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Abstract

The principle of fractal image coding presented in this paper is based on the theory of L-IFS

(Local Iterated Function Systems). The algorithm exploits the fact that a real-world image

is formed approximately of transformed copies of parts of itself. Thus, the construction of

fractal codes is directly made on partitions of the image support. It is based on piece-wise

similarities between blocks of di�erent sizes.

The paper starts with a regular block based approach �rst proposed by Jacquin A.E. [12]. To

improve the algorithm, adaptive partitions are proposed with, in particular, the Delaunay

triangulation. The results show an improvement in computing times, compression ratios

and visual quality of reconstructed images.
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1 Introduction

Fractal image compression is a relatively recent technique since was �rst proposed by M.F.

Barnsley in 1988. The main purpose of this method is to �nd resolution independant

models of images. Many natural objects such as trees, clouds, mountains or leaves can be

approximated by fractals. Barnsley [1] proposed the use of the theory of iterated transforms

(IFS) to create fractal shapes. His best known result is the computation of a fern which

truly resembles a natural one.

An IFS (Iterated Function System) is composed of contractive mappings performed on a

complete metric space. The fractal object so generated needs only few coe�cients to be

coded. Thus, the use of IFS has been extended to compress natural images. The most

important di�erence in this case is that a natural image is generally not self-similar (formed

of copies of its self), and thus the method has to be adapted [2]. Jacquin A.E. [12] �rst

proposed an automatic algorithm to code "real-world" images. The main idea is to exploit

the image redundancy and to state that an image is formed of transformed copies of parts

of itself. He showed that partitioning images into square blocks, and designing discrete

transformations acting blockwise, approximates the original image by a self-similar one. He

refered to this approach as fractal block coding. Many researchers subsequently compressed

images with a similar approach [14, 3, 10, 6]. Others obtained fractal approximations of

image blocks, based on IFS with probabilities [15]. Another possibility is to compute the

parameters of the transformations directly from local invariant features of the image. This

last idea has been succesfully implemented on a pixel row of an image [13].

In this paper, we propose a method similar to that of Jacquin. The originality of our

approach is the use of Delaunay tessellation to partition the image support. The approach

bene�ts from properties of triangulation, such as adaptivity, and non-rigidity. In section 2

we present the theoretical foundations of this approach and introduce the L-IFS (Local-IFS)

which makes it possible to automaticaly code natural images. The compression procedure is

presented in section 3 followed by the reconstruction of an approximation of the original

image in section 4. Results are presented on a square regular partition in section 5.

Section 6 describes simple adaptive partitions of the image support. Then, we introduce

Delaunay triangulation and explain how to obtain an adapted partition with a split and

merge approach. This tessellation is compared with the regular square partition and the

quadtree in order to encode an image. The encoding-decoding algorithm with triangles is

explained in section 7. Section 8 discusses compression aspects of the method. Lastly,

results are presented in section 9.

2 Theoretical background

Let us consider a metric space (X; d) in which a digital image is a point. The metric d is

a distance we will de�ne below (section 3). A contractive transformation in this space is

de�ned as:

W : X ! X
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9s < 1 such that 8P;Q 2 X, d(W (P );W (Q)) � s:d(P;Q)

The real s in this case is de�ned as the contractivity factor of the operator W .

Such a contractive operator has an unique �xed point A

t

in X, such that A

t

= W (A

t

).

The iteration of the operator W converges to the point A

t

, starting with any point of X

(Fig. 1). More precisely, we have lim

n!1

W

o

n

(B) = A

t

, 8B 2 X.

A central theorem (collage theorem), proposed by M.F. Barnsley, makes it possible to �nd

an operator W whose �xed point is close to a given one. This inverse problem consists

of seeing the image A to code as an approximation of the �xed point of the operator

W . In this case, A ' W (A). The operator W returns a result close to the original

image A, starting with any image as explained above. The collage theorem states that :

d(A;A

t

) �

1

1�s

d(A;W (A)), where A

t

is the �xed point of W . If we can �nd the operator

W which minimizes the distance between A and W (A), the result of iterations of W on

any initial set resembles the set A, providing that the contraction factor s not too close to

1. The main problem in coding a real-world image is the construction of the operator W in
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Figure 1: Convergence process.

such a way that A ' W (A). A.E. Jacquin proposed a solution. He partitiones the image

into non-overlapping blocks R

i

and the operator W is composed of a�ne transforms acting

on these. In this case, a L-IFS (Local Iterated Function System) is composed of a collection

of local contractive transforms de�ned as !

i

(A \D

i

), where A \D

i

is the restriction of A

to the part D

i

of the image A.

Thus, the operator W is de�ned as W (A) =

N

S

i=1

!

i

(A \ D

i

), and returns the union of

transformed parts of the image A. It has been shown that it is not necessary that each of

the transforms !

i

have a contractivity factor smaller than one. The necessary contractivity

requirement is that W be eventually contractive [11]. This means that the operator W

must be composed of su�ciently contractive transforms !

i

with respect to the expensive

ones in order to have the m

th

iterate W

o

m

contractive (m 2 IN).

The collage theorem states that if it is possible to cover the image A by transformed parts

of itself (with contraction mappings !

i

) so that the result is close to the image A, then
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the collection of transforms !

i

approximately de�nes the image A. The collage not being

exact, we have an approximation of the original image during the decoding phase.

3 Overview of the encoding principle

Let us consider a grey level image A to be encoded. We see it as the attractor of the L-IFS

we want to �nd. Thus A =W (A) =

N

S

i=1

!

i

(A\D

i

). The transform W has to be eventually

contractive, under an appropriate metric.

The algorithm consists in using a two-level partition of the image support. One of the two

levels returns blocks D

i

(partition D), and the other returns blocks R

i

of a smaller or equal

area (partition R). The partition R generates non-overlapping blocks. More details will be

given on their construction. The encoding algorithm �nds, for each blockR

i

, a transformed

domain block D

i

which is very close to R

i

. The block D

i

can be found anywhere in the

partition D. Then, if we perform the collage of the transformed blocks D

i

on the blocks

R

i

, we have W (A) nearly equal to A. In this case, the collage theorem is satis�ed and the

operator W encodes the image (Fig. 2).

wi

w2

w1

wN

Figure 2: The encoding principle of an image A. Left: partition D. Right: partition R, on

which the collages are done. The transformed image W (A) (right) has to be close to the

image A (left) in order to respect the collage theorem.

The mappings !

i

used in our implementation can be written as:
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C

A

.

!

i

(A\D

i

) = t

i

(v

i

(A\D

i

)) is composed of two transformations. One geometric transform

acting in the plane (transf. v

i

, param. a

i

; b

i

; c

i

; d

i

; e

i

; f

i

) and a grey level one modifying the

pixels intensity z (transf. t

i

, param. s

i

; o

i

). s

i

; o

i

control the contrast and the brightness
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of the pixels grey level respectively.

The similarity (in terms of grey level) between the block R

i

and the transformed block D

i

is

measured with the square error (SE). It is a classical metric to measure the distance between

two images. The square error is given by: d(A \R

i

; !

i

(A \D

i

)) =

P

n

0

n=1

(s

i

:d

n

+ o

i

� r

n

)

2

where d

n

and r

n

are respectively the intensities of the pixels of the blocks D

i

and R

i

, and

n

0

the number of pixels included in A \R

i

. s

i

; o

i

are the coe�cients of !

i

.

The contractivity of the transform W is thus controled by the parameters s

i

. These must

have to be less than 1, in order to insure eventual contractivity. In the general case, the

collages are made from blocks D

i

to blocks R

i

of smaller base area, but this is not a required

condition. What is important is contractivity of the grey level transformation [4].

4 Decoding from fractal code

The fractal code for the compressed image A is composed of a collection of N contractive

transforms !

i

(x,y,z). The decoding consists in iterating the operator W , starting with any

initial image B. The reconstructed image is given by A ' lim

n!1

W

o

n

(B). One iteration

consists in scanning the blocks R

i

(in the same order as during the coding step) and in

applying the a�ne transformation !

i

on their corresponding domain block D

i

(Fig. 3). We

usually need 8 to 12 iterations to converge to the original image. The number of iterations

depends on the resolution of the image.

w1

wi

Figure 3: The decoding principle from a fractal code. Left to right: any initial image, �rst

iteration and last iteration (the result converges to the original image).

5 Results on a regular squares partition

In this section we present results with a simple algorithm. The image is partitionned into

non-overlapping regular squares of sizes x

R

�x

R

and 2x

R

�2x

R

. The small squares compose
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the partition R, the others the partition D.

The decoding steps are shown in Fig. 4. In Fig. 4.a, 1024 transformations are required.

The compression ratio calculation is similar to that explained in section 8. Partition D is

composed of 256 squares which can be coded in a list.

(a) 1024 non-overlapping squares of size 8 �

8 in partition R. Compression ratio = 20.4:1,

PSNR = 27.2 dB.

(b) 4096 non-overlapping squares of size 4�4 in

partition R. Compression ratio = 5.1:1, PSNR

= 32 dB.

Figure 4: Two decompressions of the image "femme" of size 256�256. From top to bottom,

left to right: original image (A), �rst iteration (W (B)), second (W

o

2

(B)), third ..., 8th

iteration (decoded image) and enhanced error image by a factor of 4. B is a white image.

Remarks can be made on those two results:

If the squares in partition R are too large, details in the reconstructed image are not visible.
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If a square covers a small detail, it will not �nd a corresponding domain square including

the same detail. In that case, the error between the blocks is important, it does not allow

veri�cation of the collage theorem.

If the squares are too small, the compression ratio is also small, due to the large number

of a�ne transforms to code.

6 Adaptive partitions of the image support

To construct the fractal code, we need to partition the image support. Di�erent partitions

have been proposed, using regular squares, quadtrees, rectangles and triangles. The main

point of this chapter will be concerned by Delaunay triangulation.

6.1 Quadtree

The Quadtree is de�ned as a tree of degree 4 [17]. The root of the tree is the entire image.

If the image has a constant grey level, the root node is labeled with this value. Otherwise,

four descendants are added to the node. The process is then repeated recursively for each

Figure 5: Quadtree evolution. The �nal Quadtree has 5719 squares.
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of those nodes. If a block has a constant value, its node is a leaf node of the tree. An

example of an image with its corresponding quadtree is shown in Fig. 5. The split criterion

can also be based on variance, or gradient inside the blocks.

The main disadvantages of this scheme are that it returns too many squares if the size

of the blocks is small. Moreover, it is shift-variant. Two images that di�er only by a

translation may have two very di�erent quadtrees.

6.2 Partitions H-V

The partition H-V for fractal block-coding has been proposed by Y. Fisher [10]. The image

is partitioned into two rectangular regions, and then, each rectangle is recursively parti-

tioned to form two new rectangles. The process stops when a given criterion is satis�ed.

The split process can be done in order to obtain a maximum of rectangles with diagonally

oriented edges in their interior, and thus a maximum of similarities between the blocks.

The advantage of this scheme is that the position of rectangles is variable, but the disad-

vantage is that their orientation is limited to 90 degree angles. The horizontal and vertical

edges in the image are well covered but the other oriented shapes require many rectangles.

6.3 Delaunay triangulation

Delaunay triangulation o�ers good properties of regularity. The unconstrained orientation

of triangles makes it possible to have a data dependant partition [16].

6.3.1 De�nitions

Let us consider a �nite set of points T = ft

n

g. It has been demonstrated that the Delaunay

graph is the unique triangulation with "empty circles" (Fig. 6). That is: the circumcircle

of every triangle (t

i

; t

j

; t

k

) of the Delaunay triangulation does not contain any other points

t

l

of T in its area. The dual diagram is called the Voronoi tessellation. It provides a

Figure 6: Delaunay triangles and Voronoi polygons. The points t

n

are in black. The white

points are the centers of the circumcircles.
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partition of the space into Voronoi polygons. Given the same set of points ft

n

g called

seeds, for every point t

i

in T, the polygon associated with t

i

is the part of the space where

every point in its interior is closer to t

i

than to any other point of T .

6.3.2 Split and Merge algorithm based on Delaunay triangulation

(a) Split steps initialized on a white image.

(b) Split: 3476 triangles

(c) Split and Merge: 2157

triangles

Figure 7: Delaunay tessellation of the image "femme".
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Di�erent algorithms have been proposed to construct the Delaunay triangulation.

One advantage of our method (an incremental approach) is that the image orients the

evolution and location of the polygons. Essentially there must be a high density of seeds

(triangles) in regions including details in the image. This principle can be understood in

terms of variance, or gradients computed on pixels belonging to the interior of triangles

[8, 5, 7, 9].

In terms of data structure, a graph environment is used in order to facilitate the manipu-

lation of the triangles.

The algorithm works by local modi�cations of the triangulation when a new point is inser-

ted. It proceeds in two steps which are called Split and Merge.

We start with a small number of points regularly distributed on the image support. The

split step (Fig. 7.a-b) consists in adding a point on the barycenter of each non homogeneous

triangle (variance or gradient criteria). We continue the split process until convergence.

Thus we stop when either the triangles are homogeneous or the surfaces of the triangles

are less than given threshold. The merge step (Fig. 7.c) consists in deleting neighboring

triangles having similar mean grey levels. Those triangles are suppressed from the graph.

We note that the number of triangles is inferior to the number of squares obtained in

previous algorithms.

7 Encoding-Decoding algorithm with triangles

In our implementation, the blocks R

i

and D

i

arise from Delaunay triangulations.

The partitions are performed in a split and merge approach initialised on a regular distri-

bution of points.

The second level (returning the blocks D

i

) does not need to have small triangles, and we

stop the split process before returning the blocks R

i

.

We �nally obtain a domain block partition with large triangles and a range block partition

well adapted to the image information, with smaller triangles. Moreover, the partition R

is denser in the detailed parts of the image.

The coding process based on those triangulations consists in selecting, for a given block

R

i

, a block D

i

in the partition D which gives the smallest distorsion (distance SE) between

A \ R

i

and !

i

(A \ D

i

). The search is done using a walk in the Delaunay graph of the

partition D. The size of the triangle R

i

is selected to be smaller or equal to the size of the

triangle D

i

. We recall that there are 6 di�erent ways to map one triangle onto another,

therefore we try 6 possibilities for each mapping of a block D

i

onto a block R

i

.

Furthermore, the blocks D

i

have more pixels in their area than the blocks R

i

. The Square

Error is computed between all the pixels in R

i

and their images in D

i

. Blocks D

i

are thus

sub-sampled.

The coding algorithm can be improved by a classi�cation of the triangles. This speeds up

the matching process and does not allow range blocks to be in correspondance with very

di�erent domain blocks. These mistakes are possible with the least-squares calculation.

The classi�cation creates di�erent classes of triangles. In this case, the use of a contour

9



image allows separation of the triangles in two classes: edge triangles and others. Thus,

the search, for a given edge range blocks, will be done through a list of edge domain blocks.

Of course, the classi�cation algorithm must be robust, so that new errors in the matching

are not introduced.

8 Compression Ratio

To encode an image we need to store the coe�cients of the N mappings !

i

composing

the L-IFS. One mapping is needed for each block R

i

in the partition R. The Delaunay

tessellation is coded in a graph environment. Thus, for one transformation !

i

, it is only

necessary to code:

� the position of the triangle D

i

in Delaunay graph

� the orientation for the collage (6 possibilities to map a triangle onto another)

� the scale coe�cient (s

i

)

� the o�set coe�cient (o

i

)

It has been veri�ed [11] that 5 bits to code the coe�cient s

i

and 7 bits for o

i

are su�cient

to provide a good quality reconstructed image. The positions of the triangles D

i

in the

graph depend on N . The orientation needs 3 bits to be coded.

In addition, we must code the way to obtain the image adapted partitions R and D. Since

we always start with a regular distribution of points to construct the Delaunay triangu-

lation, it is only usefull to code the split and merge process, with 1 bit per split and 1

bit per merge. The division of a triangle during the split steps is coded with a 1, the

non-division with a 0. The obtained string of binary codes can also be compressed with

classical techniques. For example, the partition in Fig. 7c. is coded by an uncompressed

string of 9841 bits.

The total number of bits necessary to code the L-IFS is thus given by: N

tot

= N(15+M)+X

withN = total number of blocksR

i

,X = number of bits to code the partition processes and

M = E[log

2

(nb. of blocks D

i

+ 1)] = number of bits to code the position of the blockD

i

in

the graph (E means the integer part). If the number of blocksD

i

is less than 1024, M = 10.

For a grey scale image of size 256�256, 8 bpp, the compression ratio is given by: T

c

=

256�256�8

N

tot

.

9 Results and discussion

We have presented results on a 256*256, 8 bits/pixel images. The formula to calculate the

peak-signal-to-noise ratio is given by : PSNR = 10 � log

10

(

(2

n

�1)

2

1

n

0

P

n

0

i=1

(�

i

��

i

)

2

) with n the

number of bits per pixel in the original image, n

0

the number of pixels in the image, �

i

and �

i

the intensities of pixels in the original and reconstructed image respectively.

First we constructed the fractal codes of the image "femme" on a Delaunay triangulation,
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using the split and merge approach (Fig. 8.a). The resulting tessellation returns irregular

triangles which are image constrained. Large triangles appear in homogeneous parts of

the image. There are 2157 triangles in the partition R, and 1013 in the partition D. The

search for the matching of range blocks is done among a limited number of triangles D

i

and not anywhere in the image. The method is therefore computationaly e�cient when

compared to the one using square partitions. (compression time = 15 minutes, decoding

= 5 secondes, on a Silicon Graphics Indigo

TM

R4000). No classi�cation was made.

(a) Partition R of �gure 7.c : Compression ra-

tio = 9.5:1, PSNR = 30 dB.

(b) Compression ratio = 7:1, PSNR = 30 dB.

Figure 8: Decompressions of images of size 256 � 256. From top to bottom, left to right:

original image, �rst, seconde, third ..., 10th iteration (decoded image) and enhanced error

image by a factor 4. The iterations start with a white image.
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Of course, in order to preserve a good �delity of reconstructed image with respect to

the original, the two partitions have to present a maximum number of similar blocks, and

also to be image dependant. The decoded image does not present "block e�ects" as in

the situation where the methods based on square partitions are used. The unconstrained

orientation of the triangles gives good results. Large triangles appear in homogeneous

parts of the image. The number of triangles in the partition R is also less important (2157

triangles). The decoded image of LENA is shown in Fig. 8.b.
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