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Abstract

The issue of the recognition of tree species from high resolution aerial images is addressed

in this paper. An approach based on the use of neural networks is presented and discussed

in more detail. The networks perform classi�cation and recognition operations on compact

image objects, obtained by applying di�erent tree isolation procedures. The recognition

capabilities of two classes of networks, multilayer feedforward networks and holographic

networks, are compared and some results of the research carried out in Austria and Canada,

using aerial photographs and multispectral scanner images, are given.

1

Univ. du Qu�ebec �a Hull, Dept. d'Informatique, Canada

2

Petawawa National Forestry Institute, Ontario, Canada



1 Introduction

In this paper we present a general two-step approach for the recognition of compact objects in

digital images. In the �rst step, the image is segmented into relatively small, compact regions,

which are presumed to represent image objects. In the second step, these image objects are

recognized using neuromorphic methods. Most of the paper deals with the neuromorphic

part of the recognition process, both from a theoretical and a speci�c application point of

view. The application involves the interpretation of forest data from aerial images. We

discuss the segmentation of individual trees, and we show how the neuromorphic methods

are applied to the recognition of individual tree species.

1.1 Forest Inventory

This work was originally motivated by a project on forest inventory in Austria using color

infrared aerial photographs. The reported results of a two component recognition system

{ the Vision Expert System VES [21, 22, 23] and a neural network [26] { led to research

cooperation between Austria and Canada.

In Canada, where 27 million hectares of forest are inventoried each year, the propo-

sed use of multispectral digital aerial images instead of conventional aerial photographs will

lead the way to computer-assisted on-screen image interpretation [16]. Georeferenced image

enhancements, standardized interpretation keys, and links to geographical information sy-

stems will facilitate the production and update of forest inventories from powerful interpreter

workstations. Thus, some short term research objectives are to develop the tools and the me-

thodologies needed by this new approach. Eventually, with increasing computer assistance

available, the winds will turn towards semi or complete automation of the process.

In this context, methods to isolate individual trees from each other and from the back-

ground vegetation, as well as methods to identify individual tree species are needed. These

methods are substantially di�erent from the pixel-based and forest stand-based approaches

of the now `traditional' satellite image-based digital remote sensing image analysis. With

individual tree isolation (or delineation), the tree geographic positions and crown areas are

immediately available. Tree heights are obtained from stereo image pairs and tree species

from their multispectral re
ectance. This leads to forest inventories on a tree by tree basis,

either as a goal in itself, or as an intermediate but necessary step towards accurate forest

stand inventories.

1.2 Neural Networks for Vision

A large amount of information about the world we live in is supplied by our visual system.

Humans perform the task of vision e�ortlessly, without being aware of this complex process.

The goal of computer vision (image understanding) is to build computers which are able

to `see', a goal that has not yet been reached [14]. Remarkable attributes of the human

visual system are parallelism, robustness, and adaptivity. Similar attributes apply to neural

networks (e.g. [19, 32]), a fact that makes them interesting for computer vision. The

success of neural networks for pattern recognition tasks has been demonstrated in a variety
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of examples (e.g. [3, 36, 30, 29]). The increasing learning time when scaling the problem

up in size [12] causes a severe limitation of neural networks. The use of all the pixels of an

image as a neural network input is intractable, for example, in fully connected architecture,

several million connections would be necessary per unit. One solution is to select a few

features which describe the content of the image and use these features in the subsequent

classi�cation stage. Unfortunately, feature selection is a tedious and error prone process, and

it is often impossible to �nd good features. Another solution is to use modular or hierarchical

neural networks (e.g. [4, 8]), a further one, is to use only small portions of an image as input.

In many cases, when the observed objects are compact and small compared to the image size,

this is a reasonable approach.

A similar approach is also employed by the human visual system which does not process

the whole image at full resolution. First, `interesting' regions are identi�ed, which are then

analyzed in more detail. One of the main reasons is the inherent complexity of general

purpose vision as has been shown by Tsotsos [38]. In this paper Tsotsos also points out, that

most of the objects in the world are compact, so that a multistage approach is reasonable:

Find interesting regions (i.e. the compact objects) in the �rst stage, and analyze them

in more detail in subsequent stages. Since only a few objects in an image are of interest,

compared to the original number of pixels, this approach can save a considerable amount of

processing time. An advantage of focusing the attention on a particular region of the image

is to avoid problems due to shifted inputs. In [7] we have proved, that hierarchical systems

inherently su�er from shift variance problems. We have also shown, that this problem can

be overcome by an appropriate attention mechanism. In [8] we have presented a general

framework for a hierarchical and modular neural network architecture which is able to focus

attention on particular locations in an image, and to use speci�c neural network modules to

extract information at these locations.

The approach of this paper is a hybrid one: Compact image objects are found by

conventional, non neural methods. At these locations, neural networks are used selectively.

2 Problem Speci�cation

In both countries, Austria and Canada, a decision was made for a remote sensing based forest

inventory. Due to the necessity of interpreting individual trees, low altitude high resolution

sensors are required: color infrared aerial photographs in Austria, and MEIS aerial images

in Canada. Forest inventory by using these sensors consists of the following steps:

1. Identi�cation of individual trees: This is mainly a segmentation problem (see section

3). In most cases a monochrome image is su�cient for this task.

2. Determination of the tree species: This is a complex classi�cation/recognition problem

based on di�erent clues: color and texture of the object in a multispectral image, 3D

shape of the crown (stereo), altitude and topography of the terrain, as well as additional

knowledge like dominating species in certain regions have to be considered. Prelimi-

nary investigations using statistical approaches to the classi�cation of individual tree

species, which typically implies the extraction of signi�cant features or summarizing

2



the statistics from each tree, have had limited success. Classi�cation results in the

order of 62 � 74% for �ve closely related coniferous species have been reported [10].

The advantages of neuromorphic methods in this respect are, that it is not necessary

to explicitly formulate the features that have to be extracted from the image.

3. Collection of additional attributes: Besides many other attributes (e.g. age, crown

diameter, slope and exposition of the terrain { in the case of the Austrian forest

inventory more than 20 di�erent attributes are determined), a very important one is

the tree vitality. For coniferous trees the vitality is mainly a spectral characteristic

and can be determined using multispectral classi�cation. Since di�erent species have

di�erent spectral signatures, the successful prior determination of the tree species is a

necessity.

2.1 Austrian Inventory with Color Infrared Aerial Photographs

In the Austrian forest inventory, color infrared aerial photographs of a scale of approximately

1 : 15000 are used. The spectral characteristics of color infrared �lm are illustrated by Fig.1:

Near infrared in the scene (700 � 900nm) is reproduced in red, red in green, green in blue,

and blue in the scene is not reproduced at all. Due to the very high re
ectivity of vegetation

in the near infrared, as compared to visible wavelengths, this spectral band is a sensitive

indicator for the assessment of vegetation. Figure 2 shows the green band (i.e. red in the

scene) of such an image, digitized with 25�m pixelsize, corresponding with a resolution of

approximately 40cm in the scene.

400 nm 500 nm 600 nm 700 nm 900 nm

blue green red infrared scene

blue green red color infrared film

Figure 1: Spectral characteristics of color infrared �lm

The Austrian inventory is implemented in several phases. In the �rst one, which was

completed in 1990, human interpreters have to interpret stereo pairs using analytical plotters.

All three steps mentioned above (tree �nding, species determination, attribute collection)

are performed by the interpreters. In the second phase, which is close to completion now, a

CCD camera is used for online extraction of the current image object, and several attributes

(e.g. tree vitality) are computed automatically from the image. The human operator is still

responsible for correct positioning (= tree �nding) and species determination. Part of the

preparatory research for phase three, where tree �nding and species determination will be

automated, is reported in this paper (see also [21, 26, 22, 23]).
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Figure 2: Green band of a color infrared aerial image

2.2 Aerial MEIS Images

The Multispectral Electro-optical Imaging Sensor (MEIS) is a Canadian remote sensing

system capable of acquiring high quality multispectral digital images from an aircraft.

The present version, MEIS-2 [18], consists of eight linear CCD arrays, each with its

own lens and changeable �lter. The imagery and data from an inertial navigation system are

collected on a fast speed very high density magnetic tape. The possible addition of mirrors

in two of the eight optical paths permits the acquisition of fore-aft stereo pairs (typically

via panchromatic �lters). Sophisticated post-
ight ground processing can output precise

georeferenced images, ortho-images, and digital terrain models.

Figure 3: MEIS aerial image

In the work reported in this paper, the 433x512 images at the resolution of approxima-
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tely 31cm/pixel composed of four frequency bands (521, 673, 590 and 871nm) were analyzed.

An example of an image of an experimental plantation in Petawawa, Ontario is shown in

Fig.3.

Five homogeneous regions can be clearly distinguished on the image. They correspond

to white spruce, red spruce, Norway spruce, white pine, and red pine.

3 Segmentation Methods

In the context of our two stage hybrid recognition approach, the �rst step is the segmentation

of small, compact image objects (i.e. focusing attention). Constraining ourselves to the

application of tree �nding, the scene object `tree' corresponds to an image object `bright

blob'. We brie
y introduce a region based and a contour based method to �nd bright blobs

in an image, and we discuss a combination of these two methods. Once the image objects

are found, they are `enhanced' for the purpose of subsequent recognition.

3.1 Region Based Tree Segmentation

In Austria, a region based segmentation approach to the tree �nding task is implemented

using a general purpose multilevel image understanding system (the �rst implementation

was called Vision Expert System (VES), the second one Vision Station (VS)). We search

for bright blobs in the image by applying a series of di�erent lowpass �lters followed by

local maxima detection. Each of these maxima is a candidate for the center of a tree crown,

so that a local window is examined at these locations at maximum spatial resolution. We

use projections, called radial brightness distributions, to determine whether the shape of

the object is tree-like or not. If this test holds, it delivers simultaneously an estimate for

the crown radius, if not, the candidate is discarded. After this stage of processing, due to

the series of di�erent lowpass �lters, several candidates remain for most of the trees (very

close crown centers and similar radii), so that a fusion process has to be applied. Finally,

a con
ict resolution is carried out (e.g. where trees are growing too closely, contradictions

such as trees in the middle of a road, etc.). Figure 4.a shows an original input image, Fig.4.b

the result of the VES tree �nder. In a dense forest image more than 90% of the trees are

correctly identi�ed. Details about the architecture of the system, its multilevel knowledge

representation and control structure are reported in [21, 23].

3.2 Valley Following Method

This Canadian contour based segmentation approach is related to the behaviour of a photo

interpreter performing tree delineation, who relies on three main features to separate trees

from each other and from the background vegetation:

� a knowledge of color, texture, and structure di�erences in the crown of various species

(mostly useful in mixed forest stands),
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(a) Original input image (b) VES result

Figure 4: The Vision Expert System VES tree �nder

� a possible indication of crown boundaries by narrow (weak) darker lines of shaded

material between adjoining trees (useful in dense stands of a single species), and

� an intuitive ability to follow contours when some parts of the crown outline are obvious.

The present version of the valley following method [11] partially emulates some of these

human abilities and has potential for further improvement. Firstly, a simple parallelepiped

classi�cation process eliminates large open non-forested areas from further consideration.

Secondly, local minima are found over the remaining image areas. They typically correspond

to the darkest points in the shaded material that is often found between trees, almost labelling

tree corners (if trees were polygons). By analogy, if the grey-level space of the image was to be

interpreted as a digital elevation model, they would correspond to areas where water would

accumulate as lakes or potholes. Thirdly, lines are grown from these local minima following

`valleys' in various directions. The growing process continues until another neighbouring

local minimum is reached or progression is made impossible. As seen in Fig.5, the valley

following process accomplishes most of the tree isolation work. Fourthly, rules are activated

to �nish incomplete tree crown contours. There are as many rules as there are di�erent

situations. These rules are organized in a hierarchical structure so that the safest rules,

those requiring a minimum amount of work and leap of faith, are applied �rst. This fourth

step is by far the most demanding and the most complex. However, as one realizes looking

more closely at Fig.5, it is absolutely necessary since a majority of the tree crown contours

are not closed at this point.
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(a) Original input image (b) Valley following tree isolation result

Figure 5: White spruces from PNFIs Hudson plantation with 31cm/pixel data from the

near-infrared channel

3.3 Fusion of Di�erent Tree Finders

As a concluding remark on the sections about �nding a tree, we wish to state that no one

single visual module will be su�ciently robust to solve any real application in vision. One

solution to this problem is to integrate several visual modules [1]. We have developed a

general concept of information fusion in image understanding [24, 25], where di�erent levels

of abstraction (e.g. image, image description, scene description) are identi�ed as sources for

the process of fusion.

As a consequence of the Austro-Canadian research cooperation there are two di�erent

tree �nders available, so that a combination of these methods can be tried out. In a similar

way as was reported in [2] for fusion at the image level, a fusion of tree �nders at the image

description and at the scene description level is expected to improve the results signi�cantly.

Especially the combination of a region based and a contour based segmentation approach

seems very promising.

3.4 Object Preprocessing

For the purpose of recognition, the image objects have to be initially separated from the

entire image. This is accomplished through the localization of the object, discussed above,

and setting up a window around it.

In our application, there are several factors that necessitate some kind of further pre-

processing of the image before using it as the network input. Forest regions are usually

nonhomogeneous, with di�erent tree species overlapping each other. The shape of the tree
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in the image is a�ected by the position of the sun, the intensity of solar radiation, and by the

exposition and slope of the terrain. Those factors can signi�cantly in
uence tree recognition.

A procedure, applied by the Austrian group for nonhomogeneous forest, consisted of

�nding, upon the determination of location of the tree, the radius of the tree crown, and

blanking out the part of the window that extends beyond the circle. This has the e�ect of

removing the pixels from neighbouring trees and the ground.

A preprocessing procedure that has a signi�cant impact on the classi�cation results

is the expansion of the input data by the rotated images. Practically, the original raster

window will be rotated by 90, 180 and 270 degrees. The main advantage of this procedure

is improved robustness of the response generated by the network. However, increasing the

input �eld also increases the training time.

Other modi�cations of the initial data �elds are contrast enhancement and intensity

di�erence. A nonlinear, sigmoid contrast enhancement operation o�ers better results than

that of the original input image. Calculating the di�erence between the pixel intensities for

di�erent spectral frequencies and using the resulting values rather than the original ones as

the network input compensates to certain extent for the variations in image brightness.

4 Neuromorphic Methods

Neural networks (Connectionist models, parallel distributed processing models) are informa-

tion processing systems which consist of a large number of very simple yet highly interconnec-

ted processing elements called units. Information is processed in a parallel and distributed

manner by neural networks. The above features give the networks a fault tolerant beha-

vior which is, in general, referred to as graceful degradation [32]. This means, that such

systems can operate successfully in noisy environments, and also in cases when some of their

components are damaged. Neural networks can be seen as intermediate between statistical

and structural pattern recognition methods, though they resemble the former more than the

later. The ability to learn (i.e. changing the weights of connections between units) provides

an interesting alternative to conventional statistical methods.

Using neural networks for recognition purposes, many di�erent network architectures

and representation schemes can be considered. In this section, we discuss two most prominent

models in more detail: feedforward networks and associative memory networks.

4.1 Feedforward Networks

The feedforward neural network is one of the most commonly used network architectures.

The units are arranged in a layered manner. The �rst layer, also called the input layer,

receives information from the environment. The �nal layer, called output layer, represents

the result of the computation of the network. The layers between input and output layer are

called hidden layers. The units are connected in a feedforward manner only, i.e. the input

units to the �rst hidden layer, : : :, the last hidden layer to the output units. When all units

of one layer are connected to all units of another, the architecture is called a fully connected

feedforward network.
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Figure 6: A feedforward neural network for image analysis

Figure 6 sketches a neural network architecure, where a n� n pixel window is used as

input to a three layer feedforward neural network. The pixel matrix itself constitutes the

input vector (n

2

input units), h hidden units and o output units are used to recognize o

di�erent classes of objects whenever they are present in the input window [5, 6, 26] (local

representation for the output vector).

The function computed by a unit of a feedforward network is

net

i

:=

X

j

w

ji

o

j

+ b

i

o

i

:= f(net

i

) (1)

where w

ji

is the weight of the connection from unit j to unit i. o

i

, b

i

and net

i

are the output,

bias, and e�ective input of unit i. f is the activation function. Typically

f(x) =

1

1 + e

�x

(2)

One of the most popular learning schemes for feedforward networks is the back-propagation

learning algorithm. It was initially derived by Werbos [40] and later, independently by Par-

ker [20], Le Cun [15], and Rumelhart et al. [33]. Back-propagation in its original version

is designed to reduce an error between the actual and the desired output of a network in

a gradient descent manner. The usual error measure, the summed squared error (SSE), is

de�ned as

SSE =

1

2

X

p

X

k

(o

pk

� t

pk

)

2

(3)

where p ranges over all vectors in the training set and k denotes the output unit. Symbol o

pk

indicates the output of unit k when the input vector is applied to the network, and t

pk

is the
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corresponding target output. The change of the weights is achieved by a gradient descent

search, thus

�w

ij

= �K

@SSE

@w

ij

(4)

where �w

ij

is the weight change and K is the learning factor. A detailed derivation of the

equations for the back-propagation algorithm can be found in [33].

Examples where back-propagation has been successfully used come from such diverse

�elds as text to phoneme conversion [34], protein structure prediction [29], backgammon

[37], sonar target identi�cation [9], tree species recognition, and many others.

There are several theoretical results which prove the strength of feedforward networks.

Lippmann [17] showed, that a four layer network with threshold functions can represent

any decision function. In [13], it was even shown, that a three layer network with sigmoid

functions in the hidden units can approximate any Borel measurable function to any desired

degree of accuracy (if enough hidden units are provided). Other results [31, 39] show, that

a minimization of the mean (summed) squared error in multilayer feedforward networks

approximates the a posteriori probabilities of the various classes. Recent results show that

several statistical classi�ers are special cases of neural networks [42, 43].

4.2 Associative Memory Networks

The learning time in feedforward networks using the backpropagation learning algorithmmay

turn out to be prohibitively long if large input data �elds are involved in the recognition

process. This has motivated the authors to search for other architectures that might o�er

the potential to e�ectively deal with large amounts of input information.

Particular attention was given to networks operating on the principles of holography

[41]. The holographic models bear a formal similarity to correlation memory, a particular

type of the associative memory. Stimulus-response associations are mapped directly to a

correlation set. Large numbers of those associations may be superimposed on the same

set, which allows the network to achieve high information density. The elements of the

correlation set are complex numbers representing the input/output signals. The stimulus

(S) and response (R) data �elds may be represented as

S = f�

1

e

i�

1

; �

2

e

i�

2

; : : : ; �

N

e

i�

N

g (5)

and

R = f


1

e

i�

1

; 


2

e

i�

2

; : : : ; 


M

e

i�

M

g (6)

The analog value of an element of the signal is represented by the phase of a unit vector.

The vector magnitude indicates a con�dence level in that information. By establishing a

con�dence pro�le over stimulus and response and data �elds, fuzzy logic operations are

now made possible on those �elds. Within HNeT Version 2.0 development system, used at

l'Universit�e du Qu�ebec �a Hull, each data �eld may contain up to 1024 complex numbers.

As opposed to the error back-propagation learning, the individual associations in holo-

graphic nets are learned within one non-iterative transformation. The encoding process for
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multiple patterns may be represented in a canonical form by the following matrix formulation

[35]:

X+ = S

T

R (7)

where (+ =) denotes complex valued multiply and accumulate operation. In the stimulus

[S] and response [R] matrices, the information element index, related to the learned pattern,

is on the horizontal, and the time element, related to consecutive learning cycles, is on the

vertical axes. Thus:

S = [s

ij

] = [�

i;t

j

e

i�

i;t

j

] (8)

R = [r

ij

] = [


i;t

j

e

i�

i;t

j

] (9)

Assuming, for the sake of simplicity, only one neuron cell, the resulting correlation set

is presented as a vector [X], where

X = [x

j

] =

l

X

t=1

�

i;t




i;t

e

i(�

t

��

i;t

)

(10)

By applying the above process, the information content is preserved with the simulta-

neous enfolding of the time variable.

In its most elementary form, the process of learning a consecutive mapping has only

a minimal in
uence on the previously learned mappings. The process can be modi�ed by

inclusion of, for instance, long term memory or higher order statistics.

5 Neuromorphic Results

5.1 Feedforward Networks

In the experiments reported here, we use a fairly standard type of three layer feedforward

network. It is trained by the back-propagation learning algorithm to determine the species of

trees in color infrared aerial photographs. Figure 7 shows a typical network with two 15�15

arrays of input units. Each of these units is used to represent one pixel of the original image.

Since the blue and the green channels are strongly correlated, only the green and the red

channel are used as input. Furthermore, 30 input units are used to feed a locally coded

radius of the tree crown into the network, resulting in a total of 480 input units.

The pixel values of the original image are nonlinearly contrast stretched and transformed

to the interval [�0:5 : : :0:5]. The training set is extended by rotating each tree by 90, 180,

and 270 degrees. There are two bene�ts resulting from the use of this procedure: �rstly,

adverse e�ects caused by illumination and shadows are eliminated, and secondly, over�tting

the data is avoided through the enlarged training set.

As initial experiments have shown, a network with 13 hidden units gives the best result

in the case of a 15�15 input window and a discrimination between �ve di�erent tree species.

The output units use a local representation, i.e. each species (spruce, beech, �r, pine, larch)

is represented by one dedicated output unit.
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Figure 7: A tree species recognition network

The training set consists of 1024 trees, and the performance of the network is evaluated

using an independent test set of 440 trees. To train the network, about 300 sweeps through

the whole training set are necessary, resulting in a prediction accuracy of 86% for the training

set and 85% for the test set for this basic network architecture.

We are able to further improve the above results by a method termed neural network

surgery. The idea of this method is to combine several networks trained with di�erent

parameter settings. Hidden units which do not contribute to the classi�cation are replaced

by `useful' hidden units from other networks. Details of this approach are described in

[26, 27, 28]. Using neural network surgery, the prediction accuracy can be raised to 93%

for the training set and 90% for the test set. Table 1 shows the confusion matrix for this

network.

classi�ed as correctly

species spruce beech �r pine larch classi�ed

spruce 120 0 12 4 4 85.7%

beech 0 96 0 0 0 100.0%

�r 4 4 80 0 0 90.9%

pine 0 0 0 68 0 100.0%

larch 0 0 0 4 44 91.7%

92.7%

Table 1: Confusion matrix for result of network surgery

Summing up, the classi�cation accuracy of the feedforward networks is very good but

the training time is prohibitive, and the selection of appropriate parameters (e.g. number of
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hidden units) is a tedious process. Some of these defeciencies can be avoided by holographic

networks.

5.2 Holographic Networks

Two types of architecture were investigated at the University of Quebec using HNeT simu-

lator of AND America, Ltd.: one with a single neural cell and another, using multiple neural

cell units (see Fig.8).

Input neuron

Processing
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Input neuron 1

Input neuron 2

Input neuron k

Input
fields

Output

.

.

.

.

.

.

Desired
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(a) Single neural cell

Processing
neuron 1

Input neuron 1

Input neuron 2

Input neuron k

Input
fields
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.

.

.

.

.

.

Desired
output

Processing
neuron 2

Output 2

Desired
output

Processing
neuron n

Output n

Desired
output

(b) Multiple neural cells

Figure 8: Holographic network architectures

The simpler architecture (Fig.8.a) consists of one neural cell performing encoding/de-

coding processes within the neural engine and four input neurons, one for each spectral

frequency provided by the MEIS-II sensor. The architecture shown in Fig.8.b is characterised

by one neural cell for every class of the output pattern, in our case { tree species. A di�erent

format for de�ning the desired output of the network during the learning phase is used for

the two architectures. In the �rst, all the desired values are located in a single unit circle.

This can be illustrated for the con�dence level equal to 100%, by Fig.9.a. In the second

architecture, each neural cell distinguishes between one particular class of objects and all

other classes (Fig.9.b).
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The results of the tests performed using the �rst type of network architecture showed a

recognition rate of 50% - 60%. Consequently, more attention was given to the second type of

architecture, where the networks with two compound cell structures, cortex and cerebellum,

were analyzed (Fig.10).

The cortical cell is built upon multiple neurons executing the fundamental encode/de-

code function as a single pyramid cell fed by neuron cells. The cerebral cell executes the

sigma-pi encoding/decoding process, and provides the option of expanding the stimulus �eld

by using statistical terms. Some of the results of the application of the multiple neural cells

architecture [44] are given in Table 2.

Statistics Correct Classi�cation [%]

Neuron cell number red red white

order of terms pine spruce spruce

Cortex 48 82 74

Cortex + sigmoid 76 96 88

Cerebellum 5 200 76 98 80

Cerebellum 4 200 72 98 82

Table 2: Classi�cation rates for multiple neural cells architecture

The statistics, or higher order product terms, shown in Table 2 for cerebellum-type

cells are the principal methods of achieving symmetry in an input data �eld, de�ned by a

uniform probabilistic distribution of complex vectors oriented around the origin on a complex

plane. Obtaining a highly symmetrical state over a wide class of input data distributions is

an important condition for object discrimination. The two statistics parameters indicated

in Table 2 signify the order of the statistics and the number of higher order product terms

generated within the cell's output data �eld. These terms are generated as a function of the

stimulus �eld size and the order of the statistics. They are particularly useful when the size

of the input �eld is small.
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Figure 10: Compound neural cells

As it can be seen from Table 2, the holographic networks do not provide a uniform

and robust solution as the feedforward, error back-propagation networks. A high percentage

recognition of certain objects, in this case red spruce, should be noted.

6 Conclusions

The contribution of this paper is twofold: Firstly, we have presented a general approach for

recognition of compact image objects, based on a hybrid system. Interesting regions (i.e.

regions which contain objects) are selected by knowledge based systems and then classi�ed

by neuromorphic methods. Secondly, we have presented two speci�c neuromorphic methods

for the recognition as well as two speci�c methods for the location of trees in high spatial

resolution aerial images.

Tree �nding is accomplished by a region based approach which looks for bright blobs in

the image and by a contour based approach which looks for the outline of a crown. The region

based approach is successful in areas of dense forest (> 90% correctly located crowns), while

the contour based approach works better in cases of sparse forest or at forest boundaries.

With respect to the two neuromorphic methods, we can say that feedforward networks

trained with back-propagation have good prediction accuracy, whereas the training time is
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much lower for holographic networks (approximately 300 times).

Holographic networks, when directly applied to tree species recognition perform less

well than the classical feedforward networks. However, due to other features, such as good

approximation capabilities (shown in other experiments), memory-like operation, and fast

learning time they may well be considered as a part of more complex, hybrid neural systems.

In both cases, tree �nding as well as neuromorphic recognition, there are at least two

di�erent methods available for each task. A combination of these methods in the sense of

information fusion in image understanding [24] seems very promising and will be one of our

future research goals.

We are also interested in an `all neural' system, where attention focusing is accomplished

by modular and hierarchical neural networks [8, 4].
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