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Abstract

We present an algorithm for image segmentation with irregular pyramids. Instead of star-

ting with the original pixel grid, we �rst apply some adaptive Voronoi tesselation to the

image. This provides the advantage that the number of cells in the bottom level of the pyra-

mid is already reduced as compared to the number of pixels of the original image. Further-

more the Voronoi diagram is a powerful tool for shape description and image compression.

For the construction of the irregular pyramid we present a Hop�eld neural network which

controls the decimation process. In this paper we extend our previous results by proving

a more general theorem than in [4]. The contributions of this paper are the initialisation

of the pyramid by a Delaunay graph and the extension of the results for Hop�eld neural

networks for decimation. The validity of our approach is demonstrated by several examples.
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1 Introduction

Image segmentation is an important step in the analysis of digital images. Usually it is

employed after image enhancement (e.g. noise removal) and before object recognition. The

goal of segmentation is to completely partition the image into non overlapping regions,

where each region satis�es some property (e.g. homogeneous grey value). Ideally these

regions found by segmentation correspond to objects (or parts of objects) in the real world.

A lot of di�erent segmentation algorithms have been proposed (e.g. [33, 16, 28, 17, 24, 9]).

The two main approaches are region based segmentation and contour based segmentation.

In the �rst case we try to �nd regions, whereas in the second approach we try to �nd

the borders of regions. The approach of this paper belongs to the class of region based

methods.

Pyramidal techniques have been shown to be e�cient methods for image segmentation.

Among the most commonly used methods are Quadtrees [28] and pyramid linking [9].

However it has been shown [6] that segmentation algorithms based on regular pyramids

are not shift invariant (i.e. the segmentation of an image and a slighly shifted version

of the image may di�er considerably). This was the main reason for the introduction of

irregular pyramids [23]. Irregular pyramids operate on general graph structures instead of

the regular neighborhoods as is the case of regular pyramids. For this reason they o�er

more freedom in the pyramid construction process, and they can adapt to the content of

the image.

Within the framework of irregular pyramids we are not constrained to start form a

regular image, this advantage we will use in this paper. We �rst apply an adaptive Voronoi

tesselation to the image. And then we construct on this already irregular structure (we

use the Delaunay triagulation which is the dual of the Voronoi tesselation) an irregular

pyramid. The advantage of this approach is that the Delaunay graph o�ers a reduced

description of the image, which is already adapted to the image content. This results in

pyramids with less levels, as compared to starting with the original image. The Delaunay

graph has the further advantage that it is planar (this is not the case for the 8 connected

graph), and that the planarity is preserved by the pyramid construction (as was proved in

[21]).

A second improvement we propose in this paper is in the pyramid construction process.

We show that certain types of Hop�eld neural networks [13] can be used to determine

the survivors of the irregular pyramid. These networks o�er the advantage that we can

directly inuence the decimation process, which is valuable when dealing with grey level

image segmentation. We will prove a theorem which shows how these networks are related

to maximum independent vertex set construction. We will also show how the parameters

of the network have to be set in order to yield the desired segmentations.

The structure of this paper is as follows: In section 2 we briey review pyramids, and

describe irregular structures. In section 3 some de�nitions and algorithms for the Voronoi

tesselation and the Delaunay graph are given. In particular we present a method for

adaptive partitioning of grey level images into Voronoi polygons. Section 4 discusses the

decimation by Hop�eld neural networks. We present a theorem which shows the decimation
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by Hop�eld networks is equivalent to maximum independent vertex set extraction. In

section 5 we present some experimental results on image segmentation with our algorithm.

Finally we discuss some further improvements of our method.

2 Pyramids

Image pyramids have shown to be e�cient data and processing structures for digital images

in a variety of vision applications. An image pyramid is a stack of images with exponentially

decreasing resolutions [31]. The bottom level of the pyramid is the original image. In the

simplest case each successive level of the pyramid is obtained from the previous level by

a �ltering operation followed by a sampling operator [11]. More general functions can be

used to yield the desired reduction. We therefore call them reduction functions.

There are three important properties that characterize a pyramid:

1. Structure: e.g. neighbors, father{son relations between levels;

2. Contents of a cell: e.g. pixel, edge, or more;

3. Processing performed by the cells: e.g. �ltering.

In this paper we discuss only the structure of pyramids. For a discussion on the contents

of the cells and the processing performed by them see [4, 5].

2.1 Structure

The structure of a pyramid is determined by the neighbor relations within the levels of

the pyramid and by the father{son relations between adjacent levels. The structure of any

pyramid can be represented by horizontal and vertical graphs. Each level i of a pyramid

can be described by a neighborhood graph G

i

= hV

i

; A

i

i. Where the set of vertices V

i

corresponds to the pixels of level i, and A

i

� V

i

� V

i

are the neighborhood relations of the

pixels. Two vertices p; q 2 V

i

are connected in G

i

if they are neighbors in the structure.

De�nition 1 (Neighborhood) The neighborhood of vertex p 2 V

i

is de�ned by

�(p) := fpg [ fq 2 V

i

j(p; q) 2 A

i

g.

The structure is regular if a well de�ned neighborhood relation holds for all vertices

(except for the boundary).

The vertical structure (i.e. the connectivity between the levels) can also be described

by a (bipartite) graph: R

i

= h(V

i

[ V

i+1

); L

i

� (V

i

� V

i+1

)i. The receptive �eld (i.e. the

set of all sons) of a cell q 2 V

i+1

is de�ned as: RF (q) := fpjhp; qi 2 L

i

g.

Any pyramid with n levels can be described by n neighborhood graphs and n�1 vertical

graphs. We distinguish between
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� regular structures and

� irregular structures

depending on whether the structural relations are the same for all pyramid cells (except

on the boundary) or whether they may vary from cell to cell. In this report we will focus

on irregular pyramids.

2.2 Irregular pyramids

In irregular pyramids the regularity constraint of regular pyramids is relaxed. These py-

ramids operate on a general graph structure instead of the regular neighborhood graph as

in the case of regular pyramids. There are two ways to construct an irregular pyramid:

1. Parallel graph contraction [27]

2. Decimation of the neighborhood graph [23]

The main purpose for the introduction of irregular pyramids was the rigid behavior

(e.g. shift variance) of regular structures [6]. Irregular pyramids o�er greater exiblility

[24] for the price of less e�cient access. Since parallel graph contraction is only possible

for certain kinds of graphs [27] we discuss the decimation of the neighborhood graph.

Decimation divides the cells in a pyramid level into two categories: cells that survive

form the cells of the next level and cells that do not appear at reduced levels (non survivor).

Peter Meer [23] has given two rules which should be full�lled by the decimation process.

His rules are:

De�nition 2 (Decimation rules)

1. Two neighbors at level i cannot survive both;

2. a non survivor must be a neighbor of a survivor.

We call a decimation which satis�es these rules a valid decimation. In [23] it was

shown how a decimation can be computed in parallel by a stochastic algorithm. It is also

worth noting that the rules 1 and 2 are equivalent to saying that the vertices V

i+1

of the

Graph G

i+1

on level i + 1 de�ne a maximum independet (vertex) set (MIS) of the graph

G

i

= hV

i

; A

i

i.

The algorithm for stochastic decimation proceeds in following major steps (for more

details see [21]):

Algorithm Stochastic Decimation:

1. Assign uniformly distributed random numbers to the cells.

2. Select local maxima as surviving cells.
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3. Fill holes, i.e. repeat step 2 as long as there are non surviving cells which have no

surviving neighbor.

4. Every non surviving cell selects a father. This construction also de�nes the receptive

�elds.

5. Construct the neighborhood graph of the new level; Two surviving vertices become

neighbors if they have vertices in their receptive �elds which are neighbors in the

level below.

6. Repeat steps 1{6 with new level until only a single vertex is in the receptive �eld.

This basic algorithm can be modi�ed in order to take into account the contents of a

cell ending up with an adaptive pyramid [18]. This has been used for image segmentation

or connected component analysis in logarithmic time complexity.

3 Voronoi Diagram and Delaunay Graph

In this section we give some de�nitions of the Voronoi tesselation, and the Delaunay graph.

Two main algorithms to compute the Voronoi diagram and its dual are presented. We

give also some theoretical results about the complexity of these algorithms. Finally, a

description of a split and merge algorithm to compress images in a Voronoi environment

is given.

3.1 Voronoi Diagram and Delaunay Graph

De�nition 3 Let S be a �nite set of points in IR

2

. Let p be a point of S. The Voronoi

region V OR(p) associeted to p is the set of points nearer to p than to any of the other points

of S: V OR(p) = fx 2 IR

2

; d(x; p) � d(x; q);8q 2 S � pg (d is the Euclidean distance).

From this de�nition it is easy to show the following property.

Property 1 All Voronoi regions are polygonal and convex.

De�nition 4 The Voronoi diagram (or Voronoi tesselation) of S, is the set of the Voronoi

polygons: V OR(S) =

S

p2S

V OR(p).

We can note from the de�nition 4 that the Voronoi diagram is a partition of the plane.

Let us now introduce the Delaunay graph:

De�nition 5 The dual of the Voronoi diagram is the Delaunay graph. Two points of S,

p

i

, and p

j

, create an edge of the Delaunay graph if and only if V OR(p

i

) and V OR(p

j

) are

adjacent in the Voronoi diagram: DEL(S) = hS;E = f(p

i

; p

j

) 2 S

2

; V OR(p

i

)\V OR(p

j

) 6=

;gi.
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Property 2 The Delaunay diagram of a set S is the unique triangulation in which the

circle circumscribed by every triangle (p

i

; p

j

; p

k

) 2 S

3

does not contain in its interior any

point of S: Circle(p

i

; p

j

; p

k

) \ S � p

i

� p

j

� p

k

) = ; [25] (see Fig. 1).

According the Def. 3 and 4, the Voronoi tesselation appears to be a powerful tool to

represent the morphology and the shape of objects. For example, the cells of a tissue look

like Voronoi polygons [12]. We observe the same phenomenon with soap bubbles, the alve-

ous bee, and the quasi crystal arrangement [30]. According the Prop. 2 the Delaunay graph

contains all the information about the neighborhood. Thus, the Delaunay graph is well

adapted for modeling in many �elds such as biology [22, 10], physics, etc. Furthermore, the

duality between the Delaunay and the Voronoi graphs is fundamental for our algorithms.

This is the reason, we use the Voronoi polygonisation and the Delaunay graphs for the

pyramidal approach.

3.2 Algorithms and Complexity

Many algorithms exist to compute the Voronoi tesselation and the Delaunay graph. The

famous ones are the "divide and conquer" algorithm and the "incremental" algorithm. The

�rst one is due to Preparata and Shamos [25]. The main idea is to divide the problem into

subproblems recursively and then, to merge the results obtained. The main advantage of

this algorithm is its O(n log n) optimal complexity. But due to problems of computational

geometry this algorithm is di�cult to implement. The second one is due to Green and

Sibson [8]. The main idea is to compute the Voronoi diagram interactively. The incremental

algorithm works by local modi�cation of the Voronoi diagram after insertion of a new point

in the structure. We start with only one point in the structure and then we add one point

after the other. Since the modi�cations are local, the worst case complexity is O(n

2

).

However, in most cases the incremental method is optimal [1].

With an incremental method, we obtain 10000 polygons with about 20000 triangles in

5 sec and 300000 polygons with 600000 triangles in 2 min on a Silicon Graphics Indigo

Figure 1: Voronoi polygons and Delaunay triangulation. The circle does not contain in its

interior any point of S (Black dots)

.
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workstation. Thus, the incremental method has two advantages: the run time optimality

in many cases and the dynamic management of the Voronoi structure. These two points

are crucial for the performance and the conception of the segmentation and compression

applications discussed bellow.

3.3 Application in Image Processing

We present an algorithm for convex partitioning of a grey level image. Our algorithm is

a generalization of the split and merge algorithm on quatree regular (rigid) structures,

extended to Voronoi irregular (non rigid) structures.

This algorithm proceeds in two steps. The �rst one is the split step: Polygons are added

in the support of the image until convergence. This step involves a dynamic management

of the Voronoi diagrams. The second is the merge step: Some polygons are deleted. A

polygon is added or deleted according to the following de�nitions:

De�nition 6 A region enclosed by a polygon P is said to be homogeneous if and only if

the variance in the region is less than a given threshold.

De�nition 7 A polygon P is said to be useless if and only if all the neighbors of P have

almost equal grey level means.

If a polygon is non homogeneous (Def.6), we add a point in its interior, else we do

nothing. According the Def.7 a useless polygon is deleted in the structure. More precisely,

the algorithm proceeds in following major steps (for more details see [7, 2]):

1. Assign �ve points in the image (one point on the center of the image and four on the

corners of the image).

2. Compute the Voronoi diagram and the Delaunay graph.

3. Compute mean grey value, standard deviation, and surface of each polygon.

4. For all polygons, split if the polygon is not homogeneous.

5. Repeat 2{4 until convergence (all the polygons are homogeneous).

6. Merge: supression of the useless polygons.

The proof of convergence is straightforward (in the worst case all the polygons have one

pixel in their interior which give a variance equal to zero. We can prove that the complexity

of the split and merge algorithm is O(n), in average, where n is the �nal number of points.

This result is due to the fact that we have some information we can use to compute the

Voronoi diagram [7, 2]). The information is that we know approximately in which polygon

a new point is added.

An illustration of this algorithm is given in �gure 2, where the size of the image is

256 � 256 with 256 grey values.
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(a) Split Step: From left to right and top to bottom:

Original image, 5 polygons, 13 polygons, 41 polygons,

126 polygons, 410 polygons, 1316 polygons, 3906 poly-

gons, 9977 polygons, 10350 polygons.

(b) Result: Original image, Split result (10585 polygons)

and the graph, Merge result (9033 polygons) and the

graph.

Figure 2: Split and Merge algorithm based on Voronoi Diagram.
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4 Hop�eld Neural Network

Neural networks are massive parallel processing structures, which consists of a set of simple

yet highly interconnected processing elements called units. Each connection between two

units has a weight attached to it. Units perform only simple local computations (e.g.

weighted sum). Usually each neural network model has a speci�c learning algorithm (i.e.

an algorithm which speci�es how to change the weights according to external stimuli).

There exist a large variety of di�erent neural network models, a popular one is the Hop�ed

model.

In 1982 Hop�eld has introduced a network model [13] based on fully connected binary

units (i.e. a unit has two states 0 or 1, and every unit is connected to every other unit

(except to itself) in the network). The discrete binary states of the units constitute a

pattern that can be considered to be the state vector of the system. Hop�eld proved that

this system will always converge to a stable state, if the weights of the connections are

symmetric (i.e. w

ij

= w

ji

where w

ij

is the weight of the connection between unit i and

unit j) and the units are updated in an asynchronous manner. Hop�eld has shown that

this system is governed by an energy function E which is decreased when the units are

updated. Since E is bounded the system must converge to a stable state.

Hop�eld has also given a learning algorithm which can store a set of patterns in the

network. In this case the Hop�eld network acts as an associative memory. Unfortunately

the storage capacity of the network is rather limited. In [26] it was proved that for a

network with n binary units, the number of stored patterns that can be recovered exactly

is bounded asymptotically by

n

4 logn

as n approaches in�nity.

In 1984 Hop�eld has introduced a continous model [14] (i.e. the state of a unit can

change continously). This model has the same characteristics as the binary model, though

it is better suited for analog VLSI implementation.

Besides using a Hop�eld network as an associative memory there are several attempts

to use the network for optimization problems like the Traveling Salesman Problem [15, 20]

or clustering [19]. The basic idea is to formulate the optimization problem as an energy

function which can be minimized by a Hop�eld network. Since the update algorithm of a

Hop�eld network is a stochastic gradient descent search, �nding a global minimum cannot

be guranteed. However very good solutions have been reported for the continous Hop�eld

model [15, 20].

The approach of this paper is similar to using the Hop�eld model as an optimization

procedure, however we do not need fully connected networks and we are not interested in

the global minimum of the energy function. As it is shown in Theorem 1 it is su�cient to

�nd a local minimum.

4.1 Decimation by Hop�eld networks

In the following we will show that we can replace the steps 1{3 of the algorithm for

stochastic decimation by a modi�ed Hop�eld network which works on the neighborhood
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graph G = hV;Ai

1

. Moreover we show that the formulation as a Hop�eld network is

more general than the stochastic decimation, and it naturally includes the concept of the

adaptive pyramid.

Let us introduce the notion of a survival state of a cell:

De�nition 8 The survival state of a cell p 2 V is a function

s : V 7! f0; 1g with s(p) =

(

1 if cell p survives

0 otherwise

Let us further introduce the following energy function:

E = �

1

2

X

hi;ji2A

w

ij

s(i)s(j)�

X

k2V

I

k

s(k) (1)

Now we can proof the following theorem which is a generalization of previous results

in [4, 3]:

Theorem 1 The energy function E from eq. (1) obtains a local minimum, E

min

, with

I

k

> 0 8k 2 V;w

ij

= w

ji

< 0 and I

k

< jw

ij

j 8k 2 V; hi; ji 2 A if and only if the assignment

of surviving and non{surviving cells, s(p), is a valid decimation (i.e. satisfying the rules 1

and 2 of de�nition 2) or, equivalently, forms a maximum independent vertex set of G.

Proof.

(a) E

min

is a local minimum of E ) s(p) is a valid Decimation.

Assume E = E

min

is a local minimum but fp 2 V js(p) = 1g is not a valid decimation,

then at least one of the rules 1 or 2 must be violated.

Case a.1: rule 1 does not hold:

) 9 p; q 2 V such thathp; qi 2 A and (by Def. 8) s(p) = s(q) = 1. Changing s(p) to 0

can a�ect only those terms in equation (1) where s(p) occurs. We can write E as

E = �

1

2

X

hp;ni2A

w

pn

s(p)s(n)�

1

2

X

hn;pi2A

w

np

s(n)s(p)�

1

2

X

hi;ji2A

i;j 6=p

w

ij

s(i)s(j)�I

p

s(p)�

X

k 6=p2V

I

k

s(k)

because E is symmetric. If we change s(p) from 1 to 0 we get following energy di�erence

�E: �E � I

p

+ w

pn

Since I

p

> 0 and jw

pn

j > I

p

with w

pn

< 0 �E < 0 and this is a

contradiction that E

min

is a local minimum.

Case a.2: rule 2 does not hold

) 9p 2 V such that s(p) = 0 and 8q 2 �(p) : s(q) = 0. Again changing s(p) to one

yields �E = �I

p

and this is a contradiction to the fact that E

min

is a local minimum.

(b) fpjs(p) = 1g de�nes valid Decimation ) E = E

min

is a local minimum

We have to show that by changing only one state of a cell r 2 V we get a higher energy

value.

b.1: s(r) = 0 ) 9q 2 �(r) : s(q) = 1 changing s(r) = 1 ) �E = �I

r

� w

rq

> 0

1

We skip the subindices for level i because the algorithm works only on one level
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b.2: s(r) = 1 ) 8q 2 �(p) : s(q) = 0 changing s(r) = 0) �E = I

r

> 0

From b.1 and b.2 we conclude that E

min

is a local minimum of E. qed.

Given the energy function in eq.(1) we can now de�ne a Hop�eld network operating

on the neighborhood graph which minimizes this energy function. In [13, 14] Hop�eld has

described a network of fully connected units operating asynchroniously which is governed

by the following energy function:

E = �

1

2

X

i

X

j

w

ij

s(i)s(j)�

X

i

I

i

s(i) +

X

i

U

i

s(i) (2)

where w

ij

2 IR is the weight between unit i and j, I

i

is the external Input and U

i

is the

threshold of unit i.

Hop�eld proved that if the weights are symmetric (i.e. w

ij

= w

ji

) and the units update

asynchroniously, the network will settle in a local minimumof E. If we now set in equation 2

U

i

= 0 we get equation 1.

The resulting Hop�eld network operates on the neighborhood graph G and computes

valid decimations (according to de�nition 2). The update procedure of the cells is as

follows:

s(p) =

8

<

:

1 if I

p

+

P

hq;pi2A

w

qp

s(q) > 0

0 otherwise

The initial state of the network can be choosen at random. Having established this

relationship we can now apply all the theory available for Hop�eld networks. For example

the convergence time is of interest because in the algorithm of Meer [23] the convergence

takes O(jV j) steps in the worst case (when the random number generator produces a ramp

function on every iteration). In [29] it was proven that a Hop�eld network with negative

weights (if weights are 0 the connection is not present) and a sequential update algorithm

(i.e. at a time only one unit is updated) converges in the worst case in 2jV j steps.

But one should note that by a parallel update scheme and a connectivity graph which

is far away from full connectivity one could design a parallel algorithm which converges

much faster, because all units which are not connected can be updated in parallel without

altering the convergence properties.

Figure 3 is an illustration of the decimation of a Delauney graph by a Hop�eld network.

One can note that in this example, the triangulation at level 4 is not planar. This is a

problem for an implementation of the decimation algorithm in the dual pyramid [32].

4.2 Adaptive Decimation

The energy function in eq. (1) has the weights w

ij

and the external inputs I

i

as free

parameters. These parameters can be used to inuence the decimation process. The

weights w

ij

between the cells express the constraints on the states of the cells. If w

ij

is negative these two cells should not be both on, on the other hand a positive weight

increases the likelihood that both cells are on. One should note as long as the weights are

10



Figure 3: Decimation of a Delaunay Graph, Black dots indicate survivors
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identical and jw

ij

j > I

k

the behavior of the network is not changed. This can be easily

seen from the proof of thereom 1. The external input I

k

can force a single cell to survive

or not (e.g. if I

i

>

P

j2�(i)

jw

ij

j the cell i survives).

In [4] we have shown how to set the weights in order to perform connected component

analysis. There we have also listed several possibilities how to set the weights for image

segmentation. In section 5 we will demonstrate how the set the weights properly in order

to achieve good segmentation results.

5 Application to Segmentation

We present here some results obtained with the combinations of the pyramids, Voronoi

diagram and Hop�eld neural nework. We choose here the following weigths for the edges

of the neighborood graph: w

ij

= �f(d

ij

), where d

ij

= jg

i

�g

j

j, g

i

and g

j

are the greyvalues

of node i and j, and f is a suitable function. We choose here the following function:

f(d

ij

) =

(

2 if i and j are neighbors and d

ij

� �

0 otherwise

Certainly, other types of functions can be chosen to yield better adaptive decimations.

A slight generalization of the function above would be:

f(d

ij

) =

8

>

<

>

:

2 if i and j are neighbors and d

ij

� �

1

�2(�

2

+d

ij

)

�

1

��

2

if i and j are neighbors and �

1

< d

ij

< �

2

0 otherwise

The algorithm proceeds in following major steps.

1. Compute an adaptive Voronoi partition of the image with the split and merge algo-

rithm.

2. Compute the pyramidal process with the adaptive decimation.

Figure 4 is an illustration of the pyramidal process in a Voronoi environment controled

by Hop�eld neural network (� = 7) (256 � 256).

Figure 5 gives the result for a grey level image segmentation (� = 9)(256 � 256). The

total time to process such an image is arround 2 minutes on a Sun 4 workstation. Some

improvements can be made: for example local tresholding [24]. We can also take into

account the size (surface) of the polygons. Due to our split and merge algorithm, there

are many polygons with a small area (1-10 pixels) where there is a large gradient in the

image. Conversly there are few polygons with large size (10-50 pixels) where the image is

uniform.
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(a) From left to right and top to bottom: Original image, Voronoi

tesselation: 1500 polygons, Level 1: 521 regions, Level 2: 225 regions,

Level 3: 110 regions, Level 4: 57 regions, Level 5: 33 regions, Level 6:

20 regions, Level 7: 14 regions.

(b) Original image, Voronoi tesselation, Final Result (Level 11): 5

regions remain.

Figure 4: Adaptive Pyramidal Process Based on Voronoi Diagram Controled by Hop�eld

Neural Network.
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6 Conclusions and Outlook

In this paper we have presented a pyramidal algorithm using Voronoi polygons, Delaunay

triangulation, and Hop�eld neural networks. The combination of all these notions give an

algorithm for the segmentation of the grey level images. We have demonstrated that the

algorithms presented provide a valuable tool for image segmentation. The initialisation of

the pyramid by the Delaunay graph reduces the computations to build the pyramid, bec-

ause the number of cells in the base level is already reduced. The control of the decimation

process by the Hop�eld network allows us to adaptively inuence the pyramid construction

process in a natural manner. The formulation as an energy minimization procedure might

also provide further theoretical insights in the construction process of irregular pyramids.

An interesting point is to compare results obtained here with others methods.

The work presented here might be extended in several ways. For example we can use

the algorithms for textural segmentation were we use the Kolgomorov-Smirnov distance as

distance measure for initialisation of the weights in a Hop�eld network. Such algorithmmay

be an alternative to the Markov Random Field process. In this case we could control the

di�erent steps of the algorithm which is not the case for Markov Random �elds. Another

extension where our algorithm would prove its advantages is 3D image segmentation (e.g.

data from the confocal laser microscope). Since the discrete volume representation is a

large mass of data, therefore it is essentially to reduce the amount of data in early stage.

Further improvements can be made by an in depth analysis of the assignment of weights

in the Hop�eld network. It remains still to be shown which type of assignment presents

Figure 5: Image "femme", �nal result of the segmentation. Starting with 9033 Voronoi

polygons 50 regions remain.
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the best segmentation results. With the proof of the Theorem we have made one step in

that direction.

Another important extension is the concept of the dual graph. In the dual pyramid we

can control the number of neighbors (essentially it can be shown that it will not increase

during the decimation process [21]), which is not the case for the original pyramid, where

the number of neighbors of a node may grow from level to level. Therefore a formulation

of our algorithm for the dual graph would be advantageous. This is possible because the

Delaunay triangulation is a planar graph.

All these possible extensions would further improve the results and show the advantages

of the Voronoi irregular pyramidal framework controlled by Hop�eld neural networks.
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