance equals the sum of absolute differences
of their corresponding coordinates:

d1(P, Q) = |xP − xQ|+ |yP − yQ| (5.25)

The Chessboard distance (alternatively Chebyshev distance, or L∞-metric)
in 2D considers the 8-connectivity distance value propagation and is the
rotated and scaled equivalent of the planar City-Block distance [156].

Definition 45 (Chessboard distance). The Chessboard distance between
the pixels P = (xP , yP ) and Q = (xQ, yQ) equals the maximum of absolute
differences of their corresponding coordinates:

d∞(P, Q) = max(|xP − xQ|, |yP − yQ|) (5.26)

The relation between the metrics is illustrated as follows. Let the two
points, P = (xP , yP ) and Q = (xQ, yQ), form the hypotenuse of the right
triangle. The Euclidean distance equals the length of the hypotenuse, the
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Chessboard distance matches the length of the longest cathetus, and the
City-Block distance is the sum of the catheti lengths.

For a single pixel, the DT2 level sets are concentric circles (Figure 5.4a).
In contrast, the City-Block Distance Transform (DT1) and the Chessboard
Distance Transform (DT∞) form rhombic and square level sets (Figure 5.4b
and 5.4c respectively).

Now, compare the distance fields for the line segment (Figure 5.5 and 5.6).
DT2, DT1, and DT∞ compute for any pixel P the distance to the closest pixel
belonging to F1F2 with regard to the selected metric (Figure 5.5). CEFDT is
based on (4.5). Substitution of the Euclidean metric by the City-Block or
Chessboard produces the distance fields which level sets differ from confocal
ellipses (Figure 5.6). From the computer vision perspective, the Euclidean
distance provides the invariance to translation and rotation [148]. In contrast,
the Chessboard and City-Block distances depend on the rotation of the
coordinate system but are invariant to translation [30,98]. Consequently, this is
reflected in CEFDT. Observe the Euclidean (Figure 5.5a, 5.5d, 5.6a and 5.6d),
City-Block (Figure 5.5b, 5.5e, 5.6b and 5.6e) and Chessboard (Figure 5.5c,
5.5f, 5.6c and 5.6f) distance fields.

DT and CEFDT fields of a line segment, generated using the Chessboard
and City-Block metrics, differ from each other. The following properties
characterize the two exceptions. Here, CEFDT optimizes the computational
efficiency while considering only the pair of endpoints regardless of the line
segment discretization.
Property 25 (Similarity between DT1 and CEFDT1). DT1 and CEFDT1

generate identical level sets if the line segment is parallel to one of the axes
(Figure 5.5b and 5.6b). The difference is in the distance values: CEFDT1 is
twice as large as DT1.
Proof. Assume λ and r denote the distance values of the corresponding level
sets of DT1 and CEFDT1 (Figure 5.7). It suffices to show that λ = 2r for four
characteristic pixels: P1, P2, P3, and P4. Let an arbitrary pixel P correspond
to the λ level set of the CEFDT1 . Assume that F1 and F2 are the focal points.
Substitute the Euclidean distance in (4.5):

λ = dCED(P, F1F2) = d1(P, F1) + d1(P, F2)− d1(F1, F2) (5.27)
The right side of (5.27) can be rewritten as follows:
(|xP −xF1|+ |yP −yF1|) + (|xP −xF2|+ |yP −yF2|)− (|xF1−xF2 |+ |yF1−yF2|)

(5.28)
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(a) Euclidean (DT2) (b) City-Block (DT1) (c) Chessboard (DT∞)

(d) Euclidean (DT2) (e) City-Block (DT1) (f) Chessboard (DT∞)

Figure 5.5: DT of a line segment using the various metrics

(a) Euclidean (CEFDT2) (b) City-Block (CEFDT1) (c) Chessboard (CEFDT∞)

(d) Euclidean (CEFDT2) (e) City-Block (CEFDT1) (f) Chessboard (CEFDT∞)

Figure 5.6: CEFDT of a line segment using the various metrics
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Figure 5.7: Characteristic pixels P1, P2, P3, and P4 of a single λ level set

In the case of P = P1, the y-coordinates are identical for P1, F1, and F2,
whereas the x-coordinates are related as xP1 ≤ xF1 ≤ xF2 . Thus, (5.28)
becomes:

xF1−xP1 +yP1−yF1 +xF2−xP1 +yP1−yF2−xF2 +xF1 +yF1−yF2 = 2(xF1−xP1)
(5.29)

At the same time DT1-value of P1 equals (xF1 − xP1) and, thus:

λ = 2d1(P1, F1) = 2r (5.30)

Similarly, it can be shown that (5.30) is valid for P2, P3, and P4.

Property 25 does not hold true when the line segment is not parallel to any
of the axes (Figure 5.5e and 5.6e). It can be proven by comparing CEFDT1

and DT1 values for all possible relations between x- and y-coordinates of an
arbitrary point P and the line segment F1F2.

Property 26 (Similarity between DT∞ and CEFDT∞). DT∞ and CEFDT∞

generate identical level sets when a line segment is rotated by 45◦, 135◦, 225◦,
or 315◦ about one of the axes (Figure 5.5f and 5.6f). The difference is in the
distance values: CEFDT∞ is twice as large as DT∞.

Proof. According to Definition 45, the DT∞ level sets of a single point are
concentric squares (Figure 5.4c). In Figure 5.8, consider the level sets with
the centers at F1, F2, and FP passing through P and the level set containing
F1 with the center at F2. Here, the point FP denotes the closest point to P
in terms of the Chessboard distance. In DT∞, the distance value of P equals
half of the side length of the smallest square which center is on F1F2. Such a
square has a center at FP and the length of its side equals 2l. Consequently,
the DT∞ value of P is l.
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Figure 5.8: Computing the CEFDT∞ and DT∞ values of the line segment
rotated by 45◦

Assume λ denotes the CEFDT∞ value of P . According to (4.5) it equals:

λ = dCED(P, F1F2) = d∞(P, F1) + d∞(P, F2)− d∞(F1, F2) (5.31)

Express d∞(P, F1) and d∞(P, F2) using l (Figure 5.8):{
d∞(P, F1) = l + n

d∞(P, F2) = l + m
(5.32)

Since the line segment F1F2 is rotated by 45◦, the sides of the right triangles
with a hypotenuse along F1F2 are equal:

d∞(F1, F2) = m + n (5.33)

After substituting the estimates from (5.32) and (5.33) to (5.31):

λ = l + n + l + m− (m + n) = 2l (5.34)

From (5.34), the value of P in CEFDT∞ is twice as large as its DT∞ value.
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5.6 Discussion
In this section, CEFDT, CMEFDT, and CMHFDT are evaluated according to
the proposed evaluation criteria. The results are summarized in Table 5.1.

CEFDT CMEFDT CMHFDT

Scope any 2D set of points
and line segments

focal points can be points, line
segments, or shapes

extension to higher dimensions
Uniqueness unique for the set of focal points (with weights)
Invariance •Euclidean: invariant to rotation, translation, and scaling

•City-Block: invariant to translation, and scaling
•Chessboard: invariant to translation, and scaling

Stability
stable in the cases

satisfying Property 22

every point affects the representation
global minimum
is less affected by
distant outliers

Accuracy •Euclidean:
3
√

2
2

pixel_edge_length
N

√
2

2 pixel_edge_length

•City-Block:
3 pixel_edge_length N pixel_edge_length
•Chessboard:

3
2pixel_edge_length N

2 pixel_edge_length
Efficiency •Sequential (Euclidean):

O(N ×W ×H) [100] O(W ×H)
•Parallel (Euclidean):

O(N) [100] O(1)
Abstraction enables hierarchical representation

Table 5.1: Evaluation of the representations CEFDT, CMEFDT, and CMHFDT
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Scope

By Definition 24, CED measures the distance between a point and a line
segment. So, it is applicable to sets of line segments which, in fact, can
degenerate into points. CEFDT2 relies on CED as a metric and is a combination
of DT2s. In turn, DT2 is defined everywhere in space. Hence, CEFDT2

represents space tessellation of any 2D set of points and line segments. With
the reference to Section 4.1.3, CED enables extension of the representation
to higher dimensions by considering more coordinates. Figure 5.9 shows
the 3D representation of CEFDT2 from two line segments, F1F2 and F2F3.
The corresponding isosurfaces are a fusion of prolate spheroids (orange),
each obtained by a rotation of the ellipse about its major axis. Since the
line segments have a common endpoint, the spheroids are separated by the
hyperbolic surface (blue).

CMEFDT2 and CMHFDT2 are sums and differences of weighted distance
fields, expressing the distances to the set of focal points. In principle, the
focal point is not limited to a point or a line segment and could be even
a shape. Consequently, the distance fields could be of various types. For
instance, consider the set of line segments where the distance field of each
element is expressed by CEFDT2 . The corresponding CMEFDT2 becomes the
pixel-wise sum of multiple CEFDT2s. Eventually, these representations are not
limited to a specific class of shapes and can be extended to higher dimensions.
The statements remain valid for other metrics (for example, City-Block or
Chessboard) as well.

Uniqueness

According to Theorem 4, CED is a metric. With the reference to Definition 7,
each pixel is associated with a unique non-negative number. For the given
shape there exist a unique CEFDT2 . At the same time, each pixel in CMEFDT2

is associated with a weighted sum of unique distance fields. Hence, this
representation is also unique. Eventually, CMHFDT2 unambiguously expresses
the distance value distribution for the pair of CMEFDT2-fields. The same holds
when substituting the Euclidean distance with City-Block or Chessboard.

Invariance

Depending on the distance metric, the invariance to transformations differs.
CEFDT2 , CMEFDT2 , and CMHFDT2 are a combination of multiple DT2s, which,
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Figure 5.9: The isosurfaces of CEFDT2 generated from two line segments

in turn, are equivariant under rotation and translation [148]. Substitution
of the Euclidean distance by City-Block or Chessboard limits the invariance
possibilities to translation [30,98]. A normalization strategy enables achieving
scale invariance for the discussed metrics [140].

Stability

Essentially, CEFDT is a form of DT that uses CED instead of the Euclidean
metric. DT is sensitive even to a single noise-point [132]. So is the CEFDT.
Although, there is an exception. This effect is mitigated by Property 22. The
distance field only reflects the values of the line segment that completely
encloses other feature elements.

In CMEFDT, every point is mapped to the sum of the distances to the focal
points. Thus, the distance field is stable, if the new focal point is equidistant
to all points in space. This is impossible. CMHFDT is a difference between
a pair of CMEFDT. Hence, every element in the set of focal points impacts
these representations.

In CMEFDT, every element influences the level sets. Although, if there
is a collection of spatially close elements, the distant outlier does not affect
strongly the location of the global minimum. Imagine this configuration from
far away: the collection of shapes degenerates into a super-point while the
outlier stays as it is. The distance to the super-point equals the sum of the
distances to its elements. Eventually, it can be encoded as an egg-shape,
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where the largest weight is associated with the super-point. According to
Theorem 1, for the egg-shape the focal point with the larger weight is mapped
to the minimum distance value. In this case, in the area of the super-point.

Accuracy

Space discretization leads to an accuracy problem: all points within the pixel
have the same distance value related to its center. For the Euclidean distance,
the maximal error is at the pixel corners and equals

√
2

2 pixel_edge_length (or
a half of the pixel diagonal) [100]. For the City-Block and Chessboard distances
such error is pixel_edge_length and 1

2 pixel_edge_length correspondingly.
CED implies using the distance field three times (Definition 38). Thus,

the maximal error in CEFDT2 equals 3
√

2
2 pixel_edge_length, in CEFDT1

3 pixel_edge_length, and in CEFDT∞
3
2 pixel_edge_length.

CMEFDT and CMHFDT consider the sum (and subtraction) of N distance
fields. It results in the total error of N

√
2

2 pixel_edge_length for the Euclidean,
N pixel_edge_length for the City-Block, and N

2 pixel_edge_length for the
Chessboard distance.

Efficiency

The pseudocode of CEFDT2 implementation is shown in Algorithm 5.1. The
input contains the binary image, I2

binary of size W ×H, and the set of M pairs
of N points, F . The first step (Lines 1-3) computes DT2s of the points. Since
DT2 is linear with regard to the number of pixels [115], the complexity of the
step is O(N ×W ×H). The next loop (Lines 4-7) aims at computing the
distance fields of confocal ellipses. Taking the pixel-wise sums for pairs of DT2s
has the complexity of O(M ×W ×H). The final step (Lines 8-15) computes
CEFDT2 as the pixel-wise minimum operation among M distance fields with
the complexity of O(M ×W ×H). If all the steps are performed sequentially,
then the total worst-case complexity of the algorithm is O(N ×W ×H).

Each step has a potential for parallel execution. The computation of
DT2s and the confocal ellipses can be distributed with respect to the points
and line segments, whereas the pixel-wise minimum operation – with respect
to each pixel. This leads to the total parallel complexity of O(W × H).
Langer [100] proposed the alternative algorithm for DT2 (Lines 1-3). It takes
a precomputed DT2 of a point at the center. This DT2 is twice as large as the
input binary image. Instead of computing DT2 for each point, it needs only
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Algorithm 5.1: Confocal Elliptic Field using DT (CEFDT2)
Data: Input binary image I2

binary of size W ×H; set F containing M
pairs of N points

Result: Confocal Elliptic Field in terms of DT2 (CEFDT2)
1 for n← 1 to N do
2 DFn←− compute_DT2(Fn);
3 end
4 foreach fm ∈F , m ∈ [1, . . . , M ] do
5 (Fi, Fj)←− get_feature_elements(fm);
6 DEm ←− DFi

+ DFj
− DFi

(Fj);
7 end
8 foreach [w, h] ∈ W ×H do
9 CEFDT2 [w, h]←−∞;

10 end
11 foreach [w, h] ∈ W ×H do
12 for m← 1 to M do
13 CEFDT2 [w, h]←− min(DEm[w, h],CEFDT2 [w, h]);
14 end
15 end

to sample the corresponding part of the precomputed distance field. Hence,
the actual parallel complexity depends only on the number of points, O(N).

Algorithm 5.2 describes the computation of separating curves. It follows
Algorithm 5.1, hence, the set of distance fields of confocal ellipses (DE1,
. . . ,DEM) and CEFDT2 are provided as an input. The proposed steps find
the separating curve according to Definition 41. The similar approach is
described in [88]. First (Line 1-3), the receptive fields are computed as the
difference between CEFDT2 and the distance fields of confocal ellipses. If the
difference in distance values is less than or equal to the threshold τ , then
the pixel belongs to the receptive field. The complexity of this step equals
O(M ×W ×H), where M is the number of the receptive fields, W ×H is the
total number of pixels in an image. The next step (Line 4-10), computes the
separating curves by finding the common pixels of multiple receptive fields.
The complexity of this step, as well as total complexity of the algorithm, is
O(M2×W ×H). Algorithm 5.2 can be implemented in a distributed manner,
thus, simplifying the total complexity to O(M2).
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Langer [100] proposed the efficient solution that maps pixels of receptive
fields with labels. Each label uniquely represents the element in the set F .
The neighboring pixels with different labels are part of the separating curve.
In this case, the parallel computational complexity equals O(M), although
the skeleton is not one-pixel thick.

Algorithm 5.2: Separating Curves
Data: Confocal Elliptic Field in terms of DT2 (CEFDT2); M distance

maps of confocal ellipses DE1,. . . ,DEM ; threshold τ
Result: Separating curves DS

1 for m← 1 to M do
2 DRm←−| CEFDT2−DEm |≤τ ;
3 end
4 for l← 1 to M do
5 for k ← 1 to M do
6 if l ̸= k then
7 DS lk ←− | DRl− DRk |≤τ ;
8 end
9 end

10 end

Algorithm 5.3 shows the computation of CMEFDT2 . As an input it takes
the set of N points. The whole process considers the pixel-wise sums among
all the distance fields DF1 ,. . . , DFN

multiplied by the respective weight. Hence,
the total sequential complexity equals O(N ×W ×H), where W ×H is the
number of pixels in an image. Computation of CMEFDT2 can be implemented
in a distributed manner on the pixel level using the precomputed distance
fields. This leads to the actual parallel complexity of O(N).

Eventually, the pseudocode for CMHFDT2 is given in Algorithm 5.4. It
has the linear computational complexity on the number of image pixels.

Abstraction

Similar to the work of Rosin et al. [159], scale-space CEFDT2 is achievable by
considering various levels of object’s discretization.
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Algorithm 5.3: Confocal Multifocal Elliptic Field in terms of DT2
(CMEFDT2)

Data: Set F containing N points; weights w1, w2, . . . , wN

Result: Confocal Multifocal Elliptic Field in terms of DT2
(CMEFDT2)

1 for n← 1 to N do
2 DFn←− compute_DT2(Fn);
3 end
4 CMEFDT2←− 0;
5 for n← 1 to N do
6 CMEFDT2 ←− CMEFDT2 + wnDFn ;
7 end

Algorithm 5.4: Confocal Multifocal Hyperbolic Field in terms of
DT2 (CMHFDT2)

Data: A pair of distance fields containing multifocal ellipses
CMEFDT2

′ and CMEFDT2
′′

Result: Confocal Multifocal Hyperbolic Field in terms of DT2
(CMHFDT2)

1 CMHFDT2←− CMEFDT2
′ - CMEFDT2

′′;

5.7 Summary
This chapter contributed to the state of the art by adapting Confocal Elliptic
Field (CEF), the separating curves, Confocal Multifocal Elliptic Field (CMEF)
and Confocal Multifocal Hyperbolic Field (CMHF) to digital space with the
use of Distance Transform (DT). The fact that CEF, CMEF, and CMHF are
composed of DF2s, enables expressing them with DT in digital space. This
technique requires a threshold to cope with numerical instabilities. Despite
sensitivity of CMEFDT level sets to every feature element, the position of the
global minimum in this field is less affected by the distant outliers. Substitution
of the Euclidean metric by City-Block and Chessboard results in losing the
rotation equivariance. In exceptional cases CEFDT1 and CEFDT∞ are identical
to the classical distance fields. Consequently, in the corresponding scenarios,
DT1 and DT∞ can be computed efficiently by applying the CEFDT algorithm.
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CHAPTER 6

Elliptic Line Voronoi Diagram

This chapter is based on the following publications:
Aysylu Gabdulkhakova, Maximilian Langer, Bernhard W. Langer, Walter G.
Kropatsch: Line Voronoi Diagrams Using Elliptical Distances. In Proceedings
of the Joint IAPR International Workshop on Structural, Syntactic, and
Statistical Pattern Recognition, pages 258–267, 2018 [69]

Chapters 4 and 5 discussed the distance field computation using CED
as a metric in continuous and digital spaces, respectively. While reflecting
proximity to objects in a target set, space tessellation in a distance field is, in
principle, a mapping of the Voronoi regions onto a digital grid [133].

The Voronoi Diagram (VD), or the Dirichlet Tessellation, is a fundamental
concept used in various disciplines [13]. The mathematicians Dirichlet [55]
and Voronoy [202] introduced the original concept formally, whereas Shamos
and Hoey [175] presented it in the field of computational geometry. This
geometrical construct is applied in a vast variety of applications [192], such
as motion planning [26, 65], skeletonization [133, 134], point-location [59],
clustering [171], segmentation [91], and finite element analysis [176].

VD is a data structure that provides a space tessellation into cells based
on proximity to the given set of objects, called sites. Each point in space is
associated with a closest site among the set. The points corresponding to
the same site form the cell. The notion of proximity is interpreted from two
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perspectives. On one side, it is a metric that defines a distance between objects.
The properties and application areas of different metrics in 2D are thoroughly
discussed in the literature [12]: City-Block [80], Euclidean [57], Lp [102],
convex distance functions [39], convex polygon-offset distance function [20],
crystal growth [169], skew distance [3], and power distance [10]. Klein et
al. [93] introduced the analysis of metric classes and their impact on VD
properties.

On the other side, the proximity depends on types of objects and their
representation, especially in the digital space. In 2D, the simplest scenario
corresponds to the pair of points. As followed from Definition 2, the point
does not have any dimensional attributes. Thus, the proximity defines the
distance between the points. In the case of an object being a line segment, its
representation considers the set of points that belong to it. The proximity in
terms of HD (Definition 22) computes the minimum distance from the given
point to one of the points belonging to the line segment [117]. An arbitrary
shape in 2D can be the set of its points from the interior or the contour.
Similarly to the line segment, the proximity is defined using HD.

This chapter introduces the Elliptic Line Voronoi Diagram (ELVD), where
the proximity is defined using CED, and overviews the classical approaches:
the Point Voronoi Diagram (PVD) and the Line Voronoi Diagram (LVD). In
essence, ELVD is extracted from CEF, similarly to the DT-based approaches
for VD. Here, the main goal is to analyze the geometric properties of ELVD,
particularly, on an example of a triangle. The experimental examination
of ELVD, LVD and PVD aims at showing the applicability of the above
approaches by comparison of their results under various conditions.

6.1 Voronoi Diagram (VD)
Before discussing the theory behind the Voronoi Diagram (VD) in 2D, consider
the formal definitions of the notions that are used throughout the related
sections.

Definition 46 (Site). Consider the finite set S of N objects (for example,
points or line segments). Any point P ∈ R2 is associated with the closest
object from S, such that the entire space is divided into disjoint regions. The
elements in S are called sites.
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Definition 47 (Voronoi region). Consider the site set S = {s1, s2, . . . , sN}.
A Voronoi region, VRsi

, is the set of points that are at least as close to the
site si as to any other site sj with regard to metric dx:

VRsi

i∈[1,...,N ];
si∈S

= {P ∈ R2 : dx(P, si) ≤ dx(P, sj) | sj ∈ S, i ̸= j ∈ [1, . . . , N ]} (6.1)

Definition 48 (Voronoi edge). Consider the finite site set S. The set of
points, which are equally distant from two sites with regard to metric dx, form
the Voronoi edge.

Definition 49 (Voronoi vertex). The Voronoi vertex is an intersection point
of at least three Voronoi edges.

Definition 50 (Voronoi Diagram). The Voronoi Diagram (VD) defined on
the finite set of sites S is a union of corresponding Voronoi edges and vertices:

VDS =
⋃
i ̸=j,

si,sj∈S

VRsi
∩ VRsj

, (6.2)

where VRsi
and VRsj

denote the Voronoi regions of the sites si and sj

correspondingly.

The VD example is illustrated in Figure 6.1. It contains the set of six
sites shown as the red points. The corresponding Voronoi regions (one of
them is shown as a filled rhombus) are bounded by the Voronoi edges (shown
as green line segments). The Voronoi vertices are marked as orange squares.

Definitions 46 to 50 are the same for various VD types discussed below.
The only difference is in the particular metric instead of dx.

6.1.1 Point Voronoi Diagram (PVD)
Depending on the type of objects in the site set, the variety of VDs is
identified. This thesis focuses on two of them, which are directly related to
the proposed methodology: the Point Voronoi Diagram (PVD) and the Line
Voronoi Diagram (LVD).

Definition 51 (Point Voronoi Diagram). Consider a finite site set of N
points. VD computed from such a set using Euclidean metric, d2, is called
Point Voronoi Diagram (PVD). PVD tessellates the space into N convex
Voronoi regions.
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Figure 6.1: The VD example

Figure 6.2a illustrates the example of PVD. The site set contains six red
points, whereas the Voronoi edges are shown as the green line segments.

Property 27 (Voronoi edges in PVD). Voronoi edges are perpendicular
bisectors between each pair of points in the site set. Voronoi edges can be
half-infinite [49].

6.1.2 Line Voronoi Diagram (LVD)
In computational geometry, the majority of geometrical scenarios accept the
polygonal representation of the objects [14]. A shape contour is approximated
by a polygon, which, in turn, is a set of line segments.

Definition 52 (Line Voronoi Diagram). Consider a finite site set containing
points and line segments. VD constructed from such a set using HD, dHD,
is called Line Voronoi Diagram (LVD). LVD tessellates the space into N
Voronoi regions.

(a) PVD (b) LVD (c) ELVD

Figure 6.2: Various types of VD
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Figure 6.3: The example of LVD containing an area

The example of LVD is provided in Figure 6.2b. The site set contains
three non-intersecting line segments shown in red. The Voronoi edges are the
green curves.

Property 28 (LVD Voronoi edge between two line segments sharing an
endpoint). In LVD, a Voronoi edge between two line segments sharing an
endpoint contains an area [13].

Property 28 highlights the ambiguity of the representation: an area of
points corresponds to multiple sites (Figure 6.3). One solution is to remove
the common endpoint [13].

Definition 53 (Reflex angle). An angle between 180◦ to 360◦ is called reflex.

Property 29 (Number of Voronoi vertices and edges in VD of a closed
polygon). VD of a closed polygon with N edges and M reflex vertices contains
at most N + M − 2 Voronoi vertices and 2(N + M)− 3 Voronoi edges [103].

(a) (b)

Figure 6.4: Examples of LVD for closed polygons (red). The green curves
show the Voronoi edges and the orange squares mark the Voronoi vertices
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Figure 6.4 illustrates two closed polygons with four edges (N = 4). The
Voronoi edges are shown as green curves and the Voronoi vertices are orange
squares. In Figure 6.4a, there are no reflex angles (M = 0), two Voronoi
vertices and five Voronoi edges. There is no contradiction to Property 29,
since the maximum number of Voronoi edges is 2(N + M) − 3 = 5 and of
Voronoi vertices is N + M − 2 = 2. In Figure 6.4b, there is one reflex angle
B̂CD (M = 1), one Voronoi vertex and four Voronoi edges. There is again no
contradiction to Property 29, since the maximum number of Voronoi edges is
2(N + M)− 3 = 7 and of Voronoi vertices is N + M − 2 = 3.

6.1.3 Elliptic Line Voronoi Diagram (ELVD)
In this thesis, it is proposed to use CED (Section 4.1.2) as a proximity measure.
It enables having an alternative representation of a line segment by the pair
of its endpoints. This implies a space tessellation which in special cases
degenerates to PVD or LVD.

Definition 54 (Elliptic Line Voronoi Diagram). Let a site set contain line
segments and points considered degenerated line segments. Each line segment
is defined by the pair of its endpoints. VD constructed from such a set
using CED, dCED, is called Elliptic Line Voronoi Diagram (ELVD). ELVD
tessellates the space into N Voronoi regions.

An example of ELVD is shown in Figure 6.2c. The site set has three
non-intersecting line segments of various lengths.

To gain understanding about the geometric properties of ELVD, take a
closer look at a simplest closed polygon - a triangle. Langer [69] found the
reference to an intersection point of Voronoi edges in ELVD of a triangle as
the Equal Detour Point (EDP), or the inner Soddy circle center [51].

Definition 55 (Equal Detour Point). Imagine a triangle and a detour when
moving from one of its vertices to another through an inner point P . The
point P is referred to as the Equal Detour Point (EDP), if for each pair
of triangle vertices the difference between the detour and the length of the
corresponding side is the same.

Property 30 (ELVD and the Equal Detour Point). In ELVD of the triangle,
the Voronoi edges passing through its vertices intersect at exactly one point
in its interior. In the literature, this point is referred to as the Equal Detour
Point (EDP) [200] (Figure 6.5).
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Figure 6.5: Equal Detour Point (EDP) and Center of the Incircle (CI)

Remark 1. EDP is not on the Euler line but the Soddy line [137].
Remark 2. EDP is always inside the triangle. It stems from the fact that

the Voronoi edges are hyperbola branches, which intersect their transverse
axes at the points between the triangle vertices.

Property 31 (EDP in ELVD of the degenerated triangle). In ELVD of the
degenerated triangle, where two points A and B coincide, EDP is located at
the point A (or B).

Proof. The proof considers Property 30 and (4.5). Let A coincide with B,
and EDP be located at P . Then, at the point P , the CED values for AB and
AC are identical:

d2(A, P ) + d2(B, P )− d2(A, B) = d2(C, P ) + d2(A, P )− d2(A, C) (6.3)

Simplification of (6.3) by removing identical terms and substituting d2(A, C)
with d2(B, C) (because of their equality) leads to:

d2(B, P ) + d2(B, C) = d2(C, P ) (6.4)

(6.4) holds true only when P coincides with A and B.

Definition 56 (Soddy circle). Imagine ELVD of a triangle (Figure 6.6).
The Voronoi edges pass through its vertices A, B, and C and intersect the
edges AB, BC, and CA at the points K, L, and M correspondingly. Assume
rA = d2(A, M) = d2(A, K), rB = d2(B, L) = d2(B, K), and rC = d2(C, L) =
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Figure 6.6: ELVD of the triangle and the inner Soddy circle

d2(C, M). Let A, B, and C be the centers of tangent circles with the radii
rA, rB, and rC: C(A; rA), C(B; rB), and C(C; rC) respectively. The circle
with the center at EDP that is tangent to C(A; rA), C(B; rB), and C(C; rC) is
called the inner Soddy circle [185].

Property 32 (ELVD distance value at EDP). In ELVD of triangle, the
distance value at EDP, equals the diameter of the inner Soddy circle.

Proof. According to Property 30, the Voronoi edges intersect at EDP. As
followed from Definition 56, the inner Soddy circle has its center at EDP
and is tangent to the circles C(A; rA), C(B; rB), and C(C; rC) (Figure 6.6).
The distance between the centers of tangent circles equals the sum of their
radii [46]. So, it is possible to rewrite (4.5) with regard to the radii and one
of the triangle edges, for instance, CA:

dCED(EDP, CA) = d2(EDP, A) + d2(EDP, C)− d2(C, A) (6.5)

dCED(EDP, CA) = (rA + rS) + (rC + rS)− (rA + rC) = 2rS (6.6)
As can be observed from the above equations, the distance value at the center
of the inner Soddy circle equals its diameter.

Similarly, Dergiades [51] showed that the extra distance travelled through
EDP equals the diameter of the Soddy circle.
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(a) tangents tA, tB, tC intersect at CI (b) tangents tK , tL, tM intersect at CI

Figure 6.7: ELVD of the triangle △ABC and the Center of the Incircle (CI)

Property 33 (ELVD and the Center of the Incircle). In ELVD of the triangle,
the six tangents to the Voronoi edges at the points A, B, C, K, L, and M
intersect at exactly one point in the triangle interior, called Center of the
Incircle (CI) (Figure 6.5).

Proof. First, consider the proof for the tangents to Voronoi edges, tA, tB,
and tC , taken at the points A, B, and C. According to the hyperbola
property [108], tangent to its branch at some point P ∈ R2 is an angle
bisector between the lines connecting P and its focal points. In relation to
△ABC, consider the hyperbola branch that passes through the point A and
has B and C as the focal points. The tangent tA to this hyperbola branch at
the point A bisects the angle B̂AC (Figure 6.7a). Similarly, tB and tC bisect
the angles ÂBC and B̂CA. For the triangle, the angle bisectors intersect at
CI [46]. It implies that tA, tB, and tC intersect at CI.

Second, follow the proof for the tangents to the Voronoi edges, tK , tL,
and tM , taken at points K, L, and M . Consider the hyperbola with the focal
points A and C. One of its branches passes through B and intersects the
triangle edge CA at the point M . According to Property 3, the tangent tM

at M is perpendicular to CA (Figure 6.7b). Similar reasoning can be applied
to the remaining points K and L:

tK⊥AB, tL⊥BC, tM⊥CA (6.7)
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The point M belongs to the Voronoi edge which is defined by the hyperbola
branch passing through B, hence, with regard to (4.11):

d2(A, M)− d2(M, C) = d2(A, B)− d2(B, C) (6.8)

The length of the triangle edge CA can be defined by the sum:

d2(A, M) + d2(M, C) = d2(C, A) (6.9)

From (6.8) and (6.9) it is possible to derive:

d2(A, M) = d2(C, A)− d2(B, C) + d2(A, B)
2 (6.10)

Applying similar reasoning to the point K leads to:d2(A, K) + d2(K, B) = d2(A, B)
d2(A, K)− d2(K, B) = d2(C, A)− d2(B, C)

(6.11)

=⇒ d2(A, K) = d2(C, A)− d2(B, C) + d2(A, B)
2 (6.12)

As can be observed, d2(A, M) = d2(A, K). Analogically, it is possible to
derive the equalities for the remaining line segments. As a result:

d2(K, B) = d2(B, L), d2(L, C) = d2(C, M) (6.13)

Imagine a circle that touches AK and AM at the points K and M
correspondingly and has a center at O. According to the property of tangents
to circle [212], they are perpendicular to the radius at the point of contact.
Hence, tK intersects tM at O, and d2(O, K)=d2(O, M). Under the same
property, OA bisects the angle B̂AC. For a circle touching BK and BL with
the center at O′: O′B bisects the angle ÂBC, tK intersects tL at O′, and
d2(O′, K)=d2(O′, L). For a circle touching CL and CM with the center at O′′:
O′′C bisects the angle B̂CA, tM intersects tL at O′′, and d2(O′′, M)=d2(O′′, L).

Let O and O′ be two distinct points. If d2(O′, K)<d2(O, K), then O′′

is located such that d2(O′′, L)<d2(O′′, M). If d2(O′, K)>d2(O, K), then
d2(O′′, L)>d2(O′′, M). Both statements contradict the equality of d2(O′′, M)
and d2(O′′, L). Thus, points O and O′ coincide. In the same manner, it is
possible to show that O′ coincides with O′′. So, all three tangents, tK , tM ,
and tL intersect at the same point O ≡ O′ ≡ O′′. Eventually, this point is
also an intersection of the bisectors OA, O′B, and O′′C. The bisectors in a
triangle intersect at CI [46]. It implies that tK , tM , and tL intersect at CI.
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6.2 Comparison between PVD, LVD, and ELVD
Several factors affect the space tessellation. On one side, it is the distance
metric. On the other side, it is the type of objects in the site set (for instance,
points and line segments), their relative position, and the difference in size.

6.2.1 Distance Metric
By definition, PVD and LVD rely on Euclidean distance and HD, whereas
ELVD uses CED. A well-known problem of VD is to find a trade-off between
tessellation precision and computational costs [133,161]. A size of a site set,
or a discretization level of input shape, has a direct influence on costs and
efficiency of an approach. Especially, for GPU-methods. In contrast, ELVD
does not depend on a sampling of line segments that form a polygonal shape,
since it takes only a pair of endpoints.

6.2.2 Types of Objects in the Site Set
Voronoi edges in PVD are bisectors, in LVD – parabolic arcs, line segments,
and rays [135], in ELVD – a multifocal hyperbola branch that, in special cases,
is a bisector or a hyperbola branch (Section 4.2.1). Here, VD and ELVD are
compared using various relations of two objects (except for coincidence). A
pair of points can be arbitrarily placed on a plane. A point can be on a line
segment or not. Line segments can overlap, intersect, or not intersect.

Figure 6.8: Identical PVD (yellow) and ELVD (green) from the set of points
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Point and Point

When a site set contains only points, ELVD produces the same results as
PVD (Figure 6.8). Voronoi edges are bisectors.

Point and Line Segment

ELVD separates a point and a line segment with a multifocal hyperbola
branch, or a higher-order curve (Figure 6.9). Depending on the distance
between P3 and P1P2 and a line segment length, a Voronoi edge changes
visibly (Figures 6.9a and 6.9b). If a point belongs to a line segment, then
LVD contains a normal to the line segment, and there is no tessellation in
ELVD (Property 22).

(a) d2(P1, P2) ̸= d2(P2, P3) (b) d2(P1, P2) = d2(P2, P3)

Figure 6.9: LVD (yellow) and ELVD (green) from a point and a line segment

Line Segments that Overlap Each Other

There are two possible scenarios: (1) P1P2 and P3P4 have a common line
segment (P3P2 in Figure 6.10a), (2) P3P4 is a part of P1P2 (Figure 6.10b).
The disadvantage of LVD in both cases: it contains an area that creates
an ambiguity. In ELVD, in the first case, a Voronoi edge is a multifocal
hyperbola branch. In the second case, when P1P2 encloses P3P4, ELVD has
no tessellation of space (Property 22).

Line Segments that Intersect Each Other

There are multiple ways to intersect line segments. An intersection point can
be a common endpoint. If line segments have different lengths (Figure 6.11a),
ELVD has a hyperbola branch (shown in green). If line segments have an
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(a) P3 ∈ P1P2, P2 ∈ P3P4 (b) P3P4 ∈ P1P2

Figure 6.10: Examples of Voronoi regions corresponding to LVD (yellow, left)
and ELVD (green, right) generated from a pair of overlapping line segments

(a) d2(P1, P2)<d2(P2, P3) (b) d2(P1, P2)=d2(P2, P3)

Figure 6.11: LVD (yellow) and ELVD (green) of the line segments sharing an
endpoint

equal length (Figure 6.11b), ELVD contains a bisector passing through a
common endpoint (P2). Note, in this scenario, LVD contains an area which
is rather a disadvantage for a representation. It means that a set of points
have a non-unique mapping to sites. In relation to classification problems,
such points are equally likely associated with more than one class.

The intersection point can split line segments into parts. If these parts have
equal length (Figure 6.12a), LVD and ELVD create an identical tessellation.
Otherwise, ELVD is a multifocal hyperbola that varies depending on relative
size of line segments and an intersection point position (Figures 6.12b-6.12f).
In special cases, such a Voronoi edge converges into a closed curve around the
shortest parts. Observe the corresponding Voronoi regions in Figures 6.12b
to 6.12d and 6.12f.
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(a) d2(P1, P2)=d2(P3, P4), cross at the
center

(b) d2(P1, P2)<d2(P3, P4), cross at the
center

(c) d2(P1, O)<d2(P2, O), where O is an
intersection point; d2(P1, P2)=d2(P3, P4)

(d) d2(P1, P2)=d2(P3, P4), cross not at a
center

(e) d2(P1, P2)<d2(P3, P4), P1 ∈ P3P4 (f) d2(P1, P2)≪ d2(P3, P4), P1 ∈ P3P4

Figure 6.12: Examples of Voronoi regions corresponding to LVD (yellow, left)
and ELVD (green, right) generated from a pair of intersecting line segments
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(a) (b)

(c) (d)

(e) (f)

Figure 6.13: Examples of Voronoi regions corresponding to LVD (yellow,
left) and ELVD (green, right) generated from a pair of non-intersecting line
segments

Line Segments that do not Intersect

Consider that line segments do not intersect each other (Figure 6.13). A
Voronoi edge in ELVD is a multifocal hyperbola branch that is shifted towards
the shorter line segment. The equality of both representations happens when
both line segments have a same length and are mirror-symmetric to each other
with regard to some axis (Figures 6.13e and 6.13f). This axis is a Voronoi
edge, which is a perpendicular bisector with regard to a closest pair of focal
points connecting the line segments. For example, in Figure 6.13e the Voronoi
edge is perpendicular to P2P4 and P1P3, and in Figures 6.13f – to P2P3.
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VD ELVD
Scope •any 2D shape expressed by a set of points or line segments

•extension to higher dimensions
•identical representations for point sites

Uniqueness unique for a site set
Voronoi edge might contain

area
Voronoi edge is always a

curve
Invariance equivariant to rotation, translation, and scaling

Stability every element affects the
representation

stable in the cases satisfying
Property 22

Accuracy double-precision
floating-point

3
√

2
2 pixel_edge_length

Efficiency •Sequential:
O(NlogN) [64, 210] O(N ×W ×H) [100]

•Parallel:
O(N) [191] O(N) [100]

Abstraction enables hierarchical representation

Table 6.1: Evaluation of the representations VD and ELVD

6.3 Discussion
So far, ELVD was empirically compared to VD according to various types of
input data. Such a visual inspection provides an intuitive understanding of
geometrical differences between the approaches. This section discusses ELVD
and VD according to the proposed evaluation criteria for shape representation.
The results are summarized in Table 6.1.

Scope

Regarding space tessellation in 2D, the observed approaches do not have
algorithmic limitations and can be extended to 3D. Particularly, generalization
of PVD to higher dimensions preserves the convexity of the Voronoi regions
while losing linearity in size [13]. This stays true for ELVD of the point sites.
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Uniqueness

ELVD, PVD, and LVD provide a unique partitioning of space that depends
on the type and location of objects in the input site set. It is caused by the
Euclidean metric used in these approaches. As noted in Sections 6.2.2-Line
Segments that Overlap Each Other and Line Segments that Intersect Each
Other, LVD may contain an area of points that are associated with multiple
sites (refer to Figures 6.10 and 6.11). It is a disadvantage for a representation
since creating a non-unique association with the sites. One way to solve the
problem is to add a preprocessing step that resolves the ambiguity. For the
line segments sharing an endpoint it is a common practice to make the line
segments disjoint [13]. In the case of overlapping line segments, the ambiguity
can be mitigated by restructuring the common region. ELVD does not require
a preliminary decomposition.

Invariance

Since VD and ELVD use the Euclidean distance as a proximity measure,
the resultant representation is equivariant to translation and rotation [148].
Applying the normalization strategy leads to scale invariance [140].

Stability

This property is interpreted as an ability to preserve space tessellation under
changes of input sites. Especially in the digital domain, it relates to inevitable
numerical errors that lead to a different position of sites, their size, or
structure [153]. As noted in [11], VD is not stable under the continuous
motion of sites. Indeed, the small change in the sites implies the small change
in VD [153]. In ELVD, the representation is stable in the cases fulfilling
Property 22. Otherwise, it is sensitive to each element in the site set.

Accuracy

Computing VD with algorithms using exact arithmetic is a cumbersome
and expensive procedure [211]. Practical implementations rely on fixed-
precision arithmetic, like single- or double-precision floating-point [76, 85, 86,
173]. Strzodka et al. [191] propose a GPU implementation, where, VD is
computed with a single-precision floating point accuracy. To compute ELVD,
it is proposed to apply CEFDT2 algorithms for computing separating curves:
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Algorithm 5.2 and method of Langer [100]. In this case, the maximum error
equals 3

√
2

2 pixel_edge_length (Section 5.6-Accuracy).

Efficiency

There is a variety of methods creating VD [13]. From the complexity point,
PVD requires O(NlogN) time in the worst case [135], where N denotes
the number of point-sites. So the efficient solutions are assumed to fulfil
this condition. The sweepline algorithm, proposed by Fortune [49,64], takes
O(NlogN) time and O(N) space for computing PVD and LVD. The algorithm
is sequential with interdependencies between its parts. It makes further
optimization with parallel computation challenging [142]. Yap [210] proposed
a divide & conquer approach for simple curve segments with O(NlogN)
complexity. It is a powerful algorithmic concept considering parallel VD
computation for subsets of sites and merging the results together. Nevertheless,
the implementation is not straightforward: the improper split into subsets
causes difficulties while merging [4]. Another conceptually valuable method is
based on incremental insertion [82,193]. Here, the sites are added one by one
to sequentially update VD. Although, the average complexity reaches O(N),
in the worst case scenario it equals O(N2).

A parallel computation of VD is proposed by Strzodka et al. [191]. The
algorithm, first, assigns to each pixel the numeric label of the nearest site.
Second, it thresholds the derivative applied to pixel labels to obtain VD.
This method is suited for GPU processing, and has a linear complexity. A
comparable approach proposed by Langer [100] also propagates the site labels.
In contrast to [191], it uses the precomputed distance fields to accelerate
processing. In addition, ELVD reduces the computational costs since there is
no need in finding the proximity to all points belonging to the line segment.

6.4 Summary
This chapter further analyzed the distance field based on confocal ellipses from
the VD perspective. The systematic analysis of all possible relations between
the pairs of points and line segments provided an empirical comparison of
ELVD and VD. In short, ELVD generalizes VD and degenerates to it in the
special scenarios, like the site set containing only points or equally long line
segments sharing an endpoint. From the geometric structure perspective,
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PVD and LVD are formed by parabolic arcs and straight lines. This property
enables decomposing higher-order curves into a set of primitive components
which are easy to compute. The Voronoi edge in ELVD could be a straight
line, a hyperbola branch, or a multifocal hyperbola branch (higher-order
curve). A possibility of decomposing such a higher-order curve into primitive
components could be a potential question for future research. It is important
to note that LVD of line segments sharing an endpoint requires a preprocessing
step to avoid having an area in the structure. This is not the case for ELVD.
The analysis of the ELVD properties in the case of a triangle enriches the
semantic understanding of the proposed representation. Generalization of
these properties to an arbitrary polygonal shape is yet an open question.
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CHAPTER 7

Elliptic Line Voronoi Skeleton

This chapter is based on the following publications:
Aysylu Gabdulkhakova, Maximilian Langer, Bernhard W. Langer, Walter G.
Kropatsch:
Line Voronoi Diagrams Using Elliptical Distances. In Proceedings of the
Joint IAPR International Workshop on Structural, Syntactic, and Statistical
Pattern Recognition, pages 258–267, 2018 [69]

A skeleton is a compact and effective representation encoding a shape by
a subset of its inner points. The desirable characteristics include equivariance
to transformations (rotation, translation, and scaling), topology consistency,
connectivity, and reconstruction. In addition, it can provide equivariance
to bending, elongation, decomposition, widening, and warping. Thus, the
skeleton is used in a variety of application domains, such as image compression
and retrieval, character recognition, path planning, and object recognition [11].

When applied to shape representation, a 2D skeleton is primarily associated
with a set of 1D curves and the notion of a medial axis. The existing
algorithms for computing the skeleton are generally classified into digital and
continuous [162]. The continuous methods approximate the shape boundary by
a curve or a polygon, work with real point coordinates, and rely on analytical
computation. A group of methods evolves from VD [133], which preserves
topological as well as geometrical information. The Voronoi Skeleton (VS) is
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a VD of the site set forming the shape boundary [133]. VS can be additionally
modified by applying specific pruning techniques [9,16,17,97,107,134,177,197],
whose crucial property is in preserving the shape topology.

Alternatively, the skeleton can be obtained by the grassfire transform [28].
Consider a set of fire fronts that are uniformly propagated from the shape
boundary towards the interior. Then, the skeleton is a set of quenching
points where these fire fronts meet. This idea is reflected in a group of
approaches based on the curve propagation principle [31, 165]. The points
of the medial axis are located at certain singularities in, for example, flux
field [181], distance field [88,105], or potential field [2].

Digital approaches rest on geometrical and topological rules to extract
the skeleton from a digital grid [162]. One group of methods, called thinning,
performs an iterative erosion of pixels starting from the shape boundary using
the predefined templates under geometrical and topological constraints [104,
128, 141, 163, 214]. Another group of approaches performs erosion on the
distance field [31,81,165]. It has an advantageous computational efficiency
since using DT and not having a need to perform repetitive image scans. The
disadvantage lies in the difficulty of parallelizing such algorithms [161].

An important drawback of digital and continuous approaches is their noise
sensitivity: small perturbations on the boundary cause spurious branches in
the resultant skeleton. There are many ways to solve this problem, including
the boundary smoothing, polygonal approximation of the shape, a hierarchy
of skeletons, weighting of the seed points [17].

The Elliptic Line Voronoi Skeleton (ELVS) is a continuous approach
evolved from ELVD. As opposed to VS, using CED as a metric leads to a
non-medial representation of a shape approximated by the line segments. This
chapter aims at exploring the geometrical properties of ELVS and compares
them to the classical VS.

7.1 Voronoi Skeleton (VS)
The shape representation by means of medial loci was proposed by Blum [28].
It defines the local symmetries of object by the set of points equidistant to
the shape boundary.

Definition 57 (Maximal circle). A circle C(O; r) ∈ R2 is maximal if it is
not inside any other circle C(O′; r′)∈ R2.
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(a) medial axis (b) VS from 24 points (c) VS from infinitely many
points

Figure 7.1: Discrepancy between a medial axis and VS extracted from PVD

Definition 58 (Medial axis). The medial axis of a shape in 2D is formed by
the centers of maximal circles that are bitangent to the shape boundary and
are entirely in its interior.

The medial axis with the radius function of the maximal circles is called
the Medial Axis Transform (MAT) [28]. MAT represents a 2D shape by the
union of curves and arcs and enables reducing its dimensionality to a 1D set
of points. MAT preserves symmetry and local thickness of shape and it is
equivariant to rotation and translation. The union of circles, associated with
each skeletal point, reconstructs the original shape [162] in the continuous
space and covers the shape in the digital space [167].

The Voronoi Skeleton (VS) is computed as an intersection of the shape
and VD. The shape boundary divides VS into endoskeleton (interior) and
exoskeleton (background). The endoskeleton shows the internal structure,
topology, and metrics of the shape, whereas the exoskeleton – the adjacency
relation to the neighboring objects [133]. The discrepancy between the medial
axis and VS depends on the boundary approximation [152] (Figure 7.1).
Schmitt [170] proved that having an infinite number of points on the boundary
leads to convergence in the limit of VS to the medial axis. Suppose, in
Figure 7.1c, the boundary of the rectangle is expressed by infinitely many
points (gray circles). The Voronoi regions of point-sites at the rectangle
corners contain an area (green). For other point-sites, a Voronoi region is a
ray that starts at the skeletal point and is orthogonal to the corresponding
side of the rectangle [61]. For a convex polygon, Lee [103] showed that VS is
identical to the medial axis (Figure 7.2a). If the polygon is non-convex, then
the medial axis is a subset of VS (Figure 7.2b and 7.2c). The same holds
true for the piecewise-linear/circular shape boundary. When the boundary is
composed of free-form curves, generally, neither is a subset of the other [152].
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(a) medial axis equals VS (b) medial axis (c) VS

Figure 7.2: Discrepancy between a medial axis and VS extracted from LVD

7.2 Elliptic Line Voronoi Skeleton (ELVS)
Similarly to VS, the Elliptic Line Voronoi Skeleton (ELVS) is a subset of
ELVD. As opposed to VS, the proposed representation is medial only in
special cases.

Property 34 (Line segment length impact in ELVS). In ELVS, a site
representing a long line segment pushes the Voronoi edges towards the smaller
line segments.

To illustrate this property intuitively, it is proposed to use the barycentric
coordinates (Definition 6). Let the triangle △ABC have the side lengths a, b,
and c (Figure 7.3). Its half-perimeter equals s = 1

2(a+b+c), whereas the area
is computed by ∆=

√
s(s− a)(s− b)(s− c) [46]. According to Dergiades [51],

the homogeneous barycentric coordinates of EDP are:
mA = a + ∆

s−a

mB = b + ∆
s−b

mC = c + ∆
s−c

(7.1)

Consider the formula for the tangent of a half of an internal angle in a
triangle [189]: 

tan Â
2 =

√
(s−b)(s−c)

s(s−a)

tan B̂
2 =

√
(s−a)(s−c)

s(s−b)

tan Ĉ
2 =

√
(s−a)(s−b)

s(s−c)

(7.2)

Then, (7.1) can be transformed by substituting the tangent formulas:
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Figure 7.3: An interpretation of EDP using the barycentric coordinates


mA = a + s tan Â

2
mB = b + s tan B̂

2
mC = c + s tan Ĉ

2

(7.3)

According to the triangle property [145], the shortest side is opposite to
the smallest internal angle. The sum of all the internal angles of the triangle is
180◦ [145], so the half-angles range between 0◦ and 90◦. The larger the internal
angle – the larger the tangent of the angle. Applying the above statements
to (7.3): the acute angle and the short length of the edge lead to a small
value in the barycentric coordinates. Consider the examples in Figure 7.4.
According to Property 2, the areas of the subtriangles are proportional to the
barycentric coordinates of the point. In the case of acute angle at the vertex
B (Figure 7.4a), mB will have the smallest value among mA and mC . As a
result, the subtriangle formed by EDP, A, and C has the smallest area. The
opposite effect is observed when obtuse angle is at the vertex B (Figure 7.4b).

Corollary 1 (Angle priority in ELVS). An acute angle between the connected
sites pushes the Voronoi vertex away from their common point. An obtuse
angle – towards their common point.

7.3 Comparison between VS and ELVS
VS, in its classical sense, is a medial representation whose points are visually
in the middle of the shape. As followed from Property 34 and Corollary 1,
ELVS implicitly prioritizes long line segments and acute angles (Figure 7.5b).
Consequently, for the equilateral polygon without self-intersections, ELVS is
identical to VS (Figure 7.5a).

109



(a) acute (b) obtuse

Figure 7.4: Acute- and obtuse-angled triangles in the barycentric coordinates

From the geometrical point of view, VS is formed by the points having
the same distance to at least two edges of the polygon. So, for the triangle,
VS-exoskeleton contains only the curves that separate the nearest sides. It is
not always the case for the ELVS-exoskeleton.

(a) square (b) trapezoid

Figure 7.5: Examples of VS (yellow) and ELVS (green) for convex polygons

Property 35. In the obtuse-angled triangle the branches of ELVS passing
through the vertices of the longest edge might cross each other twice: in endo-
and exoskeleton.

Proof. According to Sections 4.2.1-Bisector and Hyperbola Branch, in ELVS
two line segments with a common endpoint are separated by a bisector or
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a hyperbola branch. Figure 7.6 illustrates various ELVS branches passing
through the endpoints of AC (orange and blue curves). An area expresses
Voronoi region of AC. With regard to (4.5) and (6.1), the Voronoi region of
AC satisfies:

d2(A,P)+d2(C,P)−d2(A,C)< d2(A,P)+d2(B,P)−d2(A,B)
d2(A,P)+d2(C,P)−d2(A,C)< d2(C,P)+d2(B,P)−d2(C,B)

(7.4)

d2(C,P)−d2(B,P)< d2(A,C)−d2(A,B)
d2(A,P)−d2(B,P)< d2(A,C)−d2(C,B)

(7.5)

It suffices to prove that only for the obtuse-angled triangle (Figure 7.6d),
ELVS branches might intersect each other twice: in endo- and exoskeleton.
To show that, consider all combinations of the side lengths in △ABC as
compared to AC.

1. all triangle sides, AB, BC, AC, have an equal length
If △ABC is an equilateral triangle, then the respective ELVS contains
bisectors that intersect at CI [6]. Since the bisectors are lines, there is
no possibility for them to intersect twice [77].

2. AC is either equal to AB, or BC

Assume AC is equal to one of the remaining sides, for example, AB. The
ELVS branch passing through A is a bisector. The ELVS branch passing
through C is a hyperbola branch with the foci at A and B. By definition,
the hyperbola branch approaches the asymptotes. To intersect the
hyperbola branch, thus, the asymptotes twice, one condition is to cross
the line segment connecting the focal points (AB) at the point belonging
to MB, where M is the middle of AB. This is not possible since the
bisector passes through A. So, there is only one intersection point
between a line containing A and the hyperbola branch that passes
through C.

The right sides in system of inequalities (7.5) contain the differences
between the lengths of triangle sides. Here, the upper inequality defines
the hyperbola branch passing through A, whereas the lower – through C.
Depending on the sign of the difference, the resultant hyperbola branch is
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(a) d2(A, C)<d2(A, B),
d2(A, C)<d2(C, B)

(b) d2(A, C)>d2(A, B),
d2(A, C)<d2(C, B)

(c) d2(A, C)<d2(A, B),
d2(A, C)>d2(C, B)

(d) d2(A, C)>d2(A, B),
d2(A, C)>d2(C, B)

Figure 7.6: Voronoi edges in a triangle depending on the side lengths

directed upwards (for plus) or downwards (for minus). Consider now the
remaining configurations of the side lengths by assigning the right sides in
system of inequalities (7.5) to plus or minus.

3. AB and BC are longer than AC (Figure 7.6a), or:
d2(C,P)−d2(B,P)<“—”

d2(A,P)−d2(B,P)<“—”
(7.6)

Both hyperbola branches are directed downwards, leading to a sin-
gle Voronoi region related to AC. Consequently, ELVS contains two
branches corresponding to AC.

4. AB is shorter and BC is longer than AC (Figure 7.6b), or:
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d2(C,P)−d2(B,P)<“+”
d2(A,P)−d2(B,P)<“—”

(7.7)

The hyperbola branch passing through A is directed upwards, and the
one passing through C – downwards. It makes it impossible to have
more than one Voronoi region related to AC.

5. AB is longer and BC is shorter than AC (Figure 7.6c), or:
d2(C,P)−d2(B,P)<“—”

d2(A,P)−d2(B,P)<“+”
(7.8)

This case is symmetric to the previous: there is one Voronoi region
related to AC.

6. AB and BC are shorter than AC (Figure 7.6d), or:
d2(C,P)−d2(B,P)<“+”

d2(A,P)−d2(B,P)<“+”
(7.9)

The hyperbola branches passing through A and C are directed upwards.
Depending on the magnitude of the obtuse angle, these branches can
intersect twice: in endo- and exoskeleton.

When △ABC is an isosceles triangle with AB being equal to BC, the
situation refers to one of the two cases above: 3. or 6.

7.4 Discussion
Despite a vast amount of literature on this topic, there is no universal
definition or evaluation strategy for skeletons [162]. Thus, similar to the
previous sections, VS and ELVS are compared with respect to the shape
representation criteria. The results are summarized in Table 7.1.
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VS ELVS
Scope •any 2D shape expressed by a set of points or line segments

•extension to higher dimensions
•identical representations for point sites

medial representation non-medial representation
Uniqueness unique for a site set
Invariance equivariant to rotation, translation, and scaling

Stability every element affects the
representation

stable in the cases satisfying
Property 22

improved by pruning, smoothing, and weighting [17,134]

Accuracy double-precision
floating-point

3
√

2
2 pixel_edge_length

Efficiency •Sequential:
O(NlogN) [90, 103] O(N ×W ×H) [100]

•Parallel:
O(N) [191] O(N) [100]

Abstraction enables hierarchical representation

Table 7.1: Evaluation of the representations VD and ELVD

Scope

Similar to VS, ELVS successfully represents any 2D object approximated
by a set of line segments and points. As an example, consider a skeleton
of an elephant shape from the MPEG-7 dataset [182] (Figure 7.8). The
efficiency since computing fewer Voronoi regions comes at the price of skeleton
accuracy. Infinitely many point sites lead to the medial axis [170], but cause
a problem with spurious branches. Such branches reflect perturbations along
the boundary rather than represent significant parts of the shape. They
introduce complications to performance of recognition and matching [177].
Consider an example in Figure 7.7. Here, VS of a polygon with 170 line
segments consists of spurious (blue) and non-spurious (yellow) branches. The
skeletons of polygons with 50 line segments (Figures 7.8a and 7.8b) have less
spurious branches than the skeletons generated from polygons containing 170
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Figure 7.7: Example of spurious (blue) and non-spurious branches (yellow)

line segments (Figures 7.8c and 7.8d). On the other hand, the skeleton from
50 line segments is a worse approximation of a medial axis.

VS is a medial representation: its skeletal points are equally distant from
the opposite borders of the shape. ELVS implicitly prioritizes long line
segments. In Figure 7.8e, the polygonal approximation contains line segments
of approximately similar length. So the discrepancy between VS and ELVS is
comparably small. In the case of non-uniform sampling (Figure 7.8f), the shift
between VS and ELVS is clearly stronger. Langer [100] analyzed the effect
of varying density in polygons on ELVS: in fact, the strength of non-medial
shift depends not only on the line segment length but also on the distance to
the opposite line segment.

Similar to VD and ELVD (Section 6.3-Scope), VS and ELVS are present
in higher dimensions. For example, the generalization of VS in 3D can be
found in [8, 126,178].

Uniqueness

The original shape can be completely and unambiguously reconstructed from
Blum’s representation of the medial axis [28]. This property indicates the
presence of one-to-one mapping between the MAT and the shape. In relation
to VS, the MAT procedure can be repeated when attributing the points of
the Voronoi edges with the distance value. Regarding ELVS of the polygonal
shape, the reconstruction process implies collecting points with zero distance
value in CEFDT2 .
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(a) VS from 50 line segments (b) ELVS from 50 line segments

(c) VS from 170 line segments (d) ELVS from 170 line segments

(e) VS and ELVS for uniform
sampling

(f) VS and ELVS for non-uniform
sampling

Figure 7.8: VS and ELVS of polygonal approximation of an elephant shape
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Invariance

When VS and ELVS use the Euclidean distance as a proximity measure,
the resultant representation is equivariant to translation, rotation [148], and
scaling [18,140].

Stability

VS is highly prone to local perturbations on the boundary. Attali et al. [7]
claim that small modifications of shape introduce rather local spurious
branches and do not highly influence the entire medial axis. Also, to preserve
the topology and subtle details of the natural shapes, it is needed to have
an accurate approximation with a high number of vertices [170]. In turn,
each vertex induces the creation of additional spurious branches that do not
correspond to the essential parts of this shape [134]. To guarantee stability,
VS requires an additional pre/post-processing step for reducing the noise
impact and make the skeleton closer to the medial axis [166]. Various authors
introduced the residual functions for distinguishing curves that correspond to
spurious branches from those that capture the essential parts of the object.
Ogniewicz et al. [133,134] attributed VS with supplementary information like
measures of prominence and stability. Other pruning measures include region
reconstruction [9, 16], residual branch length [107], bending ratio [177], visual
contribution [17], and collapsed boundary length [197]. The preprocessing
steps, such as boundary smoothing [150] or shape blurring [54], also cause
the insensitivity of the representation to redundant artefacts.

Establishing pruning techniques for ELVS is a question for future research.
In principle, the idea of attributing the skeletal points with a measure of
significance is applicable to ELVS. Implicitly, there is already a prioritization
of longer line segments and acute angles (Property 34) implying the noisy
parts of the boundary to have shorter branches in the resultant skeleton.

Accuracy

The computational precision of VS and ELVS follows the results of VD and
ELVD. In Section 6.3-Accuracy, the methods for VD are computed in a
fixed-precision arithmetic [90, 103,191]. The maximum error of the proposed
in [100] algorithm is 3

√
2

2 pixel_edge_length.
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Efficiency

Since VS and ELVS are derived from VD and ELVD, the worst-case complexity
of the VS algorithms equals O(NlogN) and O(N) for GPU implementation [90,
103,191]. Here, N denotes the number of sites. Aggarwal et al. [1] presented
a linear-time method for computing VD of a convex polygon.

Due to VD logic, VS contains elementary peripheral branches that do not
correspond to significant parts of the shape [166]. Also, the higher sampling
density increases the costs of pruning the spurious branches. Therefore, the
methods from this category consider a trade-off between the accuracy of the
medial axis and the computational costs [161].

Since ELVS is based on ELVD, the respective algorithms can be used to
compute a skeleton. For instance, Langer [100] proposed a parallel linear-time
algorithm for ELVS.

Abstraction

The medial axis concisely represents the shape and captures even its subtle
details. Hierarchical approaches enable adapting the representation for the
needs of the particular application by weighting the sites according to their
importance [36,53,134].

7.5 Summary
One practical application of ELVD is skeletonization. As follows from the
properties, ELVS implicitly prioritizes the longer edges and acute angles.
This fact has an implication on the structure of the skeleton – in general,
it is non-medial and is shifted towards the smaller edges. Only in special
cases, ELVS is identical to VS. Such an implicit prioritization might cause the
intersection of the pair of skeletal branches twice – in exo- and endoskeleton.
This is not the case for VS.
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CHAPTER 8

Applications

The previous chapters presented theoretical findings connected to conics
and their generalizations. In computer vision there are problems that are
geometric in nature. Here, the aim is to overview the application-driven
solutions benefiting from the properties of the generalized conics.

8.1 Shape Smoothing
This section is based on the following publication:
Aysylu Gabdulkhakova, Maximilian Langer, Bernhard W. Langer, Walter G.
Kropatsch: Line Voronoi Diagrams Using Elliptical Distances. In Proceedings
of the Joint IAPR International Workshop on Structural, Syntactic, and
Statistical Pattern Recognition, pages 258–267, 2018 [69]

Shape smoothing aims at preserving the object details and vanishing
the irrelevant artefacts and noise (Figure 8.1). For instance, the robustness
of medial representations such as VS highly depends on the presence of
noise along the boundary [133]. Hence, one purpose of the shape smoothing
approaches lies in mitigating the effect of contour perturbations to improve the
reliability of further processing [106]. To control the extent of smoothing, the
existing methods have an associated tuning parameter. It enables achieving
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Figure 8.1: Idea behind the shape smoothing

representation of the object at different level of detail.

8.1.1 State-of-the-Art
The noise points might fluctuate locally around the shape or be further away
creating high-frequency peaks. A variety of existing techniques relies on region
and contour features for smoothing. The first group of methods performs
shape smoothing by pruning its medial axis [79, 134]. The spurious branches
do not contribute to the descriptive shape structure and their skeletal points
have a low value according to the given measure of prominence. The idea
of medial axis based approaches rests on keeping the skeletal points whose
measure of prominence is above the threshold. For the measure of prominence,
Ho et al. [79] focused on the distances between the chord or arc of maximal
disk and the corresponding boundary points. Ogniewicz et al. [134] introduced
a set of residual functions assuming the skeletal branches deep in the shape
interior to be less sensitive to the boundary perturbations. By varying the
pruning parameters it is possible to achieve a multiscale representation.

The contour-based methods smooth a particular feature in the local
neighborhood of boundary points. This feature can be, for example, pixel
coordinates [123] or local curvature [87]. The set of N consecutive neighbors
form a window of size N . Here, it is considered that the window contains
an odd number of points such that the smoothed point is located at its
center. The larger the window size – the stronger the smooth [37]. A classical
approach in this category is called moving average [84,89,123]. It successively
substitutes each contour point by a non-weighted average of the points
in the corresponding window. Despite the simplicity, fast processing, and
strong reduction of random noise, the algorithm is not suitable for frequency
domain [37, 183]. Iteratively applying the moving average to a contour is
referred to as multiple-pass moving average [183]. After multiple passes the
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(a) multiple-pass moving average

(b) EDP-based smoothing

Figure 8.2: Comparison of smoothing results after 1, 10 and 20 iterations.
The original contour contains 100 points

result is similar to using a kernel. For example, after four or more iterations,
the distribution of accumulated weights approaches the Gaussian [183]. The
original global shape parameters, such as area, are influenced during this
smoothing procedure. This effect is illustrated in Figure 8.2a. The multiple-
pass moving average is applied to the flower shape (black) with noise. With
an increase of iterations from 1 to 20, the resultant smoothed shape (red)
shrinks. Another method directly applies a convolution with the Gaussian
kernel [95, 110, 207]. Gaussian smoothing outperforms the moving average
in frequency domain but takes more time due to convolution [183]. This
approach enables creating the shape representation at multiple scales by
changing the variance value [15, 95, 110, 207]. At the finest level the shape
is original, whereas at the coarsest level the subtle details are suppressed.
Lindeberg [106] formulated the scale-space theory for the discrete case.

Savitzky-Golay filter [168], considered a weighted moving average [48],
fits an N -th degree polynomial with least-squares by applying convolution
coefficients across the window. Here, the maximum N value is 5. Compared to
the moving average, it preserves the high-frequency peaks better at the price
of less noise reduction [138]. Locally weighted regression, or LOESS [43–45],
performs successive weighted least-squares fitting of lower degree polynomials

121



in a local neighborhood of each boundary point. In contrast to Savitzky-Golay
filter, each neighbor gets a weight depending on a distance from the point
to be smoothed. LOESS is sensitive to the presence of outliers and has high
computational costs [22].

Wavelets [41] are efficiently and successfully applied to smoothing task
and enable multiscale representation. The related methods are based on
an assumption that the noise corresponds to high frequencies, whereas the
significant parts of the object are located at low frequencies [96, 124]. One
way to compute the multi-scale representation is by convolution with wavelet
coefficients [112]. In the past decades, a variety of different wavelets with
their properties and limitations has been discovered [5]. The problem is how
to choose the wavelet for a particular application and data [111].

8.1.2 Equal-Detour-Point-based Smoothing
Langer [69] modified the moving average approach with three-point window by
substituting the mean by EDP. In other words, let a shape boundary be formed
by a set of points. The Equal-Detour-Point-based Contour Smoothing (or
EDP-based smoothing) successively substitutes the vertex B by EDP for each
triplet (A, B, C) of consecutive points.

Compared to the mean, EDP location depends on the angles. In Figure 8.3,
the mean for various triangles is marked with a yellow diamond. It averages
the coordinates of all vertices independent of the angle at the vertex B. EDP
is marked with a green square. As follows from Corollary 1, in an acute-angled
triangle, the Equal Detour Point (EDP) is shifted towards the side opposite
to an acute angle (Figure 8.3b). In contrast, EDP is relatively close to the
vertex corresponding to an obtuse angle (Figure 8.3c).

Without loss of generality, these EDP properties provide the following
advantages for shape smoothing. First, in the presence of strong outliers (like
in Figure 8.3b), EDP is much closer to AC than the mean. Second, when
the angle at the vertex B is obtuse, EDP is spatially close to the vertex
B. Consequently, the degree of smoothing decreases as compared to the
mean. Thus, compared to multiple-pass moving average, with the increase of
iterations the shape shrinkage is slower (Figure 8.2b). Finally, EDP enables
better approximation of step-like contours. Figures 8.4a and 8.4c illustrate
various triplets of points (A1, B, C), (A2, B, C), . . . , (A7, B, C). Here, the
circles mark the points, and the squares show the locations of EDP and
mean. Various colors help finding the correspondence between them. Note
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(a) angles are comparably similar (b) vertex B has a much smaller angle

(c) vertex B has a much larger angle

Figure 8.3: EDP (square) and mean (diamond) in a triangle

(a) EDP location (b) EDP-based smoothing

(c) mean location (d) moving average

Figure 8.4: EDP-based smoothing and moving average for sharp corners
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that A7 coincides with B and CB is perpendicular to the line containing
A1, A2, . . . , A7. Figure 8.4a shows that decreasing the distance between the
points Ai and B, where i ∈ [1, . . . , 7], leads to EDP approaching B. In
Figure 8.4c, the mean points are located at a line parallel to A1B. As a result,
with an increase of discretization, EDP-based smoothing (Figure 8.4b) better
approximates the step-like contours that the moving average (Figure 8.4d).

According to Property 31, EDP-based smoothing provides a possibility of
preserving sharp corners or important details by keeping the original position
of the corresponding points. It can be done by including such points twice in
the contour: the triangle degenerates into a line segment, and EDP coincides
with the duplicated point. This effect is observed in Figure 8.4a for the triplet
(A7, B, C), where A7 and EDP coincide with B.

8.1.3 Experimental Results
The criteria for assessing shape smoothing techniques depend on features that
are intended to be removed while keeping those that are considered being
essential. In this section, the goal is to assess the properties of EDP when
applied to smoothing.

Outlier removal

As mentioned in Section 8.1.2, EDP provides advantages in the presence of
strong outliers. Here, EDP-based smoothing is compared to moving average,
Gaussian smoothing, Savitzky-Golay filter, and LOESS. Selection of the
wavelet-based approaches is a process requiring an expert knowledge and
evaluation [56]. Hence, this algorithm is not considered for comparison. A
critical argument is that the state of the art methods are applied to time
series data [44,168] which, in fact, reflects a sequential change of one value.
Therefore, similar to [123], the successive change of point coordinates x and y
is expressed with regard to the path length along the contour. The evaluation
is performed on a camel shape from MPEG-7 dataset [182]. A point strongly
deviating from the contour is added artificially (Figure 8.5a).

Figure 8.5 illustrates the results (red) of applying the above methods on
the camel shape (green). The parameters used in each evaluated algorithm
delivered the least number of pixels that do not belong to the outlier-free shape.
Here, MA-3 and MA-22 denote moving average algorithm with a window
size 3 and 22 correspondingly; G-6.5 is a Gaussian smoothing with sigma
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(a) contour with an outlier

(b) MA-3 (c) MA-22 (d) G-6.5

(e) LOESS-2-55 (f) LOESS-1-32 (g) SG-3-31

(h) R-LOESS-2-6 (i) R-LOESS-1-6 (j) EDP-1

Figure 8.5: Comparison of smoothing results on contour with a strong outlier.
The acronyms of methods are: MA-N – moving average with window size
N ; G-S– Gaussian smoothing with sigma S; SG-D-N–Savitzky-Golay filter
with a polynomial degree D and window size N ; LOESS-D-N–LOESS with a
polynomial degree D and window size N ; R-LOESS-D-N–Robust LOESS with
a polynomial degree D and window size N ; EDP-I–EDP-based smoothing
with I iterations
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being equal to 6.5; SG-3-31 is a Savitzky-Golay approach with a polynomial
degree 3 and the window size 31; LOESS-D-N expresses LOESS algorithm
that uses a polynomial degree D and a window size N; R-LOESS-D-N is a
robust version of LOESS algorithm.

As can be observed, the effect of the strong outlier is mitigated only
by robust version of LOESS algorithm (Figures 8.5h and 8.5i) and EDP-
based smoothing (Figure 8.5j). The moving average and Gaussian smoothing
approaches decrease the magnitude of deviation. Applying multiple iterations
on these methods causes shrinkage of the shape and stronger vanishing of the
contour. Savitzky-Golay and LOESS algorithms are least-squares methods,
thus, are sensitive to high-frequency peaks. The robust version of LOESS
assigns a zero weight to the points that are far away from the local neighbors.
Hence, the effect of such an outlier can be decreased. Regarding the precision,
the smoothed outlier deviates from its location in the original outlier-free
contour by less than a pixel for R-LOESS-2-6, R-LOESS-1-6, and EDP-
based method. Although, the linear complexity of the proposed algorithm is
comparably lower than the complexity of the LOESS method [184].

Detail preservation

The state of the art methods associate noise points with high frequences [41,44,
110,123,168,183,207] that are suppressed after smoothing. In particular cases
it could be important to keep some high-frequency parts while smoothing
the others. To exemplify, consider the deer shape (Figure 8.6a). Imagine a
necessity of smoothing the body parts while keeping the head and tail without
a change. The EDP-based strategy preserves parts of the original shape by
duplicating the corresponding vertices in its contour. Regardless the number
of iterations, these vertices remain at the original location since they coincide
with EDP in the respective triplet of points (Property 31). Figure 8.6b shows
the result of EDP-based smoothing after applying 100 iterations. Red curves
highlight the points that were inserted twice in the contour, blue curves –
the remaining points of the contour, green area illustrates the original shape.
As can be seen, smoothing mitigated the presence of subtle perturbations,
though, the head and tail (red) are identical to the corresponding parts in the
original shape. Note, such detail preservation has a local effect. Figure 8.6c
compares EDP-based smoothing of the contour with detail preservation (red)
and without (blue). Except for the tail and head, the resultant curves coincide.
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(a) original shape

(b) smoothed parts (blue), preserved
parts (red), original shape (green)

(c) smoothing with detail
preservation (red) and without (blue)

Figure 8.6: Comparison of EDP-based smoothing results after 100 iterations
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(a) the input contour approximations

(b) the results after 1 iteration

(c) the results after 10 iterations

Figure 8.7: Dependence of EDP-based smoothing on contour approximation

Dependence on contour approximation

EDP-based smoothing successively takes three consecutive points along the
contour. Thus, in the case of a detailed contour approximation, where the
points are densely located next to each other or even belong to the same line,
the difference between the smoothed and noisy data is negligible.

Figure 8.7a shows various approximations (red points) of a scaled noisy
contour part obtained by increasing the distance between consecutive points.
Figures 8.7b and 8.7c illustrate the results of EDP-based smoothing (green
curves) after 1 and 10 iterations respectively. As can be observed, for dense
approximation (left column) the smoothed contour contains the noisy spikes
even after 10 iterations. In such a case, the properties of EDP are not helpful,
since the points remain at the same positions or slightly move in the local
neighborhood. With the decrease of the number of points along the contour,
the noisy spikes are smoothed out. The same issue with contour approximation
applies to the state of the art methods. Apart from sparsification, [44,110,123,
168,183,207] consider increasing the window size. In relation to EDP-based
smoothing, assuming a larger window is question for future research.
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8.2 Optimal Path Planning
This section is based on the following publication:
Aysylu Gabdulkhakova, Walter G. Kropatsch: Generalized conics: properties
and applications. In Proceedings of the International Conference on Pattern
Recognition, pages 10728–10735, 2020 [67]

The demand for optimal path planning algorithms comes from a wide
variety of fields, such as robotics, computer graphics, geographic information
systems, architectural and VLSI design [25]. The problem is geometric in
nature and is concerned with the question of finding a sequence of moves that
bring the object from the source to the destination. The environment might
additionally contain the disjoint obstacles that are supposed to be avoided.
The collision-free path is evaluated according to certain criteria like the overall
length and smoothness, computational costs and time [25,72,203,209].

8.2.1 State-of-the-Art
The optimal path planning is a thoroughly and continuously researched topic
with a great variety of approaches [72,209]. With the reference to classification
in [72], this section is related to a particular category of global approaches
called the roadmap methods. The global approaches consider a complete
map of environment to be provided a priori. By definition, a roadmap is a
set of curves that express possible collision-free paths in the given map [101].
The idea is to connect the source and the destination to the roadmap, in
order to find the path between them. A group of approaches uses VD to
compute the roadmap [25,40,203]. According to Definition 48, the resultant
curves are equidistant to the obstacles and, thus, are at the maximum possible
distance from them. Consequently, the obtained path is not the shortest,
despite the computational efficiency [72]. Therefore, VD-based algorithms are
combined with other techniques to improve optimality in the sense of path
length [25,203].
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8.2.2 Elliptic-Line-Voronoi-Diagram-based Path
Elliptic Line Voronoi Diagram (ELVD) posesses beneficial properties for
path planning applications. Let the map contain the set of line segments
and polygonal objects that represent the obstacles. Each point in ELVD
corresponds to the smallest increment to the length of at least two line
segments from the set of obstacles. As confirmed by Property 34, the longer
line segment pushes the Voronoi edges towards the shorter line segments. The
advantage of such a non-centered representation is lower curvature at sharp
corners. In practice, the vehicles using the ELVD-based trajectory could turn
at a higher speed as compared to VD-based trajectory.

8.2.3 Experimental Results
The first experimental setup compares the paths extracted from VD and
ELVD of the map that is a union of rectangles with different lengths but the
same width (Figure 8.8). It could be associated with a long corridor forming
a spiral shape. The task is to find a path in this corridor to connect the
destination (red square) and the source (green circle). As discussed, according
to Definition 48, each point in VD is equidistant to at least two boundaries
of the shape (Figure 8.8a). In contrast, in ELVD there is a visible shift
towards the corner that corresponds to the shorter border (Figure 8.8b). As
a result, the path length in ELVD is shorter and the curvature at the sharp
corners is lower than in VD. To have a quantitative comparison of the path
length, Let the size of the bounding box around the spiral be 500 by 500
pixels (Figures 8.8a and 8.8b). The VD-based path length connecting the
source and the destination equals 1391 pixels, whereas the ELVD-based path
length – 1297 pixels. Note, in Figures 8.8a and 8.8b, the vehicle is represented
by a point. To take the vehicle size into account it is possible to propagate
the boundary of the shape towards its interior such that at the sharp corners
there is sufficient space for the maneuver (Figure 8.8c).

The second experimental setup uses the map containing the set of obstacles
that need to be avoided. It has six blue/yellow rectangles representing the
obstacles and one bounding rectangle limiting the space (Figure 8.9). The
green circle is the source, and the red square is the destination. The task is
to find a collision-free path connecting the source and the destination. In VD-
based path is equally distant from the obstacles regardless their size. Thus,
the Voronoi edges separate only the nearest neighboring obstacles (yellow
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(a) VD-based path (b) ELVD-based path (c) ELVD-based path

Figure 8.8: Comparison of paths (red) in VD and ELVD of the spiral

(a) VD-based path (b) ELVD-based path

Figure 8.9: Comparison of collision-free paths (red) in VD and ELVD

rectangles in Figure 8.9a). This is not the case for the non-centered path
from ELVD. The intuition to this phenomena could be adopted from physics:
the larger the planets are – the stronger is the attraction between them.
Therefore, in ELVD the Voronoi edges can separate not the nearest but the
largest obstacles (yellow rectangles in Figure 8.9b). Another observation
relates to the angles at the turns. Compared to low curvatures in Figure 8.8b,
the ELVD path in Figure 8.9b contains sharp turns that create a potential
problem for the moving vehicle.
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8.3 Optimal Facility Location
This section is based on the following publication:
Aysylu Gabdulkhakova, Walter G. Kropatsch: Generalized conics: properties
and applications. In Proceedings of the International Conference on Pattern
Recognition, pages 10728–10735, 2020 [67]

The problem of finding an optimal facility location is a classical optimiza-
tion task [24]. It aims at finding a facility location that minimizes the sum
of weighted distances to the given set of N point-locations with the positive
weights w1, w2, ..., wN . In principle, the point-location can be associated with
a negative weight. In this case, its distance to the facility is maximized [130].

8.3.1 State-of-the-Art
In the literature, the optimal facility location problem is known under various
names: minimum distance sum problem [119, 172], single facility location
problem [125], Fermat-Weber problem [21,32]. The original formulation dates
back to Fermat and Torricelli and considers only three points [127,198,199].
The solution for this particular scenario is referred to as Fermat point of
a triangle [187]. Later, from the historical perspective, it became the first
step in location theory and was related to the problem of locating the facility
at a minimum transportation cost [204]. The existing methods include but
are not limited to exact analytical solutions, enumeration of all the possible
combinations, approximate statistical and heuristic methods, and linear
programming [21, 24, 32, 119, 160, 172, 205]. The complexity of the problem
increases with the number of points [19], causing the analytical or iterative
solutions to become computationally expensive.

8.3.2 Optimal Facility Location from the Generalized
Conics

As can be observed, the formulation of the optimal location problem with
positive weights fits into multifocal ellipse (Definition 17), whereas with the
positive and negative weights – into multifocal hyperbola (Definition 18).
Thus, the solution is found by extracting the point from CMEF (or CMHF)
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with the smallest associated distance value. The implementation considers,
first, computing DT2s for the given set of N point-locations. Second, taking
the pixel-wise sum among all these distance fields. Finally, the pixel associated
with the smallest distance value defines a solution. The computational
complexity equals O(N ×W ×H), where W is the width, and H is the height
of the image containing the area of interest. The parallel algorithm for CMEF
enables loading the precomputed DT2 and transferring the distance values
with regard to N point-locations. The sums can be computed on a pixel-level
leading to the total complexity of O(N). This idea in relation to CEF is
explained in [100]. The complexity of finding the minimum distance value
equals O(W ×H).

(a) all point-locations have identical
weight

(b) the point-locations have various
weights

(c) the point-locations have positive and
negative weights

(d) the point-locations connected by the
roads

Figure 8.10: The example of optimal facility location. The green circles
correspond to seven point-locations, and the red square is the facility location.
The level sets show the distance value distribution in CMEF (a)-(b) and
CMHF (c)
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8.3.3 Experimental Results
The results of the algorithm are illustrated in Figure 8.10. Consider an image
showing a contour of Austria, where the green circles are the cities (point-
locations) and the red square is the desired facility location. In Figures 8.10a
and 8.10b, all the weights at the point-locations are positive, therefore, the
red point corresponds to the global minimum of CMEF. Note, if there is
an even number of collinear point-locations, there is more than one global
minimum (Property 9). In Figure 8.10a, the point-locations have identical
weights, as opposed to Figure 8.10b. As a result, the facility location is
shifted towards the point-locations with the greater weights. Figure 8.10c
illustrates the case when the weights have different signs: positively weighted
point-locations attract the global minimum, whereas the negatively weighted
– repulse.

So far the distance between two point-locations is measured with the
Euclidean metric. To have a realistic picture, it is possible to apply the
constraint distance transform [144] to the binary image of roads. Instead of
a line segment connecting two point-locations, there will be a shortest path
along the roads.

8.4 Shape Representation
This section is based on the following publication:
Aysylu Gabdulkhakova, Walter G. Kropatsch: Generalized conics with the
sharp corners. In Proceedings of the Iberoamerican Congress on Pattern
Recognition, pages 419–429, 2021 [68]

Shape representation is a fundamental part of solving any computer
vision problem [47]. The intention is to efficiently preserve the essential
object characteristics which depend on the requirements of a particular
application [109]. It can work on a boundary level or consider the complete
set of pixels belonging to the object. For example, Chapter 7 introduced
ELVS which enables representing the internal structure of 2D shape using
a set of 1D curves. This section intends to raise interest in the possibility
of representing the shape boundary by using the properties of generalized
conics (Chapter 3).
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(a) varying the value of distance sum to the focal points

(b) varying the weights of the focal points

Figure 8.11: Examples of shapes generated from the same triplet of focal
points

In order to specify a generalized conic, one needs locations of focal points,
their associated weights, and the value of constant weighted sum. Consider
the examples in Figure 8.11, where the locations of three focal points are
fixed while changing the value of the constant weighted sum (Figure 8.11a) or
the weights (Figure 8.11b). As can be observed, if the weights are all positive,
then the generated shape is convex, whereas the concavities are obtained
by introducing the negatively weighted focal point(s). Note the variety of
complex shapes generated from the triplet of points. The computation of
confocal generalized conics is performed efficiently by taking the pixel-wise
sum of DT2s generated from the focal points. In contrast, finding an analytical
representation of such shapes has a higher computational complexity: the
degree of the corresponding polynomial increases with every additional focal
point [131].

The idea for the future work is to research the possibility of representing
a complex shape by finding an appropriate number of focal points, their
locations, weights, and the value for the sum of weighted distances. What
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(a) egg-shape (b) hyperbolic shape

Figure 8.12: The examples of generalized conics with corners

is the minimum number of focal points that represent or approximate the
shape? What is the best possible approximation of the shape for the given
number of focal points? What shapes can be represented with the generalized
conics? As can be observed, all the parameters are numeric. Thus, one way to
answer such questions could be connected to using the advances of machine
learning.

A particular scenario – an egg-shape (Figure 8.12a) or a hyperbolic
shape (Figure 8.12b) with corner. On one side, it is possible to compute the
parameters of such shapes given a boundary. On the other side, as compared
to an ellipse, these shapes require only one additional parameter – the weight
of focal point at the corner. Hence, the egg-shape and the hyperbolic shape
enrich the ellipse advantages in the related applications.
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CHAPTER 9

Conclusion

There is no branch of mathematics, however abstract, which may
not some day be applied to phenomena of the real world.

Nikolai Ivanovich Lobachevsky

Computer vision is a scientific field whose central purpose is to gain
semantic information about the environment from a digital image. It implies
a selection of features providing a meaningful representation of objects. In this
regard, mathematics introduces a language that enables translating a physical
entity into a computational model. The richer the vocabulary – the broader
the information spectrum describing the object. This thesis introduces the
new word into the shape representation dictionary – generalized conics.

Conceptually, the generalized conics are the extension of primitives already
used in image processing – a circle and an ellipse. Consequently, the relatively
familiar geometric properties are generalized by accepting infinitely many
focal points. It implies an establishment of a single theoretical framework
that qualitatively enhances the explanation of existing ideas while presenting
the advantages of the generic entity.

Apart from the study of geometrical concepts, this thesis exploits the
identified properties of the generalized conics in the image processing domain.
The proposed methods, on one side, generalize the existing shape representa-
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tions based on the distance fields. On the other side, they enrich the variety
of semantic information connected to the corresponding representation while
improving the computational efficiency. The practical part of the thesis exem-
plifies the application scenarios, where the explored properties and methods
are beneficial compared to the state-of-the-art.

The central question underlying this work is connected to the ways of
measuring the distance from a point to an object. A classical approach finds
a pair of the closest points. In the specific cases, this implies the need for
object discretization. This thesis proposes the alternative solutions based on
the properties of the generalized conics:

• Confocal-Ellipse-based Distance (CED) – metric for computing the
distance between the points on confocal ellipses. Since an ellipse can
degenerate into a line segment, CED is interpreted as a distance between
a point and a line segment. Here, the latter is defined by the endpoints,
implying the independence of discretization.

• Confocal Elliptic Field (CEF) – distance field that uses CED as a
metric. The level sets in CEF of a line segment are confocal ellipses.
The separating curve takes the form of a bisector, a hyperbola branch,
or a multifocal hyperbola branch (higher-order curve). To compute
CEF, it suffices to apply simple operations (addition, subtraction, and
minimum) to several Euclidean Distance Fields (DF2).

• Confocal Multifocal Elliptic Field (CMEF) – distance field containing
multifocal ellipses. Each point in this field is associated with the sum of
the distances to the objects in the set. Convexity of the level sets makes
this representation useful for solving optimization problems. Similar
to CEF, it can be decomposed into a set of DF2s and computed by
applying addition and multiplication to them.

• Confocal Multifocal Hyperbolic Field (CMHF) – distance field con-
taining multifocal hyperbolas. Each point in this field is associated
with the difference between the distance values in a pair of CMEFs.
Conceptually, the zero level set is a set of points equidistant to the given
pair of CMEFs.

Eventually, the distance fields that inherit the properties from ellipses or
multifocal ellipses demonstrate the proximity of objects with respect to each
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other. The distance fields which are based on the properties of hyperbolas or
multifocal hyperbolas show the regions of closest proximity for each object.
Interpreting these notions in the digital space takes an advantage of the
Distance Transform (DT). Let N be the number of points, line segments, or
sites, and W ×H be the number of pixels in an image.

• Confocal Elliptic Field in terms of DT (CEFDT) – digital version of
CEF with DT. The computational complexity of implementation reaches
O(N ×W ×H) [100].

• Confocal Multifocal Elliptic Field in terms of DT (CMEFDT) – digital
version of CMEF with DT. The computational complexity equals O(N×
W ×H).

• Confocal Multifocal Hyperbolic Field in terms of DT (CMHFDT) –
digital version of CMHF with DT. Its computational complexity is
O(W ×H).

• Elliptic Line Voronoi Diagram (ELVD) – space tessellation extracted
from CEF. It can be considered a generalization of the Voronoi Diagram
(VD) since providing identical results for the point-sites. Compared
to VD, in the case of connected and overlapping line segments, the
Voronoi edges do not contain area. The efficient implementation of the
algorithm [100] achieves O(N ×W ×H).

• Elliptic Line Voronoi Skeleton (ELVS) – shape representation that is
extracted from ELVD, hence, inheriting its properties. ELVS is a non-
medial representation, as opposed to classical VS or medial axis. ELVS
has an implicit prioritization of long line segments and acute angles. Its
computational complexity is O(N ×W ×H) [100].

Each of the above algorithms has a potential for parallel computation. It
leads to further improvement of the computational complexity.

Broadly speaking, the generalized conics might become a promising re-
search direction in computer vision and image processing. This thesis explores
the geometrical properties of curves obtained from simple operations – ad-
dition and subtraction – in 2D space. The existing literature defines also
another type of generalization [71], obtained as a weighted sum of distance
products. Analysing such level sets might further enrich the representational
power of the existing methods. From the perspective of shape representation,
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a particular emphasis of this work was on the special case – the generalized
conics with sharp corners. Hence, it would be of interest to establish the
correspondences between the weights and the smooth level sets. Another
valuable theoretical prospect is related to ELVD and the exploration of its
dual representation.

Understanding the specific aspects of problem together with knowledge
of mathematical framework enables applying the generalized conics in the
practical domain. This thesis outlined a problem variety, such as shape
smoothing, optimal path planning, and optimal facility location. In shape
representation, the generalized conics exhibit a representational power that
might be used to connect machine learning and geometrical structure. Another
idea is related to exploration of geometrical properties in N -dimensional space
with an outlook to data mining algorithms. In particular, it implies the
thorough analysis of the global minimum of confocal generalized conics in the
presence of outliers, as well as the evaluation of its stability with the reference
to state-of-the-art approaches. In general, the extension of the work to higher
dimensions has a valuable impact on research and a variety of applications
that can benefit from it.
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barycenter, 21
bisector, 59

Center of the Incircle, 92
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hyperbola, 25
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parabola, 22
directrix, 22
focal distance, 22
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Euclidean, 20, 70, 88
Hausdorff, 52, 55, 88
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confocal hyperbolas, 57, 71
Confocal Multifocal Elliptic
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Hyperbolic Field, 65, 73,
130

Euclidean Distance Field, 57,
130

receptive field, 58, 72
separating curve, 59, 72

Distance Transform, 70
Chessboard Distance

Transform, 73, 74, 77
City-Block Distance

Transform, 73–75
Elliptical Distance Transform,

70
Euclidean Distance Transform,

70, 73, 74

Elliptic Line Voronoi Diagram, 87,
91, 127, 128

Elliptic Line Voronoi Skeleton, 107,
109

Equal Detour Point, 94, 110, 123
Euler line, 94

feature element, 69
Fermat point, 130

generalized conic, 29, 130, 132
confocal, 35
egglipse, 30
generalized hyperbola, 30
k-ellipse, 30
multifocal curve, 29
multifocal ellipse, 29, 30, 130,

132
egg-shape, 45, 134
sharp corner, 36

multifocal hyperbola, 30, 33,
130, 132

hyperbolic shape, 48, 134

sharp corner, 42
n-ellipse, 30
oval, 30
polyconic, 29
polyellipse, 29
Tschirnhaus´sche Kurve, 30

geometry
analytic, 19
computational, 15
digital, 15, 67
discrete, 15
Euclidean, 19

higher-order curve, 61

image
binary, 69
digital, 68

level set, 21
line segment, 20

maximal circle, 108
medial axis, 107, 108, 123
Medial Axis Transform, 109
metric, 21

optimal facility location, 129
optimal path planning, 126

pixel, 68
pixel connectivity, 69
point, 20

scalar product, 19
shape

categorization, 13
description, 13, 14
descriptor, 13
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representation, 11, 13, 14, 87,
107, 132

criteria, 13
site, 87, 88
skeleton, 107

endoskeleton, 109
exoskeleton, 109, 112

skeletonization, 87, 107
smoothing, 122

Equal-Detour-Point-based, 123,
125

mean-based, 125

Soddy circle, 95
Soddy line, 94
space

digital, 67
Euclidean, 19

Voronoi Diagram, 87–89, 127, 128
Line Voronoi Diagram, 90
Point Voronoi Diagram, 89

Voronoi edge, 89
Voronoi region, 88, 91
Voronoi Skeleton, 107, 108
Voronoi vertex, 89
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