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Abstract

Due to the aperture problem, the only general unambiguous motion measurement in images is

normal 
ow|the projection of image motion on the gradient direction. In this paper we show

how a monocular observer can estimate its 3D motion relative to the scene by using normal 
ow

measurements in a global and mostly qualitative way. The problem is addressed through a search

technique. By checking constraints imposed by 3D motion parameters on the normal 
ow �eld the

possible space of solutions is gradually reduced. In the four modules that comprise the solution,

constraints of increasing restriction are considered, culminating in testing every single normal 
ow

value for its consistency with a set of motion parameters. The fact that motion is rigid de�nes

geometric relations between certain values of the normal 
ow �eld. The selected values form

patterns in the image plane that are dependent on only some of the motion parameters. These

patterns, which are determined by the signs of the normal 
ow values, are searched for in order

to �nd the axes of translation and rotation. The third rotational component is computed from

normal 
ow vectors that are only due to rotational motion. Finally, by looking at the complete

data set, all solutions that cannot give rise to the given normal 
ow �eld are discarded from the

solution space.
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1. Introduction

Visual navigation constitutes a problem which is of considerable practical as well as scienti�c

interest. Navigation, in general, refers to the performance of sensory mediated movement, and

visual navigation is de�ned as the process of motion control based on an analysis of images. A

system with navigational capabilities interacts adaptively with its environment. The movement of

the system is governed by sensory feedback which allows it to adapt to variations in the environment

and does not have to be limited to a small set of prede�ned motions as it is the case, for instance,

with cam-activated machinery.

Visual navigation encompasses a wide range of perceptual capabilities that can be classi�ed

hierarchically. At the bottom of the hierarchy are low level tasks, such as obstacle avoidance, and

the top is represented by high level abilities like homing or target pursuit. As a basic capability,

however, every visual navigation system must have an understanding of visual motion. It should

be able to estimate the three-dimensional motions of objects in its environment and even more

important, it should be able to determine its own motion.

Usually the term \passive navigation" is used to describe the set of processes by which a system

can estimate its motion with respect to the environment. Passive navigation is a prerequisite for

any other navigational ability. A system can be guided only if there is a way for it to acquire

information about its motion and to control its parameters. Although it is possible to obtain the

necessary information by using expensive inertial guidance systems, it remains a challenge to solve

the task by visual means. In this paper, we address the problem of passive navigation on the basis

of a sequence of images. For a monocular observer undergoing unrestricted rigid motion in the 3D

world, we compute the parameters describing this motion. >From 2D images only �ve unknowns can

be derived, three rotational parameters and two parameters describing the direction of translation.

In its original formulation, passive navigation utilizes estimates of the scene points' projected

motions. As a result, most algorithms that have appeared in the literature address the motion

estimation problem in two steps. First the image displacements between consecutive image frames

are computed; either discrete features in successive frames are corresponded or the vector �eld

that represents the motion of every image point, the optical 
ow �eld, is computed [7, 15, 13].

This computation relies on smoothness assumptions that usually result in unrealistic assumptions

about the 3D scene. Since both problems, the computation of optical 
ow and the correspondence of

features, are ill-posed, their applicability to the problem of passive navigation must be reconsidered.

In the second step, under the assumption that optical 
ow or correspondence is known, the 3D

motion is computed from the equations relating it to the 2D image velocity. These equations are

determined by the speci�c geometric model of image formation which is used. Di�erent geometric

projection models have been employed. Orthographic projection [26] leads to linear equations, but

in general is not realistic and should only be considered as an approximation in the case when

lenses of very high focal length are used and the �eld of view is very small. A more adequate

model is given by perspective projection. The image is projected either on a sphere [22] or on a

plane [1, 9, 14, 19, 20, 28, 24, 25]. The resulting equations relating 3D motion to image motion

are nonlinear. Therefore the surface in view often is modeled as a smooth function (usually a

polynomial) and nonlinear optimization techniques are applied to solve the 3D motion parameter

estimation problem. Linear algorithms have also been developed, most of them based on a particular

linearization technique, the intermediate computation of the \E" matrix [19, 25]. But a critical
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investigation of the feasibility of addressing the motion estimation problem in this way, conducted

by Spetsakis and Aloimonos [24], shows that even application of provably optimal algorithms to

this problem cannot lead to methods that are useful for applications in realistic domains.

In some methods the data used as input comes only from local parts of the motion �eld. Such

limited use of data leads to inherently unstable methods, because completely di�erent observer

motions produce locally similar motion �elds. For example, in an area near the y-axis of the image

plane, 3D rotation around the X-axis produces a 
ow �eld similar to the one of translation along

the Y-axis [2].

2. Motivation

In the past, research on motion estimation has concentrated mainly on issues of existence and

uniqueness. It has been shown that two perspective views of at least seven points in a rigid con�-

guration almost always guarantee uniqueness of the motion parameters [25]. A retinal motion �eld

uniquely determines 3D motion, unless the surface in view belongs to a certain class of hyperboloids

of one sheet [18]. Similar results have been obtained for features other than points, such as lines

[23] or contours [4, 8]. Since most uniqueness aspects of the problem are now well understood and

initial attempts to construct algorithms that perform well in realistic domains have failed, motion

estimation research has shifted its focus on the robustness issue. We know that the motion pro-

blem as addressed in the last few years involves steps that are mathematically ill-de�ned, e.g the

computation of optical 
ow and the correspondence problem. Unrealistic assumptions were made

and the resulting algorithms were extremely sensitive to noise.

In order to overcome sensitivity researchers started using redundant information. For the case

of correspondence-based methods this meant the use of more features and more frames [30]. Several

multi-frame approaches have been developed. In most of this work an unrealistic assumption again

is made{that of motion continuity over time.

Recently a new concept has emerged{that of active [5], purposive [6] vision. One should not

insist on recovering all motion and shape parameters in one module, but rather one should solve

simpler problems and add additional information by making the observer active. An increasing

number of researchers has been attracted by this idea, but a general theory that explains how

particular observer activities facilitate speci�c perceptual tasks has not yet appeared.

If our goal is to develop robust algorithms that can perform successfully in general environments,

we should abandon all computational processes which are provably unstable. Any 3D motion

estimation technique must make use of a representation for the image motion. Most existing

algorithms rely, at this stage, on the computation of optic 
ow or correspondence, but the estimation

of retinal correspondence is an ill-posed problem. The only image motion that can be uniquely

de�ned from a sequence of images is the normal 
ow{ the projection of the optic 
ow on the

gradient direction. This is the well known \aperture problem". The normal 
ow can be computed

from the image motion of edges (the edge 
ow0 or from the image gradients by employing the

motion constraint equation. The di�culty in its computation is only due to the discrete aspect of

digital images. Computing normal 
ow in images is as di�cult as detecting edges. Since normal


ow constitutes a uniquely de�nable image motion representation, we choose to use it as input

to our 3D motion estimation algorithm, even though the normal 
ow �eld appears to contain less
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information than the optic 
ow �eld.

One of the basic problems with many motion estimation algorithms, as mentioned before, is

their sensitivity to slight perturbations of the input. The fact that normal 
ow measurements

cannot be perfect has to be considered in the development of a robust algorithm. The problem is

to estimate the motion parameters that describe the rotation and the direction of translation. In

our approach, we �rst compute the direction of the rotation axis and the direction of translation.

Motion rigidity introduces a number of constraints on the normal 
ow values. These constraints

take the form of particular patterns in the image plane. In other words, for given positions of

the translational and rotational axes, the normal 
ow values form certain patterns. Our technique

searches for these patterns. It uses data from di�erent parts of the image plane and considers only

the sign of the normal 
ow. Our method for deriving the direction of the translation and rotation

axes is of a qualitative and global character and thus can handle a considerable amount of error in

the input.

Methods of estimating 3D-motion from only the normal 
ow �eld without going through the

intermediate stage of computing optical 
ow have appeared in [3, 16, 21]. In [3] the case of purely

rotational motion was studied, and linear equations relating the rotation parameters to the normal


ow were derived. A similar result was reported by Horn and Weldon [16], who presented several

methods for the problem of motion and structure computation in addition to the purely rotational

case, for only translation, for known rotation, and for known structure. The constraint of positive

depth was used by Negahdaripour [21] to estimate the focus of expansion for purely translational

motion. In [29] translation and rotation were estimated for an observer rotating around the direction

of translation, and in [12] the activity of tracking is used to compute the translational direction of

a general rigidly moving object. Lately some techniques have appeared which are claimed to be of

a qualitative character [10, 17, 27]. In these techniques solutions for noisy optical 
ow �elds are

proposed; but these techniques involve approaches di�erent from ours, and thus they cannot be

considered as related to our work.

The organization of this paper is as follows: In Section 3 we describe the geometry relating

normal 
ow to three-dimensional motion. Then, we explain how to exploit these relations to develop

a qualitative technique that searches for particular patterns of normal 
ow vectors in the image.

The result of this search is a set of possible solutions for the direction of translation and the axis

of rotation. Section 4 is devoted to the use of additional constraints to compute the value of the

rotation and to further narrow down the possible space of solutions. If there is only one solution,

the technique will �nd it uniquely. Section 5 is devoted to experimental results and the paper

concludes with a discussion and outline of future work.

3. Geometric constraints

To gain an insight into the problem and the di�culties involved in it we start with a brief summary

of the equations relating the 3D-scene to the image measurements.
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3.1. Formalization of the problem

The motion equations for a monocular observer moving in a static environment are de�ned by

the following physical constraints: We assume that the coordinate system (X; Y; Z) is �xed to the

observer with the origin 0 being the nodal point of the camera. If we denote by (U; V;W ) the

translational and by (�; �; 
) the rotational motion of the observer relative to the scene, then the

velocity components of any point P (X; Y; Z) in the image will be

_

X = �U � �Z + 
Y

_

Y = �V � 
X + �Z

_

Z = �W � �Y + �X (1)

Figure 1: Imaging geometry and motion representation

As image formation model we use perspective projection on the plane. The image plane is

parallel to the XY plane and the viewing direction is along the positive Z axis (see Figure 1).

Under this projection the image position p(x; y) of a 3D point P (X; Y; Z) is de�ned through the

relation

(x; y) = (

fX

Z

;

fY

Z

) (2)

The constant f denotes the focal length of the imaging system. The equations relating the

velocity (u; v) of an image point p to the 3D velocity can be derived by di�erentiating (1) and

substituting from (2):

u =

(�Uf + xW )

Z

+ �

xy

f

� �(

x

2

f

+ f) + 
y

v =

(�V f + yW )

Z

+ �(

y

2

f

+ f)� �

xy

f

� 
x (3)
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The number of motion parameters that a monocular observer is able to compute under perspec-

tive projection is limited to �ve: the three rotational parameters and the direction of translation.

We therefore introduce coordinates for the direction of translation (x

0

; y

0

) = (Uf=W; V f=W ), and

rewrite the righthand side of equation (3) as sums of translational and rotational components.

u = u

trans

+ u

rot

= (�x

0

+ xf)

W

Z

+ �

xy

f

� �(

x

2

f

+ f) + 
y

v = v

trans

+ v

rot

= (�y

0

+ yf)

W

Z

+ �(

y

2

f

+ f)� �

xy

f

� 
x (4)

Since we can only compute the normal 
ow, the projection of the optical 
ow on the gradient

direction (n

x

; n

y

), only one constraint on the actual 
ow can be derived at any given point. The

value u

n

of the normal 
ow vector along the gradient direction is given by

u

n

= un

x

+ vn

y

u

n

= ((�x

0

+ xf)

W

Z

+ �

xy

f

� �(

x

2

f

+ f) + 
y)n

x

+((�y

0

+ yf)

W

Z

+ �(

y

2

f

+ f)� �

xy

f

� 
x)n

y

(5)

This equation demonstrates the di�culties of motion computation. A monocular observer

unable to measure depth is confronted with a motion �eld of �ve unknown motion parameters and

one scaled depth component (W=Z) at every point. Since there is only one constraint at each point

and since we do not want to make assumptions about depth, there is no straightforward way to

compute the motion parameters analytically.

3.2. Motion �eld interpretation

A motion �eld is composed of a translational and a rotational component. Only the �rst of these

is dependent on distance from the observer. Therefore it seems reasonable to look for a way of

determining the motion components by disregarding the depth components. The motion under

consideration is rigid. Every point in 3D moves relative to the observer along a constrained tra-

jectory. The rigidity constraint also imposes restrictions on the motion �eld in the image plane

and these restrictions are re
ected in the normal �eld as well. This is the motivation for investiga-

ting geometrical properties inherent in the normal 
ow �eld. The motion estimation problem then

amounts in resolving the normal 
ow �eld into its rotational and its translational component.

If the observer undergoes only translational motion, all points in the 3D scene move along

parallel lines. Translational motion viewed under perspective results in a motion �eld in the image

plane, in which every point moves along a line that passes through a vanishing point. This point

is the intersection of the image plane with the translational trajectory passing through the nodal

point. Its image coordinates are x = Uf=W and y = V f=W ; the 
ow there has value zero. If the

sensor is approaching the scene all the 
ow vectors emanate from the vanishing point, which is then
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called the Focus of Expansion (FOE) (Figure 2). Otherwise the vectors point toward it, in which

case we speak of the Focus of Contraction (FOC). The direction of every vector is determined by

the location of the vanishing point; the lengths of the vectors depend on the 3D positions of the

points in the scene. The vanishing point also constrains the direction of the normal 
ow vector at

every point; it can only be in the half plane containing the optical 
ow vector.

Figure 2: Translational motion viewed under perspective projection: The observer is approaching

the scene

In the case of purely rotational motion every point in 3D moves along a circle in a plane per-

pendicular to the axis of rotation. The perspective image of this circular path is the intersection

of the image plane with the cone de�ned by the circle and the rotation axis (see Figure 3). De-

pending on the relation between the aperture angle of the cone for a given image point and the

angle that the image plane forms with the rotation axis, di�erent second order curves are obtained

for the intersection: ellipses, hyperbolas, parabolas, and even circles when the rotation axis and

the optical axis coincide. The speci�c conic sections due to rotational motion are de�ned by the

axis of rotation. The rotation axis given by the two parameters (

�




) and (

�




), de�nes the family

M(

�




;

�




; x; y) of conic sections:

M(

�




;

�




; x; y) = (

�

2




2

x

2

+ 2xy

�




�




+ y

2

�

2




2

+ 2xf

�




+ 2yf

�




+ f

2

)=(x

2

+ y

2

+ f

2

) = C

with C in [0; : : : ; (1+

�

2




2

+

�

2




2

)] (6)

Speci�cally, for a rotation around the Z-axis the second order curves are circles with center 0;

we call them 
-circles (Figure 4a). If the rotation axis is the X- or Y- axis the rotation axis the

conic sections are hyperbolas whose axes coincide with the coordinate axes of the image plane. For

the case of rotation around the X-axis the hyperbolas' major axis is the x-axis and they are called

�-hyperbolas (Figure 4b). For rotation around the Y-axis the major axis is the y-axis and we call

the conic sections �-hyperbolas (Figure 4c).
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Figure 3: The intersection of the image plane with the cone (determined by the circular path in

3D and the rotation axis) de�nes the projection of rotational motion on the image plane

Figure 4: Rotation around the Z- X- or Y-axis gives rise in the image plane to 
-circles (4a),

�-hyperbolas (4b), or �-hyperbolas (4c)
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3.3. Selection of values

A motion vector consists of a rotational component which can be parameterized by three unknowns

and a translational vector which is everywhere directed away from (or towards) a point. However,

the estimates we can compute at every point are only projections of the motion vector on the

gradient direction. A general method of breaking up the normal 
ow vector at every point into

its components does not seem to be possible, but there is a way of separating the components for

vectors in certain directions.

The value of the normal 
ow at a point is the scalar product of the 
ow vector and the unit

vector in the gradient direction. The right hand side of equation (5) can be written as a sum of

scalar products by separating the translational components from the single rotational components

around each of the coordinate axes:

u

n

=

W

Z

((�x

0

+ xf); (�y

0

+ yf))(n

x

; n

y

) + �(

xy

f

; (

y

2

f

+ f))(n

x

; n

y

)

��((

x

2

f

+ f);

xy

f

)(n

x

; n

y

) + 
(y;�x)(n

x

; n

y

) (7)

If two vectors are perpendicular to each other, their scalar product is zero. Thus, for normal 
ow

vectors in particular directions one or more of the motion components may vanish. In particular,

all the normal 
ow vector that form right angles with the 
- circles do not contain a component

due to rotation around the Z-axis. Similarly, there is no motion component due to rotation around

the X-axis for the normal 
ow vectors perpendicular to the �-hyperbolas, and no component due to

rotation around the Y-axis for vectors perpendicular to the �-hyperbolas. The motion estimation

problem becomes easier when analyzing only the normal 
ow vectors perpendicular to one of these

families of conic sections. It is reduced by one parameter for these subsets of the normal 
ow

vectors.

We call these three subsets of thee normal 
ow vectors the �-, �-, and 
-vectors. It is convenient

to agree upon conventions for the vectors' orientations. A 
-vector at point (x; y) is said to have

positive orientation if it is pointing in the direction (x; y); otherwise, its orientation is said to be

negative. Similarly, we call an �-vector (or a �-vector) originating from a point (x; y) positive if it

points in the direction (�(f

2

+ y

2

); xy) (or (xy;�(f

2

+ x

2

))) (see Figure 5).

3.4. Properties of the subsets

Let us �rst concentrate on the 
-vectors. These vectors do not contain a component due to ro-

tation around the Z-axis. Along the positive direction, the two remaining rotational components

contribute

v

rot

(r; �) = ��(r

2

=f + f) sin�+ �(r

2

=f + f) cos�,

where r is distance from the image center and the angle � is measured from the x-axis. Thus, the

rotational component of the normal 
ow along a vector pointing away from the image center can

be described by a trigonometric function with amplitude max(�; �) and period 2�. Along the line
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Figure 5: Positive 
-, �- and �-vectors

which passes through the image center and makes angle � = arctan(�=�) with the x-axis the values

are zero. This line divides the plane into two halves. In one half the vectors point in the positive

direction, and in the other half they point in the negative direction; in the future we simply refer

to them as positive and negative vectors (Figure 6a).

The translational component of the motion �eld is characterized by the location of the FOE

or FOC in the image plane. In [11] a qualitative method is described which can be applied to

quickly distinguish whether an object is coming closer or moving away. This allows us to restrict

our description to the approaching case; the extension to the opposite case is obvious.

The 
-vectors lie on lines passing through the image center and the optical 
ow values due to

translation lie on lines passing through the FOE. These two lines are at right angles for all points

on a circle which has the the FOE and the image center as diametrical opposite points. At these

points the 
 vectors' translational components vanish. Thus, the geometric locus of all points on

the 
-hyperbolas where there is zero translational normal 
ow, is a circle. The diameter of this

circle is the line segment connecting the image center and the FOE. At all points inside this circle

the two lines enclose an angle greater than 90

�

and the normal 
ow along the 
-vector therefore

has a negative value. The normal 
ow values outside the circle are positive (Figure 6b).

In order to investigate the constraints associated with a general motion, the geometrical relations

derived from rotation and from translation have to be combined. A circle separating the plane into

positive and negative values and a line separating the plane into two halfplanes of opposite sign

always intersect (in two points or one point in case the line is tangential to the circle), because both

the line and the circle pass through the origin. This splits the plane into areas of only positive, of

only negative 
-vectors, and into areas in which the rotational and translational 
ows have opposite

signs. In the latter areas, unless we make depth assumptions, no information is derivable (Figure

6c).

We thus obtain the following geometrical result for the case of general motion. Points in the

image plane at which the gradient direction is perpendicular to circles around the image center can

be separated into two classes. For a given FOE, and for a line through the image center which

represents the quotient of two of the three rotational parameters, there are two geometrically

de�ned areas in the plane, one containing positive and one containing negative values. We call this

9



Figure 6:

6a: The 
-vectors due to rotation separate the image plane in a halfplane of positive values and a

halfplane of negative values.

6b: The 
 vectors due to translation are negative, if they lie within the circle de�ned by the FOE

and the image center and are positive at all other locations.

6c: A general rigid motion de�nes an area of positive 
 vectors and an area of negative 
-vectors.

The rest of the image plane is not considered.
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Figure 7: Rotational positive and negative values are separated by a straight line parallel to the

x-axis in case of the �-vectors and by a line parallel to the y-axis in case of the �-vectors.

structure on the 
-values the 
-pattern. It depends on the three parameters x

0

, y

0

and

�

�

.

Similar relations can be derived when eliminating the motion components due to rotation around

the X- and Y- axes.

The �- and �-vectors due to rotation are also separable into positive and negative vectors.

In both cases the locus of zero normal 
ow which separates the two classes is a line. For the �-

hyperbolas the line is parallel to the x-axis and is de�ned by the equation y =

�f




(Figure 7a); for

the �-hyperbolas it is parallel to the y-axis and is de�ned by x =

�f




(see Figure 7b).

The translational components of the �- and �-vectors are separated by hyperbolas. The �-

vectors, which are perpendicular to lines through the FOE, and which therefore have zero normal


ow lie on a hyperbola of the form

f(x

0

; y

0

; x; y) = x

0

y

2

� xyy

0

� xf

2

+ x

0

f

2

= 0

When f(x

0

; y

0

) > 0, the normal 
ow values are positive; in the other part of the plane they are

negative (Figures 8a, 8c). Symmetrical relations hold for the �-vectors. The curve of zero normal


ow is de�ned by

g(x

0

; y

0

; x; y) = x

2

y

0

� x

0

xy � yf

2

+ y

0

f

2

= 0

and in areas of positive g(x

0

; y

0

) the �-vectors are positive (see Figures 8b, 8d).

The superposition of translational and rotational values again de�nes patterns in the plane each

of which consists of a negative and a positive area. These patterns, called �- and �-patterns, are

uniquely described by three parameters: x

0

and y

0

, the coordinates of the FOE and the quotients

�




(and

�




) (Figure 9).
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Figure 8: 8a, 8c: Hyperbolas separate the �- and �-vectors due to rotation into areas of positive

and negative values.

8b, 8d: When using lenses of conventional focal lengths only one arm of the hyperbola is within

the image plane.
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Figure 9: �- and �-patterns for general rigid motion.

4. The method

The estimation of motion for a rigid moving observer is performed by four modules. The strategy

involves checking the constraints that a given solution would impose on the normal 
ow �eld and in

this way discarding impossible solutions. From the �rst to the fourth module the constraints become

more restrictive; hence the number of possible solutions computed by each module decreases. In

the �rst module patterns are �tted to subsets of the normal 
ow �eld to search for the set S

1

of

possible solutions for the direction of translation (FOE) and the direction of the axis of rotation. The

number of these candidate solutions is reduced to a set S

2

in the second module by �tting another

pattern to selected normal 
ow vectors which are not dependent on rotation. These pattern �tting

processes use the input in a qualitative way; since only the sign of the normal 
ow is employed.

In the third module the third rotational parameter is computed from the normal 
ow vectors that

do not contain translational components and the space of solutions is further narrowed to a set

S

3

. Finally, the fourth module eliminates all impossible solutions by checking the validity of the

motion parameters at every point and gives as output the set S

4

.

4.1. Pattern �tting: Search in 3D parameter spaces

The geometrical constraints developed in section 3 are used in a search process to estimate the direc-

tions of the translation and the rotational axis. Finding these two directions is a four-dimensional

problem, but through selection of values and use of geometrical constraints the problem is reduced

in dimensionality. With each subset of the normal 
ow vectors is associated a three-dimensional

parameter space that spans the possible locations of the FOE and of a line de�ned by the quotient

of two of the three rotational parameters. Instead of searching a four-dimensional space, three

three-dimensional subspaces are searched for the solution.

The search in the three-dimensional subspaces is accomplished by checking the patterns which
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the subspaces' parameter triples de�ne on selected values of the normal 
ow �eld. The �-patterns

are �tted to the �-vectors; this provides possible solutions for the coordinates of the FOE: X

0

, Y

0

,

and the quotient

�

�

. Similarly, the �tting of the �- or 
-patterns yields solutions for X

0

, Y

0

and

�




or

�




. The objective is to �nd the four parameters de�ning the directions of the translational and

rotational axes which give rise to three successfully �tted patterns. Therefore the three subspaces'

patterns are combined and the parameter quadruples which de�ne possible solutions are determined.

Since only subsets of the normal 
ow values are considered in the �tting process, the �tting does

not uniquely de�ne the motion, but just constitutes a necessary condition. Usually a number of

parameter quadruples will be fx

0

; y

0

; �=
; �=
g that are selected as candidate solutions through

pattern �tting.

In the general case none of the three translational and three rotational parameters is equal to

zero. Then the FOE and the rotation center (the intersection of the rotation axis with the image

plane) lie in a bounded area of the image plane and the three three-dimensional subspaces are also

bounded.

The method can also deal with cases of one or more parameters of value zero but the search

has to be extended by using additional patterns. If there is only translation then the �- �- and 
-

patterns split the image plane into the insides and outsides of circles or hyperbolas which are of

opposite sign. In cases of rotation only the pattern consists of an area of negative and an area of

positive value separated by a line of zero rotational normal 
ow. If one or both of the translational

parameters U and V are zero, then the FOE lies on the x- or y-axis; this case does not have to

be considered separately. A translational value W of zero causes a degeneration of the 
-pattern's

circle into a halfplane and of the �- and �- patterns' hyperbolas into simpler hyperbolas of the form

f(1;1; x; y) = y

2

�

y

0

x

0

xy + f

2

= 0

g(1;1; x; y) = x

2

�

x

0

y

0

xy + f

2

= 0

where

x

0

y

0

is the direction of translation in the plane parallel to the image plane. If one or two of

the rotational parameters vanish, this will result for the 
-pattern either in an nonexistant line of

rotation or in a line which is parallel to the x- or y-axis. For the �- and �- patterns the rotation

lines pass through the center or lie in in�nity. For example, in case of zero �- and 
- values, the


-pattern's rotation line is the y-axis and both the �- and �-patterns' rotation lines are at in�nity.

In order to make the method work for any rigid motion, the above described patterns have to

be searched for in addition to the patterns de�ned by the three three-dimensional subspaces.

4.2. Partial derotation

Suppose, we want to test whether a quadruple (x

0

; y

0

;

�




;

�




) given by the �rst module is a correct

solution. Since we know the direction of the rotation axis (

�




;

�




), we can compute the �eld lines of the

rotational vector �eld (i.e. the lines which have the property that at each point the rotational 
ow

is tangential). As described in Section 3.2. the second order curves M(

�




;

�




; x; y) are given through

equation (6). The normal 
ow vectors perpendicular to M(

�




;

�




; x; y) are only due to translation.

We call these normal 
ow vectors the \rotation axis vectors" and de�ne a vector emanating from

a point (x; y) to be of positive orientation if it is pointing in the direction ((�

�




(y

2

+ f

2

) +

�




xy +
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Figure 10: Field lines of a rotational vector �eld and positive rotation axis vectors.

xf); (

�




xy �

�




(x

2

+ f

2

) + yf)) (see Figure 10). The signs of the rotation axis vectors are de�ned

by the location of the FOE.

As in the case of the �-, �- and 
-vectors a second order curve separates the plane into an

area of positive and an area of negative rotation-axis vectors and therefore de�nes another pattern

in the image plane, the \rotation axis" pattern (see Figure 11). The curve h(x

0

; y

0

;

�




;

�




) which

contains rotation axis vectors of value zero is given by the equation

h(x

0

; y

0

;

�




;

�




) = x

2

(f +

�




y

0

) + y

2

(f +

�




x

0

)� xy(

�




y

0

+

�




x

0

)

�xf(

�




f + x

0

)� yf(

�




f + y

0

) + f

2

(

�




x

0

+

�




y

0

) = 0 (8)

By considering only the rotation axis vectors, we achieve derotation for a subset of the normal


ow vectors without actually subtracting rotational values. Thus a fourth set of normal 
ow

vectors can be used for further reducing the set of candidate solutions for the axes of translation

and rotation computed in the �rst module. For every quadruple of the set S

1

we �nd the rotation

axis vectors de�ned by (

�




;

�




) and test if each vector's sign is consistent with the sign de�ned by

the rotation axis pattern due to (x

0

; y

0

;

�




;

�




). All quadruples that lead to a successful �tting of

the corresponding rotation axis pattern are kept as possible solutions in the set S

2

.

4.3. Detranslation

Proper selection of normal 
ow vectors also makes it possible to eliminate the normal 
ow's trans-

lational components. If the location of the FOE is given the directions of the translational motion

components are also known. The optical 
ow vectors lie on lines passing through the FOE. The
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Figure 11: Rotation axis pattern.

normal 
ow vectors perpendicular to these lines do not contain translational components; thus have

only rotational components. This can be seen from equation (7). If the selected gradient direction

at a point (x; y) is ((y

0

�yf); (�x

0

+xf)) the scalar product of the translational motion component

and a vector in the gradient direction is zero. In the third module this method of eliminating the

translational component, in the future referred to as \detranslation", is used to compute the third

rotational component and to further reduce the possible number of solutions.

For each of the possible solutions computed in the second module the normal 
ow vectors

perpendicular to the lines passing through the FOE have to be tested to determine if they are

really only due to rotation (see Figure 12). This results in solving an overdetermined system of

linear equations. Since two of the rotational parameters are already computed, there is only one

unknown, the value 
. Every point supplies an equation of the form


 = u

n

(

�




(

xy

f

n

x

+ (

y

2

f

+ f)n

y

)�

�




((

x

2

f

+ f)n

x

+

xy

f

n

y

) + (yn

x

� xn

y

)) (9)

If the chosen normal 
ow vectors are due only to rotation then the solution to the overdetermi-

ned system gives the 
 value. In a practical application a threshold has to be chosen to discriminate

between possible and impossible solutions. The value of the residual is used to con�rm the pre-

sumption that the selected normal 
ow values are purely rotational. Usually \detranslation" will

not result in only one solution, but will provide a set S

3

of possible parameter quintuples.

4.4. Complete Derotation

In the fourth module the elements of the set S

3

are examined for further constraints. The modules

described so far considered only subsets of the normal 
ow vectors. In order to eliminate all motion
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Figure 12: Normal 
ow vectors perpendicular to lines passing through the FOE are only due to

rotation.

parameters which are not consistent with the given normal 
ow �eld, every normal 
ow vector has

to be checked.

This check is performed using a \derotation" technique. For every parameter quintuple of S

4

a possible FOE and a rotation is de�ned. The three rotational parameters are used to derotate

the normal 
ow vectors by subtracting the rotational component. At every point the 
ow vector

(u

der

; v

der

) is computed:

u

der

= u

n

n

x

� u

rot

n

x

v

der

= u

n

n

y

� v

rot

n

y

(10)

If the parameter quintuple de�nes the correct solution, the remaining normal 
ow is purely

translational. Thus the corresponding optic 
ow �eld consists of vectors that all point away from

one point, the FOE. Since the direction of optical 
ow for a given FOE is known, the possible

directions of the normal 
ow vectors can be determined. The normal 
ow vector at every point is

con�ned to lie in a half plane (see Figure 13). The technique checks all points for this property and

eliminates solutions that cannot give rise to the given normal 
ow �eld.

4.5. The algorithm

In this section we summarize of the complete algorithm in form of a block diagram. The sets of

candidate solutions which are determined in the four modules are called S

1

, S

2

, S

3

, and S

4

. To

denote single solutions or single parameters, subscripts are used: S

1;i

, S

2;i

, x

0;i

, y

0;i

, etc. The

input to the algorithm is a normal 
ow �eld and the outputs are all possible solutions (direction of

translation and rotation) which could give rise to this normal 
ow �eld.
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Normal 
ow �eld

?

Pattern matching:

Select �-, �- and 
- vectors

Fit �-patterns to �-vectors, �-patterns to �-vectors and 
-patterns to 
-vectors.

Find solutions to the direction of translation and axis of rotation that give rise

to successful �tted �- � and 
- patterns.

S

1

(set of quadruples fx

0

, y

0

,

�




,

�




g)

?

Partial derotation:

For every S

1;i

select rotation axis vectors de�ned by (

�




i

;

�




i

)

Check if the rotation axis pattern de�ned by (x

0;i

; y

0;i

;

�




i

;

�




i

)

�ts the rotation vectors.

S

2

(set of quadruples fx

0

, y

0

,

�




,

�




g)

?

Detranslation:

For every S

2;i

select the normal 
ow vectors perpendicular to the lines through x

0;i

, y

0;i

Check if system of linear equations is consistent with rotation and compute third

rotational component

S

3

(set of quintuples f x

0

, y

0

, �, �, 
 g)

?

Complete derotation:

S

4

= fg

Repeat until S

3

is empty

For every S

3;i

derotate by fA

i

, B

i

C

i

g.

If all derotated normal 
ow vectors lie within the allowed halfplane

de�ned by f x

0;i

, y

0;i

g keep quintuple as solution

S

4

= S

4

[ S

3;i

S

3

= S

3

� S

3;i

?

S

4

(set of quintuple(s) f x

0

, y

0

, �, �, 
 g)

18



Figure 13: Normal 
ow vectors due to translation are constrained to lie in halfplanes.

It can easily be shown that normal 
ow �elds, in general, are not unique. In fact, for any two


ow �elds a common normal 
ow �eld can be constructed. Consider two di�erent normal 
ow �elds

that arise from di�erent scenes and di�erent observer motions. At every point in the image plane

there exist two motion vectors. A normal 
ow vector, which is de�ned as the projection of a 
ow

vector, is constrained to lie on a circle. The intersection of the two circles de�nes a normal 
ow

vector which is compatible with both motions (Figure 14).

The algorithm determines the complete set of solutions. If for a given normal 
ow �eld the

algorithm �nds more than one solution, then from that normal 
ow �eld alone the 3D motion

cannot be determined uniquely. In this case one can use a matching of prominent features to

eliminate the incorrect motion parameters.

The computed 3D motion parameters and the normal 
ow values supply two linear equations

in u and v at every point from which the optical 
ow �eld can be determined:

u� u

rot

v � v

rot

=

u

t

v

t

u

n

= un

x

+ vn

y

(11)

The unique solution is then derived by checking whether prominent feature points in the �rst frame

exist in the second frame at the locations computed by the optical 
ow values.

5. Experiments

Our approach to motion estimation is of a geometric nature. Sophisticated implementations of our

theory could be developed by taking into account statistics of the input error; but we constructed a

very simple implementation to demonstrate our approach. The elimination of impossible parameters

from the space of solutions involves discrimination on the basis of quantitative values. We have
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Figure 14: The intersection of two circles de�nes the normal 
ow vector which corresponds to two

di�erent optical 
ow vectors.

implemented in the following way: Normal 
ow values in certain directions are selected, if they are

within a tolerance interval of 10

�

. This relatively large degree of freedom, of course, will introduce

some error, but there is a tradeo� between accuracy and the amount of data used by the algorithm.

In the �rst, second, and fourth modules counting is applied to discriminate between possible and

impossible solutions. The quality of the �tting, the \success rate", is measured by the number

of values with correct signs normalized by the total number of selected values. The amount of

rotation in the third module is computed as an average of the values derived at every point and

the discrimination between accepted and rejected motion parameters is based on the value of the

standard deviation.

In the �rst and second module no quantitative use of values is made, since only the sign of

the normal 
ow is considered. Such a limited use of data makes the module very robust, and the

correct solutions for the axes of translation and rotation are usually found even in the presence of

high amounts of noise. To give some quantitative justi�cation of this we de�ne the error in the

normal 
ow at a point as a percentage of the correct vector's length. Since the sign of the vector is

not a�ected as long as the error does not exceed the correct vector in value, our \pattern �tting"

will �nd the correct solution in all cases of up to 100% error.

Several experiments have been performed on synthetic data. For di�erent 3D motion parameters

normal 
ow �elds were generated; the depth value within an interval and the gradient direction

were chosen randomly. The parameter combinations leading to a success rate of more than 98%

in the �nal module are considered as candidate solutions. In all experiments on noiseless data the

correct solution was found as the best one. Figure 15 shows the optical 
ow �eld and the normal


ow �eld for one of the generated data sets: The image size is 100�100, the focal length is 150, the

image coordinates of the FOE are (�5, +30), and the relationship of the rotational components is

� : � : 
 = 10 : 11 : 150. In Figure 16 the �tting of the circle and the hyperbolas to the �-, �-,

and 
-vectors is displayed. Points with positive normal 
ow values are rendered in a light color

and points with negative values are dark. Perturbation of the normal 
ow vectors' lengths by up

to 50% did not prevent the method from �nding the correct solution.

As an example of a real scene the NASA{Ames sequence

1

was chosen. The camera undergoes

1

This is a calibrated motion sequence made public for the Workshop on Visual Motion, 1991
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Normal 
ow �eld Optical 
ow �eld

Figure 15: Flow �elds for synthetic data

only translational motion, and we added di�erent amounts of rotation: For all points at which

translational motion can be found the rotational normal 
ow is computed, and the new position of

each pixel is evaluated. The \rotated" image is then generated by computing the new greylevels

through bilinear interpolation. The images were convolved with a Gaussian of kernel size 5 � 5

and standard deviation � = 1:4. The normal 
ow was computed by using 3� 3 Sobel operators to

estimate the spatial derivatives in the x- and y-directions and by subtracting the 3� 3 box-�ltered

values of consecutive images to estimate the temporal derivatives.

When adding rotational normal 
ow on the order of a third to three times the amount of

translational 
ow, the exact solution was always found among the best �tted parameter sets. The

solution could not clearly be derived as a unique point in the �ve-dimensional parameter space;

rather we obtained a number of solutions that form a \fuzzy blob" in the solution space (see

Figure 18). All solutions with higher success rates were very close to the correct one with the FOE

deviating by at most 6% of the focal length from the correct positions (x

0

, y

0

). In Figure 17 the

computed normal 
ow vectors and the �tting of the �-, �- and 
-vectors for one of the \rotated"

images is shown. Areas of negative normal 
ow vectors are marked by horizontal lines and areas of

positive values with vertical lines. The ground truth for the FOE is (�5 ,�8), the focal length is 599

pixels, and the rotation between the two image frames is � = 0:0006, � = 0:0006, and 
 = 0:004.

The algorithm computed the solution exactly.

6. Conclusions

We have described several geometric relations that are characteristic of a normal 
ow �eld due to

rigid motion. These relations were exploited to solve the problem of computing the 3D motion

of an observer relative to a scene in a robust way. Robustness is achieved by using the data in

a global and mostly qualitative manner. The algorithm is qualitative, because for estimation of
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b

c
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e

f

Figure 16: a,b,c: Positive and negative �-, �- and 
-vectors for synthetic data.

d,e,f: Fitting of �-, �- and 
-patterns.
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Figure 17: Real scene: Normal 
ow �eld and �tting of �- �- and 
-vectors.
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Figure 18: The FOE's of all solutions with a success rate of 99% and higher are marked by black

squares. The biggest square denotes the correct solution

the translational and rotational axes only the sign of the normal 
ow vectors is used; and it is

global, because values in all parts of the image are considered. The algorithm can be regarded

as a search technique in a parameter space, where appropriate selection of normal 
ow values is

used in di�erent ways to reduce the dimensionality of the motion estimation problem. In order to

compute the axes of translation and rotation, three di�erent subsets of the vector �eld are examined

for patterns de�ned by only three of the �ve parameters. A fourth set of values, which does not

contain any rotational components, can be used to further reduce the set of candidate solutions for

the two axes. By selecting values which are only due to rotation, the complete rotation is computed,

and in the last phase of the algorithm every normal 
ow vector is tested for consistency with the

computed motion parameters.

Normal 
ow measurements alone do not always de�ne a unique 3D-motion interpretation. Our

algorithm might be used as a front end tool in combination with other methods that use corre-

spondence or optical 
ow. A study of uniqueness aspects of normal 
ow will be a very valuable

theoretical contribution to the understanding of this method and is part of our future planned

research.
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