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1 Introduction

The multi-level representation of an image called pyramid [8, 15] allows us
to define different levels of representation of a same object. This method
introduced by Pavlidis [8] defines several partitions of a same image and link
each connected components defined at one level with its decomposition in the
next level. The top of a pyramid, is usually composed of only one connected
region describing the whole image while its base describes the lowest level of
representation available on the image. For example, given a grey-scale image,
the base of a pyramid can be composed of connected components having the
same grey level. Another usual way to define the base of the pyramid consists
to define each pixel of the input image as a basic region.

Recently, graphs have been used more frequently for representing and
processing digital images. Typically such graphs represent the pixel neigh-
borhood, the region adjacency, or the semantical context of image objects.
In analogy to regular image pyramids, dual graph contraction [10] has been
used to build irregular graph pyramids with the aim to preserve the high
efficiency of the regular ancestors while gaining further flexibility to adapt
their structure to the data. Experiences with connected component analy-
sis [14], with universal segmentation [12], and with topological analysis of
line drawings [11, 13] show the great potential of this concept.

In the present document, we study the definition and the properties of
graph-pyramids defined by Combinatorial maps [6]. Basic definitions and
properties of Combinatorial maps used in this document may be found in a
previous technical report [16]. Moreover, some definitions given in [16] are
generalized and completed in this document.

The rest of the paper is organized as follow: In section 2 we define the
contraction kernel notion in term of combinatorial maps. In section 3 we
study the successive application of several contraction kernels.

2 Contraction Kernel

We will provide in this section a definition of a tree and a forest. These
definitions will be used to define a contraction Kernel and the connecting
walk map deduced from it. Finally we will show that the connecting walk
map is isomorph to a given contracted map.



2.1 Partition and Disjoint Vertex set

Definition 1 Vertex Partition

Given a combinatorial map G = (D, o0,«), Dy,..., D, C D is a vertex-
partition of G iff:

1. All D; are non-empty:
Vie{l,....,n} D;#0
2. Fach set D; is symmetric:
Vie{l,...,n} o"(D;)=D;
3. Fach vertex may be retrieved thanks to a dart in one D;:

Vie D Fic{l,...,n}, I eD; | deo(d)

4. The set of darts of one vertex is included in only one D;:

Vi,ke{l,....n}%i#k o (D;)No" (D) =0

This last definition generalizes the one given in [16] in order to fit with the
usual notion of a vertex partition (see Figure 1(b)).

Definition 2 Disjoint Vertex Set

Given a combinatorial map G = (D, o,«a), Dy,..., D, C D is a disjoint
vertex-set of G iff:

1. All D; are non-empty:
Vie{l,....,n} D;#0
2. FEach set D; is symmetric:
Vie{l,...,n} o (D;)=D;
3. All darts of one vertex belong to exactly one D:

Vi,ke{l,...,n}%i#k o (D;)No" (D) =0



Figure 1: Ezample for (a) disjoint vertex set and (b) vertex-partition

This definition relaxes condition (3) of a vertex-partition (definition 1) in
order to allow some vertices to be unaffected by the operations which may
be performed on the disjoint vertex-set (see Figure 1(a)).

Proposition 1 Given a combinatorial map G = (D, o,a), and a dart d.
The sub combinatorial map: G' = (a*(¢*(d)), o', ) isolates the face p*(d) of
G. The finite face in G’ is bounded by the same darts

" (d) = ¢"(d)

Proof:
If d' € p*(d) we have:

¢'(d) =o"(a(d)) with n=Min{peN" | o"(a(d)) € a*(¢"(d))}

Since o(a(d’)) = p(d') € a*(¢*(d)) we have, n = 1 and ¢'(d") = ¢(d').
Let us denote the two permutations:

o (d) = (dy=d,d,...,d)
gO*(d) = (dozd,dl,...,ds)

Let g denote the length of the shorter permutation Min(r,s), and let us
make the following recurrence hypothesis on k:

Vie{0,... .k} d;i=d,



The hypothesis is true for & = 0, let us suppose that it remains true for
a given £k > 0. Then dj, = ¢'(d},) = ¢'(dx) = ¢(di) = dpy1. Thus the
property holds until £ + 1. Moreover, due to this property, we must have
r = s. Indeed, if r < s we have:

d=¢'(d}) = o(dn) = dnts

And in this case ¢ is not a permutation since a same dart can appear at most
once in one orbit. O

2.2 Tree and forest

Two adjacent regions of a partition merge if the separating boundary seg-
ment is removed. The resulting larger region can merge with any of the new
neighbors and so forth. Each time one of the separating boundary segments
is removed. Boundary segments are encoded by darts of the dual combina-
torial map G. Since any removal in G corresponds to a contraction in G
the sequence of removals of boundary segments corresponds to a sequence of
contractions in G. Since self-loops cannot be contracted a sequence of succes-
sive contractions may not contain a circuit (see [16]). Thus the set of darts
involved must form a tree (see definition 3 below) or a forest (see definition 4
below).

Definition 3 Map tree
Given a combinatorial map G = (D, 0, «), a set D’ will be called a subtree
of G iff a*(D") = D' and the submap:

Gr= (Do =coppp,a)
is connected and has only one @' -orbit.

The Tree definition will be used to contract a set of vertices into a single
vertex. More generally, if we contract a set of vertices into a given set of
surviving vertices, the set of darts involved in such contractions may be
encoded by a forest (see definition 4).

Definition 4 Forest

Given a combinatorial map G = (D, o, ), the set D' will be called a forest
of G iff a*(D') = D' and each of its connected components G; = (D;, 0, @)
1S a tree.



Theorem 1 Any sub combinatorial map of a forest is a forest.

Proof:
See Tutte [18] O

Proposition 2 Let G = (D, o,a), and F C D be a non-empty forest of G.
If CC(F) denotes the set of connected components of F' then each component
is a tree and CC(F) is a disjoint vertez-set of G.

Proof:

Each T € CC(F) is a forest, as a sub-combinatorial map of a forest, and
connected. It is thus a tree. Moreover, since F' is supposed to be non-empty,
each 7T is non-empty. Let us suppose that:

Id e D, AT, T)eCC(FALT T | deo(T)no*(T)

and let us consider two darts (dy,dy) € T xT". Since T and T are connected
we can find two paths P, and P, (see [16]), respectively included in 7 and 77,
which connect 0*(d;) to o*(d) and o*(d) to 0*(dy). The path P;.P, connect
o*(dy) to 0*(ds) and is included in 7 U 7" which is thus connected. This is
in contradiction with our definition of the set CC(F'). Thus:

()N (T) = 0
Therefore, CC(F) is a disjoint-vertex set of G. O

The notions of tree and forest are closely linked to the notion of connec-
tivity. In particular, a unique path (see definition 7) connects two vertices
of a tree. Moreover, a forest does not have any cycle (see definition 8). The
paths and the cycles may be considered as particular case of a more general
object called a walk.

Definition 5 Walk
Given a connected combinatorial map G = (D, o0,«a), a walk in G is a
sequence of darts (dy, ...,d,) such that:

Vie{l,....n—1} «a(d;) € o*(di1)
The walk is said to be closed if a(d,) € o*(dy) and open otherwise [7].
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According to Harary [7], different kind of walks may be distinguish:

Definition 6 Trail
A trail is a walk W = (dy, ..., d,) where all the edges are distinct:

Vi, 5) e {l,...,n}%i#] d; & o*(dy)

Definition 7 Path
A walk W = dy,...,d, will be called a Path if all its vertices (and thus
all its edges) are distinct:

{Vie{Q,...,n} o*(di)Na* (W) = {di,a(d;—1)}
o"(di) Na*(W) = {di}

Note that according to our definition a Path must be an open walk. A closed
path will be called a cycle.

Definition 8 Cycle
A walk W = dy,...,d, will be called a cycle if all its vertices except the
first and the last one are distinct:

{Vie{Q,...,n} o*(di)Na* (W) = {di,a(d;—1)}
o*(di)Na*(W) = {di,a(d,)}

The notions of paths and cycles are connected to the notion of tree by the
following theorem:

Theorem 2 The following statements are equivalent for a combinatorial
map G:

1. G is a tree

2. G is connected and p = q + 1, where p denotes the number of vertices
and q the number of edges.

3. G s acyclic and p=q+1

4. Fvery two vertices of G are joined by a unique path



Proof:

Equivalence between statements (2) to (4) is demonstrated in Harary’s
Book [7]. We have thus only to show that our definition of a tree is equivalent
to the one of Harary.

Let us show that, (1) implies (2). Using our definition a tree must be
connected and have only one face. Using Euler relationship we have: p —q+
1 = 2, therefore p = ¢ + 1. Conversely, if G is connected the relationship
p = q + 1 implies that the number of faces is equal to one. O

2.3 Contraction Kernel

In the following we will focus on connected combinatorial maps. If the com-
binatorial map is not connected the following definitions and propositions
may be applied to every connected component of the combinatorial map.
Moreover, since the vertices of a combinatorial map are implicitly defined by
the darts which belong to their o-orbits, we must require that at least on dart
survives. In this last case the resulting graph is reduced to one vertex with
a self loop. The two previous restriction are used in definition 9 to define a
contraction kernel and the set of surviving darts.

Definition 9 Contraction Kernel
Given a connected combinatorial map G = (D, 0, ), the set K will be
called a contraction kernel iff:

1. K 1is a forest of G,

2. K does not include all darts of G:

SD=D-K+0

The set 8D 1is called the set of surviving darts.

Note that, using proposition 2, if a set K of darts is a forest of the combi-
natorial map G, its set of connected components CC(K) is a disjoint vertex
set. Moreover, each element 7 of CC(K) is a tree (see proposition 2).

The following lemma shows that a tree 7 contains at least one vertex
with surviving darts. This property may be understand as follow: Since the
trees CC(K) form a disjoint vertex set, the vertices of the trees should not be



directly adjacent (see the last requirement of definition 2). The combinatorial
map being connected, the connection between these trees must be realized by
surviving darts. Moreover, if the contraction kernel contains only one tree,
some surviving darts must remains by definition of a contraction kernel.
Therefore, the o-orbit of the tree must contains these surviving darts.

Lemma 1 Given a connected combinatorial map G = (D, o0, «), and a con-
traction kernel K, every connected component T of CC(K) has at least one
verter with a surviving dart:

VT € CC(K) o*(T)NSD # 0

These surviving darts connect the trees of K.

Proof:

Let us consider 7 € CC(K), a dart d € T and a dart d € SD. The
combinatorial map G being connected we have a path P = d,...,d, from
0*(d) to o*(d'). Now let us consider the last dart in the sequence dy,...,d,

which belongs to o*(T'). Its index i is equal to:
i=Max{je{l,...,n} |Vke{l,...,j} dr€c™(T)}
Note that the index i is at least equal to 1 since d; € o*(d) C o*(T).

e Let us suppose that i <n

Using item 3 of definition 2 we have o*(d;) (K —T) = 0. Thusd; € T
or d; € 8D. If d; belongs to T, the tree 7 being symmetric we have
a(d;) € T. Thus d;y1 € o*(a(d;)) C o*(T) which is in contradiction
with the definition of i, thus we have d; € SD. Since d; € o*(T) the
lemma is demonstrated.

o Ifi=n

Then we can show, with the same kind of demonstration, that d, €
SDnNo*(T) or d, € T. In this last case we have a(d,) € T and
d € o*(a(d,))NSD C o*(T)NSD.



Proposition 3 Given a connected combinatorial map G = (D, o,«), and a
contraction kernel K not all darts of a face may disappear:

VdeD ¢ (d)NSD#0

Proof:

The proposition is trivial if d € SD. Let us suppose that d belongs to a
given 7 € CC(K). The tree T being symmetric we have a(d) € 7. Using
item 3 of definition 2 we have o*(a(d)) N (K —T) = (). Thus o(a(d)) € T or
o(a(d)) € 8D . Written in terms of permutation ¢ we obtain:

o(d) € T or p(d) € SD

We can deduce from the above formula, that ¢*(d) intersect SD or is included
in 7.

Let us suppose that ¢*(d) C T: we have ¢*(d) = T since the tree T has
only one ¢-orbit. Using Lemma 1 we have:

o (" (d)NSD =" (T)NSD £

We can thus consider d’ in ¢*(d) such that o(d’) € SD. Then a(d') € T =
©*(d) and p(a(d')) = o(d') € SD. Thus ¢*(d) N SD = ¢*(a(d')) N SD # 0.
This is forbidden by our hypothesis ¢*(d) C T.

|

Lemma 1 and proposition 3 will be used in the following demonstrations.
However, as an immediate consequence of proposition 3, we can state that a
combinatorial map with at least two faces can’t be reduced to a single loop
by contraction operations solely. Indeed, since one dart must survive in each
face the reduced combinatorial map should have at least one self loop for
each face of the initial combinatorial map. Thus the reduction of the initial
combinatorial map must use contraction and dual contraction operations.

2.4 Map of Connecting Walks

In this section we define the notion of connecting walk. This notion may
be considered as the extension of the definition of connecting paths defined
within the Decimation Parameter framework [9, 16, 5].

Then we define an involution ag and a permutation ox on the set of
connecting walks. The two permutations ax and og define a combinatorial
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map on the set of connecting walks. We will show in the next section that
this combinatorial map is isomorphic [16] to the one deduced from the con-
tractions defined by the contraction kernel. We also study some properties
of the permutations ax and og. Equivalent properties in the contracted
combinatorial map may be deduced thanks to the isomorphism.

Definition 10 Connecting walk
Given a connected combinatorial map G = (D, 0, «), a contraction kernel
K and a dart d € 8D, the connecting walk associated to d is equal to:

CW(d) =d,o(d),...,¢" Y(d) withn = Min{p € IN* | ¢*(d) € SD}

Note that the connecting walk is defined for all darts d in SD since the
set {p € IN* | ¢?(d) € SD} contains, in the worse case |¢p*(d)|.

We do not talk of connecting paths, since the walk CW (d) is not always
a path (see [16] and Figure 2). If CWW(d) is a path it connects the vertex
o*(d) to the vertex o*(¢™(d)) where d and ¢"(d) belong to SD.

O
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Figure 2: A connecting walk which is not a path

Proposition 4 Given a connected combinatorial map G = (D,o,«a) and a
contraction kernel K, the set of non-surviving darts of a connecting walk is
included in exactly one connected component of K :

Vde SD CW(d) —{dy=0 or AT €CC(T) | CW(d)—{dyC T
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Proof:
Let us consider d € SD and:

CW(d) =d,o(d),...,¢" '(d) with n = Min{p € IN* | ©"(d) € SD}

If n =1 we have CW(d) = d and CW(d) — {d} = 0. Otherwise, (d) is not
a surviving dart, and there must exist one 7 such that ¢(d) € 7. Let us
consider the last dart in the sequence ’(d) of darts in 7

p=Maz{ke{l,....n—1} | Vje{l,....,k} ¢'(d)eT}

We have at least p = 1, let us suppose that p < n — 1. Since ¢?*'(d) is not a
surviving dart, there must exist another set 7' such that ¢?*'(d) € T'. But,
T being symmetric, we have a(g?(d)) € T. Since P (d) = o(a(eP(d))) we
have:

¢ H(d) € (T) N o™ (T')

Which is forbidden by the definition of a disjoint vertex-set (see definition 2).
a

Definition 11 Set of Connecting Walks
Given a connected combinatorial map G = (D, o,«) and a contraction
kernel K with surviving darts SD, the set of all connecting walks will be
denoted by:
D ={CW(d) | deS8D}

Proposition 5 Given a connected combinatorial map G and a contraction
kernel K, the application:

CW( 4 CW(d)

15 bijective.

Proof:

This application is trivially surjective since the set of connecting walks is
generated from the set of surviving darts. Moreover, each connecting walk
containing only one surviving dart the application is trivially injective and
thus bijective. O
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Proposition 6 Given a connected combinatorial map G = (D, o,«), and a
contraction kernel K each dart of D belongs to exactly one connecting walk:

Vie D 3'd €S8D |deCW(d)

Proof:
By definition, each connecting walk contains only one dart in SD, thus if
d belongs to SD, CW (d) exists and is unique.

Now let us consider d € K. According to proposition 3 we have: ¢*(d) N
SD # (). Let us consider:

d € p"(d)NSD | d = ¢ "(d) with n = Min{p € N* | ¢ ?(d) € SD}

we have obviously d € CW(d'). Let us suppose that we can find another
dart d” € 8D such that d € CW(d"). Then d" = ¢~P(d) with p > n. Thus
the walk:

CW(d") = d', o(d"),..., ¢ d"),... ,oP(d"),...
N d,... d, ...

contains at least the two darts d” and d' in 8D, which is forbidden by the
definition of a connecting walk. O

Definition 12 Reversal of Connecting walks
Given a connected combinatorial map and a contraction kernel K, the op-

posite permutation ag from Dy to itself maps each connecting walk CW (d)
with d € 8D to CW (a(d)):

DK — DK
‘W< CW(d) — CW/(a(d)

Remark 1 The function which associates to each dart its connecting walk
and the permutation « being bijective ai 1s bijective. It is thus a permutation
on Dg. Moreover,

ag o ag(CW(d)) = CW(aoa(d)) = CW(d)

o 18 an involution.

12



Lemma 2 Given a connected combinatorial map and a contraction kernel
K, the application

Foll SD — SD
orow d +— ¢"(d) withn = Min{p € N* | ¢?(d) € SD}

18 bijective.

Proof:
Note that according to the previous notations we have:

CW(d) =d,...,o" '(d)

The connecting walk CW (d), and thus ¢"(d), is defined for all darts in
SD. Now let us suppose that we can find two darts d and d' such that
follow(d) = follow(d'). Then there exist two integers n, p, with n > p such
that ¢™(d) = ¢?(d'). Thus we have d' = ¢" ?(d) € SD. The integer n being
the minimal integer different from zero which realizes this equality we have
n=pand thus d = d'. O

Proposition 7 Given a connected combinatorial map G = (D,o,«) and
a contraction kernel K the application follow o o maps o*(T) N 8D into
a*(T)NSD for all T € CC(K):

VT € CC(K), Vdeo (T)NSD follow(a(d)) € o*(T)NSD

Proof:
Given a dart d in 0*(7) N SD, we have :

CW(a(d)) = a(d),o(d),...,¢" " (a(d))

If n = 1, we have follow(a(d)) = o(d) which belongs to o*(7) by hypothesis.
Otherwise, by definition of a connecting walk o(d) does not belong to SD.
Since, we have by definition of a contraction kernel:

o*(d) Cc TUSD
we must have o(d) € 7. Thus we have thanks to proposition 4:
{o(d),....¢" Hald)} C T

13



The tree 7 being symmetric we have: a(p" '(a(d))) € T. Thus :
follow(a(d)) = ¢"(a(d)) = o(a(¢" '(a(d))) € o*(T)

The application follow being bijective, it can be considered as a permuta-
tion on the set of surviving darts. Moreover, the vertices o*(d) C o*(T)NSD
may be interpreted as the leafs of the tree 7. Thus the orbits of the permu-
tation follow o a describe the leafs of the trees.

Proposition 8 Given a connected combinatorial map G = (D,o0,«a) and a
contraction kernel K, the applications:

< Dx — Dg
PR ew(d) =d,p(d),...,¢" N(d) ~ CW(p"(d))

and o = @i o ag define two permutations on Di.

Proof:
We have ¢ (CW (d)) = CW (follow(d)) thus:

or = CW o followo CW ™!

The application @ is bijective as the composition of bijective applications.
Moreover, the application ok is the composition of two permutations and
is thus a permutation. O

Proposition 9 Given a connected combinatorial map G = (D,o0,«a) and a
contraction kernel K, the connecting walks of two consecutive surviving darts
in a given o-orbit are consecutive in a og-orbit:

Vd e SD  o(d) € SD = ok (CW(d)) = CW (o(d))

Proof:
We have p(a(d)) = o(d) € SD. Thus the connecting walk CW («(d)) is
reduced to d and we have follow(a(d)) = o(d). Thus:

o (CW(d)) = CW (follow(a(d))) = CW (o(d))

14



Corollary 1 Given a connected combinatorial map and a contraction kernel
K, if a o-orbit is included in SD, the connecting walks of any two consecutive
darts within this o-orbit, are consecutive in a ox-orbit:

Vde D o*(d) Cc 8D =Vd €o*(d) ox(CW(d))=CW(o(d))

Corollary 2 With the same hypothesis as proposition 9, if a o-orbit is in-
cluded in 8D, the application CW maps this o-orbit to a o -orbit. Moreover
two consecutive darts in the o-orbit are mapped into two consecutive connect-
ing walks in the og-orbit:

VdeD o*(d) C 8D = o(CW(d)) = CW (o*(d))

Proof:
A basic recursion on the power of o (CW (d)) O

The proposition 9 and corollaries 1 and 2 show that the permutation og
may be immediately deduced from the permutation ¢ for surviving darts.
Intuitively, this last property means that one vertex which does not belong
to any tree, will not be affected by contractions. Let us now study the og-
orbit of contracted vertices:

Proposition 10 Given a connected combinatorial map, a contraction kernel
K and a tree T in CC(K). The o-orbit of any connecting walk defined by
a dart d in o*(T) N SD is equal to CW (o*(T) NSD):

VT € CC(K), VYdeo*(T)NSD CW ' (o} (CW(d))) =0c*(T)NSD

Proof:
Let us first show that:

VT € CC(K), VYde o (T)NnSD CW ' (o} (CW(d))) C o*(T)NSD
Let us write the og-orbits of CW (d) as:
(CW (dy) = CW(d),CW (d4),...,CW(dy,)).
We have to show that:

Vi {0,...,n} CW Y OW(d;))=d; € o*(T)NSD

15



The proposition is true for : = 0. Let us suppose that the proposition is true
for all k € {0,...,i}. We have:

CW HCW (diy1))) = CW o (CW(d;)))

_ follow(a(d;

We know, thanks to proposition 7 that follow(«(d;)) belongs to o*(T)NSD.
Thus d;; belongs to the same set, and the recursive hypothesis holds until
v+ 1.

Thus:

CW= o3 (CW(d))) C a*(T)NSD

Conversely, let us consider the submap G' = (7,0, ) of G. Since T
is a tree, we have: T = ¢*(dy) = (dy,...,d,,) for a given d; € T. Using
proposition 6 we know that each dart belongs to only one connecting walk.
Thus,

Vie{l,...,m} 3d; € SD |d; e CW(d)

Let us show that:
Vke{l,...,m} CW(a(d},)) € ok (CW(a(d}))) (1)
If div1 = ¢'(di) = p(di) € T, we have di, € CW(d},) and thus d, =

dj.
Otherwise, we have:

diwr = @(dy) = 0?(a(dy)) with VE € {1,...,p—1} o*(a(d) & T
Since o*(a(dy)) C T U SD, we have:
Ve {l,....,p—1} oF(a(dy) € SD

Moreover, since ¢'(dy) # o(dy), we have o(d,) = o(a(d)) € T and thus
o(a(dy)) € 8D. This last property is equivalent to p > 1. Moreover, we have
by definition of the function follow, follow(d),) = o(a(dg)), thus:

pr(CW(dy)) = CW(follow(dy)) 2)
= ok (CW(a(dy))) = CW(o(a(dy)))

16



In the same way, we have: o '(a(d,)) € SD and ¢(a(c?~'(—d;))) =
o?(a(dk))
Thus:
dy1 = oP(a(dy)) € CW (a(a?™ (a(dy))))

Therefore, using proposition 6: dj,_; = a(c?~'(a(dy))). Using proposition 9
we have:

CW(a(dyy1)) = CW (0 (aldy))) € o5 (CW (o(a(dy))))
Therefore, using equation 2:
CW(a(dy11)) € ok (ox(CW (ald)y)))) = o5 (CW (aldy)))
We have thus:
Vk e {L,....m} CW(aldy,,)) € oic(CW (aldy)
Since d belongs to o*(7) N SD, its o-orbit intersects T
Ip € N* | o¥(d) € T and Yk € {1,...,p—1} ¢"(d) € SD

If p =1, we have CW (a(d)) = a(d), by, . . ., b with by = p(a(d)) = o(d) € T.
Thus it exists one k in {1,...,m} such that d = a(d},). We have thus:

CW(d) € o (CW (a(dy))) <= 05 (CW(d)) = o7 (CW (a(d})))

Otherwise, we have: CW (a(o?~!(d))) = a(c?~'(d)),oP(d), ... with o?(d) €
T. Therefore, using proposition 6, we have:

3d), € SD with k € {1,...,m} | d}, = a(o” (d))
Moreover, using proposition 9 we have:
ok (CW(d)) = CW (""" (d))

Thus
CW(d) € o (CW (P71 (d))) = o5 (CW (a(d})))

In the same way, given a dart d’ in o*(7) N SD, we have:
Jje{l,...,m} | CW(d) € ox(CW (a(d})))

17



Using equation 1, we have:
CW(d) € o3 (CW (a(dy))) = o3 (CW (a(dy))) = o (CW (d))
Therefore:
Vd' € o*(T)NSD d € CW™ (o} (CW(d)))
Which is equivalent to:

o (T)NSD Cc CW ™ (o5 (CW (d)))

The equality between the two set is thus demonstrated. O

Proposition 10 shows that if a connecting walk traverse a given tree its ox-
orbit is equal to the set of connecting walks traversing the same tree. There-
fore, given any tree 7 in CC(K), all the connecting walks in CW (o*(T)NSD)
belong to a same og-orbit and are thus ordered. Moreover, the application
CW being bijective, the order defined on CW (o*(T) N SD) induce an order
on the set of surviving darts adjacent to 7: o*(7) N SD.

Corollary 3 Given a connected combinatorial map G, a contraction kernel
K, and a non-surviving dart d in K. The opposite of the two connecting

walks CW (d') and CW (d") including d and «(d):

i € CW(d)
{a(d) e CW(d")

belong to the same o -orbit:
CW(a(d")) € og (CW (a(d')))

Proof:

The existence and the uniqueness of darts d’ and d” is provided by propo-
sition 6. By definition of a contraction kernel it exists a unique tree 7 in
CC(K) such that a*(d) C T. Using proposition 4 we have:

Cw(d)-{d} < T
Cw(d") —-{d"}y < T
Thus:
ola(d)) =¢(d) e CW(d)—{d} C T
o(a(d") =p(d") e CW(d") —{d"} C T
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Therefore, we have a({d',d"}) C o*(7T)NSD. Using proposition 10 we have:
a(d’) € CW oy (CW (a(d)))) <= CW (a(d")) € ok (CW (a(d)))

This last corollary shows that the opposite of two connecting walks con-
taining two opposite darts belong to the same og-orbit.

2.5 Link between connecting walks and contraction

This short section show that the connecting walk map (see definition 13
bellow) is isomorph to the contracted map defined by the contraction kernel.
Thus, all the properties defined in the connecting walk map may be extended
to the contracted one.

Definition 13 Connecting walk map Given a connected combinatorial
map G and a contraction kernel K, the connecting walk map associated
to G and K 1s denoted GC' and is defined by:

GC = (DK,O'K = gOKOOéK,OéK)

Theorem 3 Given a connected combinatorial map G and a contraction ker-
nel K, the connecting walk map GC' is isomorph to the contracted map
G'=G/K:

GC =2 G/K

Proof:

We have:
GC = (DK, 0K, CYK)
G = (D-K,o',a)=(8D,d, )

Now, let us consider the application ¢ = (x, CW) from G’ to GC such that:

o = ox

X a = o

Since the application CT is bijective (see proposition 5), ¢ is bijective. Let
us show that it is a morphism, thus that:

OW(a(d)) = ax(CW(d)

)
Vd € SD{ CW(d'(d) = ox(CW(d))
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The first equality is given by the definition of the involution ax. Moreover
we have:

ox(CW(d)) = ¢k oax(CW(d))
= or(CW(a(d)))
= CW(follow(a(d)))
The application C'W being bijective, the second equality will be demon-
strated iff we show that o'(d) = follow(a(d)).
We have, by definition G’ = G\ K. Thus ¢’ = ¢/oa with ¢’ = YoPP SD-
Thus o'(d) = p o pp gplald)) = ¢"(a(d)) with:

n = Min{p € N* | " (a(d)) € SD} (3)

Moreover, according to Lemma 2, we have follow(a(d)) = ¢"(a(d)) with n
satisfying equation 3. Thus:

o'(d) = follow(a(d)) = CW(o'(d)) = ox (CW (d))

3 Equivalent Contractions Kernels

This section is devoted to the application of successive parallel contractions.
Each set of contractions is defined by a contraction kernel. We show in
this section that applying successively two contraction kernels is equivalent
to applying a bigger one only once (see section 3.1). Conversely, we show
that a contraction kernel may be decomposed into two smaller ones. The
successive application of the resulting contraction kernels is equivalent to the
application of the initial one (see section 3.2)

Definition 14 Inclusion of Contraction Kernels

Let us consider a combinatorial map G, and two contraction kernels K
and Ky defined on G,. We will say that the contraction kernel Ky includes
Ky iff Ki C Ky. In this case each connected component of K1 is included in
exactly one connected component of Ky:

VT €CC(K,) N T €CC(Ky) | TcCT
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Definition 15 Predecessor and Successor Kernels

Given a combinatorial map Gy = (D, 0, ), a contraction kernel Ky of Gy
and the contracted combinatorial map G, = Go/K,. If Ky is a contraction
kernel of Gy then we say that K is the predecessor of Ky, or that Ky is the
successor of Ki. This relation will be denoted K1 < K.

The successive application of K1 and Ky forms a new operator on Gq
denoted by Ky o0 K.

Lemma 3 Given a combinatorial map Gy = (D,o,a) and two disjoint
forests of D, Fy and Fy. If F1UF, is a forest, we can contract Gy in different
ways, but the final combinatorial map is always the same:

Go/(F1U Fy) = (Go/F1)/ Fy

Proof:
This property may be trivially deduced from the commutativity of con-
traction operations. O

This lemma shows that the final combinatorial map does not depend on
the order of the contractions. Thus, given two successive contraction kernels
K, and K, if a contraction kernel K’ may be deduced from K; U K>, the
application of K’ will be equivalent to the successive application of K; and
K5. In the same way, given two contraction kernels K; and K’ such that
K, C K'if we can define a contraction kernel Ky on the set of darts K' — K,

the successive application of K; and K5 is equivalent to the application of
K'.

3.1 Deriving an Inclusion Kernel from Successor Ker-
nels

This section is devoted to the demonstration of Theorem 4 which shows that,

given two successive contraction kernels K; and K, of a combinatorial map

Gy, with K; < Ky, we can define a third contraction kernel K such that:

(Go/K1)/ Ky = Gy/K). The following notations will be used in this section
(see Figure 3):

e Gy = (D,o,«a) denotes the initial combinatorial map.

e K; and K, denote the two successive contraction kernels such that
K, < K5. Note that we have K; C D and Ky C D.
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e G; = (8D;,01,a) denotes the contracted combinatorial map Gy/Kj.

e ' = (Kb UK,,0',a) and G} = (K, 0!, «) denote respectively, two
submaps of Gy and G;. The combinatorial maps G and G’ are based
on respectively the darts that are contracted by K5 on G; and the darts
that are contracted by the successive applications of K; and K5, on Gj,.

G"=(Ky,0",a) C G'=(KyUK;,0,a) C Go = (D, 0, q)
Ky
1= (Ky,01,0) c G1=(8Di,01,0)
Ko

Gy = (8172,02;@)

Figure 3: Combinatorial maps that will be used in this section. The contractions
are represented by arrows.

We know, by definition of the contraction kernel K, that G is a forest of
(GG1. One of the aims of this section is to show that G’ is also a forest of Gj.
Note that, G is not a submap of G’ besides the fact that Ky C Ky U K;.

Indeed, G} is a submap of Gy, since Gy is not a sub-map of G, G} is not a

sub-map of G'. The relation between the combinatorial map G} and G’ is
given by equation 5.

Lemma 4 Using previously defined notations, the following relations hold:
1. KQ C SDl and K2 7£ SDI
2. Kl N K2 == @

3. (KQ U Kl) N 8D1 = K2
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4. D—KQUKlzspl—KQ
Proof:

1. The contraction kernel Ky being defined on Gy = (8D1, 01, ), we have,
by definition of a contraction kernel:

K2 C SDl and K2 75 SDI
2. We have:
K2 C SDl =D — Kl
Thus:
KQ N Kl == (Z)
3. This is a consequence of the two preceding equalities:

KQUK1ﬂ8D1 - (K1UK2)QSD1
= (K;N8D,)U(KyNSDy)

= K,
4. We have:
D_KQUKl = D—(K1UK2)
- (D—Kl)—Kg
== SDl—KQ
a

Note that lemma 4 is demonstrated for two succesive contraction kernel.
Nevertheless, this lemma using only quite general properties of contraction
kernels it remains true in the following cases:

e K, and K5 are both dual contraction kernels.
e K is a contraction kernel and K, is a dual one.

e K, is a contraction kernel and K is a dual one.

The following lemmata (5, 6, 7 and 8) establish a link between the ¢-orbits
of the combinatorial map G' and the ones of the combinatorial map Gj. The
p-orbits of G being deduced from the ones of G| which is isomorphic to the
connecting walk map of G, we will first, study the connections between the
p-orbits of G’ and the connecting walks of G.
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Lemma 5 Given a combinatorial map Gy = (D, o0,«), and two contraction
kernels Ky and Ky such that Ky < K. The sub map G' = (K, U Ky,0', a)
verifies:

1. Each connecting walk of Ky defined by a dart d in Ky is included in
the ¢'-orbit: ¢ (d). Moreover the same order on the elements applies
in CW(d) and ¢"™*(d):

Vde K, CW(d) C ¢™(d)
2. Fach non-surviving dart of Ky belongs to a connecting walk. All the

non surviving darts of this connecting walk appear in a ¢'-orbit of G'
in the same order as in the connecting walk:

Vie K 3d €8D,|de CW(d)—{d} C o*(d)
Where, the connecting walks are defined in Go by Ky and ¢’ denotes the
permutation ¢ in the sub map G'.

Proof:

1. Let us consider d in K,. Since Ky C 8D , d is a surviving dart and
we can consider the connecting walk:

CW(d)=d,o(d)...,¢" *(d) with n = Min{p € N* | ©(d) € SD;}
If n =1, CW(d) is reduced to d and is thus included in ¢"(d).
Otherwise, let us consider the following proposition:

Vi €{0,...,i} withi <p ¢"(d) = ¢’(d)

This proposition is true at least for i = 0 since ¢"°(d) = ©°(d) = d. Let
us suppose that the proposition is true for a given ¢ < p.
We have by definition of the restriction operator:

¢"Hd) = o(a(¢’(d)) with
q — Min{k € N* | o*(a(¢"(d)) € Ky U K}

Since o(a(¢"(d))) = o((a(¢'(d))) = ¢ (d) € K; C Ky U K, we have
g = 1 and the recurrence hypothesis hold until ¢ + 1.
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2. If d € K; we know, thanks to proposition 6 that:
ld' € 8D, | d € CW(d')

Moreover, since d # d', CW (d') is not reduced to d'. Let CW(d') =
d,o(d),...,oP7'(d"). Since CW (d') — {d'} is not empty we must have
p > 1. Moreover, by definition of a connecting walk:

Vie{l,....p—1} ¢'(d)eK, c KUK,
Thus, as previously: VI € {1,...,p — 1} ¢'(d) = ¢"(d). Therefore,

CW(d') = {d'} C ¢"((d)) = " (d)

Each connecting walk is by definition, included in one @-orbit. The last
lemma only shows that this property remains true in the combinatorial map
G’ for the connecting walks defined in G by K. Intuitively, this proposition
is due to the fact that restricting a combinatorial map enlarge the set of darts
of each face. Thus a connecting walk included in one p-orbit ¢*(d) with d in
K, U K will be included in ¢™(d).

Lemma 6 Given a combinatorial map Gy = (D, 0,«), and two contraction
kernels Ky and Ky such that Ky < K. For all d in K, the ¢'-orbit of d:

©*(d), in G = (K2 U Ky, 0, ) may be expressed by (see Figure 4):
QOI*(d) :dl,...,dQ,...,dm... with {dl,...,dm} CK2

Moreover, for each i in {1,...,m} it exists a serie of darts (d,,...,d") in
SD, — K, such that:

@,*(d) = Pl.PQ....,Pm with
P = CW(dy).(CW(d}) —{d}})...(CW(d}") — {d}"})

In other words, any face of G’ which contains at least one dart in K, may
be considered as a concatenation of connecting walks, without the darts
belonging to SD; — K.

Proof:
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Figure 4: One P; defined by two connecting walks

Since d belongs to Ky we know that the intersection between ¢™*(d) and
K, is not empty. We can thus suppose the existence of the darts {dy,...,dn}
with m at least 1. Moreover, the demonstration being the same for each P;
it is sufficient to show it for a given ¢ and to show that the permutation ¢’
maps the last dart of P; to d; .

Using Lemma 5 we have: CW(d;) C ¢*(d;) = ¢"*(d). Let us denote
CW(d;) = by,...,b.. We have p(b,) = follow(d;) = ¢1(d;). Moreover,

¢'(by) = oP((a(b,)) with
Vke{l,...,p—1} oF(a(b)) e D~ K,UK, =8D, —

o If ©'(b,) € K, we have according to our notations ¢'(b,) = d;11 and
P = CW(d,).

o If p =1, we have ¢'(b,) = ¢(b,) = ¢1(d;). Moreover, ¢'(b,) € Ky U K,
and cpl(d) € 87)1, thus ¢'(b,) € (KQUKl)ﬂSDl K, (see Lemma 4).
Thus as previously, ¢'(b,) = d;+1 and P, = CW (d;).

LW o (=)

Figure 5: A zoom on a connection between two connecting walks

e Otherwise, we have p > 1 and ¢'(b,) € K; (see Figure 5). In this case
we have: o? 1 («a(b,)) € 8Dy — K> and p(a(a? (a(b,)))) = o?(a(b,)),
Thus:

¢'(br) = 0" (a(br)) € CW (a(o” H(albr))))
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Using Lemma 5 we have:

CW (a(o” Hal(b)) = {elo” Ha(br)))} € " (br) = ¢"(d)

If we denote d} = a(o?~'(a(b,))) we obtain: P, = CW (d;).(CW (d}) —

Let us suppose, that P; can be written as:
P, = OW(d;).(CW (d;) — {d3}) ... (CW(d]) — {d]}) ...
for a given j. Let us denote C'W (d?) by:
CW(d)=¥,... 0

we have ¢'(b.,) = o (a(by)).

As previously, if ¢'(b),) € K, or p’ = 1 we have ¢'(by) = d;y; and
j = n;. Otherwise, if &/ denotes a(0” ~' (a(bl,))) we have CW (d!*") —
{d™'} € ¢"*(d) and P; can be written as:

P, =CW(d;)...(CW(d) — {d&Z})(CW (&) — {dit'}) ...

Thus the recursive hypothesis holds until j + 1.

Intuitively, this last lemma may be interpreted has follow: Since each
connecting walk is included in one face of the initial combinatorial map, each
face of the initial combinatorial map may be considered has a concatenation
of connecting walks. Using the restricted combinatorial map G', we have to
remove the darts which belong to D — Ky U Ky = 8§D — K5. The removed
dart being surviving ones, we only have to remove the starting dart of some
connecting walks.

The following lemma show that each P; in included in one tree of the
contraction kernel K. Intuitively, this last proposition is true because the
walk P; does not cross a surviving dart (we never have d € SD; and ¢(d) in
the same walk). Since the surviving darts connect the different trees of the
contraction kernel a walk P; must remains in a given tree.

Lemma 7 Let us use the same notation for the walks Py, ..., P, and the
hypothesis as in Lemma 6. If, the dart d belongs to Ko then every walk P,
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consists either of the dart d; alone or all the other darts of P; are part of one
connected component of K.

Vie{l,....m} P,=(d;)) or 3T €CC(K,y) | P, —{d;}CT

Proof:
Let us consider a given walk P; with 7 € {1,...,m} such that P, # (d;),
we have:

P = CW (d).(CW (d}) — (dY) ... (CW(d) — ("))
Since P; # (d;), CW (d;) is not reduced to d; and we have by proposition 4:
AT € CC(Ky) | CW (d;) —{d;} T

If P, is reduced to CW (d;) nothing remains to be demonstrated. Otherwise,
let:
CW(d;)) =by,...,br

Since P, = CW (d;).(CW (d})—{d}}) ... C ¢"*(d), we have ¢©'(b,) € CW (d})—
{d}} with (see Figure 5):
¢ (b)) = oP(a(b,)) with p = Min{k € N* | 6"(a(b,)) € Ko U K}

Therefore, ¢'(b.) € o*(a(b,)) with b, € T. By definition of a contraction
kernel, we have:

o*(a(b,)) C TUSD,

Since P; # CW(d;), ¢'(b.) is not a surviving dart, thus we have ¢'(b,) € T.
Therefore:
CW(d})—{d;}y cT

Let us suppose that this property is true until the rank &£ with & < n;. Then,
if:
CW(d¥) =db... v,
We have ¢/ (b.,) € CW (d¥+') — {d¥™'} with b/, belonging to 7 by our recur-
rence hypothesis. We can thus conclude has previously that:
CW(di) {7} c T

This property being true for all k£ in {1,...,n;}, we have P, C 7. O
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Lemma 8 Let us use the same notation for the darts d,...,d,, and the
hypothesis as in Lemmata 6 and 7. If d belongs to Ky the ordered set of darts
dy,...,dy, satisfy the following relationship:

Vi € {1,,m} di+1 :go'l(dz)
Where ¢!, denotes the permutation @ of the sub map G of G (see Figure 3).

Proof:
Using Lemma 6, the set of darts between two consecutive darts d; and
d;+1 may be decomposed into the set of connecting walks:

P, = CW(d;).(CW(d") — (dV)) ... (CW(d¥) — (d¥)) with
vie{l,...,n;} dleS8SD —K,

Let us first show that, for a given 7 in {1,...,m}, we have:

Vie{l,...on— 1} 3k | a(dl) = o) (a(d))) with @
Vk e {l,....k;} of(a(d))) € SD, — K,
Let us consider a given j in {1,...,n; — 1} and let us denote CW (d?) by:
CW(dg) = dga bla ) br

we have: . .
pi(di) = follow(d]) = ¢(b,) = o(a(br))
Moreover, by definition of a submap it exists one k; (see Figure 6) such
that ¢’ (b,) = o*+1(a(b,)) with:

Vk e {1,....k} o (a(b,)) € D - K,UK, =8D, — K,
If k; = 0, we have ¢/ (b,) = o(a(b,)) = ¢1(d!) € SDy N Ky UK = K, (see

Lemma 4). Thus d;;1 = ¢(d?). This last equality is in contradiction with
our hypothesis: j < n;. Thus we have k; > 1. Moreover, since o*(a(b,))
belongs to SD; for each k in {1,...,k;} we have:

Vi€ {1,....k;— 1} CW(a(o*(a(b,)))) = a(o®(a(by)))
Thus :

{ o1(0(a(br)) = follow(a(o*(a(by))))
Vke{1,...,k; — 1}

= oM (a(b,)
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Figure 6: A zoom on a connection between two connecting walks of a ¢'-orbit. In
this example, k; = 4

This last equality may be iterated in order to obtain:
kj—1 kj—2 ,
o (o(alby))) = o (0% (b)) = ... = 0" (a(by))
Therefore:
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We have thus:
a(d) = oV (a(d)) with VE € {1,...,k;} oF(a(d)) € D, — K,
In the same way, if 0’ denotes the last dart of CW (d}'") we have:

pi(di") = follow(d;") = o(a(V))
dipn = ¢ (V) = o(a(t))
If p =1, we have ¢'(t) = o(a(b)) = p1(d}?) = o1(a(d]?)), thus d;yy =

o1(a(d;")) and we can take k,, = 1. Otherwise, the same demonstration as
above may be applied with k,, = p — 1. We thus obtain:

div1 = o0 ((d)) with Vk € {1,... Kk, — 1} o¥(a(d?)) € SD, — K,
Using equation 4 we have:
kn, kn;—1 ky q
dis1 =0, 00, .. ooy (a(d;)) = of (a(d;))
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with ¢ = 3772 k;. Moreover, we have:
Ve {l,...,q} of(a(d)) € 8D, — K,
Thus: ¢ (a(d;)) = o} (a(d;)) = of(a(d;)). O

The Lemma 8 shows that the ¢-orbits of combinatorial map G| are in-
cluded in the @-orbits of the combinatorial map G’. Thus, the combinatorial
map G’ may be considered as the dual of the restriction to K5 of the com-
binatorial map G':

Gll = GI|K2 (5)

where G, denotes the subgraph of G” defined by K.

Theorem 4 Given a combinatorial map Gy = (D, 0, «), and two contraction
kernels K1 and K, such that Ki < Ks. Then K; U Ky defines a new
contraction kernel such that: (Go/K1)/Ks = Go/(K; U K3).

Proof:

Given the combinatorial map G' = (K, U K1, 0’, «) defined as the restric-
tion of Gy to Ko U K1, let us suppose that G’ is not a forest, thus that we
can find one dart d in Ky U K such that a(d) ¢ ¢"™(d).

The set K being a contraction kernel, and thus a forest, ¢™*(d) cannot
be included in K. Thus:

@,*(d) N KQ 7£ @

Let us denote by {dy,ds,...,d,} the previous intersection:
{dy,dy,...,dn} = ¢™*(d) N Ky
Using Lemma 8,the darts d, ..., d,, define a ¢/-orbit:
O (dv) = (dv,d, ... dp,)
In the same way, we can define a set of darts {d},...,d! ,} such that:
{di, dy, ... dp} =" (a(d)) N K,
Using Lemma 8, we obtain:
oy (dy) = (dy, dy, ... )
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Since two orbits of a permutation are equal or disjoint and a(d) & ¢"™*(d) the
orbits ¢ (d) and ¢™(a(d)) must be disjoint. Thus,

(dysodpy O s d =0

Moreover, if d belongs to Ko, it exists two indices ¢ and j such that d = d;
and a(d) = d;. Thus, in this case, the two faces, ¢"*(d;) and ¢™(d}) belong
to a same connected component.

Otherwise, since d belongs to Ko U Ky, a*(d) is included in K;. By
definition of a contraction kernel, it exists a tree 7 € CC(K;) such that
a*(d) C T. Moreover, using Lemma 6 we can find two walks P; and P; such
that:

d € P C ¢*(d)
{ a(d) € Pj C ¢"(a(d))

Using Lemma 7, the non-surviving darts of each walk belong to one tree of

K. Since o*(d) C T the walks P; — {d;} and P; — {d’;} are included in 7"

d € P—{d;} C T and
a(d) € P—{d;} C T

Moreover:
o(d;) = olald)) €T )
and = a({d;,d}}) C o*(T) N SD.
p(d;) = ola(d) €T

Using proposition 10 we obtain: a(d}) € o} (a(d;)), Thus a(d)) € oy (a(d;)).
Thus in all cases (a*(d) C K, or a*(d) C Ki) the two faces ¢*(d;) and
©'*(d}) belong to the same connected component of the submap G’ of G;.
Thus we can find two distinct faces in one connected component of G.
The map G being a forest, by definition of the contraction kernel K, we
obtain the desired contradiction. Therefore, each connected component of
G' is a tree and G’ is a forest. Moreover, we have, by lemma, 4:

D—KQUK1:SD1—K27£®

Thus, the connected components of G' define a contraction kernel on Ggy. O

32



3.2 Deriving Successor Kernels from Inclusion Kernels

We will show in this section, that given two contraction kernels K; and K,
such that K; C K, we can find another contraction kernel K/ such that the
successive applications of K and K is equivalent to the application of K.

Proposition 11 Given a combinatorial map Gy and two contraction kernels
K, C Ky. A tree T of K, cannot be adjacent to a tree T' of Ky unless
TCT':

VT € CC(K)),NT' € CC(Ky) o (T)No*(T) #0=T T’

Proof:
The set T is included in one 7”. Let us suppose that 7' # T", we have
then:
a (T)No* (T Cc a*(T")Na*(T")

By definition of a contraction kernel we must have, since 7' # T"
O'* (7'/) ﬂ O'* (7-//) — @

This last equation contradict the hypothesis o*(7) No*(7T") # (0. O

Proposition 12 Given a combinatorial map Gy and two contraction kernels
Ky and Ky with Ky C Ky. If Gy and G5 denote the two contracted maps:

G1 = (8D1,0’1,0é) = G/K1
GQ = (SDQ,O'Q,(I) = G/KQ

then the smaller contraction kernel K, creates the larger graph:
8D, C 8D,
where 8Dy and SDy denote respectively the surviving darts of K; and K.

Proof:
The contraction kernel K is included in K5, therefore SDy = D — K5 is
included in SO, =D — K. O
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Proposition 13 Given a combinatorial map Gy and two contraction kernels
Ky and Ky with Ky C K. Each tree T' € CC(K5) may be written as an union
of trees T € CC(K,) together with some surviving darts in SDy which connect
the trees of K, included in T :

VT’ €CC(Ky) 0 CCC(Ky) | T'=(Uree
with ATI - SDl

TYU Ag
7 AT

where 8Dy denotes the set of surviving darts of the contraction kernel K.

Proof:
Given the set:

CT' :{TECC(Kl) | TC TI}
We have only to prove that:

VTI S CC(KQ) AT’ = TI - U T C SDl
TECT,

Let us consider d € 7', then d € 8D, or belongs to one T € CC(Ky). Let
us suppose that d € T with T & CT. Then, by definition of included
contraction kernels there must exist 7" # T such that: d € T C T". Thus
d € T'NT" which is forbidden by the definition of a contraction kernel. Thus
we must have 7" € C-. Therefore, if d € T — UCT, T then d € SD,. O

Lemma 9 Using the same notations and hypothesis as proposition 13, the
sets Cqr with T' € CC(K3) form a partition of CC(K,):

U Oy =ccx)
T eCC(ky)

Proof:

If a tree 7 of CC(K) belongs to two sets Corr and Ciqr with 7' # T,
we have 7 C 7' and 7 C T". Therefore, T connects 7' to 7". This
is in contradiction with the definition of the trees 7' and 7" as connected
components of K5. Therefore, all the sets 'z~ with T in CC(K>) are disjoint.
Let us show that these sets form a partition of CC(K)).
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For every 7" € CC(Ks), Cq is included in CC(K;), thus:
U Cq C CC(Ky)
T eCC (k)
If T € CC(K,), we have, by definition of included contraction kernels:

T eCC(ks) | TCT

Thus: T € CT/ C UT’ECC(KQ) CTI

Finally we obtain:

U Oy =ccx)
T,ECC(IQ)

Corollary 4 Using the same notations and hypothesis as proposition 13, the
sets Aqr with T' € CC(K3) form a partition of Ky — K :

U AT/ - K2 - K1
T cCC (k)
Proof:
Given a tree 7' in CC(K>), A~ is equal to (see proposition 13):

Ap=T— U T
TE CT/

Each set AT’ is included in 7. The connected component of K, being
disjoint by definition, the sets ATr are disjoint. The union of all the sets
AT’ is thus equal to:

UTIECC(Kz) Ap = UTIECC(Kz) T - UT,ECC(KQ) UTecT, T
Ky —UTccCx,y T (with lemma 9)
Ky — K,
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Lemma 10 With the same notations and hypothesis as proposition 13, if
Ky — K is not empty, it defines a forest of G.

Proof:

The contraction kernels Ky and K being symmetric, the set Ky — K is
symmetric and can be considered as a sub-combinatorial map of the forest
K5. We can thus conclude with Theorem 1. O

This last lemma will be used by Theorem 5 to contract Gj.

Theorem 5 Given a combinatorial map Gy, and two contraction kernels K;
and K. If:
G = Go/K,
Gy = Go/K,
and if Ky is included in K,, e.q. K1 C Ky, Gy can be derived from G1 by
additional contractions using the same notations as in Proposition 13:

G2 - Gl/(KZ - Kl)

Proof:
GQ - GO / KQ
= Go [/ (KiU(K>— Ky))
(GO / Kl)/ K2 — Kl) (Wlth lemma 10 and 3)
= G [/ (Ky—K))
O

We know, thanks to Theorem 5, that contracting the darts Ky — K on
the combinatorial map G provides the combinatorial map G5. We have now
to show that a contraction kernel of (G; may be defined on the set Ky — Kj.
This last hypothesis may be easily shown if we demonstrate that K, — K;
is a forest of the combinatorial map ;. The following lemma, defines an
intermediate result,which is used in the proof of proposition 14.

Lemma 11 Given a combinatorial map Gy = (D,o0,«), two contraction
kernels Ky and Ko with Ky C Ky and the contracted graph.:

Gy = (8Dy,01,a) = Go/ K4
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Using the same notations as proposition 13, the oi-orbits of each set AT’ 18
included in the o-orbits of T' intersected with SD; :

VT' € CC(Ky) oi(Aq) C o*(T')NSD,

Proof:
First note that o7(A~) is well defined since A~ is included in SD;.
Let us consider d in the o; orbit of AT" In this case the oy-orbit of d
intersect AT':

O')lk(d) ﬂAT' 7é (Z)

Let us consider the two cases:

1. If 0*(d) is included in SD;. Then we have thanks to corollary 1 and to
the isomorphism between the contracted graph G; and the connecting
walks map G, = (Dg,, 0k, , Ok, ):

o1(d) = CW Yo, (CW(d)) = CW H(CW(0*(d))) = 0" (d).
Thus:
0 # o5 (d) NApr C g d)NT =c*(d)NT =de s (T)
Moreover, d belongs to SD; by definition of G;. Thus:

d € U*(Tl) ﬂSD1

2. If 0*(d) intersects one tree 7 € CC(K7), we have thanks to proposi-
tion 10:

oi(d) = CW ok, (CW(d))) = o*(T)NSDy C o*(T)

Thus:
D£oi(d)NT Cco*(T)NT

Using proposition 11 we can deduce:
TcT

Thus:
de Ur(d) = U*(T) N 8D1 C O'*(Tl) ﬂSD1
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Corollary 5 The intersection between the o-orbits of any two sets ATI and
ATN is empty:

V(T T") € CC(K2)?  oi(Ap) Nat(Agn) =0

Proof:

Given two distinct trees 7' and 7" in CC(K3), the oj-orbits of the sets
Aq and A are included in the o-orbits of T' and T" (see lemma 11) which
are disjoint:

ol (A) Noi(Agn) Co™(T) o™ (T") =0
|

Lemma 12 Given a combinatorial map Gy = (D,o0,«), two contraction
kernels Ky and Ko with Ky C Ky and the two contracted graphs:

G, = (3D1,01,CY) = GO/KI
Gy = (8Dy,09,0) = Go/K>

Any walk of G included in Ky — Ky is included in a given ATr with T' €
CC(Ky).

Proof:
First let us note that (see corollary 4):
K2 - Kl - U AT/
T cCC (k)

Let us consider a walk W = (dy,...,d,) included in Ky — K;. Since the sets
AT/ form a partition of K, — K it exists a given tree 7' such that d, € AT"

Let us consider, the length of the longest sequence of W starting from d;
and included in AT/:

r=Maz{s €{l,...,n} | Vie{l,....s} djeAp}

We have r > 0, let us suppose that r < n, then we have: d, € ATr and
dr1 € Agr with T" # T'. Moreover, we have, by definition of a walk:

dpr € 07(0(d,)) C o (Agr)
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Thus:
dr+1 € ATN N O'ik(ATI) C O'ik(ATH) N O'ik(AT/)

this is in contradiction with corollary 5. O

Intuitively, this last proposition may be understood has follow: The set
A only connects the different sets (7)) o7 included in T and not 7' to

another tree 7”. Thus a walk defined in Ky — K| = UTIECC(KQ)AT’ cannot
connect two trees 7' and 7" and is therefore included in one A'T"

Proposition 14 Given a combinatorial map Gy, two contraction kernels
K, C Ky and the two contracted graphs:

Gy = (8Dy,01,0) = Go/K;y
Gy = (8Dy,09,0) = Go/K>

The submap Ky of G defined by Ky — Ky is a forest (see Figure 7 for an
illustration of the relationships between the different combinatorial maps).

GO = (Da a, Oé)

Ko = (Ks — Ky,01,q) c G =(8D1 =D —-Ki,01,0) K,

G2 = (SDQ =D — KQ,G’Q,O[)

Figure 7: The relationships between the combinatorial maps Gy, G1, Gy and
Ko = (K2 — Ky,0',a). The arrows represent contractions.

Proof:
We will demonstrate this important proposition by showing that if Ky is
not a forest, then we can find a cycle of Gy included in one tree 7' of CC(K3).
If Ky is not a forest of G, then we can find a cycle C' of GG; included in
Ky;. A cycle, being also a walk, we have by lemma 12:

AT €CC(Ky) | CCApCT
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if C’Tf is empty, the set AT’ defines a new tree:
CCAT':T,CSD1

The permutation o; and o being identical on SD; (see proposition 9 and
theorem 3) C'is also a cycle of Gjy. We thus obtain the desired contradiction
since C' is included in 7' which is a tree of Gy (see theorem 2).

If CT' # (), let us show that we can extend C into an other cycle C" of
Gy included in 7. If C' is defined by the darts dy, ..., d,, let us write C' (see
Figure 8) as:

Clzdl.Pl...ann

Figure 8: The cycle C = (dy,...,dy) extended to C' = (dy.Py ...d,Py)

Given an index i in {1,...,n}, Let us consider two cases:

1. If o*(a(d;)) € 8Dy, the oy-orbit of a(d;) is equal to its o-orbit, and we
have:

dit1 € o7(a(d;) = o*(a(d;))

In this case we take P, = ().
2. If a(d;) belongs to the o-orbit of a tree 7,41 C K;
div1 € o7 (a(d;)) = 0" (Tiy1) NSD;

Then o*(«(d;)) and o*(d;;1) belong to the same tree 7;,; of K; and
it exists a unique path P; in 7,4y from o*(a(d;)) to 0*(d;y1)) (see
theorem 2).

Note that if 0*(«(d;)) = 0*(d;;1) the path is again empty.
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The serie C' so defined is by construction a walk of GG4. Let us show that
it is closed.
If 0*(dy) is included in 8Dy, we have:

a*(dy) Na*(C") = of(dy) Na*(C") = {dy, a(d,)}

If not, o*(d,) intersects a tree of Ky, and contains d; and the opposite of the
last dart of P, by definition of P,. Therefore the walk C’ is closed. Let us
show that it is a cycle. If C” is denoted by:

C,:bl,...,bp
we must show that:
Vie{2,....,p} o (bi)na’(by,...,by) = {bi,a(b;i_1)}

If b; belongs to a path P;, its o-orbits contains b; and «(b;) by definition of a
path. If some other darts in a*(C”) belong to the same o-orbit, we must have
some other darts than d; and a(d;_1) in C' incident to the same tree. Since
each tree of K is contracted into a single vertex, this is in contradiction with
the definition of C' as a cycle of G.

Given a dart d; in C, if 0*(d) is included in 8Dy, we have:

O'*(dz) N Oé*(bl, ceey bp) = O')lk(dz) N Oé*(bl, .. .,bp) = {dz; Oé(di_l)}

If not, 0*(d;) must contains d; and the opposite of the last dart of P;_;
by definition of the paths P;. If 0*(d;) contains some other darts in o*(C")
we contradict as previously the definition of C' as a cycle of G;.

Therefore, C" is a cycle of Gy included in the tree 7'. We obtain the
desired contradiction. O

The above demonstration is based on the fact that contractions defined
by contraction kernels do not remove nor create cycles. Therefore, a cycle
defined in Gy is contracted in a cycle of G;. Conversely, a cycle C' defined
in GGy can be extended in a cycle C” of Gy such that the contraction of C’ is
equal to C'.

Using the notations of proposition 14 , the set Ky — K defines a forest
Ky, of G;. The following theorem shows that Ky — K is also a contraction
kernel of G5.
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Theorem 6 Given a combinatorial map Gy, two contraction kernels K; C
K,. If Gy denotes the contracted map associated to K :

G = (5171,01,04) = G/Kl
The contraction kernel Ko — K1 is a successor of K.

Proof:
We have only to show that:

SDy — (Ko — Ky) #0

We have:
SDI—(KQ—KI) - D—Kl—(KQ—Kl)
- D—KQ
= SDy # 0

Note that this last property may also be demonstrated thanks to proposi-
tion 12:

(SDl - U ATI) N SD2 - SD2 N SDI = SDQ 7£ @
TIECC(Kz)

4 Conclusion

We have presented in this technical report the notions of contraction kernel
and equivalent contraction kernel. Our main result on equivalent contraction
kernels is illustrated in Figure 9 (see also Figure 10): Given the two successor
kernels K| and K5, we can define, thanks to Theorem 4, a contraction kernel
K3 with K; C K3 providing the same combinatorial map than the successive
applications of K; and K5 on GGy. Conversely, given two inclusion kernels K
and K3 we can define, thanks to theorem 6, a new contraction kernel Ky with
K, < K5 such that the successive applications of K; and K5 is equivalent to
Kg.

The design of efficient parallel algorithms is under development. The
design of such algorithms should be achieved by using some properties of
the evolution of connecting walks along contractions. This expected result
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K
GO Gl

Ky =K; — K
K3:K1UK2

Go

Figure 9: The relations between equivalent contraction kernels

together with the ones obtain in this report should allow us to study inter-
esting applications of our model such as:segmentation [3, 1, 2, 4], structural
matching [17] or integration of moving objects. Finally, the extension of our
model to higher dimensional spaces (3D) should be studied.
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Figure 10: Two contraction kernels K1 and Ky successively applied on a regular
grid. The application of Ko o Ky is equivalent to the application of Ks. The

contraction kernel Ky is represented with dashed lines while Ko is represented with
dotted lines.
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