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Abstra
t

This paper presents a new formalism for irregular pyramids based on 
ombinatorial maps.

This te
hni
al report 
ontinue the work began with the TR-54 report [16℄. De�nition

and properties of Contra
tion kernels are generalized and 
ompleted. The de�nition and

properties of Equivalent 
ontra
tion kernels are also given.
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1 Introdu
tion

The multi-level representation of an image 
alled pyramid [8, 15℄ allows us

to de�ne di�erent levels of representation of a same obje
t. This method

introdu
ed by Pavlidis [8℄ de�nes several partitions of a same image and link

ea
h 
onne
ted 
omponents de�ned at one level with its de
omposition in the

next level. The top of a pyramid, is usually 
omposed of only one 
onne
ted

region des
ribing the whole image while its base des
ribes the lowest level of

representation available on the image. For example, given a grey-s
ale image,

the base of a pyramid 
an be 
omposed of 
onne
ted 
omponents having the

same grey level. Another usual way to de�ne the base of the pyramid 
onsists

to de�ne ea
h pixel of the input image as a basi
 region.

Re
ently, graphs have been used more frequently for representing and

pro
essing digital images. Typi
ally su
h graphs represent the pixel neigh-

borhood, the region adja
en
y, or the semanti
al 
ontext of image obje
ts.

In analogy to regular image pyramids, dual graph 
ontra
tion [10℄ has been

used to build irregular graph pyramids with the aim to preserve the high

eÆ
ien
y of the regular an
estors while gaining further 
exibility to adapt

their stru
ture to the data. Experien
es with 
onne
ted 
omponent analy-

sis [14℄, with universal segmentation [12℄, and with topologi
al analysis of

line drawings [11, 13℄ show the great potential of this 
on
ept.

In the present do
ument, we study the de�nition and the properties of

graph-pyramids de�ned by Combinatorial maps [6℄. Basi
 de�nitions and

properties of Combinatorial maps used in this do
ument may be found in a

previous te
hni
al report [16℄. Moreover, some de�nitions given in [16℄ are

generalized and 
ompleted in this do
ument.

The rest of the paper is organized as follow: In se
tion 2 we de�ne the


ontra
tion kernel notion in term of 
ombinatorial maps. In se
tion 3 we

study the su

essive appli
ation of several 
ontra
tion kernels.

2 Contra
tion Kernel

We will provide in this se
tion a de�nition of a tree and a forest. These

de�nitions will be used to de�ne a 
ontra
tion Kernel and the 
onne
ting

walk map dedu
ed from it. Finally we will show that the 
onne
ting walk

map is isomorph to a given 
ontra
ted map.
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2.1 Partition and Disjoint Vertex set

De�nition 1 Vertex Partition

Given a 
ombinatorial map G = (D; �; �), D

1

; : : : ;D

n

� D is a vertex-

partition of G i�:

1. All D

i

are non-empty:

8i 2 f1; : : : ; ng D

i

6= ;

2. Ea
h set D

i

is symmetri
:

8i 2 f1; : : : ; ng �

�

(D

i

) = D

i

3. Ea
h vertex may be retrieved thanks to a dart in one D

i

:

8d 2 D 9i 2 f1; : : : ; ng; 9d

0

2 D

i

j d 2 �

�

(d

0

)

4. The set of darts of one vertex is in
luded in only one D

i

:

8i; k 2 f1; : : : ; ng

2

; i 6= k �

�

(D

i

) \ �

�

(D

k

) = ;

This last de�nition generalizes the one given in [16℄ in order to �t with the

usual notion of a vertex partition (see Figure 1(b)).

De�nition 2 Disjoint Vertex Set

Given a 
ombinatorial map G = (D; �; �), D

1

; : : : ;D

n

� D is a disjoint

vertex-set of G i�:

1. All D

i

are non-empty:

8i 2 f1; : : : ; ng D

i

6= ;

2. Ea
h set D

i

is symmetri
:

8i 2 f1; : : : ; ng �

�

(D

i

) = D

i

3. All darts of one vertex belong to exa
tly one D

i

:

8i; k 2 f1; : : : ; ng

2

; i 6= k �

�

(D

i

) \ �

�

(D

k

) = ;
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Figure 1: Example for (a) disjoint vertex set and (b) vertex-partition

This de�nition relaxes 
ondition (3) of a vertex-partition (de�nition 1) in

order to allow some verti
es to be una�e
ted by the operations whi
h may

be performed on the disjoint vertex-set (see Figure 1(a)).

Proposition 1 Given a 
ombinatorial map G = (D; �; �), and a dart d.

The sub 
ombinatorial map: G

0

= (�

�

('

�

(d)); �

0

; �) isolates the fa
e '

�

(d) of

G. The �nite fa
e in G' is bounded by the same darts

'

0�

(d) = '

�

(d)

Proof:

If d

0

2 '

�

(d) we have:

'

0

(d

0

) = �

n

(�(d

0

)) with n =Minfp 2 IN

�

j �

p

(�(d

0

)) 2 �

�

('

�

(d))g

Sin
e �(�(d

0

)) = '(d

0

) 2 �

�

('

�

(d)) we have, n = 1 and '

0

(d

0

) = '(d

0

).

Let us denote the two permutations:

'

0�

(d) = (d

0

0

= d; d

0

1

; : : : ; d

0

r

)

'

�

(d) = (d

0

= d; d

1

; : : : ; d

s

)

Let q denote the length of the shorter permutation Min(r; s), and let us

make the following re
urren
e hypothesis on k:

8i 2 f0; : : : ; kg d

i

= d

0

i
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The hypothesis is true for k = 0, let us suppose that it remains true for

a given k > 0. Then d

0

k+1

= '

0

(d

0

k

) = '

0

(d

k

) = '(d

k

) = d

k+1

. Thus the

property holds until k + 1. Moreover, due to this property, we must have

r = s. Indeed, if r < s we have:

d = '

0

(d

0

n

) = '(d

n

) = d

n+1

And in this 
ase ' is not a permutation sin
e a same dart 
an appear at most

on
e in one orbit. 2

2.2 Tree and forest

Two adja
ent regions of a partition merge if the separating boundary seg-

ment is removed. The resulting larger region 
an merge with any of the new

neighbors and so forth. Ea
h time one of the separating boundary segments

is removed. Boundary segments are en
oded by darts of the dual 
ombina-

torial map G. Sin
e any removal in G 
orresponds to a 
ontra
tion in G

the sequen
e of removals of boundary segments 
orresponds to a sequen
e of


ontra
tions in G. Sin
e self-loops 
annot be 
ontra
ted a sequen
e of su

es-

sive 
ontra
tions may not 
ontain a 
ir
uit (see [16℄). Thus the set of darts

involved must form a tree (see de�nition 3 below) or a forest (see de�nition 4

below).

De�nition 3 Map tree

Given a 
ombinatorial map G = (D; �; �), a set D' will be 
alled a subtree

of G i� �

�

(D

0

) = D

0

and the submap:

G

T

= (D

0

; �

0

= � Æ p

D;D

0

; �)

is 
onne
ted and has only one '

0

-orbit.

The Tree de�nition will be used to 
ontra
t a set of verti
es into a single

vertex. More generally, if we 
ontra
t a set of verti
es into a given set of

surviving verti
es, the set of darts involved in su
h 
ontra
tions may be

en
oded by a forest (see de�nition 4).

De�nition 4 Forest

Given a 
ombinatorial map G = (D; �; �), the setD

0

will be 
alled a forest

of G i� �

�

(D

0

) = D

0

and ea
h of its 
onne
ted 
omponents G

i

= (D

i

; �

i

; �)

is a tree.
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Theorem 1 Any sub 
ombinatorial map of a forest is a forest.

Proof:

See Tutte [18℄ 2

Proposition 2 Let G = (D; �; �), and F � D be a non-empty forest of G.

If CC(F ) denotes the set of 
onne
ted 
omponents of F then ea
h 
omponent

is a tree and CC(F ) is a disjoint vertex-set of G.

Proof:

Ea
h T 2 CC(F ) is a forest, as a sub-
ombinatorial map of a forest, and


onne
ted. It is thus a tree. Moreover, sin
e F is supposed to be non-empty,

ea
h T is non-empty. Let us suppose that:

9d 2 D; 9(T ; T

0

) 2 CC(F )

2

; T 6= T

0

j d 2 �

�

(T ) \ �

�

(T

0

)

and let us 
onsider two darts (d

1

; d

2

) 2 T �T

0

. Sin
e T and T

0

are 
onne
ted

we 
an �nd two paths P

1

and P

2

(see [16℄), respe
tively in
luded in T and T

0

,

whi
h 
onne
t �

�

(d

1

) to �

�

(d) and �

�

(d) to �

�

(d

2

). The path P

1

:P

2


onne
t

�

�

(d

1

) to �

�

(d

2

) and is in
luded in T [ T

0

whi
h is thus 
onne
ted. This is

in 
ontradi
tion with our de�nition of the set CC(F ). Thus:

�

�

(T ) \ �

�

(T

0

) = ;

Therefore, CC(F ) is a disjoint-vertex set of G. 2

The notions of tree and forest are 
losely linked to the notion of 
onne
-

tivity. In parti
ular, a unique path (see de�nition 7) 
onne
ts two verti
es

of a tree. Moreover, a forest does not have any 
y
le (see de�nition 8). The

paths and the 
y
les may be 
onsidered as parti
ular 
ase of a more general

obje
t 
alled a walk.

De�nition 5 Walk

Given a 
onne
ted 
ombinatorial map G = (D; �; �), a walk in G is a

sequen
e of darts (d

1

; : : : ; d

n

) su
h that:

8i 2 f1; : : : ; n� 1g �(d

i

) 2 �

�

(d

i+1

)

The walk is said to be 
losed if �(d

n

) 2 �

�

(d

1

) and open otherwise [7℄.
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A

ording to Harary [7℄, di�erent kind of walks may be distinguish:

De�nition 6 Trail

A trail is a walk W = (d

1

; : : : ; d

n

) where all the edges are distin
t:

8(i; j) 2 f1; : : : ; ng

2

; i 6= j d

i

62 �

�

(d

j

)

De�nition 7 Path

A walk W = d

1

; : : : ; d

n

will be 
alled a Path if all its verti
es (and thus

all its edges) are distin
t:

(

8i 2 f2; : : : ; ng �

�

(d

i

) \ �

�

(W ) = fd

i

; �(d

i�1

)g

�

�

(d

1

) \ �

�

(W ) = fd

1

g

Note that a

ording to our de�nition a Path must be an open walk. A 
losed

path will be 
alled a 
y
le.

De�nition 8 Cy
le

A walk W = d

1

; : : : ; d

n

will be 
alled a 
y
le if all its verti
es ex
ept the

�rst and the last one are distin
t:

(

8i 2 f2; : : : ; ng �

�

(d

i

) \ �

�

(W ) = fd

i

; �(d

i�1

)g

�

�

(d

1

) \ �

�

(W ) = fd

1

; �(d

n

)g

The notions of paths and 
y
les are 
onne
ted to the notion of tree by the

following theorem:

Theorem 2 The following statements are equivalent for a 
ombinatorial

map G:

1. G is a tree

2. G is 
onne
ted and p = q + 1, where p denotes the number of verti
es

and q the number of edges.

3. G is a
y
li
 and p = q + 1

4. Every two verti
es of G are joined by a unique path

6



Proof:

Equivalen
e between statements (2) to (4) is demonstrated in Harary's

Book [7℄. We have thus only to show that our de�nition of a tree is equivalent

to the one of Harary.

Let us show that, (1) implies (2). Using our de�nition a tree must be


onne
ted and have only one fa
e. Using Euler relationship we have: p� q+

1 = 2, therefore p = q + 1. Conversely, if G is 
onne
ted the relationship

p = q + 1 implies that the number of fa
es is equal to one. 2

2.3 Contra
tion Kernel

In the following we will fo
us on 
onne
ted 
ombinatorial maps. If the 
om-

binatorial map is not 
onne
ted the following de�nitions and propositions

may be applied to every 
onne
ted 
omponent of the 
ombinatorial map.

Moreover, sin
e the verti
es of a 
ombinatorial map are impli
itly de�ned by

the darts whi
h belong to their �-orbits, we must require that at least on dart

survives. In this last 
ase the resulting graph is redu
ed to one vertex with

a self loop. The two previous restri
tion are used in de�nition 9 to de�ne a


ontra
tion kernel and the set of surviving darts.

De�nition 9 Contra
tion Kernel

Given a 
onne
ted 
ombinatorial map G = (D; �; �), the set K will be


alled a 
ontra
tion kernel i�:

1. K is a forest of G,

2. K does not in
lude all darts of G:

SD = D �K 6= ;

The set SD is 
alled the set of surviving darts.

Note that, using proposition 2, if a set K of darts is a forest of the 
ombi-

natorial map G, its set of 
onne
ted 
omponents CC(K) is a disjoint vertex

set. Moreover, ea
h element T of CC(K) is a tree (see proposition 2).

The following lemma shows that a tree T 
ontains at least one vertex

with surviving darts. This property may be understand as follow: Sin
e the

trees CC(K) form a disjoint vertex set, the verti
es of the trees should not be

7



dire
tly adja
ent (see the last requirement of de�nition 2). The 
ombinatorial

map being 
onne
ted, the 
onne
tion between these trees must be realized by

surviving darts. Moreover, if the 
ontra
tion kernel 
ontains only one tree,

some surviving darts must remains by de�nition of a 
ontra
tion kernel.

Therefore, the �-orbit of the tree must 
ontains these surviving darts.

Lemma 1 Given a 
onne
ted 
ombinatorial map G = (D; �; �), and a 
on-

tra
tion kernel K, every 
onne
ted 
omponent T of CC(K) has at least one

vertex with a surviving dart:

8T 2 CC(K) �

�

(T ) \ SD 6= ;

These surviving darts 
onne
t the trees of K.

Proof:

Let us 
onsider T 2 CC(K), a dart d 2 T and a dart d

0

2 SD. The


ombinatorial map G being 
onne
ted we have a path P = d

1

; : : : ; d

n

from

�

�

(d) to �

�

(d

0

). Now let us 
onsider the last dart in the sequen
e d

1

; : : : ; d

n

whi
h belongs to �

�

(T ). Its index i is equal to:

i =Maxfj 2 f1; : : : ; ng j 8k 2 f1; : : : ; jg d

k

2 �

�

(T )g

Note that the index i is at least equal to 1 sin
e d

1

2 �

�

(d) � �

�

(T ).

� Let us suppose that i < n

Using item 3 of de�nition 2 we have �

�

(d

i

)\ (K�T ) = ;. Thus d

i

2 T

or d

i

2 SD. If d

i

belongs to T , the tree T being symmetri
 we have

�(d

i

) 2 T . Thus d

i+1

2 �

�

(�(d

i

)) � �

�

(T ) whi
h is in 
ontradi
tion

with the de�nition of i, thus we have d

i

2 SD. Sin
e d

i

2 �

�

(T ) the

lemma is demonstrated.

� If i = n

Then we 
an show, with the same kind of demonstration, that d

n

2

SD \ �

�

(T ) or d

n

2 T . In this last 
ase we have �(d

n

) 2 T and

d

0

2 �

�

(�(d

n

)) \ SD � �

�

(T ) \ SD.

2
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Proposition 3 Given a 
onne
ted 
ombinatorial map G = (D; �; �), and a


ontra
tion kernel K not all darts of a fa
e may disappear:

8d 2 D '

�

(d) \ SD 6= ;

Proof:

The proposition is trivial if d 2 SD. Let us suppose that d belongs to a

given T 2 CC(K). The tree T being symmetri
 we have �(d) 2 T . Using

item 3 of de�nition 2 we have �

�

(�(d))\ (K �T ) = ;. Thus �(�(d)) 2 T or

�(�(d)) 2 SD . Written in terms of permutation ' we obtain:

'(d) 2 T or '(d) 2 SD

We 
an dedu
e from the above formula, that '

�

(d) interse
t SD or is in
luded

in T .

Let us suppose that '

�

(d) � T : we have '

�

(d) = T sin
e the tree T has

only one '-orbit. Using Lemma 1 we have:

�

�

('

�

(d)) \ SD = �

�

(T ) \ SD 6= ;

We 
an thus 
onsider d

0

in '

�

(d) su
h that �(d

0

) 2 SD. Then �(d

0

) 2 T =

'

�

(d) and '(�(d

0

)) = �(d

0

) 2 SD. Thus '

�

(d) \ SD = '

�

(�(d

0

)) \ SD 6= ;.

This is forbidden by our hypothesis '

�

(d) � T .

2

Lemma 1 and proposition 3 will be used in the following demonstrations.

However, as an immediate 
onsequen
e of proposition 3, we 
an state that a


ombinatorial map with at least two fa
es 
an't be redu
ed to a single loop

by 
ontra
tion operations solely. Indeed, sin
e one dart must survive in ea
h

fa
e the redu
ed 
ombinatorial map should have at least one self loop for

ea
h fa
e of the initial 
ombinatorial map. Thus the redu
tion of the initial


ombinatorial map must use 
ontra
tion and dual 
ontra
tion operations.

2.4 Map of Conne
ting Walks

In this se
tion we de�ne the notion of 
onne
ting walk. This notion may

be 
onsidered as the extension of the de�nition of 
onne
ting paths de�ned

within the De
imation Parameter framework [9, 16, 5℄.

Then we de�ne an involution �

K

and a permutation �

K

on the set of


onne
ting walks. The two permutations �

K

and �

K

de�ne a 
ombinatorial

9



map on the set of 
onne
ting walks. We will show in the next se
tion that

this 
ombinatorial map is isomorphi
 [16℄ to the one dedu
ed from the 
on-

tra
tions de�ned by the 
ontra
tion kernel. We also study some properties

of the permutations �

K

and �

K

. Equivalent properties in the 
ontra
ted


ombinatorial map may be dedu
ed thanks to the isomorphism.

De�nition 10 Conne
ting walk

Given a 
onne
ted 
ombinatorial map G = (D; �; �), a 
ontra
tion kernel

K and a dart d 2 SD, the 
onne
ting walk asso
iated to d is equal to:

CW (d) = d; '(d); : : : ; '

n�1

(d) with n = Minfp 2 IN

�

j '

p

(d) 2 SDg

Note that the 
onne
ting walk is de�ned for all darts d in SD sin
e the

set fp 2 IN

�

j '

p

(d) 2 SDg 
ontains, in the worse 
ase j'

�

(d)j.

We do not talk of 
onne
ting paths, sin
e the walk CW (d) is not always

a path (see [16℄ and Figure 2). If CW (d) is a path it 
onne
ts the vertex

�

�

(d) to the vertex �

�

('

n

(d)) where d and '

n

(d) belong to SD.

12

4

-33

CW(1) = 1,2,3,-3,4

: suviving darts

: a tree

Figure 2: A 
onne
ting walk whi
h is not a path

Proposition 4 Given a 
onne
ted 
ombinatorial map G = (D; �; �) and a


ontra
tion kernel K, the set of non-surviving darts of a 
onne
ting walk is

in
luded in exa
tly one 
onne
ted 
omponent of K:

8d 2 SD CW (d)� fdg = ; or 9!T 2 CC(T ) j CW (d)� fdg � T

10



Proof:

Let us 
onsider d 2 SD and:

CW (d) = d; '(d); : : : ; '

n�1

(d) with n =Minfp 2 IN

�

j '

p

(d) 2 SDg

If n = 1 we have CW (d) = d and CW (d)� fdg = ;. Otherwise, '(d) is not

a surviving dart, and there must exist one T su
h that '(d) 2 T . Let us


onsider the last dart in the sequen
e '

j

(d) of darts in T :

p = Maxfk 2 f1; : : : ; n� 1g j 8j 2 f1; : : : ; kg '

j

(d) 2 T g

We have at least p = 1, let us suppose that p < n� 1. Sin
e '

p+1

(d) is not a

surviving dart, there must exist another set T

0

su
h that '

p+1

(d) 2 T

0

. But,

T being symmetri
, we have �('

p

(d)) 2 T . Sin
e '

p+1

(d) = �(�('

p

(d))) we

have:

'

p+1

(d) 2 �

�

(T ) \ �

�

(T

0

)

Whi
h is forbidden by the de�nition of a disjoint vertex-set (see de�nition 2).

2

De�nition 11 Set of Conne
ting Walks

Given a 
onne
ted 
ombinatorial map G = (D; �; �) and a 
ontra
tion

kernel K with surviving darts SD, the set of all 
onne
ting walks will be

denoted by:

D

K

= fCW (d) j d 2 SDg

Proposition 5 Given a 
onne
ted 
ombinatorial map G and a 
ontra
tion

kernel K, the appli
ation:

CW

 

SD ! D

K

d 7! CW (d)

is bije
tive.

Proof:

This appli
ation is trivially surje
tive sin
e the set of 
onne
ting walks is

generated from the set of surviving darts. Moreover, ea
h 
onne
ting walk


ontaining only one surviving dart the appli
ation is trivially inje
tive and

thus bije
tive. 2

11



Proposition 6 Given a 
onne
ted 
ombinatorial map G = (D; �; �), and a


ontra
tion kernel K ea
h dart of D belongs to exa
tly one 
onne
ting walk:

8d 2 D 9!d

0

2 SD j d 2 CW (d

0

)

Proof:

By de�nition, ea
h 
onne
ting walk 
ontains only one dart in SD, thus if

d belongs to SD, CW (d) exists and is unique.

Now let us 
onsider d 2 K. A

ording to proposition 3 we have: '

�

(d) \

SD 6= ;. Let us 
onsider:

d

0

2 '

�

(d) \ SD j d

0

= '

�n

(d) with n =Minfp 2 IN

�

j '

�p

(d) 2 SDg

we have obviously d 2 CW (d

0

). Let us suppose that we 
an �nd another

dart d

00

2 SD su
h that d 2 CW (d

00

). Then d

00

= '

�p

(d) with p > n. Thus

the walk:

CW (d

00

) = d

00

; '(d

00

); : : : ; '

p�n

(d

00

); : : : ; '

p

(d

00

); : : :

= d

00

; : : : ; d

0

; : : : ; d; : : :


ontains at least the two darts d

00

and d

0

in SD, whi
h is forbidden by the

de�nition of a 
onne
ting walk. 2

De�nition 12 Reversal of Conne
ting walks

Given a 
onne
ted 
ombinatorial map and a 
ontra
tion kernel K, the op-

posite permutation �

K

from D

K

to itself maps ea
h 
onne
ting walk CW (d)

with d 2 SD to CW (�(d)):

�

K

 

D

K

! D

K

CW (d) 7! CW (�(d))

Remark 1 The fun
tion whi
h asso
iates to ea
h dart its 
onne
ting walk

and the permutation � being bije
tive �

K

is bije
tive. It is thus a permutation

on D

K

. Moreover,

�

K

Æ �

K

(CW (d)) = CW (� Æ �(d)) = CW (d)

�

K

is an involution.

12



Lemma 2 Given a 
onne
ted 
ombinatorial map and a 
ontra
tion kernel

K, the appli
ation

follow

 

SD ! SD

d 7! '

n

(d) with n = Minfp 2 IN

�

j '

p

(d) 2 SDg

is bije
tive.

Proof:

Note that a

ording to the previous notations we have:

CW (d) = d; : : : ; '

n�1

(d)

The 
onne
ting walk CW (d), and thus '

n

(d), is de�ned for all darts in

SD. Now let us suppose that we 
an �nd two darts d and d

0

su
h that

follow(d) = follow(d

0

). Then there exist two integers n, p, with n � p su
h

that '

n

(d) = '

p

(d

0

). Thus we have d

0

= '

n�p

(d) 2 SD. The integer n being

the minimal integer di�erent from zero whi
h realizes this equality we have

n = p and thus d = d

0

. 2

Proposition 7 Given a 
onne
ted 
ombinatorial map G = (D; �; �) and

a 
ontra
tion kernel K the appli
ation follow Æ � maps �

�

(T ) \ SD into

�

�

(T ) \ SD for all T 2 CC(K):

8T 2 CC(K); 8d 2 �

�

(T ) \ SD follow(�(d)) 2 �

�

(T ) \ SD

Proof:

Given a dart d in �

�

(T ) \ SD, we have :

CW (�(d)) = �(d); �(d); : : : ; '

n�1

(�(d))

If n = 1, we have follow(�(d)) = �(d) whi
h belongs to �

�

(T ) by hypothesis.

Otherwise, by de�nition of a 
onne
ting walk �(d) does not belong to SD.

Sin
e, we have by de�nition of a 
ontra
tion kernel:

�

�

(d) � T [ SD

we must have �(d) 2 T . Thus we have thanks to proposition 4:

f�(d); : : : ; '

n�1

(�(d))g � T

13



The tree T being symmetri
 we have: �('

n�1

(�(d))) 2 T . Thus :

follow(�(d)) = '

n

(�(d)) = �(�('

n�1

(�(d))) 2 �

�

(T )

2

The appli
ation follow being bije
tive, it 
an be 
onsidered as a permuta-

tion on the set of surviving darts. Moreover, the verti
es �

�

(d) � �

�

(T )\SD

may be interpreted as the leafs of the tree T . Thus the orbits of the permu-

tation follow Æ � des
ribe the leafs of the trees.

Proposition 8 Given a 
onne
ted 
ombinatorial map G = (D; �; �) and a


ontra
tion kernel K, the appli
ations:

'

K

 

D

K

! D

K

CW (d) = d; '(d); : : : ; '

n�1

(d) 7! CW ('

n

(d))

and �

K

= '

K

Æ �

K

de�ne two permutations on D

K

.

Proof:

We have '

K

(CW (d)) = CW (follow(d)) thus:

'

K

= CW Æ follow Æ CW

�1

The appli
ation '

K

is bije
tive as the 
omposition of bije
tive appli
ations.

Moreover, the appli
ation �

K

is the 
omposition of two permutations and

is thus a permutation. 2

Proposition 9 Given a 
onne
ted 
ombinatorial map G = (D; �; �) and a


ontra
tion kernel K, the 
onne
ting walks of two 
onse
utive surviving darts

in a given �-orbit are 
onse
utive in a �

K

-orbit:

8d 2 SD �(d) 2 SD ) �

K

(CW (d)) = CW (�(d))

Proof:

We have '(�(d)) = �(d) 2 SD. Thus the 
onne
ting walk CW (�(d)) is

redu
ed to d and we have follow(�(d)) = �(d). Thus:

�

K

(CW (d)) = CW (follow(�(d))) = CW (�(d))

2
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Corollary 1 Given a 
onne
ted 
ombinatorial map and a 
ontra
tion kernel

K, if a �-orbit is in
luded in SD, the 
onne
ting walks of any two 
onse
utive

darts within this �-orbit, are 
onse
utive in a �

K

-orbit:

8d 2 D �

�

(d) � SD ) 8d

0

2 �

�

(d) �

K

(CW (d

0

)) = CW (�(d

0

))

Corollary 2 With the same hypothesis as proposition 9, if a �-orbit is in-


luded in SD, the appli
ation CW maps this �-orbit to a �

K

-orbit. Moreover

two 
onse
utive darts in the �-orbit are mapped into two 
onse
utive 
onne
t-

ing walks in the �

K

-orbit:

8d 2 D �

�

(d) � SD ) �

�

K

(CW (d)) = CW (�

�

(d))

Proof:

A basi
 re
ursion on the power of �

i

K

(CW (d)) 2

The proposition 9 and 
orollaries 1 and 2 show that the permutation �

K

may be immediately dedu
ed from the permutation � for surviving darts.

Intuitively, this last property means that one vertex whi
h does not belong

to any tree, will not be a�e
ted by 
ontra
tions. Let us now study the �

K

-

orbit of 
ontra
ted verti
es:

Proposition 10 Given a 
onne
ted 
ombinatorial map, a 
ontra
tion kernel

K and a tree T in CC(K). The �

K

-orbit of any 
onne
ting walk de�ned by

a dart d in �

�

(T ) \ SD is equal to CW (�

�

(T ) \ SD):

8T 2 CC(K); 8d 2 �

�

(T ) \ SD CW

�1

(�

�

K

(CW (d))) = �

�

(T ) \ SD

Proof:

Let us �rst show that:

8T 2 CC(K); 8d 2 �

�

(T ) \ SD CW

�1

(�

�

K

(CW (d))) � �

�

(T ) \ SD

Let us write the �

K

-orbits of CW (d) as:

(CW (d

0

) = CW (d); CW (d

1

); : : : ; CW (d

n

)):

We have to show that:

8i 2 f0; : : : ; ng CW

�1

(CW (d

i

)) = d

i

2 �

�

(T ) \ SD

15



The proposition is true for i = 0. Let us suppose that the proposition is true

for all k 2 f0; : : : ; ig. We have:

CW

�1

(CW (d

i+1

))) = CW

�1

(�

K

(CW (d

i

)))

= CW

�1

('

K

(�

K

(CW (d

i

))))

= CW

�1

('

K

(CW (�(d

i

))))

= CW

�1

(CW (follow(�(d

i

))))

= follow(�(d

i

))

We know, thanks to proposition 7 that follow(�(d

i

)) belongs to �

�

(T )\SD.

Thus d

i+1

belongs to the same set, and the re
ursive hypothesis holds until

i+ 1.

Thus:

CW

�1

(�

�

K

(CW (d))) � �

�

(T ) \ SD

Conversely, let us 
onsider the submap G

0

= (T ; �

0

; �) of G. Sin
e T

is a tree, we have: T = '

0�

(d

1

) = (d

1

; : : : ; d

m

) for a given d

1

2 T . Using

proposition 6 we know that ea
h dart belongs to only one 
onne
ting walk.

Thus,

8i 2 f1; : : : ; mg 9!d

0

i

2 SD j d

i

2 CW (d

0

i

)

Let us show that:

8k 2 f1; : : : ; mg CW (�(d

0

k+1

)) 2 �

�

K

(CW (�(d

0

k

))) (1)

If d

k+1

= '

0

(d

k

) = '(d

k

) 2 T , we have d

k+1

2 CW (d

0

k

) and thus d

0

k+1

=

d

0

k

.

Otherwise, we have:

d

k+1

= '

0

(d

k

) = �

p

(�(d

k

)) with 8k 2 f1; : : : ; p� 1g �

k

(�(d

k

)) 62 T

Sin
e �

�

(�(d

k

)) � T [ SD, we have:

8k 2 f1; : : : ; p� 1g �

k

(�(d

k

)) 2 SD

Moreover, sin
e '

0

(d

k

) 6= '(d

k

), we have '(d

k

) = �(�(d

k

)) 62 T and thus

�(�(d

k

)) 2 SD. This last property is equivalent to p > 1. Moreover, we have

by de�nition of the fun
tion follow, follow(d

0

k

) = �(�(d

k

)), thus:

'

K

(CW (d

0

k

)) = CW (follow(d

0

k

))

) �

K

(CW (�(d

0

k

))) = CW (�(�(d

k

)))

(2)
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In the same way, we have: �

p�1

(�(d

k

)) 2 SD and '(�(�

p�1

(�d

k

))) =

�

p

(�(d

k

))

Thus:

d

k+1

= �

p

(�(d

k

)) 2 CW (�(�

p�1

(�(d

k

))))

Therefore, using proposition 6: d

0

k+1

= �(�

p�1

(�(d

k

))). Using proposition 9

we have:

CW (�(d

0

k+1

)) = CW (�

p�1

(�(d

k

))) 2 �

�

K

(CW (�(�(d

k

))))

Therefore, using equation 2:

CW (�(d

0

k+1

)) 2 �

�

K

(�

K

(CW (�(d

0

k

)))) = �

�

K

(CW (�(d

0

k

)))

We have thus:

8k 2 f1; : : : ; mg CW (�(d

0

k+1

)) 2 �

�

K

(CW (�(d

0

k

)))

Sin
e d belongs to �

�

(T ) \ SD, its �-orbit interse
ts T :

9p 2 IN

�

j �

p

(d) 2 T and 8k 2 f1; : : : ; p� 1g �

k

(d) 2 SD

If p = 1, we have CW (�(d)) = �(d); b

1

; : : : ; b

r

with b

1

= '(�(d)) = �(d) 2 T .

Thus it exists one k in f1; : : : ; mg su
h that d = �(d

0

k

). We have thus:

CW (d) 2 �

�

K

(CW (�(d

0

k

)))() �

�

K

(CW (d)) = �

�

K

(CW (�(d

0

k

)))

Otherwise, we have: CW (�(�

p�1

(d))) = �(�

p�1

(d)); �

p

(d); : : : with �

p

(d) 2

T . Therefore, using proposition 6, we have:

9d

0

k

2 SD with k 2 f1; : : : ; mg j d

0

k

= �(�

p�1

(d))

Moreover, using proposition 9 we have:

�

p�1

K

(CW (d)) = CW (�

p�1

(d))

Thus

CW (d) 2 �

�

K

(CW (�

p�1

(d))) = �

�

K

(CW (�(d

0

k

)))

In the same way, given a dart d

0

in �

�

(T ) \ SD, we have:

9j 2 f1; : : : ; mg j CW (d

0

) 2 �

�

K

(CW (�(d

0

j

)))
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Using equation 1, we have:

CW (d

0

) 2 �

�

K

(CW (�(d

0

j

))) = �

�

K

(CW (�(d

0

k

))) = �

�

K

(CW (d))

Therefore:

8d

0

2 �

�

(T ) \ SD d

0

2 CW

�1

(�

�

K

(CW (d)))

Whi
h is equivalent to:

�

�

(T ) \ SD � CW

�1

(�

�

K

(CW (d)))

The equality between the two set is thus demonstrated. 2

Proposition 10 shows that if a 
onne
ting walk traverse a given tree its �

K

-

orbit is equal to the set of 
onne
ting walks traversing the same tree. There-

fore, given any tree T in CC(K), all the 
onne
ting walks in CW (�

�

(T )\SD)

belong to a same �

K

-orbit and are thus ordered. Moreover, the appli
ation

CW being bije
tive, the order de�ned on CW (�

�

(T ) \ SD) indu
e an order

on the set of surviving darts adja
ent to T : �

�

(T ) \ SD.

Corollary 3 Given a 
onne
ted 
ombinatorial map G, a 
ontra
tion kernel

K, and a non-surviving dart d in K. The opposite of the two 
onne
ting

walks CW (d

0

) and CW (d

00

) in
luding d and �(d):

(

d 2 CW (d

0

)

�(d) 2 CW (d

00

)

belong to the same �

K

-orbit:

CW (�(d

00

)) 2 �

�

K

(CW (�(d

0

)))

Proof:

The existen
e and the uniqueness of darts d

0

and d

00

is provided by propo-

sition 6. By de�nition of a 
ontra
tion kernel it exists a unique tree T in

CC(K) su
h that �

�

(d) � T . Using proposition 4 we have:

CW (d

0

)� fd

0

g � T

CW (d

00

)� fd

00

g � T

Thus:

�(�(d

0

)) = '(d

0

) 2 CW (d

0

)� fd

0

g � T

�(�(d

00

)) = '(d

00

) 2 CW (d

00

)� fd

00

g � T
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Therefore, we have �(fd

0

; d

00

g) � �

�

(T )\SD. Using proposition 10 we have:

�(d

00

) 2 CW

�1

(�

�

K

(CW (�(d

0

))))() CW (�(d

00

)) 2 �

�

K

(CW (�(d

0

)))

2

This last 
orollary shows that the opposite of two 
onne
ting walks 
on-

taining two opposite darts belong to the same �

K

-orbit.

2.5 Link between 
onne
ting walks and 
ontra
tion

This short se
tion show that the 
onne
ting walk map (see de�nition 13

bellow) is isomorph to the 
ontra
ted map de�ned by the 
ontra
tion kernel.

Thus, all the properties de�ned in the 
onne
ting walk map may be extended

to the 
ontra
ted one.

De�nition 13 Conne
ting walk map Given a 
onne
ted 
ombinatorial

map G and a 
ontra
tion kernel K, the 
onne
ting walk map asso
iated

to G and K is denoted GC and is de�ned by:

GC = (D

K

; �

K

= '

K

Æ �

K

; �

K

)

Theorem 3 Given a 
onne
ted 
ombinatorial map G and a 
ontra
tion ker-

nel K, the 
onne
ting walk map GC is isomorph to the 
ontra
ted map

G

0

= G=K:

GC

�

=

G=K

Proof:

We have:

GC = (D

K

; �

K

; �

K

)

G

0

= (D �K; �

0

; �) = (SD; �

0

; �)

Now, let us 
onsider the appli
ation � = (�;CW ) from G

0

to GC su
h that:

� :

�

0

7! �

K

� 7! �

K

Sin
e the appli
ation CW is bije
tive (see proposition 5), � is bije
tive. Let

us show that it is a morphism, thus that:

8d 2 SD

(

CW (�(d)) = �

K

(CW (d))

CW (�

0

(d)) = �

K

(CW (d))
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The �rst equality is given by the de�nition of the involution �

K

. Moreover

we have:

�

K

(CW (d)) = '

K

Æ �

K

(CW (d))

= '

K

(CW (�(d)))

= CW (follow(�(d)))

The appli
ation CW being bije
tive, the se
ond equality will be demon-

strated i� we show that �

0

(d) = follow(�(d)).

We have, by de�nitionG

0

= G nK. Thus �

0

= '

0

Æ� with '

0

= 'Æp

D;SD

.

Thus �

0

(d) = ' Æ p

D;SD

(�(d)) = '

n

(�(d)) with:

n = Minfp 2 IN

�

j '

p

(�(d)) 2 SDg (3)

Moreover, a

ording to Lemma 2, we have follow(�(d)) = '

n

(�(d)) with n

satisfying equation 3. Thus:

�

0

(d) = follow(�(d))) CW (�

0

(d)) = �

K

(CW (d))

2

3 Equivalent Contra
tions Kernels

This se
tion is devoted to the appli
ation of su

essive parallel 
ontra
tions.

Ea
h set of 
ontra
tions is de�ned by a 
ontra
tion kernel. We show in

this se
tion that applying su

essively two 
ontra
tion kernels is equivalent

to applying a bigger one only on
e (see se
tion 3.1). Conversely, we show

that a 
ontra
tion kernel may be de
omposed into two smaller ones. The

su

essive appli
ation of the resulting 
ontra
tion kernels is equivalent to the

appli
ation of the initial one (see se
tion 3.2)

De�nition 14 In
lusion of Contra
tion Kernels

Let us 
onsider a 
ombinatorial map G

1

, and two 
ontra
tion kernels K

1

and K

2

de�ned on G

0

. We will say that the 
ontra
tion kernel K

2

in
ludes

K

1

i� K

1

� K

2

. In this 
ase ea
h 
onne
ted 
omponent of K

1

is in
luded in

exa
tly one 
onne
ted 
omponent of K

2

:

8T 2 CC(K

1

) 9! T

0

2 CC(K

2

) j T � T

0
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De�nition 15 Prede
essor and Su

essor Kernels

Given a 
ombinatorial map G

0

= (D; �; �), a 
ontra
tion kernel K

1

of G

0

and the 
ontra
ted 
ombinatorial map G

1

= G

0

=K

1

. If K

2

is a 
ontra
tion

kernel of G

1

then we say that K

1

is the prede
essor of K

2

, or that K

2

is the

su

essor of K

1

. This relation will be denoted K

1

� K

2

.

The su

essive appli
ation of K

1

and K

2

forms a new operator on G

0

denoted by K

2

ÆK

1

.

Lemma 3 Given a 
ombinatorial map G

0

= (D; �; �) and two disjoint

forests of D, F

1

and F

2

. If F

1

[F

2

is a forest, we 
an 
ontra
t G

0

in di�erent

ways, but the �nal 
ombinatorial map is always the same:

G

0

=(F

1

[ F

2

) = (G

0

=F

1

)=F

2

Proof:

This property may be trivially dedu
ed from the 
ommutativity of 
on-

tra
tion operations. 2

This lemma shows that the �nal 
ombinatorial map does not depend on

the order of the 
ontra
tions. Thus, given two su

essive 
ontra
tion kernels

K

1

and K

2

, if a 
ontra
tion kernel K

0

may be dedu
ed from K

1

[ K

2

, the

appli
ation of K

0

will be equivalent to the su

essive appli
ation of K

1

and

K

2

. In the same way, given two 
ontra
tion kernels K

1

and K

0

su
h that

K

1

� K

0

if we 
an de�ne a 
ontra
tion kernel K

2

on the set of darts K

0

�K

1

,

the su

essive appli
ation of K

1

and K

2

is equivalent to the appli
ation of

K

0

.

3.1 Deriving an In
lusion Kernel from Su

essor Ker-

nels

This se
tion is devoted to the demonstration of Theorem 4 whi
h shows that,

given two su

essive 
ontra
tion kernels K

1

and K

2

of a 
ombinatorial map

G

0

, with K

1

� K

2

, we 
an de�ne a third 
ontra
tion kernel K

0

2

su
h that:

(G

0

=K

1

)=K

2

= G

0

=K

0

2

. The following notations will be used in this se
tion

(see Figure 3):

� G

0

= (D; �; �) denotes the initial 
ombinatorial map.

� K

1

and K

2

denote the two su

essive 
ontra
tion kernels su
h that

K

1

� K

2

. Note that we have K

1

� D and K

2

� D.
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� G

1

= (SD

1

; �

1

; �) denotes the 
ontra
ted 
ombinatorial map G

0

=K

1

.

� G

0

= (K

2

[K

1

; �

0

; �) and G

0

1

= (K

2

; �

0

1

; �) denote respe
tively, two

submaps of G

0

and G

1

. The 
ombinatorial maps G

0

1

and G

0

are based

on respe
tively the darts that are 
ontra
ted by K

2

on G

1

and the darts

that are 
ontra
ted by the su

essive appli
ations of K

1

and K

2

on G

0

.

�

�

K

1

K

2

G

0

1

= (K

2

; �

0

1

; �)

G

2

= (SD

2

; �

2

; �)

G

1

= (SD

1

; �

1

; �)

G

0

= (D; �; �)G

0

= (K

2

[K

1

; �

0

; �)

�

G

00

= (K

1

; �

00

; �)

Figure 3: Combinatorial maps that will be used in this se
tion. The 
ontra
tions

are represented by arrows.

We know, by de�nition of the 
ontra
tion kernel K

2

that G

0

1

is a forest of

G

1

. One of the aims of this se
tion is to show that G

0

is also a forest of G

0

.

Note that, G

0

1

is not a submap of G

0

besides the fa
t that K

2

� K

2

[K

1

.

Indeed, G

0

1

is a submap of G

1

, sin
e G

1

is not a sub-map of G

0

, G

0

1

is not a

sub-map of G

0

. The relation between the 
ombinatorial map G

0

1

and G

0

is

given by equation 5.

Lemma 4 Using previously de�ned notations, the following relations hold:

1. K

2

� SD

1

and K

2

6= SD

1

2. K

1

\K

2

= ;

3. (K

2

[K

1

) \ SD

1

= K

2
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4. D �K

2

[K

1

= SD

1

�K

2

Proof:

1. The 
ontra
tion kernel K

2

being de�ned on G

1

= (SD

1

; �

1

; �), we have,

by de�nition of a 
ontra
tion kernel:

K

2

� SD

1

and K

2

6= SD

1

2. We have:

K

2

� SD

1

= D �K

1

Thus:

K

2

\K

1

= ;

3. This is a 
onsequen
e of the two pre
eding equalities:

K

2

[K

1

\ SD

1

= (K

1

[K

2

) \ SD

1

= (K

1

\ SD

1

) [ (K

2

\ SD

1

)

= K

2

4. We have:

D �K

2

[K

1

= D � (K

1

[K

2

)

= (D �K

1

)�K

2

= SD

1

�K

2

2

Note that lemma 4 is demonstrated for two su

esive 
ontra
tion kernel.

Nevertheless, this lemma using only quite general properties of 
ontra
tion

kernels it remains true in the following 
ases:

� K

1

and K

2

are both dual 
ontra
tion kernels.

� K

1

is a 
ontra
tion kernel and K

2

is a dual one.

� K

2

is a 
ontra
tion kernel and K

1

is a dual one.

The following lemmata (5, 6, 7 and 8) establish a link between the '-orbits

of the 
ombinatorial map G

0

and the ones of the 
ombinatorial map G

0

1

. The

'-orbits of G

0

1

being dedu
ed from the ones of G

1

whi
h is isomorphi
 to the


onne
ting walk map of G

0

, we will �rst, study the 
onne
tions between the

'-orbits of G

0

and the 
onne
ting walks of G

0

.
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Lemma 5 Given a 
ombinatorial map G

0

= (D; �; �), and two 
ontra
tion

kernels K

1

and K

2

su
h that K

1

� K

2

. The sub map G

0

= (K

2

[K

1

; �

0

; �)

veri�es:

1. Ea
h 
onne
ting walk of K

1

de�ned by a dart d in K

2

is in
luded in

the '

0

-orbit: '

0�

(d). Moreover the same order on the elements applies

in CW (d) and '

0�

(d):

8d 2 K

2

CW (d) � '

0�

(d)

2. Ea
h non-surviving dart of K

1

belongs to a 
onne
ting walk. All the

non surviving darts of this 
onne
ting walk appear in a '

0

-orbit of G

0

in the same order as in the 
onne
ting walk:

8d 2 K

1

9!d

0

2 SD

1

j d 2 CW (d

0

)� fd

0

g � '

0�

(d)

Where, the 
onne
ting walks are de�ned in G

0

by K

1

and '

0

denotes the

permutation ' in the sub map G

0

.

Proof:

1. Let us 
onsider d in K

2

. Sin
e K

2

� SD

1

, d is a surviving dart and

we 
an 
onsider the 
onne
ting walk:

CW (d) = d; '(d) : : : ; '

n�1

(d) with n = Minfp 2 IN

�

j '

p

(d) 2 SD

1

g

If n = 1, CW (d) is redu
ed to d and is thus in
luded in '

0�

(d).

Otherwise, let us 
onsider the following proposition:

8j 2 f0; : : : ; ig with i < p '

0j

(d) = '

j

(d)

This proposition is true at least for i = 0 sin
e '

00

(d) = '

0

(d) = d. Let

us suppose that the proposition is true for a given i < p.

We have by de�nition of the restri
tion operator:

'

0i+1

(d) = �

q

(�('

0i

(d))) with

q = Minfk 2 IN

�

j �

k

(�('

0i

(d))) 2 K

2

[K

1

g

Sin
e �(�('

0i

(d))) = �((�('

i

(d))) = '

i+1

(d) 2 K

1

� K

2

[K

1

we have

q = 1 and the re
urren
e hypothesis hold until i+ 1.
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2. If d 2 K

1

we know, thanks to proposition 6 that:

9!d

0

2 SD

1

j d 2 CW (d

0

)

Moreover, sin
e d 6= d

0

, CW (d

0

) is not redu
ed to d

0

. Let CW (d

0

) =

d

0

; '(d

0

); : : : ; '

p�1

(d

0

). Sin
e CW (d

0

)�fd

0

g is not empty we must have

p > 1. Moreover, by de�nition of a 
onne
ting walk:

8l 2 f1; : : : ; p� 1g '

l

(d) 2 K

1

� K

2

[K

1

Thus, as previously: 8l 2 f1; : : : ; p� 1g '

l

(d) = '

0l

(d). Therefore,

CW (d

0

)� fd

0

g � '

0�

('(d

0

)) = '

0�

(d)

2

Ea
h 
onne
ting walk is by de�nition, in
luded in one '-orbit. The last

lemma only shows that this property remains true in the 
ombinatorial map

G

0

for the 
onne
ting walks de�ned in G

0

by K

1

. Intuitively, this proposition

is due to the fa
t that restri
ting a 
ombinatorial map enlarge the set of darts

of ea
h fa
e. Thus a 
onne
ting walk in
luded in one '-orbit '

�

(d) with d in

K

2

[K

1

will be in
luded in '

0�

(d).

Lemma 6 Given a 
ombinatorial map G

0

= (D; �; �), and two 
ontra
tion

kernels K

1

and K

2

su
h that K

1

� K

2

. For all d in K

2

, the '

0

-orbit of d:

'

0�

(d), in G

0

= (K

2

[K

1

; �

0

; �) may be expressed by (see Figure 4):

'

0�

(d) = d

1

; : : : ; d

2

; : : : ; d

m

: : : with fd

1

; : : : ; d

m

g � K

2

Moreover, for ea
h i in f1; : : : ; mg it exists a serie of darts (d

1

i

; : : : ; d

n

i

i

) in

SD

1

�K

2

su
h that:

'

0�

(d) = P

1

:P

2

: : : : ; P

m

with

P

i

= CW (d

i

):(CW (d

1

i

)� fd

1

i

g) : : : (CW (d

n

i

i

)� fd

n

i

i

g)

In other words, any fa
e of G

0

whi
h 
ontains at least one dart in K

2

may

be 
onsidered as a 
on
atenation of 
onne
ting walks, without the darts

belonging to SD

1

�K

2

.

Proof:
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d

i+1

d

i

:K

2

:SD

1

�K

2

:K

1

CW (d

i

)

CW (d

1

i

)

d

1

i

Figure 4: One P

i

de�ned by two 
onne
ting walks

Sin
e d belongs to K

2

we know that the interse
tion between '

0�

(d) and

K

2

is not empty. We 
an thus suppose the existen
e of the darts fd

1

; : : : ; d

m

g

with m at least 1. Moreover, the demonstration being the same for ea
h P

i

it is suÆ
ient to show it for a given i and to show that the permutation '

0

maps the last dart of P

i

to d

i+1

.

Using Lemma 5 we have: CW (d

i

) � '

0�

(d

i

) = '

0�

(d). Let us denote

CW (d

i

) = b

1

; : : : ; b

r

. We have '(b

r

) = follow(d

i

) = '

1

(d

i

). Moreover,

'

0

(b

r

) = �

p

((�(b

r

)) with

8k 2 f1; : : : ; p� 1g �

k

(�(b

r

)) 2 D �K

2

[K

1

= SD

1

�K

2

� If '

0

(b

r

) 2 K

2

we have a

ording to our notations '

0

(b

r

) = d

i+1

and

P

i

= CW (d

i

).

� If p = 1, we have '

0

(b

r

) = '(b

r

) = '

1

(d

i

). Moreover, '

0

(b

r

) 2 K

2

[K

1

and '

1

(d

i

) 2 SD

1

, thus '

0

(b

r

) 2 (K

2

[K

1

)\SD

1

= K

2

(see Lemma 4).

Thus as previously, '

0

(b

r

) = d

i+1

and P

i

= CW (d

i

).

b

r

�

p

(�b

r

)

: SD

1

�K

2

: K

1

��

p�1

(�b

r

)

Figure 5: A zoom on a 
onne
tion between two 
onne
ting walks

� Otherwise, we have p > 1 and '

0

(b

r

) 2 K

1

(see Figure 5). In this 
ase

we have: �

p�1

(�(b

r

)) 2 SD

1

�K

2

and '(�(�

p�1

(�(b

r

)))) = �

p

(�(b

r

)),

Thus:

'

0

(b

r

) = �

p

(�(b

r

)) 2 CW (�(�

p�1

(�(b

r

))))
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Using Lemma 5 we have:

CW (�(�

p�1

(�(b

r

))))� f�(�

p�1

(�(b

r

)))g � '

0�

(b

r

) = '

0�

(d)

If we denote d

1

i

= �(�

p�1

(�(b

r

))) we obtain: P

i

= CW (d

i

):(CW (d

1

i

)�

fd

1

i

g) : : :.

Let us suppose, that P

i


an be written as:

P

i

= CW (d

i

):(CW (d

1

i

)� fd

1

i

g) : : : (CW (d

j

i

)� fd

j

i

g) : : :

for a given j. Let us denote CW (d

j

i

) by:

CW (d

j

i

) = b

0

1

; : : : ; b

0

r

0

we have '

0

(b

0

r

0

) = �

p

0

(�(b

r

0

)).

As previously, if '

0

(b

0

r

0

) 2 K

2

, or p

0

= 1 we have '

0

(b

r

0

) = d

i+1

and

j = n

i

. Otherwise, if d

j+1

i

denotes �(�

p

0

�1

(�(b

0

r

0

))) we have CW (d

j+1

i

)�

fd

j+1

i

g � '

0�

(d) and P

i


an be written as:

P

i

= CW (d

i

) : : : (CW (d

j

i

)� fd

j

i

g)(CW (d

j+1

i

)� fd

j+1

i

g) : : :

Thus the re
ursive hypothesis holds until j + 1.

2

Intuitively, this last lemma may be interpreted has follow: Sin
e ea
h


onne
ting walk is in
luded in one fa
e of the initial 
ombinatorial map, ea
h

fa
e of the initial 
ombinatorial map may be 
onsidered has a 
on
atenation

of 
onne
ting walks. Using the restri
ted 
ombinatorial map G

0

, we have to

remove the darts whi
h belong to D �K

2

[K

1

= SD

1

�K

2

. The removed

dart being surviving ones, we only have to remove the starting dart of some


onne
ting walks.

The following lemma show that ea
h P

i

in in
luded in one tree of the


ontra
tion kernel K

1

. Intuitively, this last proposition is true be
ause the

walk P

i

does not 
ross a surviving dart (we never have d 2 SD

1

and '(d) in

the same walk). Sin
e the surviving darts 
onne
t the di�erent trees of the


ontra
tion kernel a walk P

i

must remains in a given tree.

Lemma 7 Let us use the same notation for the walks P

1

; : : : ; P

m

and the

hypothesis as in Lemma 6. If, the dart d belongs to K

2

then every walk P

i
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onsists either of the dart d

i

alone or all the other darts of P

i

are part of one


onne
ted 
omponent of K

1

.

8i 2 f1; : : : ; mg P

i

= (d

i

) or 9!T 2 CC(K

1

) j P

i

� fd

i

g � T

Proof:

Let us 
onsider a given walk P

i

with i 2 f1; : : : ; mg su
h that P

i

6= (d

i

),

we have:

P

i

= CW (d

i

):(CW (d

1

i

)� (d

1

i

)) : : : (CW (d

n

i

i

)� (d

n

i

i

))

Sin
e P

i

6= (d

i

), CW (d

i

) is not redu
ed to d

i

and we have by proposition 4:

9!T 2 CC(K

1

) j CW (d

i

)� fd

i

g � T

If P

i

is redu
ed to CW (d

i

) nothing remains to be demonstrated. Otherwise,

let:

CW (d

i

) = b

1

; : : : ; b

r

Sin
e P

i

= CW (d

i

):(CW (d

1

i

)�fd

1

i

g) : : : � '

0�

(d), we have '

0

(b

r

) 2 CW (d

1

i

)�

fd

1

i

g with (see Figure 5):

'

0

(b

r

) = �

p

(�(b

r

)) with p = Minfk 2 IN

�

j �

k

(�(b

r

)) 2 K

2

[K

1

g

Therefore, '

0

(b

r

) 2 �

�

(�(b

r

)) with b

r

2 T . By de�nition of a 
ontra
tion

kernel, we have:

�

�

(�(b

r

)) � T [ SD

1

Sin
e P

i

6= CW (d

i

), '

0

(b

r

) is not a surviving dart, thus we have '

0

(b

r

) 2 T .

Therefore:

CW (d

1

i

)� fd

1

i

g � T

Let us suppose that this property is true until the rank k with k < n

i

. Then,

if:

CW (d

k

i

) = d

k

i

: : : ; b

0

r

0

We have '

0

(b

0

r

0

) 2 CW (d

k+1

i

)� fd

k+1

i

g with b

0

r

0

belonging to T by our re
ur-

ren
e hypothesis. We 
an thus 
on
lude has previously that:

CW (d

k+1

i

)� fd

k+1

i

g � T

This property being true for all k in f1; : : : ; n

i

g, we have P

i

� T . 2
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Lemma 8 Let us use the same notation for the darts d

1

; : : : ; d

m

and the

hypothesis as in Lemmata 6 and 7. If d belongs to K

2

the ordered set of darts

d

1

; : : : ; d

m

satisfy the following relationship:

8i 2 f1; : : : ; mg d

i+1

= '

0

1

(d

i

)

Where '

0

1

denotes the permutation ' of the sub map G

0

1

of G

1

(see Figure 3).

Proof:

Using Lemma 6, the set of darts between two 
onse
utive darts d

i

and

d

i+1

may be de
omposed into the set of 
onne
ting walks:

P

i

= CW (d

i

):(CW (d

1

i

)� (d

1

i

)) : : : (CW (d

n

i

i

)� (d

n

i

i

)) with

8j 2 f1; : : : ; n

i

g d

j

i

2 SD

1

�K

2

Let us �rst show that, for a given i in f1; : : : ; mg, we have:

8j 2 f1; : : : ; n

i

� 1g 9k

j

j �(d

j+1

i

) = �

k

j

1

(�(d

j

i

)) with

8k 2 f1; : : : ; k

j

g �

k

1

(�(d

j

i

)) 2 SD

1

�K

2

(4)

Let us 
onsider a given j in f1; : : : ; n

i

� 1g and let us denote CW (d

j

i

) by:

CW (d

j

i

) = d

j

i

; b

1

; : : : ; b

r

we have:

'

1

(d

j

i

) = follow(d

j

i

) = '(b

r

) = �(�(b

r

))

Moreover, by de�nition of a submap it exists one k

j

(see Figure 6) su
h

that '

0

(b

r

) = �

k

j

+1

(�(b

r

)) with:

8k 2 f1; : : : ; k

j

g �

k

(�(b

r

)) 2 D �K

2

[K

1

= SD

1

�K

2

If k

j

= 0, we have '

0

(b

r

) = �(�(b

r

)) = '

1

(d

j

i

) 2 SD

1

\K

2

[K

1

= K

2

(see

Lemma 4). Thus d

i+1

= '

1

(d

j

i

). This last equality is in 
ontradi
tion with

our hypothesis: j < n

i

. Thus we have k

j

� 1. Moreover, sin
e �

k

(�(b

r

))

belongs to SD

1

for ea
h k in f1; : : : ; k

j

g we have:

8k 2 f1; : : : ; k

j

� 1g CW (�(�

k

(�(b

r

)))) = �(�

k

(�(b

r

)))

Thus :

8k 2 f1; : : : ; k

j

� 1g

8

>

<

>

:

�

1

(�

k

(�(b

r

))) = follow(�(�

k

(�(b

r

))))

= '(�(�

k

(�(b

r

))))

= �

k+1

(�(b

r

))
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b

r

: SD

1

�K

2

: K

1

�

k

j

+1

(�(b

r

))

�(�

2

(�(b

r

))) �(�

k

j

(�(b

r

))) = d

j+1

i

Figure 6: A zoom on a 
onne
tion between two 
onne
ting walks of a '

0

-orbit. In

this example, k

j

= 4

This last equality may be iterated in order to obtain:

�

k

j

�1

1

(�(�(b

r

))) = �

k

j

�2

1

(�

2

(�(b

r

))) = : : : = �

k

j

(�(b

r

))

Therefore:

�

k

j

1

(�(d

j

i

)) = �

k

j

�1

1

(�

1

(�(d

j

i

)))

= �

k

j

�1

1

(�(�(b

r

)))

= �

k

j

(�(b

r

))

= � Æ '

�1

Æ �

k

j

+1

(�(b

r

))

= �(d

j+1

i

)

We have thus:

�(d

j+1

i

) = �

k

j

1

(�(d

j

i

)) with 8k 2 f1; : : : ; k

j

g �

k

1

(�(d

j

i

)) 2 SD

1

�K

2

In the same way, if b

0

denotes the last dart of CW (d

n

i

i

) we have:

'

1

(d

n

i

i

) = follow(d

n

i

i

) = �(�(b

0

))

d

i+1

= '

0

(b

0

) = �

p

(�(b

0

))

If p = 1, we have '

0

(b

0

) = �(�(b

0

)) = '

1

(d

n

i

i

) = �

1

(�(d

n

i

i

)), thus d

i+1

=

�

1

(�(d

n

i

i

)) and we 
an take k

n

i

= 1. Otherwise, the same demonstration as

above may be applied with k

n

i

= p� 1. We thus obtain:

d

i+1

= �

k

n

i

1

(�(d

n

i

i

)) with 8k 2 f1; : : : ; k

n

i

� 1g �

k

1

(�(d

n

i

i

)) 2 SD

1

�K

2

Using equation 4 we have:

d

i+1

= �

k

n

i

1

Æ �

k

n

i

�1

1

: : : Æ �

k

1

1

(�(d

i

)) = �

q

1

(�(d

i

))
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with q =

P

n

i

j=1

k

j

. Moreover, we have:

8k 2 f1; : : : ; qg �

k

1

(�(d

i

)) 2 SD

1

�K

2

Thus: '

0

1

(�(d

i

)) = �

0

1

(�(d

i

)) = �

q

1

(�(d

i

)). 2

The Lemma 8 shows that the '-orbits of 
ombinatorial map G

0

1

are in-


luded in the '-orbits of the 
ombinatorial map G

0

. Thus, the 
ombinatorial

map G

0

1

may be 
onsidered as the dual of the restri
tion to K

2

of the 
om-

binatorial map G

0

:

G

0

1

= G

0

jK

2

(5)

where G

0

jK

2

denotes the subgraph of G

0

de�ned by K

2

.

Theorem 4 Given a 
ombinatorial map G

0

= (D; �; �), and two 
ontra
tion

kernels K

1

and K

2

su
h that K

1

� K

2

. Then K

1

[ K

2

de�nes a new


ontra
tion kernel su
h that: (G

0

=K

1

)=K

2

= G

0

=(K

1

[K

2

).

Proof:

Given the 
ombinatorial map G

0

= (K

2

[K

1

; �

0

; �) de�ned as the restri
-

tion of G

0

to K

2

[K

1

, let us suppose that G

0

is not a forest, thus that we


an �nd one dart d in K

2

[K

1

su
h that �(d) 62 '

0�

(d).

The set K

1

being a 
ontra
tion kernel, and thus a forest, '

0�

(d) 
annot

be in
luded in K

1

. Thus:

'

0�

(d) \K

2

6= ;

Let us denote by fd

1

; d

2

; : : : ; d

m

g the previous interse
tion:

fd

1

; d

2

; : : : ; d

m

g = '

0�

(d) \K

2

Using Lemma 8,the darts d

1

; : : : ; d

m

de�ne a '

0

1

-orbit:

'

0�

1

(d

1

) = (d

1

; d

2

; : : : ; d

m

)

In the same way, we 
an de�ne a set of darts fd

0

1

; : : : ; d

0

m

0

g su
h that:

fd

0

1

; d

0

2

; : : : ; d

0

m

0

g = '

0�

(�(d)) \K

2

Using Lemma 8, we obtain:

'

0�

1

(d

0

1

) = (d

0

1

; d

0

2

; : : : ; d

0

m

0

)

31



Sin
e two orbits of a permutation are equal or disjoint and �(d) 62 '

0�

(d) the

orbits '

0�

(d) and '

0�

(�(d)) must be disjoint. Thus,

fd

1

; : : : ; d

m

g \ fd

0

1

; : : : ; d

0

m

0

g = ;

Moreover, if d belongs to K

2

, it exists two indi
es i and j su
h that d = d

i

and �(d) = d

0

j

. Thus, in this 
ase, the two fa
es, '

0�

(d

i

) and '

0�

(d

0

j

) belong

to a same 
onne
ted 
omponent.

Otherwise, sin
e d belongs to K

2

[ K

1

, �

�

(d) is in
luded in K

1

. By

de�nition of a 
ontra
tion kernel, it exists a tree T 2 CC(K

1

) su
h that

�

�

(d) � T . Moreover, using Lemma 6 we 
an �nd two walks P

i

and P

0

j

su
h

that:

(

d 2 P

i

� '

0�

(d)

�(d) 2 P

0

j

� '

0�

(�(d))

Using Lemma 7, the non-surviving darts of ea
h walk belong to one tree of

K

1

. Sin
e �

�

(d) � T the walks P

i

� fd

i

g and P

0

j

� fd

0

j

g are in
luded in T :

d 2 P

i

� fd

i

g � T and

�(d) 2 P

0

j

� fd

0

j

g � T

Moreover:

'(d

i

) = �(�(d

i

)) 2 T

and

'(d

0

j

) = �(�(d

0

j

)) 2 T

1

C

A

) �(fd

i

; d

0

j

g) � �

�

(T ) \ SD:

Using proposition 10 we obtain: �(d

0

j

) 2 �

�

1

(�(d

i

)), Thus �(d

0

j

) 2 �

0�

1

(�(d

i

)).

Thus in all 
ases (�

�

(d) � K

2

or �

�

(d) � K

1

) the two fa
es '

0�

1

(d

1

) and

'

0�

1

(d

0

1

) belong to the same 
onne
ted 
omponent of the submap G

0

1

of G

1

.

Thus we 
an �nd two distin
t fa
es in one 
onne
ted 
omponent of G

0

1

.

The map G

0

1

being a forest, by de�nition of the 
ontra
tion kernel K

2

, we

obtain the desired 
ontradi
tion. Therefore, ea
h 
onne
ted 
omponent of

G

0

is a tree and G

0

is a forest. Moreover, we have, by lemma 4:

D �K

2

[K

1

= SD

1

�K

2

6= ;

Thus, the 
onne
ted 
omponents of G

0

de�ne a 
ontra
tion kernel on G

0

. 2
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3.2 Deriving Su

essor Kernels from In
lusion Kernels

We will show in this se
tion, that given two 
ontra
tion kernels K

1

and K

2

su
h that K

1

� K

2

we 
an �nd another 
ontra
tion kernel K

0

2

su
h that the

su

essive appli
ations of K

1

and K

0

2

is equivalent to the appli
ation of K

2

.

Proposition 11 Given a 
ombinatorial map G

0

and two 
ontra
tion kernels

K

1

� K

2

. A tree T of K

1


annot be adja
ent to a tree T

0

of K

2

unless

T � T

0

:

8T 2 CC(K

1

); 8T

0

2 CC(K

2

) �

�

(T ) \ �

�

(T

0

) 6= ; ) T � T

0

Proof:

The set T is in
luded in one T

00

. Let us suppose that T

0

6= T

00

, we have

then:

�

�

(T ) \ �

�

(T

0

) � �

�

(T

00

) \ �

�

(T

0

)

By de�nition of a 
ontra
tion kernel we must have, sin
e T

0

6= T

00

�

�

(T

0

) \ �

�

(T

00

) = ;

This last equation 
ontradi
t the hypothesis �

�

(T ) \ �

�

(T

0

) 6= ;. 2

Proposition 12 Given a 
ombinatorial map G

0

and two 
ontra
tion kernels

K

1

and K

2

with K

1

� K

2

. If G

1

and G

2

denote the two 
ontra
ted maps:

G

1

= (SD

1

; �

1

; �) = G=K

1

G

2

= (SD

2

; �

2

; �) = G=K

2

then the smaller 
ontra
tion kernel K

1


reates the larger graph:

SD

2

� SD

1

where SD

1

and SD

2

denote respe
tively the surviving darts of K

1

and K

2

.

Proof:

The 
ontra
tion kernel K

1

is in
luded in K

2

, therefore SD

2

= D �K

2

is

in
luded in SD

1

= D �K

1

. 2
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Proposition 13 Given a 
ombinatorial map G

0

and two 
ontra
tion kernels

K

1

and K

2

with K

1

� K

2

. Ea
h tree T

0

2 CC(K

2

) may be written as an union

of trees T 2 CC(K

1

) together with some surviving darts in SD

1

whi
h 
onne
t

the trees of K

1

in
luded in T

0

:

8T

0

2 CC(K

2

) 9C

T

0

� CC(K

1

) j T

0

= (

S

T 2C

T

0

T ) [ A

T

0

with A

T

0

� SD

1

where SD

1

denotes the set of surviving darts of the 
ontra
tion kernel K

1

.

Proof:

Given the set:

C

T

0

= fT 2 CC(K

1

) j T � T

0

g

We have only to prove that:

8T

0

2 CC(K

2

) A

T

0

= T

0

�

[

T 2C

T

0

T � SD

1

Let us 
onsider d 2 T

0

, then d 2 SD

1

or belongs to one T 2 CC(K

1

). Let

us suppose that d 2 T with T 62 C

T

0

. Then, by de�nition of in
luded


ontra
tion kernels there must exist T

00

6= T

0

su
h that: d 2 T � T

00

. Thus

d 2 T

0

\T

00

whi
h is forbidden by the de�nition of a 
ontra
tion kernel. Thus

we must have T 2 C

T

0

. Therefore, if d 2 T

0

�

S

C

T

0

T then d 2 SD

1

. 2

Lemma 9 Using the same notations and hypothesis as proposition 13, the

sets C

T

0

with T

0

2 CC(K

2

) form a partition of CC(K

1

):

[

T

0

2CC(K

2

)

C

T

0

= CC(K

1

)

Proof:

If a tree T of CC(K

1

) belongs to two sets C

T

0

and C

T

00

with T

0

6= T

00

,

we have T � T

0

and T � T

00

. Therefore, T 
onne
ts T

0

to T

00

. This

is in 
ontradi
tion with the de�nition of the trees T

0

and T

00

as 
onne
ted


omponents ofK

2

. Therefore, all the sets C

T

0

with T

0

in CC(K

2

) are disjoint.

Let us show that these sets form a partition of CC(K

1

).
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For every T

0

2 CC(K

2

), C

T

0

is in
luded in CC(K

1

), thus:

[

T

0

2CC(K

2

)

C

T

0

� CC(K

1

)

If T 2 CC(K

1

), we have, by de�nition of in
luded 
ontra
tion kernels:

9!T

0

2 CC(K

2

) j T � T

0

Thus: T 2 C

T

0

�

S

T

0

2CC(K

2

)

C

T

0

.

Finally we obtain:

[

T

0

2CC(K

2

)

C

T

0

= CC(K

1

)

2

Corollary 4 Using the same notations and hypothesis as proposition 13, the

sets A

T

0

with T

0

2 CC(K

2

) form a partition of K

2

�K

1

:

[

T

0

2CC(K

2

)

A

T

0

= K

2

�K

1

Proof:

Given a tree T

0

in CC(K

2

), A

T

0

is equal to (see proposition 13):

A

T

0

= T

0

�

[

T 2C

T

0

T

Ea
h set A

T

0

is in
luded in T

0

. The 
onne
ted 
omponent of K

2

being

disjoint by de�nition, the sets A

T

0

are disjoint. The union of all the sets

A

T

0

is thus equal to:

S

T

0

2CC(K

2

)

A

T

0

=

S

T

0

2CC(K

2

)

T

0

�

S

T

0

2CC(K

2

)

S

T 2C

T

0

T

= K

2

�

S

T 2CC(K

1

)

T (with lemma 9)

= K

2

�K

1

2
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Lemma 10 With the same notations and hypothesis as proposition 13, if

K

2

�K

1

is not empty, it de�nes a forest of G

0

.

Proof:

The 
ontra
tion kernels K

2

and K

1

being symmetri
, the set K

2

�K

1

is

symmetri
 and 
an be 
onsidered as a sub-
ombinatorial map of the forest

K

2

. We 
an thus 
on
lude with Theorem 1. 2

This last lemma will be used by Theorem 5 to 
ontra
t G

0

.

Theorem 5 Given a 
ombinatorial map G

0

, and two 
ontra
tion kernels K

1

and K

2

. If:

G

1

= G

0

=K

1

G

2

= G

0

=K

2

and if K

1

is in
luded in K

2

, e.g. K

1

� K

2

, G

2


an be derived from G

1

by

additional 
ontra
tions using the same notations as in Proposition 13:

G

2

= G

1

=(K

2

�K

1

)

Proof:

G

2

= G

0

= K

2

= G

0

= (K

1

[ (K

2

�K

1

))

= (G

0

= K

1

)=(K

2

�K

1

) (with lemma 10 and 3)

= G

1

= (K

2

�K

1

)

2

We know, thanks to Theorem 5, that 
ontra
ting the darts K

2

� K

1

on

the 
ombinatorial map G

1

provides the 
ombinatorial map G

2

. We have now

to show that a 
ontra
tion kernel of G

1

may be de�ned on the set K

2

�K

1

.

This last hypothesis may be easily shown if we demonstrate that K

2

� K

1

is a forest of the 
ombinatorial map G

1

. The following lemma, de�nes an

intermediate result,whi
h is used in the proof of proposition 14.

Lemma 11 Given a 
ombinatorial map G

0

= (D; �; �), two 
ontra
tion

kernels K

1

and K

2

with K

1

� K

2

and the 
ontra
ted graph:

G

1

= (SD

1

; �

1

; �) = G

0

=K

1
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Using the same notations as proposition 13, the �

1

-orbits of ea
h set A

T

0

is

in
luded in the �-orbits of T

0

interse
ted with SD

1

:

8T

0

2 CC(K

2

) �

�

1

(A

T

0

) � �

�

(T

0

) \ SD

1

Proof:

First note that �

�

1

(A

T

0

) is well de�ned sin
e A

T

0

is in
luded in SD

1

.

Let us 
onsider d in the �

1

orbit of A

T

0

. In this 
ase the �

1

-orbit of d

interse
t A

T

0

:

�

�

1

(d) \ A

T

0

6= ;

Let us 
onsider the two 
ases:

1. If �

�

(d) is in
luded in SD

1

. Then we have thanks to 
orollary 1 and to

the isomorphism between the 
ontra
ted graph G

1

and the 
onne
ting

walks map G

K

1

= (D

K

1

; �

K

1

; �

K

1

):

�

�

1

(d) = CW

�1

(�

�

K

1

(CW (d)) = CW

�1

(CW (�

�

(d))) = �

�

(d):

Thus:

; 6= �

�

1

(d) \ A

T

0

� �

�

1

(d) \ T

0

= �

�

(d) \ T

0

) d 2 �

�

(T

0

)

Moreover, d belongs to SD

1

by de�nition of G

1

. Thus:

d 2 �

�

(T

0

) \ SD

1

2. If �

�

(d) interse
ts one tree T 2 CC(K

1

), we have thanks to proposi-

tion 10:

�

�

1

(d) = CW

�1

(�

�

K

1

(CW (d))) = �

�

(T ) \ SD

1

� �

�

(T )

Thus:

; 6= �

�

1

(d) \ T

0

� �

�

(T ) \ T

0

Using proposition 11 we 
an dedu
e:

T � T

0

Thus:

d 2 �

�

1

(d) = �

�

(T ) \ SD

1

� �

�

(T

0

) \ SD

1
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2

Corollary 5 The interse
tion between the �

1

-orbits of any two sets A

T

0

and

A

T

00

is empty:

8(T

0

; T

00

) 2 CC(K

2

)

2

�

�

1

(A

T

0

) \ �

�

1

(A

T

00

) = ;

Proof:

Given two distin
t trees T

0

and T

00

in CC(K

2

), the �

1

-orbits of the sets

A

T

0

and A

T

00

are in
luded in the �-orbits of T

0

and T

00

(see lemma 11) whi
h

are disjoint:

�

�

1

(A

T

0

) \ �

�

1

(A

T

00

) � �

�

(T

0

) \ �

�

(T

00

) = ;

2

Lemma 12 Given a 
ombinatorial map G

0

= (D; �; �), two 
ontra
tion

kernels K

1

and K

2

with K

1

� K

2

and the two 
ontra
ted graphs:

G

1

= (SD

1

; �

1

; �) = G

0

=K

1

G

2

= (SD

2

; �

2

; �) = G

0

=K

2

Any walk of G

1

in
luded in K

2

� K

1

is in
luded in a given A

T

0

with T

0

2

CC(K

2

).

Proof:

First let us note that (see 
orollary 4):

K

2

�K

1

=

[

T

0

2CC(K

2

)

A

T

0

Let us 
onsider a walk W = (d

1

; : : : ; d

n

) in
luded in K

2

�K

1

. Sin
e the sets

A

T

0

form a partition of K

2

�K

1

it exists a given tree T

0

su
h that d

1

2 A

T

0

.

Let us 
onsider, the length of the longest sequen
e of W starting from d

1

and in
luded in A

T

0

:

r = Maxfs 2 f1; : : : ; ng j 8i 2 f1; : : : ; sg d

i

2 A

T

0

g

We have r � 0, let us suppose that r < n, then we have: d

r

2 A

T

0

and

d

r+1

2 A

T

00

with T

00

6= T

0

. Moreover, we have, by de�nition of a walk:

d

r+1

2 �

�

1

(�(d

r

)) � �

�

1

(A

T

0

)
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Thus:

d

r+1

2 A

T

00

\ �

�

1

(A

T

0

) � �

�

1

(A

T

00

) \ �

�

1

(A

T

0

)

this is in 
ontradi
tion with 
orollary 5. 2

Intuitively, this last proposition may be understood has follow: The set

A

T

0

only 
onne
ts the di�erent sets (T )

T 2C(T

0

)

in
luded in T

0

and not T

0

to

another tree T

00

. Thus a walk de�ned in K

2

�K

1

= [

T

0

2CC(K

2

)

A

T

0


annot


onne
t two trees T

0

and T

00

and is therefore in
luded in one A

T

0

.

Proposition 14 Given a 
ombinatorial map G

0

, two 
ontra
tion kernels

K

1

� K

2

and the two 
ontra
ted graphs:

G

1

= (SD

1

; �

1

; �) = G

0

=K

1

G

2

= (SD

2

; �

2

; �) = G

0

=K

2

The submap K

01

of G

1

de�ned by K

2

� K

1

is a forest (see Figure 7 for an

illustration of the relationships between the di�erent 
ombinatorial maps).

G

0

= (D; �; �)

G

2

= (SD

2

= D �K

2

; �

2

; �)

�

K

2

G

1

= (SD

1

=D �K

1

; �

1

; �)

K

1

K

01

= (K

2

�K

1

; �

0

1

; �)

Figure 7: The relationships between the 
ombinatorial maps G

0

, G

1

, G

2

and

K

01

= (K

2

�K

1

; �

0

1

; �). The arrows represent 
ontra
tions.

Proof:

We will demonstrate this important proposition by showing that if K

01

is

not a forest, then we 
an �nd a 
y
le of G

0

in
luded in one tree T

0

of CC(K

2

).

If K

01

is not a forest of G

1

, then we 
an �nd a 
y
le C of G

1

in
luded in

K

01

. A 
y
le, being also a walk, we have by lemma 12:

9T

0

2 CC(K

2

) j C � A

T

0

� T

0
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if C

T

0

is empty, the set A

T

0

de�nes a new tree:

C � A

T

0

= T

0

� SD

1

The permutation �

1

and � being identi
al on SD

1

(see proposition 9 and

theorem 3) C is also a 
y
le of G

0

. We thus obtain the desired 
ontradi
tion

sin
e C is in
luded in T

0

whi
h is a tree of G

0

(see theorem 2).

If C

T

0

6= ;, let us show that we 
an extend C into an other 
y
le C

0

of

G

0

in
luded in T

0

. If C is de�ned by the darts d

1

; : : : ; d

n

, let us write C

0

(see

Figure 8) as:

C

0

= d

1

:P

1

: : : d

n

P

n

Where (P

i

)

i2f1;:::;ng

denotes a set of path to be determined.

d

1

T

1

P

1

d

2

P

2

T

2

T

3

T

n

T

0

d

n

P

n

P

n�1

Figure 8: The 
y
le C = (d

1

; : : : ; d

n

) extended to C

0

= (d

1

:P

1

: : : d

n

P

n

)

Given an index i in f1; : : : ; ng, Let us 
onsider two 
ases:

1. If �

�

(�(d

i

)) � SD

1

, the �

1

-orbit of �(d

i

) is equal to its �-orbit, and we

have:

d

i+1

2 �

�

1

(�(d

i

)) = �

�

(�(d

i

))

In this 
ase we take P

i

= ;.

2. If �(d

i

) belongs to the �-orbit of a tree T

i+1

� K

1

d

i+1

2 �

�

1

(�(d

i

)) = �

�

(T

i+1

) \ SD

1

Then �

�

(�(d

i

)) and �

�

(d

i+1

) belong to the same tree T

i+1

of K

1

and

it exists a unique path P

i

in T

i+1

from �

�

(�(d

i

)) to �

�

(d

i+1

)) (see

theorem 2).

Note that if �

�

(�(d

i

)) = �

�

(d

i+1

) the path is again empty.
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The serie C

0

so de�ned is by 
onstru
tion a walk of G

0

. Let us show that

it is 
losed.

If �

�

(d

1

) is in
luded in SD

1

, we have:

�

�

(d

1

) \ �

�

(C

0

) = �

�

1

(d

1

) \ �

�

(C

0

) = fd

1

; �(d

n

)g

If not, �

�

(d

1

) interse
ts a tree of K

1

, and 
ontains d

1

and the opposite of the

last dart of P

n

by de�nition of P

n

. Therefore the walk C

0

is 
losed. Let us

show that it is a 
y
le. If C

0

is denoted by:

C

0

= b

1

; : : : ; b

p

we must show that:

8i 2 f2; : : : ; pg �

�

(b

i

) \ �

�

(b

1

; : : : ; b

p

) = fb

i

; �(b

i�1

)g

If b

i

belongs to a path P

j

, its �-orbits 
ontains b

i

and �(b

i

) by de�nition of a

path. If some other darts in �

�

(C

0

) belong to the same �-orbit, we must have

some other darts than d

j

and �(d

j�1

) in C in
ident to the same tree. Sin
e

ea
h tree of K

1

is 
ontra
ted into a single vertex, this is in 
ontradi
tion with

the de�nition of C as a 
y
le of G

1

.

Given a dart d

i

in C, if �

�

(d) is in
luded in SD

1

, we have:

�

�

(d

i

) \ �

�

(b

1

; : : : ; b

p

) = �

�

1

(d

i

) \ �

�

(b

1

; : : : ; b

p

) = fd

i

; �(d

i�1

)g

If not, �

�

(d

i

) must 
ontains d

i

and the opposite of the last dart of P

i�1

by de�nition of the paths P

i

. If �

�

(d

i

) 
ontains some other darts in �

�

(C

0

)

we 
ontradi
t as previously the de�nition of C as a 
y
le of G

1

.

Therefore, C

0

is a 
y
le of G

0

in
luded in the tree T

0

. We obtain the

desired 
ontradi
tion. 2

The above demonstration is based on the fa
t that 
ontra
tions de�ned

by 
ontra
tion kernels do not remove nor 
reate 
y
les. Therefore, a 
y
le

de�ned in G

0

is 
ontra
ted in a 
y
le of G

1

. Conversely, a 
y
le C de�ned

in G

1


an be extended in a 
y
le C

0

of G

0

su
h that the 
ontra
tion of C

0

is

equal to C.

Using the notations of proposition 14 , the set K

2

� K

1

de�nes a forest

K

01

of G

1

. The following theorem shows that K

2

�K

1

is also a 
ontra
tion

kernel of G

1

.
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Theorem 6 Given a 
ombinatorial map G

0

, two 
ontra
tion kernels K

1

�

K

2

. If G

1

denotes the 
ontra
ted map asso
iated to K

1

:

G

1

= (SD

1

; �

1

; �) = G=K

1

The 
ontra
tion kernel K

2

�K

1

is a su

essor of K

1

.

Proof:

We have only to show that:

SD

1

� (K

2

�K

1

) 6= ;

We have:

SD

1

� (K

2

�K

1

) = D �K

1

� (K

2

�K

1

)

= D �K

2

= SD

2

6= ;

Note that this last property may also be demonstrated thanks to proposi-

tion 12:

(SD

1

�

[

T

0

2CC(K

2

)

A

T

0

) \ SD

2

= SD

2

\ SD

1

= SD

2

6= ;

2

4 Con
lusion

We have presented in this te
hni
al report the notions of 
ontra
tion kernel

and equivalent 
ontra
tion kernel. Our main result on equivalent 
ontra
tion

kernels is illustrated in Figure 9 (see also Figure 10): Given the two su

essor

kernels K

1

and K

2

, we 
an de�ne, thanks to Theorem 4, a 
ontra
tion kernel

K

3

with K

1

� K

3

providing the same 
ombinatorial map than the su

essive

appli
ations of K

1

and K

2

on G

0

. Conversely, given two in
lusion kernels K

1

and K

3

we 
an de�ne, thanks to theorem 6, a new 
ontra
tion kernel K

2

with

K

1

� K

2

su
h that the su

essive appli
ations of K

1

and K

2

is equivalent to

K

3

.

The design of eÆ
ient parallel algorithms is under development. The

design of su
h algorithms should be a
hieved by using some properties of

the evolution of 
onne
ting walks along 
ontra
tions. This expe
ted result
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G

0

G

2

G

1

K

1

K

2

= K

3

�K

1

K

3

= K

1

[K

2

Figure 9: The relations between equivalent 
ontra
tion kernels

together with the ones obtain in this report should allow us to study inter-

esting appli
ations of our model su
h as:segmentation [3, 1, 2, 4℄, stru
tural

mat
hing [17℄ or integration of moving obje
ts. Finally, the extension of our

model to higher dimensional spa
es (3D) should be studied.
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K

1

K

2

K

1

K

2

K

3

= K

1

[K

2

Figure 10: Two 
ontra
tion kernels K

1

and K

2

su

essively applied on a regular

grid. The appli
ation of K

2

Æ K

1

is equivalent to the appli
ation of K

3

. The


ontra
tion kernel K

1

is represented with dashed lines while K

2

is represented with

dotted lines.
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