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Abstract

Dual graph contraction reduces the number of vertices and of edges of a pair of dual image

graphs while, at the same time, the topological relations among the 'surviving' components

are preserved. Repeated application produces a stack of successively smaller graphs: a pair

of dual irregular pyramids. The process is controlled by selected decimation parameters

which consist of a subset of surviving vertices and associated contraction kernels. Equiva-

lent contraction kernels (ECKs) combine two or more contraction kernels into one single

contraction kernel which generates the same result in one single dual contraction. Decima-

tion parameters of any individual pyramid level can be reconstructed from the ECK of the

pyramid's apex if both vertices and edges of this ECK receive labels indicating their anni-

hilation level in the pyramid. This is a labeled spanning tree (LST) of the base graph which

allows e�cient design and control of di�erent types of dual irregular pyramids. Since the

LST determines the pyramid, primitive modi�cations of the LST transform also pyramids

into other pyramids on the same base graph. They open a large variety of possibilities to

explore the domain of 'all' pyramids.
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1 Introduction

A raw digital image consists of a 2D spatial arragement of pixels each of which results from

measuring the light at a speci�c location of the image plane. Currently most of the arti�cial

sensors (e.g. CCD cameras) have the rigid structure of an orthogonal grid, whereas most

natural vision systems are based on non-regular arrangements of sensors [1]. Although arrays

are certainly easier to manage technically, topological relations seem to play an even more

important role for vision tasks in natural systems than precise geometrical positions.

A second aspect concerns the projection from the real (3D-) world into the 2D image.

Surfaces of 3D-objects re
ect the light in a very speci�c way that somehow 'codes' the

structure of the object: re
ectivity within homogeneous regions does not vary much, it

changes abruptly between di�erent surfaces or from the object to its background [18]. The

topological structure on a visible surface patch is preserved in the image while its geometry

may be severly distorted. But also the arrangement of di�erent objects in the 3D-world will

be mapped to the regions in the image, be it regularly or irregularly sampled. Hence the idea

pursuit in this paper to start with arbitrarily but densely sampled measurements of which

only the topology is known and to successively shrink the number of descriptive elements

until the structure of the imaged scene becomes evident.

The third aspect addresses computer vision models. They have in general a parame-

tric and a structural component. While parameter optimization models quantitative image

properties well, the qualitative image and scene properties rely more on the structural com-

ponent.

The presented approach addresses a representation of pure structure, a hierarchy of

plane graphs, with a clear interface, the decimation parameters, to control generation and

modi�cation of the structure. Dual graph contraction is the basic process [13] that builds

an irregular 'graph' pyramid by successively contracting a dual image graph of one level into

the smaller dual image graph of the next level. Dual image graphs are typically de�ned

by the neighborhood relations of image pixels or by the adjacency relations of the region

adjacency graph. The above concept has been used for �nding the structure of connected

components [17, 14]. It also embeds Meer's stochastic pyramid [21], the adaptive pyramid [9],

and a further variant of Meer's approach, Mathieu's optimal stochastic pyramid [20] which

produced excellent segmentation results by decimating a minimal spanning tree instead of

the original graph.

The paper is organized as follows. We �rst summarize and illustrate the procedure of dual

graph contraction in Section 2. The observation that the parameters that control the process

form forests is then generalized by the concept of contraction kernels. Originally of depth

one, deeper forests are now permitted and allow bigger contractions. They are necessary if

repeated dual contractions are to be replaced by a single dual contraction using equivalent

contraction kernels (section 2.2). ECKs are able to compute any level of an irregular pyramid

directly from the base. Decimation parameters can be designed now at the base without the

need to �rst generate the lower pyramid levels. The ECK of the apex becomes especially

important in section 3. If labels are attached to the vertices and edges of this spanning tree

all the individual decimation parameters can be recovered from this representation which is
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Figure 1: Dual Graph Contraction: (G

i+1

; G

i+1

) = C[(G

i

; G

i

); (S

i

; N

i;i+1

)]

embedded in the base graph. As a consequence the labeled spanning tree (LST) determines

the structure of the dual irregular pyramid completely. We therefore study in the sequel

further methods to build (Section 4) and �nally to modify this LST. It is the cue to de�ne

primitive operations (Section 5) that allow to explore the space of all possible dual irregular

pyramids that can be built on top of a given base graph. The conclusion (Section 6) contains

an outlook (Section 6.1) on potential further directions of research.

2 Dual Graph Contraction

Fig. 1 summarizes the two basic steps: dual edge contraction and dual face contraction.

The base of the pyramid consists of the pair of dual image graphs (G

0

; G

0

). We repeat

the de�nition of the parameters determining the structure of an irregular pyramid given in

[13][Def.5]:

De�nition 1 In a pair of dual image graphs (G

i

(V

i

; E

i

); G

i

(V

i

; E

i

)), following decimation

parameters (S

i

; N

i;i+1

) determine the contracted graphs (G

i+1

; G

i+1

): a subset of surviving

vertices S

i

= V

i+1

� V

i

, and a subset of primary non-surviving edges

1

N

i;i+1

� E

i

.

Every non-surviving vertex, v 2 V

i

n S

i

, must be connected to one surviving vertex in a

unique way:

8v 2 V

i

n S

i

9s 2 S

i

: (v; s) 2 N

i;j

: (1)

The relation between the two pairs of dual graphs, (G

i

; G

i

) and (G

i+1

; G

i+1

), as established

by dual graph contraction with decimation parameters (S

i

; N

i;i+1

) is expressed by function

C[:; :]:

(G

i+1

; G

i+1

) = C[(G

i

; G

i

); (S

i

; N

i;i+1

)] (2)

1

Secondary non-surviving edges are removed during dual face contraction.
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Figure 2: Three Cases of Dual Graph Contraction
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Fig. 2 illustrates

2

the three di�erent con�gurations around a primary non-surviving edge

and explains also the di�erent treatment. Fig. 2a) shows a normal dual edge contraction

where no redundant faces are generated. The edges of the non-surviving vertex are drawn

to its surviving parent. Multiple edges are generated in Fig. 2b) after dual edge contraction,

and self-loops in Fig. 2c). The lower half of the �gures shows a redundant face, while the

upper halfs contain in both cases a surviving vertex. Dual face contraction can simplify the

lower con�gurations, but not those in the upper half: any further contraction would change

the existing neighbor relations.

Two steps of dual graph contraction shows the example of Fig. 3. They can be formally

written as (G

1

; G

1

) = C[(G

0

; G

0

); (S

0

; N

0;1

)], and (G

2

; G

2

) = C[(G

1

; G

1

); (S

1

; N

1;2

)]. Note

that graph G

2

in this example contains both a self-loop and a double edge. It has been used

in [13] to show the di�erence between three di�erent types of graph contractions.

2.1 Decimation with Contraction kernels

Let us �rst reconsider the decimation parameters chosen in our example graph (Fig. 3d,

e, f, levels i = 0; 1; 2 resp.). The connected components

3

CC(s); s 2 S, of subgraph

(S;N) form small tree structures T (s) that collaps into vertex s of the contracted graph:

T (s) := (CC(s); N \ (CC(s)� CC(s))). Their union are the primary non-surviving edges

N . T (s) is a spanning tree of the connected component CC(s), or equivalently, (V;N) is

a spanning forest of graph G(V;E). We therefore relax constraint (1) and require only the

above observed properties:

De�nition 2 A decimation of a graph G(V;E) is speci�ed by a selection of surviving

vertices S � V and a selection of primary non-surviving edges N � E such that following

two conditions are ful�lled:

1. Graph (V;N) is a spanning forest of graph G(V;E).

2. The surviving vertices S � V are the roots of the forest (V;N).

The trees T (v) of the forest (V;N) with root v 2 V are called contraction kernels.

Instead of joining non-surviving vertices by an edge to their corresponding surviving parent

vertex, the new concept establishes this connection via paths of non-surviving edges (e.g.

branches of the trees). The concept of connecting path as introduced in [13][Def.6] is adapted

accordingly:

De�nition 3 Let G(V,E) be a graph with decimation parameters (S;N). A path in G(V;E)

is called a connecting path between two surviving vertices v; w 2 S, denoted CP (v; w), if

it consists of three subsets of edges E (Fig. 4):

2

In �gures, S

i

= f�g, V

i+1

= f g, V

i

n S

i

= f�g, V

i

n V

i+1

= f g and (�; �) 2 N

i;j

are indicated by

-

.

3

Neglected indices refer to contraction from level i to level i+ 1.
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Figure 4: Decomposition of connecting path CP (v; w)

1. The �rst part is a possibly empty branch of contraction kernel T (v).

2. The middle part is an edge e 2 E nN that bridges the gap between the two contraction

kernels T (v) and T (w). We call e the bridge of the connecting path CP (v; w).

3. The third part is a possibly empty branch of contraction kernel T (w).

Connecting paths CP (v; w) in G(V;E) are strongly related to the edges in the contracted

graph G

0

(V

0

; E

0

): Two di�erent surviving vertices that are connected by a connecting path in

G are connected by an edge in E

0

. For every edge e

0

= (v; w) 2 E

0

there exists a connecting

path CP (v; w) in G. Dual edge contraction can be implemented by (1) simply renaming

all the non-surviving vertices to their surviving parent vertex, (2) deleting all non-surviving

edges N and (3) their duals N .

s

s

s

s

s

s

s

6

?

� -

�

��

@

@I

- �

-� � -

?

6 6 6

- �

6

?

-

6

�

?

-�

6

?

-�

?

�

?

�

H

H

H

HY

6

6

�

�

�

�*

6

6

6

6

-

6

- - -

6

�

6

-

6

6

�

6

��

?
�

?

- -

�

�

�B

B

B

�

�

��

�

�

�

P

P

P

�

�

�

�

�

�

�

�

�

P

P

P

P

P

�

�

�

�

�

�

�

�

b

b"

"

B

B

B

B

B

B

b

b

b

b

b

b

b

'

&

$

%

�

�

�

�

$

%

�


 �

�


��

	�

	

�


	

��




� �

� 	

� �


 	

�

�

�




�

	

(a) (V

2

; N

0;2

) (b) (V

0

; E

0

nN

0;2

) (c) (V

2

; E

2

) [ (V

2

; E

2

)

Figure 5: Example of equivalent contraction kernel

Fig. 5a shows di�erent decimation parameters: Survivors S = V

2

are selected and the

contraction kernels N

0;2

cover G

0

. Like in a maze the edge-contracted face graph (Fig. 5b),
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G

�

0

(V

0

; E

0

nN

0;2

), �lls in the holes left between the contraction kernels. Dual face contraction

deletes all degree-one faces and shortens redundant connections established by the degree-two

faces, resulting in G

2

. In Fig. 5c the preserved duality of (G

2

; G

2

) can be veri�ed.

2.2 Equivalent contraction kernels

Burt [6] introduced the 'equivalent weighting function': \Iterative pyramid generation is

equivalent to convolving the image g

0

with a set of 'equivalent weighting functions' h

l

:" g

l

=

h

l

� g

0

= h � g

l�1

; l > 1. It allowed him to study the e�ects of iterated reduction (e.g. the

low-pass character of Gaussian pyramids) using the single parameter h

l

without giving up

the e�cient iterative computation.

(G

k�2

; G

k�2

) (G

k�1

; G

k�1

) (G

k

; G

k

)

-

(S

k�2

; N

k�2;k�1

)

-

(S

k�1

; N

k�1;k

)

(S

k�1

; N

k�2;k

)

6

Figure 6: Equivalent contraction kernel

Similarly we combine two (and more) dual graph contractions (see Fig. 6) of graph

G

k�2

, k > 2 with decimation parameters (S

k�2

; N

k�2;k�1

) and (S

k�1

; N

k�1;k

) into a single

equivalent contraction kernel (ECK) N

k�2;k

= N

k�2;k�1

�N

k�1;k

(for simplicity G

i

stands

for (G

i

; G

i

) ):

C[C[G

k�2

; (S

k�2

; N

k�2;k�1

)]; (S

k�1

; N

k�1;k

)] = C[G

k�2

; (S

k�1

; N

k�2;k

)]

= G

k

(3)

Equivalent contraction kernels are constructed in the following way:

Assume that the dual irregular pyramid ((G

0

; G

0

); (G

1

; G

1

); : : : ; (G

k

; G

k

)), k > 1, is the

result of k dual graph contractions. The structure of G

k

is fully determined by the structure

of G

k�1

and the decimation parameters (S

k�1

; N

k�1;k

). Furthermore, the structure of G

k�1

is determined by G

k�2

and the decimation parameters (S

k�2

; N

k�2;k�1

). S

k�2

:= V

k

are the

vertices surviving from G

k�2

to G

k

. The searched contraction kernels must be formed by

edges N

k�2;k

� E

k�2

. This is true for N

k�2;k�1

but not for N

k�1;k

� E

k�1

if we would

simply overlay the two sets of decimation parameters. An edge e

k�1

= (v

k�1

; w

k�1

) 2 N

k�1;k

corresponds to a connecting path

4

CP (v

k�1

; w

k�1

) in G

k�2

. By de�nition 3, CP (v

k�1

; w

k�1

)

consists of one branch of T

k�2

(v

k�1

), one branch of T

k�2

(w

k�1

), and one surviving edge

e

k�2

2 E

k�2

connecting the two contraction kernels T

k�2

(v

k�1

); T

k�2

(w

k�1

).

4

If there are more than one connecting paths, one must be selected.
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De�nition 4 Function bridge: E

k�1

7! E

k�2

assigns to each edge e

k�1

= (v

k�1

; w

k�1

) 2

E

k�1

one of the bridges e

k�2

2 E

k�2

of the connecting paths CP (v

k�1

; w

k�1

):

bridge(e

k�1

) := e

k�2

: (4)

Two disjoint tree structures connected by a single edge become a new tree structure. The

result of connecting all contraction kernels T

k�2

by bridges ful�lls the requirements of a

contraction kernel:

N

k�2;k

:= N

k�2;k�1

[

[

e

k�1

2N

k�1;k

bridge(e

k�1

) (5)

The contraction kernels (V

2

; N

0;2

) in Fig. 5a are equivalent to the successive contraction with

kernels of Fig. 3d and e.
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Figure 7: Example of ECK of apex: G

0

[N

0;4

The above process can be repeated on the remaining contraction kernels until the base

level 0 contracts in one step into the apex V

n

= fv

n

g. The edges of the corresponding

spanning tree are contained in N

0;n

. Fig. 7 shows spanning tree N

0;4

overlaid with the base

graph G

0

. The apex, v

4

2 V

4

, is marked by a �lled circle and the edges of the spanning tree

N

0;4

are di�erentiated from edges E

0

by triple lines.

8



2.3 Contracting the regions of a segmentation

One step to recover the structure of the scene from the projected structure in the image is

to �nd the adjacency relations between the regions of a segmentation [17, 14]. Pyramids

are computationally very e�cient and can be used for segmentation. However they do not

always produce satisfactory results (see [5]). Problems occure in particular if we require that

every region of the segmentation is shrunk to only one pyramidal cell and that they are all

represented at the same level of the pyramid. Then there exist counterexamples for all the

regular pyramid segmentation algorithms as well as for all the irregular pyramids based on

the maximum independent set. This is due to the fact that in all these pyramid schemes

the factor of reduction is bounded, hence a segmentation with both a very small region and

a very large region cannot appear at the same level. But also the size, the diameter, and

the shape of the receptive �elds cannot vary arbitrarily. In regular pyramids receptive �elds

have prede�ned regular shapes: squares, octagones, hexagones, ... (for more details see [12]).

Pyramid (re-)linking allows a �ne tuning of region shapes by removing certain cells of

the receptive �eld because they link to another ancester. But the resulting regions always

�t inside the original region. Besides the restrictions imposed by the limited number of

neighbors (due to regularity all interior cells have the same number of neighbors) the classical

pyramid linking may also destroy the connectivity of the receptive �elds [24]. Nacken's

modi�cations not only preserve the connectivity of the receptive �elds, but they also extend

the original linking concept: links may move to any neighbor of a (newly) chosen parent even

if it is not a neighbor of its original parent. As a consequence the number of neighbors of a

cell may grow higher than in the initial state, and also the receptive �elds can grow beyond

the borders in the regular pyramid. Nacken's modi�cation allows a much larger variety of

shapes for receptive �elds although it is not yet clear whether they span the same domain

as in the dual irregular pyramids.

The new concept of contraction kernels allows di�erent factors of contraction at di�erent

image regions. The following proposition proves that all possible segmentations (as de�ned

in [25]) can be represented using contraction kernels. Note that any homogeneity predicate

can be used to de�ne the segmentation

n

S

i=1

R

i

.

Proposition 1 Let

n

S

i=1

R

i

= V

0

; R

i

\ R

j

6= ; be a partition of the vertex set into connected

regions R

i

. Then there exists a dual irregular pyramid ((G

0

; G

0

); (G

1

; G

1

); : : : ; (G

k

; G

k

)) built

by dual graph contraction such that

1. All vertices v

k

2 V

k

in the top level appear in exactly one region R

i

.

2. card(V

k

) = n.

3. card(R

i

\ V

k

) = 1 for all regions R

i

.

4. Let v

i

2 R

i

\ V

k

and v

j

2 R

j

\ V

k

, i 6= j; then (v

i

; v

j

) 2 E

k

, R

i

and R

j

are adjacent.

9



Proof : (by construction of decimation parameters)

1. Cover each region R

i

by a spanning tree T

i

� G

0

. This is possible since the regions

are connected.

2. Select one vertex t

i

as root in every spanning tree T

i

.

3. Surviving vertices S = ft

i

ji = 1; : : : ; ng and the edges N of all spanning trees T

i

satisfy

the conditions for decimation parameters, e.g.

n

S

i=1

T

i

forms a spanning forest of G

0

.

4. Edges e

k

2 E

k

of the dually contracted graph (V

k

; E

k

) = C[G

0

; (ft

i

g; N)] are determi-

ned by connecting paths in G

0

with bridges (v

i

; v

j

) 2 E

0

between region R

i

and region

R

j

where v

i

2 R

i

and v

j

2 R

j

.

This construction generates (G

k

; G

k

) in a single step. We shall see in the following sections

how the intermediate levels can be generated if necessary. For the proof the existence of

such a pyramid is su�cient.

3 One representation for all selections

Bottom-up construction of a dual irregular pyramid ((G

0

; G

0

); (G

1

; G

1

); : : : ; (G

n

; G

n

)) is for-

mally described by dual contraction:

(G

i+1

; G

i+1

) = C[(G

i

; G

i

); (V

i+1

; N

i;i+1

)] i = 0; 1; : : : ; n� 1 (6)

N

i;i+1

denotes the subset of primary non-surviving edges at level i, e.g. N

i;i+1

� E

i

, that

disappear during contraction of level i. Using the concept of equivalent contraction kernel,

N

i;i+k

= N

i;i+1

�N

i+1;i+2

� : : : �N

i+k�1;i+k

80 � i; 0 � k; i + k � n (7)

can be constructed such that any arbitrary level i can be directly derived from level 0:

(G

i

; G

i

) = C[(G

0

; G

0

); (S

i�1

; N

0;i

)] i = 1; : : : ; n (8)

Following Table (9) summarizes all ECKs based on graph G

0

. The left-side graph G

i

can

be dually contracted using contraction kernel (V

k

; N

i;k

) in the same row into graph G

k

as

shown in the last row. To produce higher pyramid levels with less vertices, obviously more

edges need to be contracted as expressed by N

i;k

� N

i;k+1

.

G

0

N

0;1

� N

0;2

� N

0;3

� : : : � N

0;n

G

1

N

1;2

� N

1;3

� : : : � N

1;n

G

2

N

2;3

� : : : � N

2;n

.

.

.

.

.

.

.

.

.

G

n�1

N

n�1;n

G

1

G

2

G

3

: : : G

n

(9)
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In a tree the number of vertices is one more than the number of edges. The decimation

parameters (V

i+1

; N

i;i+1

) span the vertices V

i

with card(V

i+1

) subtrees, hence

card(V

i

) = card(N

i;i+1

) + card(V

i+1

) 80 � i < n (10)

This equality must hold also for all ECKs:

card(V

i

) = card(N

i;k

) + card(V

k

) 80 � i < k � n (11)

From this we further derive the property

card(N

i;i+2

) = card(N

i;i+1

) + card(N

i+1;i+2

) 80 � i < n� 1 (12)

and more generally

card(N

i;k

) =

k�1

X

j=i

card(N

j;j+1

) 80 � i < k � n (13)

Recalling that N

i;j

is a subset of ECK N

i;j+1

we can compute how many more edges must

be contracted to get the next higher pyramid level:

card(N

i;j+1

nN

i;j

) = card(N

i;j+1

)� card(N

i;j

)

= card(N

j;j+1

) 80 � i < j < n (14)

3.1 Labels indicate pyramid levels

Surviving vertices are ordered by set-inclusion, e.g. V

0

� V

1

� : : : � V

n

, as well as are the

ECKs N

0;i

; i = 1; : : : n, in Table (9). Hence the vertex set V

0

and the edge set N

0;n

contain all

decimation parameters needed to dually contract the base graph G

0

into any other pyramid

level. We use labels to attach the whole construction history to the spanning tree (V

0

; N

0;n

)

of the base graph G

0

.

The vertices receive as a label the highest level to which they survive:

l(v) := k() v 2 V

k

n V

k+1

8v 2 V

0

; 0 � k < n: (15)

Edges receive the highest level as label to which they survive:

l(e) := k () e 2 N

0;k+1

nN

0;k

8e 2 N

0;n

; 0 � k < n: (16)

Figure 9a, b, show such a labeling for the levels 0, 1, 2, 3, and 4 in our example pyramid.

The labels of the vertices in Fig. 9a are shown inside the circles identifying them. The bridges

of N

0;4

are displayed as elongated rectangles surrounding the label. The edges of level 0 are

indicated by straight lines and the vertices of level 0 are omitted to not overload the �gure

too much. Figure 8 shows an 'unfolded' tree of the same structure: The labeled vertices

correspond to those in Fig. 9a, only the paths connecting the vertices have been 'unfolded'.
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Figure 8: Unfolded tree of decimation parameters

Consider the path connecting the root vertex 4 with the vertex labeled 3. In Fig. 9a it

collapses with other paths like to the vertex 2 located on this path which are distinguished

in the unfolded representation (Fig. 8). The fact that higher level vertices also appear in the

levels below is visualized by �lled circles on the tree branches. It allows to count the vertices

of any individual pyramid level.

The above labeling assigns labels to the tree T = (V

0

; N

0;n

) spanning the base graph

G

0

= (V

0

; E

0

). The following property of T extends this labeling to all edges E

0

of the

base graph. The removal of any edge t

0

= (u; w) 2 N

0;n

from the spanning tree T splits it

into two (connected) components V

0

= CC(u) [ CC(w). One of them contains the apex,

the other disappears after contracting level k = l(t

0

). By the de�nition of the edge labels

t

0

2 N

0;k+1

. If k > 0, there exists another edge t

1

2 N

1;k+1

such that t

0

= bridge(t

1

)

(Def. 4). In the same manner a sequence (t

0

; t

1

; : : : ; t

k

) can be found with t

i

= bridge(t

i+1

)

and t

i

2 N

i;k+1

; 0 � i � k. This sequence ends at t

k

2 N

k;k+1

which is contracted at level

k + 1.

If t

0

is not a bridge of graph G

0

then there exist other edges e

0

2 E

0

that connect

CC(u) and CC(w), e.g. e

0

2 CC(u)�CC(w). Since e

0

has endpoints in di�erent connected
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Figure 9: Labels of the spanning tree

components, a similar sequence (e

0

; e

1

; : : : ; e

k

) can be constructed with e

i

= bridge(e

i+1

)

and e

i

2 E

i

; 0 � i � k. It can either merge with the sequence (t

0

; t

1

; : : : ; t

k

) at a level,

e.g. e

i

= t

i

; 0 < i � k, or e

k

6= t

k

2 E

k

survives up to level k. Since one of the connected

components will disappear at level k + 1 also e

k

must be contracted. Hence e

0

receives the

label l(e

0

) = k since k is the highest level to which e

0

survives.

Fig. 10b and c show two examples: Once the edge with the label 3 has been chosen, once

t

0

carries label 2. They are highlighted in Fig. 10b, c by �lled rectangles. The boundaries

between the two induced connected components are drawn as continuous curves in both

cases. In Fig. 10c the boundary curves are overlaid with the base graph and intersect a

number of edges. Obviously these edges connect the same two connected components as

the chosen t

0

. It further shows that several edges of the base graph are intersected by both

boundaries. In this case we choose the higher label:

l(e) := maxfl(t

0

)j9t

0

= (u; w) 2 N

0;n

such that e 2 CC(u)� CC(w)g 8e 2 E

0

: (17)

In this way all edges E

0

except self-loops receive a label (Fig. 10a).
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Figure 10: Labels of the base graph

3.2 Reconstruction of decimation parameters

The hierarchy of surviving vertices can be reconstructed from V

0

by thresholding the vertex

labels l : V

0

7! f0; 1; : : : ; ng:

V

i

= fv 2 V

0

jl(v) � ig i = 1; : : : ; n (18)

The ECKs for the base level, N

0;i

, result similarly by thresholding the edge labels l : N

0;n

7!

f0; 1; : : : ; n� 1g:

N

0;i

= fe 2 N

0;n

jl(e) < ig i = 1; : : : ; n� 1 (19)

The ECKs of the higher levels j > 0 can be derived by contracting lower level ECKs k < j:

(V

j

; N

j;i

) = C[(V

k

; N

k;i

); (V

j

; N

k;j

)] 80 � k < j < i � n (20)

The two conditions that (20) is a valid decimation are quickly veri�ed: (1) (V

k

; N

k;j

) is a

forest spanning (V

k

; N

k;i

) since N

k;j

� N

k;i

for j < i, and (2) V

j

are the roots of (V

k

; N

k;j

)

by construction. To see that the dual contraction C[G

j

; (V

i

; N

j;i

)] with the reconstructed

primary non-surviving edges from (20) reproduces the same G

i

, we recall the inclusions

N

k;j

� N

k;i

� E

k

. We can assume that N

k;j

and N

k;i

are equivalent contraction kernels

allowing to contract graph G

k

into G

j

and G

i

respectively, e.g. C[G

k

; (V

j

; N

k;j

)] = G

j

and

C[G

k

; (V

i

; N

k;i

)] = G

i

. The result follows from considering connecting paths in G

k

connecting

vertices of G

i

and the e�ects of contracting them with N

k;j

.

Note that the contraction of the forest in (20) does not need dual face contraction because

only the contraction of a cycle can generate redundant faces.
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4 The domain of all irregular pyramids
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Figure 11: A labeled spanning tree combines all decimation parameters

Since decimation parameters Dpar

i

:= (S

i

; N

i;i+1

); i = 0; : : : ; n�1 determine the dual ir-

regular pyramid DPirr[(G

0

; G

0

); Dpar

0

; : : : ; Dpar

n�1

] := ((G

0

; G

0

); (G

1

; G

1

); : : : ; (G

n

; G

n

))

completely and since all decimation parameters are equivalently represented by the labeled

spanning tree LST [V

0

; N

0;n

; l], every DPirr is also determined by the labeled spanning tree

LST , e.g. DPirr[(G

0

; G

0

); LST ] = ((G

0

; G

0

); (G

1

; G

1

); : : : ; (G

n

; G

n

)) (Fig. 11). A systema-

tic variation of the two components of the LST, e.g.

� the spanning tree (V

0

; N

0;n

) and

� the vertex and the edge labels l(:)

spans therefore the whole domain of dual irregular pyramids built on (G

0

; G

0

). We shall

�rst neglect the labels and study the domain of all spanning trees. Once we know the
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spanning tree we must de�ne the labels such that the result corresponds to correct decimation

parameters.

4.1 The domain of all spanning trees

Given a non-oriented, connected graph G = (V;E). Denote by T = (V;B) a spanning tree

of G, e.g. B � E, card(B) = card(V )� 1, T does not contain any cycle, T is connected. An

initial spanning tree T

0

can be computed by the following algorithm:

1. Select a root vertex v

0

, set V

T

:= fv

0

g and B := ;;

2. While V n V

T

6= ; do steps 3 and 4;

3. �nd an edge e = (v; w) 2 E nB with v 2 V n V

T

and w 2 V

T

;

4. V

T

:= V

T

[ fvg and B := B [ feg.

Adding any further edge e

1

from E nB to T

0

necessarily creates a cycle. The removal of

one edge e

2

from such a cycle regenerates another spanning tree. We de�ne a transformation

modif [T; e

1

; e

2

] := (V;B [ fe

1

g n fe

2

g) (21)

that modi�es a spanning tree T

1

into another spanning tree T

2

of G. Furthermore we can

show that this primitive operation allows to reach any arbitrary spanning tree in the domain

of all spanning trees of G.

Proposition 2 Let T

1

= (V;B

1

) and T

2

= (V;B

2

) be spanning trees of G = (V;E). Then

T

1

can be transformed into T

2

by a sequence of card(B

2

nB

1

) primitive modi�cations (21).

Constructive Proof : If T

1

= T

2

no modi�cation is needed, e.g. card(B

2

n B

1

) = 0.

Otherwise, we can select any edge e

+

2 B

2

n B

1

which creates a cycle C in the graph

(V;B [ fe

+

g). Since e

+

is part of T

2

, which is a tree without cycle, not all edges of C can

belong to T

2

. Hence the edge e

�

to be removed from C can be chosen in B

1

n B

2

so we

obviously get one more edge in common between T

2

and T

1

. The process can be repeated

until B

1

= B

2

which will be the case after any edge of B

2

nB

1

has been integrated in T

1

.

If we systematically add non-tree edges e

+

2 E nB and if we systematically remove edges

e

�

2 C(e

+

) of the generated cycles then T := modif [T; e

+

; e

�

] will move through all possible

spanning trees.

4.2 Labeling a spanning tree

Given the non-rooted spanning tree (V

0

; N

0;n

) the assignment of labels can proceed similar

to the decimation process in a bottom-up process, but also top-down assignment is possible.

The knowledge of the spanning tree allows several simpli�cations. At any given level k, an

edge e 2 N

k;n

is contracted if l(e) = k; e 2 N

k;k+1

, or it survives if l(e) > k, e.g. e 2 N

k;n

n
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N

k;k+1

. Since N

k;k+1

� N

k;n

, card(N

k;n

nN

k;k+1

) = card(N

k;n

)�card(N

k;k+1

) = card(N

k+1;n

)

using (13) for N

k;n

and N

k+1;n

. Let e

k+1

2 N

k+1;n

, then bridge(e

k+1

) 2 N

k;n

nN

k;k+1

are all

distinct edges. Hence the property used in the following algorithms:

N

k;n

= N

k;k+1

[ bridge(N

k+1;n

) (22)

4.2.1 A bottom-up algorithm

We present a variant of the algorithm e�ciently applied in [20]. Our version operates on the

labels instead of performing repetitive contractions.

We start by initializing all labels to 0. Then we iteratively increment the labels based

on the selection criteria. The following loop starts with level k := 0 and is repeated until

card(V

k

) = 1:
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Figure 12: Three types of cuts

1. Select any survivors V

k+1

� V

k

= fv 2 V

0

jl(v) = kg and increment their labels.

2. The vertices of V

k+1

cut the spanning tree into three types of connected subtrees (see

Fig. 12a,b,c) which are processed di�erently:

(a) There is only one survivor in the subtree. No edge must be incremented.
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(b) The subtree contains exactly two survivors u and w: one edge with label k on the

path connecting u and w in the subtree must be incremented.

(c) The subtree contains m > 2 survivors, only m� 1 edges are allowed to be incre-

mented to yield a tree structure. One of the m survivors is selected to become

a local root of the subtree. In the rooted subtree the other m � 1 survivors are

leafs. The m� 1 edges with label k to be incremented must be located each on a

di�erent branch of the subtree connecting one of the leafs to its nearest branching

point. (Illustrated in Fig. 12(d) by triple lines.)

3. k := k + 1

The selection of surviving vertices is the same as in decimation. But instead of growing

the receptive �elds of the survivors N

k;k+1

we select edges in N

k;n

nN

k;k+1

which will become

the bridges for the next level.

Since bridges and primary non-surviving edges complement each other with respect to

the contraction kernels according to (22) the selection of the bridges in the above algorithm

implies automatically also the primary non-surviving edges. Hence the same decimation

results can be achieved with the complementary selection.

4.2.2 A top-down algorithm

We start with the non-rooted spanning tree (V

0

; N

0;n

) and select any arbitrary vertex as the

apex v

n

2 V

0

; l(v

n

) := n.

The top-down construction proceeds recursively with label k := n � 1 by selecting and

labeling the vertices and the edges not labeled in previous recursions. The recursion stops

at the base level k = 0:

1. Select any subset of non-labeled vertices as V

k

and assign them label k.

2. The labeled vertices l(v) � k cut the spanning tree into three types of connected

subtrees (similar to Fig. 12a,b,c) which are processed di�erently:

(a) There is only one survivor in the subtree. No edge must be labeled.

(b) The subtree contains exactly two labeled vertices u and w: one non-labeled edge

on the path connecting u and w in the subtree receives label k.

(c) The subtree contains m > 2 labeled vertices, only m� 1 edges need to be labeled

to yield a tree structure. One of the m labeled vertices is selected to become a

local root of the subtree. In the rooted subtree the other m�1 labeled vertices are

leafs. The m� 1 non-labeled edges receiving label k must be located on branches

(of the subtree) connecting those m � 1 leafs to their nearest branching point.

(Illustrated in Fig. 12(d) by triple lines.)

3. Once all bridges of level k have been selected, we cut the tree at those edges into

subtrees and repeat the process recursively with k � 1 until k = 0.
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The selection of edges to be labeled must preserve connectivity as well as the tree struc-

ture. Hence only m� 1 edges should be labeled in a tree connecting m labeled vertices.

The connection between any two subtrees T

1

and T

2

in step 2 is established by one labeled

vertex that appears in both subtrees. Let m

1

be the number of labeled vertices in T

1

and

m

2

in T

2

. The total number of labeled vertices in both subtrees T

1

[ T

2

is m

1

+m

2

� 1, the

total number of labeled edges (m

1

� 1) + (m

2

� 1). Hence T

1

[ T

2

is again a connected tree.

A second split operation occurs in step 3 at edges labeled k. Assume that the two subtrees

T

1

and T

2

are both connected and have m

1

and m

2

vertices and m

1

� 1 and m

2

� 1 edges

respectively. The total number of vertices in both subtrees T

1

[T

2

is m

1

+m

2

. If we include

the cut-edge in the total number of edges, (m

1

�1)+(m

2

�1)+1, T

1

[T

2

is again a connected

tree.

5 Exploring the pyramid domain

A dual irregular pyramid is built on a pair of plane graphs (G

0

; G

0

). Di�erent decimation

parameters yield di�erent pyramidal structures on top of the same pair of plane graphs. We

have described di�erent ways to construct such a pyramid, we shall consider in this section

primitive operations that transform one pyramid structure into another pyramid structure

needing the least complex modi�cations, both concerning the decimation parameters and

the graphs at the pyramidal levels.

5.1 Modify the labeled spanning tree

In section 4.1 (21) we have de�ned a transformation T

0

= modif [T; e

+

; e

�

] that adds an edge

e

+

to the spanning tree T and removes an edge e

�

from T . The resulting graph T

0

is again

a spanning tree.

In order to preserve the correct labeling of a labeled spanning tree the two edges must

have the same label:

l(e

+

) = l(e

�

) e

+

2 E

0

nN

0;n

; e

�

2 N

0;n

(23)

The label of e

+

as computed in (17) makes sure that there is another edge e

�

with the same

label on the cycle introduced by the addition of e

+

. Since the new edge e

+

connects the

same connected components as e

�

it represents only an alternative connecting path, and,

consequently, the dual contraction produces the same result.

The primitive modi�cation modif [(V

0

; N

0;n

); e

+

; e

�

] with edges satisfying (23) changes

the labeled spanning tree but not the corresponding irregular pyramid. It requires the

modi�cation of the labels in order to reach all the spanning trees of the unconstrained

version.
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5.2 Increment and decrement labels

The second primitive modi�cation concerns the labels of the spanning tree. Besides the

motivation to allow new structural changes through modif , it may also turn out that some

elements in the pyramid are more important and should survive to higher levels whereas

others could be contracted at lower levels.

Consider the contraction from level i to level i + 1, the vertices to be spanned by the

decimation parameters remain the same, e.g. V

i

. In (10) we have established a relation

between the number of vertices at two adjacent pyramid levels and the primary non-surviving

edges at a given level i. Consequently, an additional surviving vertex in V

i+1

requires one

less edge (in N

i;i+1

) to be contracted. Or conversely, every additional edge in N

i;i+1

must

reduce the number of survivors by one. Hence labels of vertices and edges must be changed

in parallel.

Another property to be respected by any modi�cation is that all contraction kernels

(V

i

; N

i;n

) must remain connected at higher levels. We should therefore increment only those

edges in N

i;i+1

that are adjacent to (V

i+1

; N

i+1;n

), and conversely, decrement only the leafs

of (V

i+1

; N

i+1;n

).

De�nition 5 Let e = (v; w) 2 N

i;n

; l(e) = i be the edge to be incremented from level i to

level i + 1. One of the endpoints must have the same label, i.e. l(v) = i. Since this vertex

cannot be adjacent to (V

i+1

; N

i+1;n

), the other vertex w must provide this property: l(w) > i.

In this case the labels of both e and v can be incremented: Incr[LST; e; v].

Connectivity preservation excludes edges e = (v; w) with l(v) = l(w) from being incre-

mented. However there is always a (unique) path towards the apex on the spanning tree

(V

i

; N

i;n

) connecting such an edge to one that can be incremented. The edges of this path

can be incremented backwards step by step, or, all edges and vertices of this path can be

incremented at once.

If elements directly below the apex have been raised in level a new apex must be selected

among the vertices V

n

. This adds a new level to the pyramid.

For decrementation we have a similar constraint.

De�nition 6 Let e = (v; w) 2 N

i+1;n

; l(e) = i + 1 > 0 be the edge to be decremented from

level i + 1 to level i . One of the endpoints must be a leaf of (V

i+1

; N

i+1;n

), i.e. deg(v) = 1.

Then the labels of both e and v can be decremented: Decr[LST; e; v].

Connectivity preservation excludes non-leaf vertices deg(v) > 1 in (V

i+1

; N

i+1;n

) from

being decremented. However v is the root of a (unique) subtree of (V

i+1

; N

i+1;n

) not con-

taining the apex which can be decremented successively starting at its leafs. Or, all edges

and vertices of this subtree can be decremented at once. The decrementation of the apex

requires the selection of a new apex.

Operations Incr and Decr span the whole domain since any labeling can be decremented

successively to the base level 0, and re-incremented to any other legal labeling after selection

of the new apex.
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Incrementation of level i and decrementation of level i + 1 a�ect only the pyramid level

i+1, hence requiring corrections in the irregular pyramid only at level i+1: (G

0

i+1

; G

0

i+1

) =

C[(G

i

; G

i

); (V

0

i+1

; N

0

i;i+1

)] corrects the graphs for the modi�ed labels. Although computatio-

nal complexity of parallel dual contraction of a graph is low [28], one decrementation of the

LST needs only one dual contraction of a single edge to adapt the pyramid: Decr[LST; e; v]

makes v a non-surviving leaf which is connected to the contraction kernel by e. If the other

endpoint w of e = (v; w) survives, e.g. w 2 V

i+1

, then dually contracting e gives the correct

result: (G

0

i+1

; G

0

i+1

) = C[(G

i+1

; G

i+1

); (V

i+1

n fvg; feg)].

5.3 Skip a pyramid level

An attractive alternative to reduce the height of the pyramid is to skip a whole level k

using the ECKs: skip level[((G

0

; G

0

); (G

1

; G

1

); : : : ; (G

n

; G

n

)); k]. Besides deletion of graphs

(G

k

; G

k

) it consists in the deletion of the column N

i;k

; 0 � i < k and of the row N

k;j

; k < j �

n from Table (9). Equivalently, all labels greater than k in the labeled spanning tree can be

decremented by one. In the example of Fig. 13 levels 1 and 3 are skipped. In addition to

our drawing conventions we have marked the six bridges N

0;4

nN

0;2

of level 2.

5.4 Insert an additional level

Decimation parameters (S

k

= V

k

; N = ;) duplicate a level of the pyramid. Such a con-

traction kernel can be used to insert a (dummy) level in the pyramid e.g. before labels

of the higher level are decremented: insert level[((G

0

; G

0

); (G

1

; G

1

); : : : ; (G

n

; G

n

)); k] =

((G

0

; G

0

); : : : ; (G

k

; G

k

); (G

k

; G

k

); : : : ; (G

n

; G

n

). All labels of the LST that are not less than k

must be incremented. The operation on the pyramid consists in an insertion of another copy

of (G

k

; G

k

). Insertion can be useful, if incrementation takes longer than decrementation, in

particular when the graphs (G

k

; G

k

) need to be adapted.

5.5 Summary of primitive modi�cations

We have seen that an edge e

�

cannot be removed from the cycle created by addition of

e

+

to the LST if l(e

�

) 6= l(e

+

). By either incrementing the edge with the smaller label or

decrementing the edge with the higher label the di�erence can be reduced stepwise until

both edges have the same label.

We conclude this section by summarizing the discussed primitive modi�cations. The

following table lists for all the operations their application test, and the computational

complexity both to update the labeled spanning tree (LST) and to update the structure of

the dual irregular pyramid (DPirr).
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Figure 13: Decimation parameters after skipping levels 1 and 3

Operation Test O(LST ) O(DPirr)

modif [(V

0

; N

o;n

); e

+

; e

�

] l(e

+

) = l(e

�

) card(cycle(e

+

)) 0

Incr[LST; e = (v; w); v] l(e) = l(v) < l(w) 2 O(C[:; :])

Decr[LST; e = (v; w); v] v = leaf(V

l(e)

; N

l(e);n

) 2 O(C[:; 1edge])

skip level[DPirr; k] none card(V

k+1

) + card(E

k+1

) 1

insert level[DPirr; k] none card(V

k

) + card(E

k

) O(copy)
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6 Conclusion

Decimation parameters control dual graph contraction, a process that iteratively builds an

irregular (graph) pyramid. The new concept of contraction kernel preserves the graph's

structural properties, its connectivity, its planarity, and the face degrees of its dual graph.

Equivalent contraction kernels (ECKs) allow to skip the construction of intermediate

pyramid levels. The contents of aggregations of cells can be computed e�ciently and in

parallel through the tree structure of the contraction kernels. The ECK of the apex is a

spanning tree of the base graph. By attaching labels to the vertices and to the edges of

this spanning tree we pack the decimation parameters of all pyramid levels into one single

equivalent structure, the labeled spanning tree (LST), which is additionally a substructure

of the base graph.

These new (global) decimation parameters can be computed without dually contracting

the graphs at every step. Instead we can �rst generate a spanning tree and then determine

the labels. We presented both a bottom-up and a top-down algorithm.

Once a labeled spanning tree and the corresponding dual irregular pyramid have been

created it may turn out that certain modi�cation are still desirable. Primitive operations

modif , Incr, Decr, skip level, and insert level allow the direct manipulation of the pyramid

without complete reconstruction. This opens the possibilities to optimize the pyramidal

structure in the pyramid domain and to dynamically adapt the structure to a changing

input.

6.1 Outlook

The presented framework opens a large variety of issues for further investigation. The

following list covers a large spectrum of ideas but makes no claim to be complete:

1. Structural issues:

� in 2D:

{ Overlapping regular pyramids have several useful properties like robustness

[22]. Our contraction kernels generate only non-overlapping receptive �elds,

hence the question how to combine overlap with dual graph contraction.

{ Computer architectures often bound the number of links of a processing ele-

ment. Therefore the one-to-one mapping between irregular pyramid and ar-

chitecture is not always possible. To overcome such technological cons-

traints following issues could be studied: (1) integrate the constraints into

the construction and modi�cation algorithms; (2) simulate the full pyramid

domain on a given architecture; (3) approximate the pyramid that cannot be

mapped onto the architecture by the pyramid that is 'closest' in the pyramid

domain and that allows such a mapping.
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{ Represent uncertainty in spatial localization of boundary segments: boun-

dary regions with curve relations representing the uncertain boundary seg-

ments (as in [15]).

{ Measure the computational e�ort to transform one LST into another LST

and the corresponding pyramids in the overall domain. Tanaka's tree metric

could be used [27].

{ Given the primitive operations in the pyramid domain, general multi-level

optimization (with genetic algorithms?) could be applied, but what objec-

tive function should be used?

{ Multi-pyramids: Let the elements of the base graph have multi-valued

attributes, e.g. a feature vector. Every such attribute can be used to build a

(in principle di�erent) pyramid that best represents the spatial distribution

of the chosen attribute. It results a vector of pyramids with the same base.

How can these pyramids be combined, either by an enhanced construction or

by application of primitive operations in the pyramid domain?

� in 3D and higher:

The advantages of pyramids should certainly not be restricted to two dimensional

data. The third spatial dimension as well as the time dimension o�er several

interesting applications. In these cases the concepts of planarity and duality must

be substituted by a higher dimensional concept that allows decisions whether a

cell or a collection of cells is inside any other connected agglomeration of cells.

{ Four elements can be used to build structures in 3D: pointels, linels, sur-

fels, and voxels (see i.e. [2]). These basic elements describe 0-, 1-, 2-, and
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Figure 14: Duality in 3D: pointels, linels, surfels, and voxels

3-dimensional entities in 3D-space. Duality can be established by placing one

pointel inside any voxel and by intersecting any surfel by one linel (Fig. 14).
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{ Voronoi diagram of a set of points de�nes a tesselation graph, and in 2D also

its dual graph, the Delaunay triangulation. Voronoi diagram is de�ned also

in higher dimension, could we use the induced graphs and duals?

{ Abstract cellular complexes of Kovalevsky [10] o�er another possibility

to reach higher dimensions. Unfortunately this theory does not yet provide
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Figure 15: Bending a cell around a hole-region X

the possibility to represent holes. One idea to integrate holes is to bend a

regular cell around the hole-region (marked 'X' in Fig. 15).

{ The concepts of star topology [2] and boundary graphs of Ahronovitz [3]

may be suited to be combined with hierarchical structures. The problem to be

solved seems to be the convexity of cells which can be lost during contraction.

2. How to treat the content of a cell:

� Selection criteria:

{ graph theoretic clustering [19];

{ stochastic LST, a combination of [21] and [20];

{ Integrate with selection and recovery paradigms [16];

{ interactive selection of decimation parameters.

� Complex models:

{ parametric models as used in ExSel++ [26];

{ symbolic and fuzzy curve relations [4];

{ region-contour interaction, in continuation of [11, 23, 15];

{ Combine and use robust statistics of F�orstner to derive his feature adjacency

graphs (FAG) [7, 8] which match well with the graphs in our approach.

3. Applications:

� Segmentation with the presented approach needs speci�cation of selection cri-

teria, of models describing the content of a pyramidal cell, of reduction and re�-

nement functions that propagate information up and down in the pyramid, and

of criteria for global adaptation in the pyramid domain.
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� Structural deblur: The approach presented in [14] �nds the extended region

adjacency graph for ideal data. Blurring a gray level image normally introduces

intermediate values along the boundaries between regions, giving rise to new

regions and more complicated adjacency graphs. The aim of structural deblur

would be to derive the adjacency graph of ideal data from its blurred version by

primitive operations in the pyramid domain.

� Dynamic adaptation: Dynamic adaptation should be naturally linked to dyna-

mic changes in an images. Hence approaches like optic 
ow, motion, etc. should

be investigated.

� Find correspondences between images for stereo and for motion.

� Model-guided interpretation: The knowledge of an object composition de-

termines both (1) what spatial con�guration the object's individual parts (each

represented in one pyramidal cell) must have and how they can be agglomerated

into their parent cell (bottom-up abstraction); and (2) where and what type of

object part should be searched for if the presence of the object is hypothesized;

such substitution grammars could parse the pyramid domain of given image data.

Fig. 16 illustrates the concept by a simple example of a bug (b 2 V

k+1

) consisting
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Figure 16: Decomposition of a bug: body, head, and 6 legs.
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Figure 17: Example of a dual irregular pyramid and decimation parameters

Appendix A

Figure 17 presents another example of a dual irregular pyramid which is constructed on top

of a regular grid. Figures 17(a), (b), (c) show levels 0, 1, 2 obtained with the decimation

parameters in Fig. 17(e) and (f) respectively. Figures 17(d) and (g) show the dual graphs

before and after dual face contraction with the ECK shown in Fig. 17(h). Fig. 17(i) is the

ECK of the apex.
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