
Technical Report Dept. for Pattern Recognition and Image Processing

Institute for Automation

Technical University of Vienna

Treitlstr. 3/1832

A-1040 Vienna AUSTRIA

Phone: +43 (1) 58801-8161

Fax: +43 (1) 569697

E-mail: wil@prip.tuwien.ac.at

PRIP-TR-28

October 4, 1994

Parallel Graph Contraction

for

Dual Irregular Pyramids

1

Dieter Willersinn

Abstract

Hierarchical representation of images is a crucial building principle of a system architecture

that can cope with the complexity of visual perception. This paper presents an algorithm

that builds a hierarchy which is
exible enough to provide a shift and scale invariant abstract

representation of image content. The hierarchy is irregular in the sense that an element

of the representation may have an arbitrary number of neighbors. At the same time,

the representation can be described by a bounded data structure. Main properties of the

algorithm with respect to visual perception are proved.

1

This research was supported by the Austrian Science Foundation under grants P 8785 and S

7002-MAT

Contents

1 Introduction 2

2 Required properties of the process 3

3 Basic de�nitions from graph theory 4

3.1 Graphs, vertices, edges : 4

3.2 Paths, subgraphs, and components of a graph : : : : : : : : : : : : : : : : 5

3.3 Circuits, cutsets, and dual graphs : 6

3.4 Planar graphs and geometrical duals : 8

3.5 Vertex connectivity and unique dual graphs : : : : : : : : : : : : : : : : : 9

3.6 Vertex identi�cation and edge contraction : : : : : : : : : : : : : : : : : : 10

4 Previous work 10

4.1 Decimation : 10

4.2 Dual irregular pyramids : 12

5 Dual decimation 12

5.1 Representation of image structure : 12

5.2 Dual contraction of edges : 13

5.3 Selection of surviving and non-surviving vertices : : : : : : : : : : : : : : 15

5.4 Redundant edges, removable faces, and face contraction : : : : : : : : : : 16

5.5 Combining the elementary processes : 18

6 Properties of dual decimation 19

6.1 Degree preservation : 19

6.2 Duality preservation : 20

6.3 Connectivity preservation : 20

6.4 Complexity of face contraction : 21

6.4.1 Surviving vertices and regions of the neighborhood graph : : : : : 23

6.4.2 Region faces and boundary faces : : : : : : : : : : : : : : : : : : : 25

6.4.3 Region edges and face trees : 26

6.4.4 Elimination of region faces and boundary faces : : : : : : : : : : : 27

6.4.5 Self-loop removal is sequential but local : : : : : : : : : : : : : : : 28

6.4.6 Complexity of self-loop elimination : : : : : : : : : : : : : : : : : : 30

6.4.7 Complexity of the elimination of parallel edges : : : : : : : : : : : 32

6.4.8 Conclusion: Complexity of face contraction : : : : : : : : : : : : : 32

7 Conclusion 33

1

1 Introduction

The goal of image analysis is \to describe the content of a digital image in order to interpret

it and to take a decision" [2]. During interpretation, the content of the image is compared

to some previously acquired prototypical knowledge. Depending on the application, these

prototypes can be single objects, events, scenes or episodes.

Tsotsos refers to the interpretation process as visual perception [22]. His analysis of

the computational complexity of visual perception yields the proof that visual perception

is computationally intractable if the problem statement is unconstrained. His proof is

independent of a speci�c implementation of vision and hence applies to both technical and

biological visual systems.

Vision, however, is a performant and precise sense in biological systems, an observation

that seems to disproof the result of Tsotsos at �rst glance. Starting from the evidence of

vision in biological systems, Tsotsos exploits physical and biological constraints to reveal

crucial building principles of system architectures that satisfy the complexity constraint of

visual perception. The list of features of such architectures comprises:

� massively parallel and local processing;

� abstraction of the input by an input hierarchy;

� retinotopic representation of the input, i.e. a representation \whose physically adja-

cent elements represent spatially adjacent regions in the visual scene" [22].

Hierarchically organised representations of pictorial data are referred to as pyramids in

computer vision [19, 4, 23, 11]. Pyramids are called regular if they are tapering stacks of

regular grids. The individual grids are called the levels of the pyramid. The rigid structure

of regular pyramids causes stability problems like shift and scale variance [3].

These stability problems were addressed in a paper of Meer [17], in which he proposed

decimation, an algorithm that builds a new type of pyramid with a more
exible structure.

In the levels of these pyramids, adjacency is represented explicitly by edges of a graph [18],

rather than implicitly by an absolute position in a regular grid. The
exibility is due to

the fact that each element of the graph representation may have an arbitrary number of

neighbors. The pyramids are therefore called irregular pyramids [14]. The consequence

of irregularity, however, is that neither the data structure for the description of elements

of the representation, nor the time for the construction of a new pyramid level can be

bounded.

Dual decimation, as presented in this paper, is a new algorithm that overcomes the

problem of unbounded data structure inherent to irregular pyramids. The solution uses

a dual graph for the control of both representation and construction as �rstly proposed

in [14]. Dual decimation is organised in such a way that neighborhood size can be bounded

in the dual graph. The resulting hierarchy after recursive application of dual decimation

is referred to as dual irregular pyramid [15].

This paper is an extended version of [28]. It is constructed as follows. Section 2 formally

states the desired properties of an algorithm that builds a simpli�ed representation of an

2

input image. Section 3 provides basic de�nitions from graph theory that will be used

throughout the paper. An overview over previous work is contained in Section 4. Dual

decimation is presented in Section 5, and the main properties of dual decimation are proved

in Section 6. The conclusion outlines a perspective for the extension of the concept also to

three dimensions.

2 Required properties of the process

This section becomes a bit more formal about the required features of a system architecture

for visual perception. We address here the part of the system that generates a hierarchical

representation of the input picture. We base our speci�cation on De�nitions 1 and 2 which

we adopt from [8].

De�nition 1 A two dimensional image is a spatial representation of an object, a two-

dimensional or three-dimensional scene. It may be abstractly thought of as a continuous

function I of two variables de�ned on some bounded and usually rectangular region of a

plane. The value of the image located at spatial coordinates (r; c) is denoted by I(r; c).

De�nition 2 A two dimensional digital image is an image in digital format and is

obtained by partitioning the area of the image into a �nite two dimensional array of small

mutually exclusive convex polygons called resolution cells. Each resolution cell has a

representative image value assigned to it. Resolution cells having a common side with the

plane surrounding the image are said to lie on the boundary of the two dimensional digital

image.

De�nition 3 Let R(I) be a representation of a two dimensional digital image I; and let

the elements r

i

of R carry attributes that represent properties of I. Let further p

i

denote

a processing element that is assigned to an element r

i

of R. A processing element p

i

is connected to a processing element p

j

if the elements r

i

and r

j

of R are adjacent. A

process operating on the representation R is called massively parallel if it is executed

simultaneously in all processing elements p

i

, and if the result obtained by one processing

element p

j

is independent of the result obtained by any other processing element p

k

; k 6= j:

Processing is called local if the result obtained by one processing element p

i

is depending

on attributes of r

i

and of neighbors of r

i

only, and if the number of neighbors is bounded

for every processing element.

The expected result of processing is a simpli�ed representation of the input in which each

element represents one or several elements of the original representation.

In order to take a global decision with respect to the whole image it must be possible

to establish a relation between any two elements of the abstract representation.

3

3 Basic de�nitions from graph theory

The image representation R and the algorithm that performs its simpli�cation will be for-

mally described using a graph theoretic vocabulary. This section contains this vocabulary

which has been gathered from standard textbooks on graph theory [1, 5, 9, 21].

Section 3.1 de�nes graphs as sets of vertices and edges, as well as the concepts of

adjacency and degree. More complex notions like connectedness of graphs and subgraphs

are de�ned in Section 3.2.

Sections 3.3 through 3.5 are devoted to duality between graphs, and Section 3.6 contains

the de�nition of two basic operations on graphs that reduce the number of elements in a

graph.

3.1 Graphs, vertices, edges

De�nition 4 A graph G = (V;E) consists of two sets: a �nite set V of elements called

vertices and a �nite set E of elements called edges. Each edge creates a binary relation

between a pair of vertices.

We use the symbols v

1

; v

2

; v

3

; : : : to represent the vertices and the symbols e

1

; e

2

; e

3

; : : : to

represent the edges of the graph. Figure 1 shows the example of a graph. Vertices are

u u u

u u u

u u u

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

v

1

v

2

v

3

v

4

v

5

v

6

v

7

v

8

v

9

e

1

e

2

e

3

e

4

e

5

e

6

e

7

e

8

e

9

e

10

e

11

e

12

e

13

e

14

Figure 1: Pictorial representation of a graph G(V;E).

represented by black spots (�), edges by straight lines.

De�nition 5 The vertices v

i

and v

j

associated with an edge e

l

are called the end vertices

of e

l

, e

l

is said to be incident to its end vertices. The edge is denoted as e

l

= (v

i

; v

j

).

De�nition 6 More than one edge in a graph G(V;E) may have the same pair of end

vertices. All edges having the same pair of end vertices are called parallel edges.

4

De�nition 7 An edge e

l

is called a self-loop at vertex v

i

if its end vertices are identical,

i.e. e

l

= (v

i

; v

i

).

De�nition 8 Two edges are adjacent if they have a common end vertex.

De�nition 9 Two vertices are adjacent if they are the end vertices of some edge.

De�nition 10 The number of edges incident to a vertex v of a graph G(V;E) is called its

degree or its valency. It is denoted by d(v). A self-loop at a vertex v increases the degree

of v by two.

De�nition 11 A vertex of degree 1 is called a pendant vertex.

De�nition 12 The edge incident to a pendant vertex is called a pendant edge.

3.2 Paths, subgraphs, and components of a graph

De�nition 13 A path in a graph is a �nite alternating sequence of vertices and edges

v

0

; e

1

; v

1

; e

2

; : : : ; v

k�1

; e

k

; v

k

such that

1. vertices v

i�1

and v

i

are the end vertices of the edge e

i

, 1 � i � k;

2. all edges are distinct;

3. all vertices are distinct.

Vertices v

0

and v

k

are called end vertices of the path, and we refer to it as v

0

�v

k

path.

The number of edges in a path is called the length of the path.

u u u

u u u

u u

�

�

�

�

�

�

�

�

�

�

�

�

v

2

v

3

v

4

v

5

v

6

v

7

v

8

v

9

e

4

e

5

e

6

e

12

e

13

e

14

Figure 2: Two paths of G.

Figure 2 shows two example paths of the graph G in Figure 1.

5

De�nition 14 A graph G is connected if there exists a path between every pair of vertices

in G.

De�nition 15 Consider a graph G = (V;E). G

0

= (V

0

; E

0

) is a subgraph of G if V

0

and

E

0

are, respectively, subsets of V and E such that an edge (v

i

; v

j

) is in E

0

only if v

i

and v

j

are in V

0

.

De�nition 16 Let V

0

be a subset of the vertex set V of a graph G = (V;E). Then the

subgraph G

0

= (V

0

; E

0

) is the induced subgraph of G on the vertex set V

0

(or simply vertex-

induced subgraph hV

0

i of G) if E

0

is a subset of E such that an edge (v

i

; v

j

) is in E

0

if

and only if v

i

and v

j

are in V

0

.

De�nition 17 If e

l

is an edge of a graph G = (V;E), then G � e

l

is the subgraph of G

that results after removing the edge e

l

from G. Note that the end vertices of e

l

are not

removed from G. The removal of a set of edges from a graph is de�ned as the removal of

single edges in succession.

De�nition 18 A set V is said to be partitioned into subsets V

1

; V

2

; : : : ; V

p

, if

V

i

6= ;; 1 � i � p ;

V

1

[V

2

[: : : [V

p

= V; and

V

j

\ V

k

= ;; 8 j; k; j 6= k:

We refer to subsets V

1

; V

2

; : : : ; V

p

as a partition of V .

De�nition 19 Consider a graph G(V;E) which is not connected. Then the vertex set V

of G can be partitioned into subsets V

1

; V

2

; : : : ; V

p

such that the vertex-induced subgraphs

hV

i

i, i = 1; 2; : : : ; p, are connected and no vertex in subset V

i

is connected to any vertex

in subset V

j

, i 6= j. We call subgraphs hV

i

i, i = 1; 2; : : : ; p, connected components or

simply components of G.

3.3 Circuits, cutsets, and dual graphs

De�nition 20 A circuit is a path the end vertices of which are identical.

Figure 3 shows three circuits of the graph G in Figure 1.

De�nition 21 A cutset C of a connected graph G is a minimal set of edges of G with

respect to inclusion (�) such that its removal from G disconnects G, that is, the graph

G� C is disconnected.

Figure 4 shows graph G of Figure 1 after removal of the cutset C = fe

9

; e

10

; e

11

; e

12

g:

G� C is disconnected and consists of exactly two components hfv

1

; v

2

; v

3

; v

4

; v

5

; v

6

gi and

hfv

7

; v

8

; v

9

gi

6

u u

u u

u u

v

2

v

3

v

5

v

6

v

8

v

9

e

2

e

4

e

5

e

7

e

11

e

12

e

14

u

u u

u

�

�

�

�

�

�

�

�

�

�

�

�

v

2

v

4

v

5

v

7

e

5

e

9

e

10

u

u u u

u u u

�

�

�

�

�

�

v

1

v

2

v

3

v

4

v

5

v

6

v

7

e

1

e

2

e

3

e

7

e

8

e

9

e

10

Figure 3: Three examples of circuits of G.

u u u

u u u

u u u

�

�

�

�

�

�

�

�

�

�

�

�

v

1

v

2

v

3

v

4

v

5

v

6

v

7

v

8

v

9

e

1

e

2

e

3

e

4

e

5

e

6

e

7

e

8

e

13

e

14

Figure 4: G after removal of the cutset fe

9

; e

10

; e

11

; e

12

g.

De�nition 22 A graph G is a dual of a graph G if there is a one-to-one correspondence

between the edges of G and those of G such that a set of edges in G is a circuit if and only

if the corresponding set of edges in G is a cutset.

Duality is a symmetric relation, as we formally state in Theorem 1.

Theorem 1 Consider two graphs G and G. If G is a dual of G, then G is a dual of G.

The proof can be found in [21, p. 189].

7

3.4 Planar graphs and geometrical duals

The dual graph de�ned in De�ntion 22 is also referred to as combinatorial dual. For

pictorial representations of dual graphs we use a di�erent way of de�ning dual graphs

based on drawings of graphs on surfaces.

De�nition 23 A graph is said to be embeddable into a surface S if it can be drawn on

S so that its edges intersect only at their end vertices.

De�nition 24 A graph G is said to be planar if it can be embedded into a plane. Such

a drawing of a planar graph G is called a planar embedding of G or simply a plane

graph.

De�nition 25 An embedding of a planar graph into a plane divides the plane into regions

or faces. A region or face is �nite if the area it encloses is �nite; otherwise it is in�nite.

De�nition 26 speci�es how to obtain a dual graph from a planar embedding of a graph.

De�nition 26 Let G be a plane graph. Then the geometrical dual G of G is constructed

as follows:

1. place a vertex v

i

in each face f

i

of G, including the exterior region;

2. if two regions f

i

and f

j

have an edge e in common, then join the corresponding

vertices v

i

and v

j

by a line crossing only e; this line represents edge e = (v

i

; v

j

):

Figure 5 shows a simple example of a pair of dual graphs. Note the correspondence between

Figure 5: A graph G (solid lines) and its geometrical dual G (dashed lines).

vertices of G and faces of G. Also, each edge of G corresponds to one edge of G, indicated

in the drawing by one dashed line crossing exactly one solid line.

8

Geometrical and combinatorial duals are equivalent as proved by Whitney [24, 26, loc.

cit. [9]]. He stated Theorem 2 about the equivalence between planarity and the existence

of a combinatorial dual. We cite Theorem 2 from [9, p. 115].

Theorem 2 A graph is planar if and only if it has a combinatorial dual.

3.5 Vertex connectivity and unique dual graphs

The geometrical dual is not unique for all graphs. Figure 6 illustrates an example found in

[9, p. 114], where one planar graph has di�erent planar embeddings and consequently dif-

ferent (geometrical) duals. De�nition 27 provides a criterion that allows to decide whether

(a) G and its dual G.

(b) A di�erent embedding yields a dif-

ferent dual.

Figure 6: One planar graph G(V;E) may have di�erent duals.

a graph has a unique dual.

De�nition 27 The vertex connectivity or connectivity � = �(G) of a graph G is

the minimum number of vertices the removal of which results in a disconnected or trivial

graph. A graph is n-connected if �(G) � n:

Figure 7 a shows the example of a 3-connected graph G. G is disconnected after the

removal of three vertices u; v; w (Figure 7 b). We formally state the relation between

vertex connectivity of a planar graph and the uniqueness of its dual in Theorem 3.

Theorem 3 A three-connected planar graph G has a unique dual.

The proof of this theorem is based on results of Whitney [25, loc. cit. [9]] about unique

embeddings of planar graphs and can be found in [9, p. 114].

9

u

w

v

(a) G(V;E).

(b) hV �fu; v; wgi is disconnected.

Figure 7: Example of a three-connected graph G(V;E).

3.6 Vertex identi�cation and edge contraction

We conclude Section 3 with De�nitions 28 and 29 of operations on a graph G that reduce

the number of vertices of G by a local operation.

De�nition 28 A pair of vertices v

i

and v

j

in a graph G are said to be identi�ed (or

short-circuited) if the two vertices are replaced by a new vertex such that all edges incident

to v

i

and v

j

are now incident to the new vertex.

De�nition 29 Contraction of an edge e is the operation of removing e and identifying

its end vertices.

Figure 8 illustrates the di�erence between the identi�cation and contraction operations for

the example of the graph in Figure 1.

Edge e

2

forms a self-loop at the new vertex v

0

2

after vertices v

2

and v

3

are identi�ed,

whereas the contraction operation eliminates e

2

.

4 Previous work

The work reported in this document has been motivated by previous work on decima-

tion [17, 18] and on the construction of dual irregular pyramids [14, 15]. We report the

major results with respect to dual decimation in Sections 4.1 and 4.2.

4.1 Decimation

Meer was the �rst to propose a hierarchical representation of image content in which a

regular neighborhood structure was given up [17]. He proposed stochastic decimation, a

10

u u u

u u u

u u

�

�

�

�

�

�

�

�

�

�

�

�

v

1

v

0

2

v

4

v

5

v

6

v

7

v

8

v

9

e

1

e

3

e

4

e

5

e

6

e

7

e

8

e

9

e

10

e

11

e

12

e

13

e

14

@

@

@

@

@

@

C

C

C

C

C

�

�

e

2

��

��

(a) Identi�cation of v

2

and v

3

.

u u u

u u u

u u

�

�

�

�

�

�

�

�

�

�

�

�

v

1

v

0

2

v

4

v

5

v

6

v

7

v

8

v

9

e

1

e

3

e

4

e

5

e

6

e

7

e

8

e

9

e

10

e

11

e

12

e

13

e

14

@

@

@

@

@

@

C

C

C

C

C

�

�

(b) Contraction of e

2

.

Figure 8: Identi�cation and contraction in G(V;E).

graph transformation that operates on a graph G representing the neighborhood structure

of a digital image. Dual decimation starts by selecting a vertex subset from the graph.

De�nition 30 Stochastic decimation of a graph is a process that is executed in the

following steps:

1. Random numbers are assigned to the vertices.

2. Vertices with a local maximum of this variable (surviving vertices) are selected.

3. All non-surviving vertices are assigned to one survivor out of their neighborhood.

4. Repeat steps 1 : : : 3 for all non-survivors who do not have a survivor in their neigh-

borhood.

5. The receptive �eld RF (v

s

) of a survivor v

s

is formed by all non-survivors (sons)

that are assigned to v

s

(father). It also includes v

s

itself.

6. Vertices of the reduced graph are connected if vertices of their receptive �elds are

connected in the original graph.

As described in [17], two rules have to be respected by the vertices during decimation:

1. Every non-surviving vertex has at least one surviving neighbor;

2. Two adjacent vertices must not survive both.

11

The selection of surviving vertices can also be related to the image content to obtain an

adaptive behavior [10]. We therefore use the more generic term decimation to refer to the

process.

4.2 Dual irregular pyramids

Decimation involves a scan of the entire neighborhood for each vertex of the graph during

the connection of surviving vertices. This requires that the list of neighbors be stored

explicitly for each vertex. Or, if we think of a massively parallel architecture, then each

processing element representing a vertex may have an arbitrary number of links to adjacent

processing elements.

This problem of unbounded vertex degree was addressed in [14]. It was observed that

the dual graphs of the levels of an irregular pyramid remains bounded. The idea was to

to build a dual irregular pyramid complementing each level of an irregular pyramid by its

dual graph during construction. Then the dual graphs could be used as a control structure

for the construction process, and the processing elements assigned to the vertices of the

dual graphs would have a limited number of links to adjacent processing elements.

However, the process de�ned in [14] does not yield a pair of dual graphs in all cases,

and neither can the degree of the dual graphs be bounded, as was shown in [27].

5 Dual decimation

This section contains the de�nition of dual decimation, an algorithm that overcomes the

problems mentioned in Section 4. Dual decimation operates on a representation of an

image by a pair of dual graphs. This representation is formally de�ned in Section 5.1.

The basic operation used by dual decimation is dual contraction, which we de�ne in

Section 5.2. Section 5.3 describes how control information can be generated for dual

contraction.

After dual contraction, redundancies may occur in the neighborhood graph. We demon-

strate this in Section 5.4, and show how these redundancies can be detected and removed

by local processes in the face graph.

5.1 Representation of image structure

A digital image can be viewed as a plane graph with the resolution cells being the faces of

the embedding. A plane graph G(V;E) and its geometrical dual G(V ;E) can therefore be

derived from a digital image in analogy to De�nition 26.

De�nition 31 Let I be a two dimensional digital image, and let the resolution cells of I

be denoted as c

i

. Then a graph G(V;E) and its geometrical dual G(V ;E) can be obtained

from I by the following process:

1. place a vertex v

i

2 V in every resolution cell c

i

;

12

2. if two cells c

i

; c

j

have a common side, then draw a line between vertices v

i

and v

j

in such a way that the common side is intersected; this line represents the edge

(v

i

; v

j

) 2 E;

3. construct the geometrical dual G of G according to De�nition 26.

We refer to graph G as the neighborhood graph since its edges explicitly represent

adjacency between elements of the representation of I. Graph G is called face graph since

vertices v 2 V represent faces of a planar embedding of G.

Note that we will use the terms neighborhood graph and face graph also for graphs that

represent an image in a more abstract way. In this case, vertices of the neighborhood graph

G represent regions or objects of the scene rather than individual resolution cells.

Since we do not want to impose a bound on the number of neighbors that a region in

an image may have, we may not bound the vertex degree in the neighborhood graphs. The

consequence for the data structure representing vertices of G is the following. If the list

of neighbors was stored explicitly for each vertex v 2 V , then the data structure for the

representation of v 2 V would not be bounded. Therefore we do not explicitly represent

the list of neighbors with each vertex v 2 V .

5.2 Dual contraction of edges

De�nition 32 Let G(V;E) and G(V ;E) be dual graphs, and let e = (n; s) be an edge of

G. We refer as dual contraction of edge e to the following sequence of steps:

1. in each edge incident to n replace end vertex n by s;

2. remove vertex n;

3. remove edge e and edge e 2 E corresponding to e.

We refer to Steps 1 and 2 as the identi�cation of n with s.

Note that dual contraction is de�ned for vertices of both G and G since G is also the dual

of G, cf. Theorem 1.

Figure 9 illustrates the process of dual contraction by means of a simple example.

Figure 9 a shows a small portion of a graph G (solid lines) together with its dual G

(dashed lines). Edge e = (n; s) and its corresponding edge are outlined in bold. Figure 9 b

shows the resulting pair of dual graphs after identi�cation of vertex n with vertex s due to

dual contraction of edge e.

Dual contraction of an edge e preserves the duality relation between a pair of dual

graphs, as we formally state in Theorem 4. The proof of this theorem can be found in [21,

p. 190]. We cite it here for reasons of completeness. If the graph containing e is connected,

then it remains connected after the dual contraction operation as we will state in Lemma 1.

13

e
e

n

s

(a) G(V;E) and G(V ;E).

s

(b) Result after dual contraction of e.

Figure 9: Dual contraction of edge e of G(V;E).

Theorem 4 Consider two dual graphs G and G. Let e = (v

1

; v

2

) be an edge in G, and

e = (v

1

; v

2

) be the corresponding edge in G. Let G

0

and G

0

be the graphs resulting from

G and G after dual contraction of edge e. Then G

0

and G

0

are duals, the one-to-one

correspondence between their edges being the same as in G and G.

Proof : Let C and C denote corresponding sets of edges in G and G, respectively.

Suppose C is a circuit in G

0

. Since it does not contain e, it is also a circuit in G. Hence

C is a cutset in G, it disconnects G into exactly two components, say hV

1

i and hV

2

i. Since

C does not contain e, the vertices v

1

and v

2

are both in V

1

or in V

2

. Therefore C is also a

cutset in G

0

. Thus every circuit in G

0

corresponds to a cutset in G

0

.

Suppose C is a cutset in G

0

. Since C does not contain e, it is also a cutset in G. Hence

C is a circuit in G. Since it does not contain e, it is also a circuit in G

0

. Thus every cutset

in G

0

corresponds to a circuit in G

0

.

Lemma 1 Consider two connected dual graphs G and G. Consider further an edge e =

(v

i

; v

j

) in G that is dually contracted, and let v

i

be identi�ed with v

j

. Let G

0

and G

0

be

the graphs resulting from G and G after dual contraction of edge e. Then G

0

is again a

connected graph.

Proof : Let P be a v

a

� v

z

path containing e, and let e

�

= (v

i�1

; v

i

) and e

+

= (v

j

; v

j+1

)

be edges in P adjacent to e. After dual contraction of e, e

+

is incident to v

i

, hence v

j+1

is

adjacent to v

i

, and the resulting path P

0

is still connecting v

a

to v

z

.

Let Q be a v

b

� v

y

path containing v

j

, and let e

�

= (v

j�1

; v

j

) and e

+

= (v

j

; v

j+1

) be

adjacent edges in Q. Then e

�

= (v

j�1

; v

i

) and e

+

= (v

i

; v

j+1

) after identi�cation of v

j

with

v

i

, hence e

�

and e

+

are still adjacent, and Q is still connecting v

b

to v

y

.

14

We have shown that all v

a

� v

z

paths of G containing e remain v

a

� v

z

paths after

dual contraction of e. We have further shown that all v

b

� v

y

paths of G containing v

j

still connnect v

b

to v

y

after dual contraction of e. All other paths of G remain unchanged,

hence G

0

is also connected.

5.3 Selection of surviving and non-surviving vertices

Control information for dual contraction can be generated by the selection of surviving

vertices, and by the assignment of non-surviving vertices to surviving vertices, similar to

decimation. However, the rules that apply for the selection process are less restrictive than

the rules given by Meer.

De�nitions 33 through 35 are useful for a comparison of the vertex selection processes

used by decimation and dual decimation. De�nition 36 formally de�nes the selection

process used by dual decimation as well as related terminology.

De�nition 33 Consider a graph G(V;E). A subset S of V is an independent vertex set

or internally stable set of G if no two vertices of G are adjacent in G. An independent

set S of G is maximum if G has no independent set S

0

such that card(S

0

) > card(S): An

independent set S of G is maximum with respect to inclusion or simply a maximal

independent vertex set if every vertex of V � S has at least one vertex of S adjacent

to it.

De�nition 34 The number of vertices in a maximum independent set of a graph G is

called the stability number or independence number of G.

De�nition 35 Consider a graph G(V;E). A set S � V is a dominating vertex set or

externally stable set of G if every vertex v 2 V � S has a vertex s 2 S adjacent to it.

Note that a maximal independent set of a graph is both internally and externally stable.

The selection process suggested by Meer yields a maximal independent vertex set S of the

input graph. This limits the number of selected vertices to the stability number of the

input graph. At the di�erence to Meer, we do not require that the selected vertices form

an independent set.

De�nition 36 Consider a graph G(V;E) representing a digital image. Partition set V

into two disjoint subsets S, N . We refer to vertices s 2 S as surviving vertices, and

to vertices n 2 N as non-surviving vertices. Do the partition in such a way that every

non-surviving vertex has at least one surviving neighbor. A mapping N ! S assigns to

every vertex n 2 N one vertex s 2 S that is adjacent to it. We call the surviving vertex

parent with respect to the non-surviving vertex, which we call child. Mapping N ! S is

called child-parent assignment.

The selection process de�ned in De�nition 36 allows the selection of adjacent vertices.

Set S selected according to De�nition 36 is externally stable and may, but need not be

internally stable as well. This allows greater
exibility during vertex selection in that it

admits the selection of as many vertices as the input graph has.

15

5.4 Redundant edges, removable faces, and face contraction

Figure 10 a shows how control information generated by survivor selection and child-parent

assignment is used during dual contraction. The illustration shows a small portion of a

graph G (edges drawn as solid lines) and its dual G (edges drawn as dashed lines). Black

spots (�) indicate survivors, circles (o) indicate non-survivors, arcs pointing from parent

to child indicate child-parent connections. In Figure 10 b, all children have disappeared

(a) Example graph be-

fore : : :

(b) : : : and after dual

contraction.

(c) Result without red-

undancies.

Figure 10: Elimination of redundancies caused by dual contraction.

after dual contraction of child-parent connections. The graph resulting from G contains

self-loops at, and parallel edges between survivors.

De�nition 37 Consider self-loops e

s

2 E and parallel edges e

p

2 E in a graph G(V;E).

We refer to e

s

and e

p

as redundant edges since their removal does not change adjacency

of vertices in G.

To remove redundant edges in G, we execute dual contraction operations in G to preserve

duality between G and G (cf. Theorem 4). Before we formally de�ne the contraction

operation, we state Lemma 2 and Theorem 5 about dual contraction and vertex degree.

Lemma 2 Let G(V;E) and G(V ;E) be dual graphs, and let edges e = (n; s) 2 E and

e = (v; w) 2 E be corresponding edges. Dually contract edge e, identifying n with s.

Consider degrees d(s); d(n); d(v); d(w) of vertices s; n; v; w before dual contraction of edge

e. Then degrees d

0

(s); d

0

(v); d

0

(w) of vertices s; v; w after dual contraction are:

d

0

(s) = d(s) + d(n)� 2;

16

d

0

(v) = d(v)� 1;

d

0

(w) = d(w)� 1:

Proof :

d

0

(s) : After identi�cation of n with s, all edges incident to s and n are now incident to s,

hence d

0

(s) = d(s) + d(n). Edge e is now a self-loop at s, and increases d

0

(s) by 2,

hence d

0

(s) = d(s) + d(n)� 2 after removal of e.

d

0

(v); d

0

(w) : Edge e is incident to vertices v,w, hence d

0

(v) = d(v)�1 and d

0

(w) = d(w)�1

after removal of e.

Theorem 5 Let G(V;E) and G(V ;E) be dual graphs, and let vertex v 2 V have degree

one or two. Consider further an edge e = (v; w), that is dually contracted in such a way

that v is identi�ed with w. Then the corresponding edge e 2 E to be removed is redundant

in G, and the degree of w is non-increasing.

Proof : All edges incident to a graph's vertex form a cutset the removal of which separates

this vertex from the rest of the graph. In the case of v, the cutset contains one or two

edges, corresponding to a circuit of length one or two in G. Therefore edge e corresponding

to the dually contracted edge e is redundant, i.e. either a self-loop or one of two parallel

edges. The degree d

0

(w) after dual contraction of e is

d

0

(w) = d(w) + d(v)� 2 � d(w);

hence the degree of w is non-increasing.

De�nition 38 Let G(V;E) and G(V ;E) be dual graphs. We refer to vertices of G as faces

since they represent faces of a planar embedding of G. Let face v 2 V have degree one or

two. Since the removal of v by dual contraction of an edge e = (v; w) preserves duality

between G and G, and since this removal does not increase the degree of w, we refer to v

as a removable face.

We now have the necessary elements to formally de�ne the contraction operation for the

removal of redundant edges.

De�nition 39 Consider a pair of dual graphs G(V;E) and G(V ;E), with G containing

redundant edges and G containing a set V

%

� V of removable faces. Then the following

process eliminates redundant edges from G.

1. partition set V into two sets N (non-surviving faces) and S (surviving faces)

such that

� all faces v 2 (V � V

%

) are surviving;

� a surviving face s 2 V

%

must not have a surviving face adjacent to it;

17

� every non-surviving face n 2 N has at least one adjacent surviving face;

2. every non-surviving face n 2 N is assigned to exactly one surviving face s 2 S

adjacent to it; s is referred to as parent of n, n is called child of s; E

cp

denotes the

set of edges having a surviving face s as one end vertex and a child of s as the other

end vertex;

3. dually contract edges e 2 E

cp

; identifying children with parents;

4. repeat Steps 1 : : : 3 until V

%

= ;.

Since the process executed in Steps 1 : : : 4 eliminates removable faces, we call it face

contraction.

5.5 Combining the elementary processes

In the previous subsections, we have gathered all subprocesses we need to de�ne the process

of dual decimation.

De�nition 40 Let G(V;E) and G(V ;E) be a pair of graphs dual to each other, G being

referred to as the neighborhood graph, G being referred to as the face graph.

We refer as dual decimation to the following sequence of processes applied to this

pair of graphs:

1. select surviving and non-surviving vertices in the neighborhood graph, and assign

children to parents;

2. dually contract edges e 2 E connecting children to parents, i.e. do not dually contract

self-loops;

3. remove redundancies in the neighborhood graph by face contraction.

Note that Step 2 of dual decimation requires careful examination if the adjacency between

a non-surviving vertex and its parent is de�ned by more than one edge. The most simple

example of this case is a non-surviving vertex n that is connected to its parent by two edges

e

1

and e

2

, i.e. e

1

= e

2

= (n; s). Parallel edges e

1

and e

2

correspond to a cutset fe

1

; e

2

g in

G. If both edges e

1

; e

2

are dually contracted, then graph G disconnects.

Parallel edges in G cannot be detected by a read access to the representation of vertices

since the representing data structure does not contain a list of neighbors of a vertex. Neither

can it be detected in G, since the edges in G corresponding to parallel edges in G are not

necessarily adjacent in G.

To avoid disconnection of G during Step 2 of dual decimation, however, it is su�cient

to avoid that a non-surviving vertex is identi�ed with its parent more than once. This

requires that the access to representations of vertices in G is organised in such a way that

simultaneous write accesses are not possible.

18

6 Properties of dual decimation

This section relates dual decimation to the speci�cation in Section 2.

We assume that dual decimation is to be executed by a massively parallel processing

architecture in which one processing element is assigned to each vertex of the representa-

tion. Processing in such an architecture is local if the degree of vertices in the underlying

graph is bounded. This condition is not satis�ed for the neighborhood graph G because

vertex v

E

is connected to all vertices representing resolution cells on the boundary of the

image.

However, vertex degree can be bounded in the face graph G, and is non-increasing

during dual decimation, as we will show in Section 6.1. Processing elements assigned to

vertices of G can control the neighborhood graph due to the duality relation between G

and G. This relation is preserved by dual decimation as we will proof in Section 6.2.

The representation obtained from dual decimation must allow to establish a relation

between any two elements of this representation. Therefore the neighborhood graph G

must remain connected. Since G is used as a control structure, also G must remain connec-

ted. The proof of the connectivity preserving property of dual decimation is contained in

Section 6.3.

Face contraction has a sequential character to it, as we will illustrate in Section 6.4.

However, the e�ect of a dual contraction in the face graph can be bounded to well-de�ned

subgraphs of the face graph. In each of these subgraphs, dual contractions can be executed

independently. The number of processing steps does not depend on the number of vertices

in the face graph, cf. Section 6.4.8.

6.1 Degree preservation

Theorem 6 Let G(V;E) and G(V ;E) be a pair of graphs dual to each other. Let the

process of dual decimation be applied to this pair of graphs, with the extraction of surviving

vertices and child-parent assignment in G, and the processes of dual contraction and face

contraction derived from this assignment as described in De�nition 40.

Let G

0

be the graph that results from G after applying dual decimation. Then the degree

of vertices of G

0

is less or equal to the degree of vertices of G.

Proof : During dual decimation (cf. De�nition 40), the face graph is modi�ed in two

cases:

� when an edge e of the neighborhood graph is dually contracted;

� when a removable face is eliminated by dual contraction.

As for the �rst case, we have stated in Lemma 2 that the removal of edge e corresponding

to e decreases the degree of the end vertices of e. The degree of all other vertices v 2

V remains unchanged. During face contraction, only removable faces are eliminated by

19

dual contraction operations, non-increasing degree for this case has already been stated in

Theorem 5.

We have shown that the degree of vertices of the face graph is reduced during dual

contraction of edges as well as during face contraction. This proves the theorem, since

these are the only operations that modify the face graph during dual decimation.

6.2 Duality preservation

Theorem 7 Let G(V;E) and G(V ;E) be a pair of dual graphs, and let the process of dual

decimation be applied to this pair. Let G

0

and G

0

be the graphs resulting from processing

G and G, respectively. Then G

0

and G

0

are dual graphs, the correspondence between their

edge sets being the same as between G and G.

Proof : We recall that by De�nition 40, only the following processes modify graphs G

and G during dual decimation:

� dual contraction of an edge;

� face contraction.

Theorem 4 states the duality preserving property for the process of dual contraction of an

edge. The elimination of removable faces during face contraction is again a dual contrac-

tion operation, applied to a pair of dual graphs, and consequently preserves their duality

relation.

We have shown that both dual contraction of edges and face contraction preserves the

duality relation between a pair of graphs. This proves the theorem, since these are the

only processes that modify the graphs during dual decimation.

6.3 Connectivity preservation

The connectivity of both graphs allows a global evaluation due to communication between

any two parts of the representation.

Theorem 8 Let G(V;E) and G(V ;E) be two connected graphs dual to each other, and let

the process of dual decimation be applied to this pair. Let G

0

and G

0

be the graphs resulting

from processing G and G, respectively. Then G

0

and G

0

are both connected.

Proof : In Step 2 of dual decimation, dual contraction of edges, edges of G are dually

contracted, in Step 3 (face contraction) edges of G are dually contracted. In Lemma 1,

we have already stated that dual contraction of an edge in a graph preserves the connec-

tivity of this graph. Therefore Step 2 preserves connectivity of G, while Step 3 preserves

connectivity of G. To show the connectivity preservation for the whole process of dual

decimation, we consequently show that Step 2 also preserves connectivity of G, and that

Step 3 preserves connectivity of G.

20

The preservation of the connectivity of G during face contraction (Step 3) is due to the

fact that during face contraction only redundant edges are removed from G.

By de�nition of Step 2, only edges connecting children to parents are dually contracted.

To disconnect G, it is necessary and su�cient to completely remove a cutset from G, hence

to dually contract all edges of a circuit C in G. This requires that all edges of C be

parent-child connections. For the discussion of this condition we distinguish three classes

of circuits C in G:

Circuits of length 1: Circuits of length 1 are by de�nition excluded from dual contrac-

tion.

Circuits of length 2: A circuit C of length 2 contains two vertices, say n and s. Let

n be a non-surviving vertex, and let s be a surviving vertex. Let further s be the

parent of n. Then both edges of C are parent - child connections. However, after dual

contraction of one edge of C, the other edge is a self-loop at s, the dual contraction

of which is excluded by de�nition.

Circuits of length > 2: Assume that all edges of C be child-parent connections. This

is equivalent to saying that c is of even length, and that vertices of C form an

alternating sequence of surviving and non-surviving vertices. Consider now a non-

surviving vertex n of C. Two edges e

n

; e

n+1

of C are incident to n, connecting n to one

surviving vertex each. If both e

n

and e

n+1

were child-parent connections, then vertex

n would be child of two parent vertices, which is a contradiction to De�nition 36.

We have shown that no circuit C in G can be found the edges of which are all dually

contracted, hence the connectivity of G is preserved during Step 2 of dual decimation.

We have shown that both dual contraction of edges and face contraction preserve the

connectivity of both graphs G and G. This proves the theorem, since these are the only

processes that modify G and G during dual decimation.

6.4 Complexity of face contraction

Face contraction is not in general a parallel process, since the elimination of a removable

face v

%

with d(v

%

) = 1 by dual contraction may result in a new removable face. Figure 11

illustrates the sequential nature of face contraction by means of a simple example. Fi-

gure 11 a shows a small portion of a neighborhood graph G (solid lines) and the correspon-

ding face graph G (dashed lines) with surviving and non-surviving vertices, Figure 11 b

shows the result after dual contraction. Vertices of G are of degree 1 (hence removable

faces) and 3. The elimination of degree-1 vertices generates new removable faces of degree

1 and 2 (Figure 11 c) which can be removed in a new iteration and so on until all removable

faces are eliminated (Figure 11 f).

The objective of this section is to give an upper bound for the number of sequential

steps that are required to remove all removable faces from a graph. The demonstrations

will be guided by the following two questions:

21

? Can the elimination of a face v

%

with d(v

%

) = 1 by dual contraction of an edge in

G a�ect the removability of all other faces in the graph, or can the e�ect of this

elimination be limited to a subgraph of G ?

? Is there consequently an upper bound to the number of iterations of face contraction

that is less than the number of vertices in G ?

For the discussion, we demonstrate how child-parent assignment implies a partition of the

neighborhood graph (Sections 6.4.1). This partition is used in Section 6.4.2 to partition

(a) Graph before : : :

(b) : : : and after dual con-

traction.

(c) First iteration of face

contraction.

(d) Second iteration of face

contraction.

(e) Third iteration of face

contraction.

(f) Result after four iterati-

ons.

Figure 11: Iterative elimination of redundant edges by face contraction.

22

also the vertices of the face graph, and we obtain two classes of vertices, region faces and

boundary faces.

Region faces are lying on tree structures after Step 2 of dual decimation, as we will

show in Section 6.4.3. We also show in the same section that edges incident to regions faces

correspond to self-loops inG. In Section 6.4.4, we show that only the elimination of a region

face by dual contraction may create a new removable face. However, the elimination of a

region face a�ects only a limited part of the graph, as we will proof in Section 6.4.5.

This result is then used in Sections 6.4.6 and 6.4.7 to specify upper bounds that ap-

ply for the time complexity of self-loop elimination and the elimination of parallel edges.

Section 6.4.8 concludes by giving the overall time complexity of face contraction:

6.4.1 Surviving vertices and regions of the neighborhood graph

De�nition 41 Consider a graph G(V;E) with set V partitioned into surviving and non-

surviving vertices, with the non-surviving vertices being mapped onto the surviving vertices

by child-parent assignment. Let set V (s

i

) � V contain a surviving vertex s

i

and all children

of s

i

. According to [7, p. 217], we refer to set V (s

i

) as the cluster of a surviving vertex

s

i

. Vertex induced subgraph hV (s

i

)i is called the region of a surviving vertex s

i

.

We denote the set of edges of region hV (s

i

)i as E(s

i

), hence hV (s

i

)i = (V (s

i

); E(s

i

)):

Figure 12 a shows the example of a graph G(V;E) with surviving vertices S = fs

1

; s

2

; s

3

g

and non-surviving vertices N = fn

1

; n

2

; n

3

; n

4

g. Child-parent assignments are illustrated

s3

3n

n4

n2

s2

s1

n1

(a) Mapping N ! S indicated by (o �).

s3

3n

n4

n2

s2

s1

n1

(b) Regions hV (s

1

)i, hV (s

2

)i, hV (s

3

)i.

Figure 12: Graph G(V;E) with regions induced by mapping N ! S.

23

by arcs pointing from parent to child. The clusters de�ned by the assignment are the

following:

V (s

1

) = fs

1

; n

1

; n

2

; n

3

g;

V (s

2

) = fs

2

g;

V (s

3

) = fs

3

; n

4

g:

Figure 12 b shows regions hV (s

1

)i; hV (s

2

)i; hV (s

3

)i of survivors s

1

; s

2

; s

3

.

Lemma 3 Consider a graph G(V;E) with V being partitioned into surviving (S) and

non-surviving (N) vertices. Let m be the number of surviving vertices. Then clusters

V (s

1

); : : : ; V (s

m

) de�ned by child-parent assignment N ! S are a partition of set V .

Proof :

Partition of S: De�ne sets V (s

i

) = fs

i

g; i = 1; : : : ; m. Sets V (s

1

); : : : ; V (s

m

) represent

a partition of S since

V (s

i

) \ V (s

j

) = ;; 8i; j; i 6= j;

V (s

1

) [: : : [V (s

m

) = S:

Partition of N: By de�nition, every vertex n 2 N is assigned to exactly one survivor s

i

.

Then n is added to set V (s

i

) containing s

i

:

V (s

i

) = V (s

i

) [fng:

Vertex sets V (s

i

) remain mutually disjoint since every non-survivor is joint to exactly

one set V (s

i

). All vertices n 2 N are assigned, hence

V (s

1

) [: : : [V (s

m

) = S [N:

S [N = V , hence V (s

1

); : : : ; V (s

m

) is a partition of set V .

De�nition 42 Consider a connected graph G(V;E) with vertex set V . Let V

1

and V

2

be a

partition of V . Then the set C of all edges having one end vertex in V

1

and the other end

vertex in V

2

is called a cut of G.

According to [21, p. 44], we denote a cut by hV

1

; V

2

i. Note that the notion of a cut

is closely related to the one of a cutset (De�nition 21). This relationship is stated more

formally in Theorems 9 and 10 which we cite from [21, p. 45].

Theorem 9 A cut in a connected graph G is a cutset or union of edge-disjoint cutsets.

Theorem 10 A cut hV

1

; V

2

i of a connected graph G is a cutset of G if the induced subgraphs

of G on the vertex sets V

1

and V

2

are connected. If S is a cutset of a connected graph G,

and V

1

and V

2

are the vertex sets of the two components of G� S, then S = hV

1

; V

2

i.

24

6.4.2 Region faces and boundary faces

In this section, we prove that the regions of the neighborhood graph de�ned in Section 6.4.1

imply a partition of the vertex set V of the face graph.

De�nition 43 Consider a neighborhood graph G and a face graph G after Step 1 of dual

decimation, and a vertex v of G. Consider further all edges e

v

2 E incident to v, and

edges e

v

of the neighborhood graph corresponding to edges e

v

. We call vertex v a face of

region hV (s

i

)i or simply region face if all edges e

v

are incident to vertices of one cluster

V (s

i

) only, i.e. e

v

2 E(s

i

). Edges incident to a region face are called dual region edges

or region edges.

Note that not every region of a neighborhood graph necessarily has region faces, eg.

hV (s

2

)i, hV (s

3

)i in Figure 13.

De�nition 44 Let G(V;E) and G(V ;E) be dual graphs and let V be partitioned into m

clusters V (s

1

); : : : ; V (s

m

) by child-parent assignments. We now consider the cut hV (s

i

); (V�

V (s

i

))i. The edges of set hV (s

i

); (V � V (s

i

))i � E corresponding to hV (s

i

); (V � V (s

i

))i

form, together with their end vertices, the boundary B(s

i

) of region hV (s

i

)i. Conse-

quently, we refer to edges on the boundary as boundary edges, and call their end vertices

boundary faces, since vertices of G represent faces of G.

Note that cut hV (s

i

); (V � V (s

i

))i is a cutset if hV � V (s

i

)i is connected. If hV � V (s

i

)i

is not connected, then hV (s

i

); (V � V (s

i

))i contains more than one cutset. Therefore the

boundary B(s

i

) forms one or several circuits in G.

Figure 13 a shows graph G of Figure 12 a together with its dual G. In Figure 13 b,

s3

3n

n4

n2

s2

s1

n1

(a) Graph G and its dual G.

s3

3n

n4

n2

s2

s1

n1

(b) Cut hV (s

1

); V �V (s

1

)i and circuits on

boundary B(s

1

) (bold).

Figure 13: Cuts and boundaries.

25

edges of cut hV (s

1

); (V �V (s

1

))i are drawn in bold, as well as the boundary B(s

1

) of region

hV (s

1

)i. B(s

1

) consists of two circuits, since hV � V (s

1

)i is not connected and contains

two components, hV (s

2

)i and hV (s

3

)i.

Theorem 11 Consider a neighborhood graph G and a face graph G after Step 1 and 2 of

dual decimation. Consider further the set V

r

2 V of region faces and the set V

b

2 V of

boundary faces. Sets V

r

, V

b

form a partition of set V .

Proof : Clusters of surviving vertices form a partition of V . Therefore all edges e 2 E have

both end vertices either in the same cluster or in two di�erent clusters. Edges with end

vertices in two di�erent clusters correspond to boundary edges by De�nition 44. Therefore

edge set E is partitioned into boundary edges and non-boundary edges. This partition

of E also implies a partition of V into vertices that are end vertices of boundary edges

(boundary faces by De�nition 44) and those which are not.

Consider now a vertex v

n

2 V and the set E

n

� E of edges incident to v

n

. Edges of

set E

n

� E corresponding to E

n

form, together with their end vertices, a circuit C

n

in G.

If v

n

is not a boundary face, then E

n

does not contain a boundary edge, and every edge

of circuit C

n

has both end vertices in the same cluster. This is possible only if all vertices

of C

n

are in the same cluster, hence all edges e 2 E

n

have both end vertices in the same

cluster, and v

n

is a region face by De�nition 43.

We have shown that V is partitioned into vertices that are boundary faces and vertices

that are not boundary faces. We have further considered all vertices v

n

2 V that are not

boundary faces, and we have shown that v

n

are region faces, which proves the theorem.

6.4.3 Region edges and face trees

Vertices of the face graph are partitioned into region faces and boundary faces, as we have

shown in the previous section. We now reveal the correspondence between self-loops of

the neighborhood graph and edges incident on region faces, and show that these from

particular subgraphs of the face graph.

De�nition 45 A connected graph T is a tree if every two vertices of T are joint by a

unique path. We call the longest path P in T its trunc, and refer to the length of P as

the diameter of T . Connected subgraphs of T that contain a vertex of P , but no edge of

P , will be referred to as branches of T .

De�nition 46 A bridge of a graph G is an edge the removal of which increases the

number of components of G. If G is connected, then a bridge of G forms a one-element

cutset of G.

Theorem 12 Consider a neighborhood graph G and a face graph G after Steps 1 and 2

of dual decimation, and set E(s

i

) of edges of region hV (s

i

)i. Then all edges e 2 E(s

i

)

are self-loops at s

i

, and the edges e 2 E(s

i

) form, together with their end vertices, one or

several trees in G.

26

Proof : The end vertices of an edge (v; w) of a region hV (s

i

)i before child parent iden-

ti�cation are by de�nition both in cluster V (s

i

), v 2 V (s

i

); w 2 V (s

i

): After child-parent

identi�cation by dual contraction of edges, all children of s

i

are now identi�ed with s

i

, and

all edges of hV (s

i

)i that have not been dually contracted are self-loops at s

i

.

Self-loops e 2 E(s

i

) are circuits of length 1, hence every edge e 2 E(s

i

) is a bridge, and

connected subgraphs of G, formed by edges e 2 E(s

i

); are tree structures.

De�nition 47 Consider a neighborhood graph G and a face graph G after Step 1 and 2 of

dual decimation. Consider further connected subgraphs of G formed by dual region edges.

We refer to these subgraphs as face trees.

6.4.4 Elimination of region faces and boundary faces

Dual contraction of edges in the face graph is basically di�erent with respect to parallel

processing, depending whether a region face or a boundary face is eliminated. We will

show this in this section, using Lemma 4 about the degree of boundary faces.

Lemma 4 Let G and G be a pair of graphs after Steps 1 and 2 of dual decimation. Then

the degree of a boundary face v

b

is greater than or equal to two.

Proof : Boundary edges form circuits in G. Therefore every boundary face v

b

has at

least two boundary edges incident to it, hence d(v

b

) � 2. Boundary edges are not removed

during dual contraction of edges (Step 2 of dual decimation), since their corresponding

edges in G connect vertices of di�erent clusters, and not children to their parents. Hence

d(v

b

) � 2 for boundary faces also after Step 2 of dual decimation.

Theorem 13 Consider a neighborhood graph G and a face graph G after Step 1 and 2

of dual decimation. Consider further the elimination of a removable face v

%

2 V by dual

contraction of edge e

%

= (v

%

; w), and let w be of degree 3, hence w is not removable. Then

w may become removable after dual contraction of e

%

only if v

%

is a region face.

Proof : Vertex v

%

may only be either a region face or a boundary face due to Theorem 11.

If v

%

is a removable boundary face, then d(v

%

) = 2 due to Lemma 4, hence d(w) = 3 after

dual contraction of e

%

due to Lemma 2.

Assume now that e

%

is a region edge, hence v

%

is a region face end edge e

%

corresponding

to e

%

is a self-loop at a survivor s

i

. Then e

%

is a bridge and may therefore be the only edge

incident to v

%

, hence d(v

%

) = 1; and d(w) = 2 after dual contraction of e

%

due to Lemma 2.

We have distinguished vertices of the face graph that are either region faces or boundary

faces. We have shown that the removal of a boundary face by dual contraction in the face

graph cannot create a new removable face. We have further shown that the removal of a

region face by dual contraction in the face graph can create a new removable face. This

proves the theorem since a vertex of the face graph may only be either a region face or a

boundary face.

27

Theorem 14 Consider a neighborhood graph G and a face graph G after Step 1 and 2

of dual decimation. Consider further the elimination of a removable face v

%

2 V by dual

contraction of edge e

%

= (v

%

; w). Then edge e

%

2 E corresponding to e

%

is a self-loop if and

only if v

%

is a region face. Edge e

%

2 E corresponding to e

%

is one of two parallel edges if

and only if v

%

is a boundary face.

Proof : Edges incident to a region face are region edges by De�nition 43. The correspon-

dence between region edges and self-loops after Step 2 of dual decimation has been stated

in Theorem 12, hence self-loops are eliminated from G if region faces are removed by dual

contraction operations in G.

Assume now that e

%

is a region edge and v

%

is not a region face, hence a boundary face

due to Theorem 11. Then d(v

%

) � 3 since a boundary face has at least two boundary edges

incident to it, cf. Lemma 4. The assumption that e

%

be a self-loop and v

%

be a removable

boundary face leads to a contradiction which proves that self-loops are eliminated from G

only if region faces are removed by dual contraction operations in G.

If edge e

%

is a boundary edge, then it corresponds to one of two parallel edges in G as

stated in Theorem 5, and its end vertices are both boundary faces due to De�nition 44.

Therefore parallel edges are eliminated from G if boundary faces are removed by dual

contraction in G.

Region faces cannot be end vertices of boundary edges due to De�nition 44, hence

parallel edges are eliminated from G only if boundary faces are removed by dual contraction

in G.

6.4.5 Self-loop removal is sequential but local

The most important result of Section 6.4.4 is that the removal of a self-loop in G is

equivalent to the removal of a region face by dual contraction in G, and that only the

removal of a region face may create a new removable face. Face contraction is consequently

a sequential process since the removability of a face (region or boundary face) may depend

on the removal of an adjacent region face.

We consider now the faces the removability of which can be a�ected by the removal of

a region face v

i

. Since these faces must be adjacent to v

i

, we state Theorem 15 about the

neighborhood relations of a region face.

Theorem 15 Let hV (s

i

)i be a region of a neighborhood graph G, and let B(s

i

) be its

boundary. Then a face v

i

of hV (s

i

)i can be adjacent in G only to another face of hV (s

i

)i

or to a face of B(s

i

).

Proof : Consider v

i

and an adjacent face w. If edge e

i

= (v

i

; w) 2 E; then edge e

i

=

(v

i

; w) 2 E: Also, both end vertices of e

i

are in cluster V (s

i

) since v

i

is a face of region

hV (s

i

)i; cf. De�nition 43. Since the set V

r

of region faces and the set V

b

of boundary faces

form a partition of V , w can only be one of the following:

1. a face of region hV (s

i

)i;

28

2. a face of boundary B(s

i

);

3. a face of region hV (s

j

)i; j 6= i;

4. a face of boundary B(s

j

); j 6= i:

ad 1, 2: For an example see Figure 14. Region hV (s

i

)i has two faces u, w. Boundary

s
j

s
i

s
k

s
l

s
m

v
b7

v
b2

v
b10

v
b9

v
b8

v
b6

v
b1 v

b3

v
b4

v
b5

w
u

Figure 14: Neighborhood relations of a face of region hV (s

i

)i.

B(s

i

) is outlined in bold. Region face w is adjacent to a face of the same region,

(u; w) 2 E, as well as to faces v

b3

and v

b6

of B(s

i

):

For the discussion of Cases 3 and 4, we consider the set E

w

� E of edges incident to w.

Edges of set E

w

� E corresponding to E

w

form, together with their end vertices, a circuit

C

w

in G.

ad 3: all vertices of C

w

are in V (s

j

), hence both end vertices of e

i

are in both V (s

i

) and

V (s

j

) which is a contradiction since clusters form a partition of V ;

ad 4: none of the vertices of C

w

is in V (s

i

), otherwise w would be a face of B(s

i

) or

hV (s

i

)i; hence both end vertices of e

i

are both in V (s

i

) and not in V (s

i

) which is a

contradiction.

We have listed all possibilities of vertex w belonging to regions or boundaries. Figure 14

displays an example for the assignment of w to either hV (s

i

)i or B(s

i

). We have further

shown that the assignment of w to either hV (s

j

)i or B(s

j

); j 6= i, leads to a contradiction,

which proofs the theorem.

Theorem 16 Consider a neighborhood graph G and a face graph G after Step 1 and 2 of

dual decimation, with self-loops at surviving vertices. Then the elimination of self-loops by

dual contraction of region edges can be executed independently in each region.

29

Proof : We proof the theorem in that we show that the elimination of face v

i

of a region

hV (s

i

)i by dual contraction of a dual region edge can cause new removable faces only in

hV (s

i

)i or in B(s

i

):

Face v

i

can be adjacent to faces of hV (s

i

)i and its boundary B(s

i

) only, as stated in

Theorem 15. Out of the faces neighboring to v

i

, only boundary faces are adjacent to faces

of other regions. The removal of boundary faces, however, cannot cause new removable

faces due to Theorem 13. Therefore the removal of faces in region hV (s

i

)i cannot cause

removable faces in any other region of G.

6.4.6 Complexity of self-loop elimination

Although the elimination of self-loops has a sequential character to it, it can be executed

independently for every region of the neighborhood graph. We are now interested in an

upper bound for the time complexity of self-loop elimination, but we should not start our

considerations without pointing out that redundant edges of a neighborhood graph cannot

always be eliminated completely.

Figure 15 a shows the example of a region in which self-loops remain after face contrac-

tion. Region hV (s

1

)i encloses regions hV (s

2

)i and hV (s

3

)i. The boundaries of the enclosed

1s

s3

s2

s4

(a) Dual graphs before dual con-

traction.

1s

s3

s2

s4

vr

vb2

vb1

vb3

(b) Result after dual

contraction.

1s

s2

s4

s3

vr

vb2

vb1

vb3

(c) Result after face con-

traction.

Figure 15: Example graph with remaining edge redundancies.

regions are connected to the rest of the face graph via edges e 2 E(s

1

) corresponding to

edges e 2 E(s

1

).

After Step 1 of dual decimation, the face tree of hV (s

1

)i contains paths P

b

connecting

di�erent boundary faces v

b1

, v

b2

, v

b3

, (outlined in bold in Figure 15 b). Paths P

b

are not

30

eliminated because their end vertices are not of degree 1. Edges incident to region face v

r

connect v

r

to three di�erent boundary faces. Face v

r

has therefore degree 3 and does not

become removable during face contraction (Figure 15 c).

Theorem 17 Let G(V;E) and G(V ;E) be dual graphs, and let D(G) denote the maximum

degree of a vertex in G. Consider both graphs after Steps 1 and 2 of dual decimation, and

let a subset of E be self-loops at surviving vertices. Then all self-loops that can be eliminated

during face contraction are eliminated after O(log(D(G))

2

) parallel processing steps.

Proof : Edges e

s

2 E corresponding to self-loops e

s

2 E at one surviving vertex s

i

form,

together with their end vertices, local tree structures in G. Dual contraction of edges e

s

is independent of dual contraction of any other edge e corresponding to a self-loop at a

survivor other than s

i

. We �rst give an upper bound for the number k

s

of self-loops at

a single survivor. Only edges having no end vertex other than s

i

or children of s

i

can be

self-loops at s

i

after dual contraction of edges. An upper bound for k

s

is therefore the

maximum number of edges incident to the neighbors of a vertex v 2 V , hence O(D(G)

2

):

The second step of the proof is to give an upper bound for the number of parallel

processing steps to eliminate all removable faces of region hV (s

i

)i. Therefore we consider

a tree T of diameter l formed by edges e

s

and the trunc P of T . Every vertex in P may be

a vertex of one or several branches of T . We distinguish two phases of the elimination of

self-loops, the elimination of removable faces of branches and the elimination of removable

faces of P .

After the elimination of removable faces in branches, a subset of vertices of P are

removable faces. Adjacent removable faces de�ne one or several subsequences of P . These

subpaths can be removed in parallel by face contraction. The time for the elimination of

all subpaths is thus determined by the length l

s

of the longest subpath, an upper bound

for l

s

is l.

Steps 1 through 3 of face contraction eliminate between

1

2

and

2

3

of the removable faces

in each subpath, hence log

2

(l) + 1 is an upper bound for the number of parallel processing

steps to eliminate all removable faces in P .

Let T

�

2

denote a largest branch of a tree of diameter �. Then T l

2

containing a vertex

in P determines the maximum time for the elimination of removable faces in all branches

connected to P . The largest branch of a T l

2

is a T l

4

and so on until a T

2

with a largest

branch T

1

of diameter 1.

We assume that T

1

has a pendant vertex that needs one step to be eliminated. We

further assume that every branch waits until all removable faces in its largest branch are

eliminated, before edges of its trunc are dually contracted. Then all removable faces of

hV (s

i

)i are eliminated by face contraction after

1 + 2 + 3 + : : :+ (log

2

(l) + 1) =

(log

2

(l) + 1) � (log

2

(l) + 2)

2

(1)

=

log

2

(l)

2

+ 3 � log

2

(l) + 2

2

(2)

= O(log

2

(l)

2

) (3)

31

processing steps. To obtain the �nal result, we assume that

l = k

s

= D(G)

2

; (4)

hence

log

2

(D(G)

2

)

2

= 4 � log

2

(D(G))

2

(5)

= O(log(D(G))

2

) (6)

for the time complexity of the elimination of self-loops in G.

6.4.7 Complexity of the elimination of parallel edges

Theorem 18 Let G(V;E) and G(V ;E) be dual graphs, and let D(G) denote the maximum

degree of a vertex in G. Consider both graphs after Steps 1 and 2 of dual decimation, and

let a subset of E be parallel edges connecting surviving vertices. Then all parallel edges

that can be eliminated during face contraction are eliminated after O(log(D(G))) parallel

processing steps.

Proof : Edges e

p

2 E corresponding to parallel edges e

p

2 E between surviving vertices

form, together with their end vertices, paths or circuits in G. We �rst give an upper bound

for the number k

p

of parallel edges connecting two survivors. We assume that all neighbors

of a survivor s

1

are its children, and that s

1

is connected to only one other survivor s

2

after dual contraction of edges. An upper bound for k

p

is therefore the maximum number

of edges incident to the neighbors of a vertex v 2 V , hence D(G)

2

:

We now assume that all k

p

end vertices of edges (s

1

; s

2

) except one are removable

faces. The number of parallel processing steps to eliminate adjacent removable faces has

already been calculated in the proof of Theorem 17. In analogy to this proof, we can

immediately state that the elimination of parallel edges by face contraction is executed in

O(log(D(G)

2

)) = O(log(D(G)) parallel processing steps.

6.4.8 Conclusion: Complexity of face contraction

We conclude by stating Theorem 19 about the upper bound to the number of parallel

processing steps needed for face contraction.

Theorem 19 Let G(V;E) and G(V ;E) be dual graphs, and let D(G) denote the maximum

degree of a vertex in G. Consider both graphs after Steps 1 and 2 of dual decimation. Then

face contraction terminates after O(log(D(G))

2

) parallel processing steps.

Proof : The elimination of self-loops due to the contraction of dual region edges may

create new removable faces. A worst case assumption is therefore that no boundary face

is removable until all removable faces have been eliminated during face contraction.

With the results of Theorems 17 and 18 we obtain the following estimation for the time

complexity of face contraction:

O(log(D(G))

2

) +O(log(D(G))) = O(log(D(G))

2

):

32

7 Conclusion

In this paper we have presented an algorithm that simpli�es a discrete representation of a

two dimensional space. The algorithm is based on local operations tht can be executed in

parallel by independently operating processing elements. Applied recursively, the algorithm

can build an irregular, potentially adaptive multiresolution representation of the space.

As a conclusion we would like to point out a perspective for an extension of the scope

of the algorithm to three and higher dimensions. We recall that we select a vertex subset

of a connected graph G, to which we refer as the neighborhood graph. Vertices of the

dual of G, G, represent two dimensional entities, i.e. the faces of the planar embedding

of G. These representatives are eliminated during face contraction as a consequence of

preliminary dual contractions of edges in the neighborhood graph.

We now consider G and the faces of its planar embedding, in literature referred to as

the plane map of G [9, p. 103]. In addition to elements of dimension 0 (vertices) and

1 (edges), a plane map also contains faces, as space elements of dimension 2. Sets of

space elements of arbitrary dimension are referred to as cellular or simplicial complexes

in classical topology [20], founded by Listing [16, loc. cit. [6]]. Dehn and Heegaard [6]

referred to classical topology as analysis situs, and provided a system of axioms for the

analysis of three dimensional spaces. Recently, Kovalevsky propagated cellular complexes

for use in the �eld of image analysis [12, 13]. A cellular complex of dimension n is a set of

abstract space elements of dimension 0; : : : ; n, where elements of dimension k are bounded

by elements of dimension 0; : : : ; k � 1, k = 1; : : : ; n. Hence, 0- and 1-dimensional space

elements are bounding elements of all other dimensions 2; : : : ; n.

This homogeneous representation provides a perspective to generalize dual decimation

to obtain a process that can derive an irregular multiresolution representation of a 3D

discrete space.

References

[1] Claude Berge. Graphs. North-Holland, 3rd edition, 1991.

[2] Etienne Bertin. Diagrammes de Vorono�� 2D and 3D: Applications en Analyse

d'Images. PhD thesis, Universit�e Joseph Fourier - Grenoble I, Laboratoire TIMC,

B.P. 53 X, F-38041 Grenoble CEDEX, France, 1994.

[3] M. Bister, J. Cornelis, and A. Rosenfeld. A critical view of pyramid segmentation

algorithms. Pattern Recognition Letters, 11(9):605{617, September 1990.

[4] Virginio Cantoni and Stefano Levialdi, editors. Pyramidal Systems for Computer

Vision. Springer Verlag, 1986.

[5] Nicos Christo�des. Graph Theory - An Algorithmic Approach. Academic Press, New

York, London, San Francisco, 1975.

33

[6] M. Dehn and P. Heegaard. Analysis situs. In Enzyklop�adie der Mathematischen

Wissenschaften, Bd. IIIAB3, pages 154{220, January 1907.

[7] R.O. Duda and P.E. Hart. Pattern Classi�cation and Scene Analysis. Wiley, 1973.

[8] Robert M. Haralick and Linda G. Shapiro. Glossary of computer vision terms. Pattern

Recognition, 24(1):69{93, 1991.

[9] F. Harary. Graph Theory. Addison-Wesley, Reading, Mass., 1972.

[10] Jean-Michel Jolion and Annick Montanvert. The adaptive pyramid, a framework

for 2D image analysis. Computer Vision, Graphics, and Image Processing: Image

Understanding, 55(3):339{348, May 1992.

[11] Jean-Michel Jolion and Azriel Rosenfeld. A Pyramidal Framework for Early Vision.

Kluwer Academic Publishers, Dordrecht / Boston / London, 1994.

[12] Vladimir A. Kovalevsky. Finite Topology as Applied to Image Analysis. Computer

Vision, Graphics and Image Processing, 46:141{161, 1989.

[13] Vladimir A. Kovalevsky. Digital Geometry Based on the Topology of Abstract Cell

Complexes. In Jean-Marc Chassery, Jean Fran�con, Annick Montanvert, and Jean-

Pierre R�eveill�es, editors, G�eometrie Discr�ete en Imagery, Fondements et Applications,

pages 259{284, Strasbourg, September 1993.

[14] Walter G. Kropatsch and Annick Montanvert. Irregular versus regular pyramid struc-

tures. In U. Eckhardt, A. H�ubler, W. Nagel, and G. Werner, editors, Geometrical

Problems of Image Processing, pages 11{22, Georgenthal, Germany, March 1991. Aka-

demie Verlag, Berlin.

[15] Walter G. Kropatsch, Christian Reither, Dieter Willersinn, and Guenther Wlaschitz.

The dual irregular pyramid. In 5th International Conference CAIP'93 on Computer

Analysis of Images and Patterns, pages 31{41, Budapest, Hungary, September 1993.

[16] J. B. Listing. Vorstudien zur Topologie. G�ottinger Studien, 1847.

[17] Peter Meer. Stochastic image pyramids. Computer Vision, Graphics, and Image

Processing, 45(3):269{294, March 1989.

[18] Annick Montanvert, Peter Meer, and Azriel Rosenfeld. Hierarchical image analysis

using irregular tesselations. IEEE Transactions on Pattern Recognition and Machine

Intelligence, 13(4):307{316, April 1991.

[19] Azriel Rosenfeld, editor. Multiresolution Image Processing and Analysis. Springer

Verlag, 1984.

[20] John Stillwell. Classical Topology and Combinatorial Group Theory. Springer-Verlag,

New York, 2nd edition, 1993.

34

[21] K. Thulasiraman and M. N. S. Swamy. Graphs: Theory and Algorithms. Wiley-

Interscience, 1992.

[22] J. K. Tsotsos. Analyzing Vision at the Complexity Level. Behavioral and Brain

Sciences, 13(3):423{469, 1990.

[23] Leonard Uhr, editor. Parallel Computer Vision. Academic Press, Inc., 1987.

[24] H. Whitney. The coloring of graphs. Ann. Math., 2(33):688{718, 1932.

[25] H. Whitney. Congruent graphs and the connectivity of graphs. Amer. J. Math.,

(54):150{168, 1932.

[26] H. Whitney. Non-separable and planar graphs. Trans. Amer. Math. Soc., (34):339{

362, 1932.

[27] Dieter Willersinn, Etienne Bertin, and Walter G. Kropatsch. Dual Irregular Voronoi

Pyramids and Segmentation. Technical Report PRIP-TR-027, PRIP, TU Wien, 1994.

[28] Dieter Willersinn and Walter G. Kropatsch. Dual Graph Contraction for Irregular

Pyramids. In 12

th

International Conference on Pattern Recognition (in press), Jeru-

salem, October 1994.

35

