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Abstrat

This paper presents a new formalism for irregular pyramids based on ombinatorial maps.

This tehnial report ontinue the work began with the TR-54 report [16℄. De�nition

and properties of Contration kernels are generalized and ompleted. The de�nition and

properties of Equivalent ontration kernels are also given.

1

This Work was supported by the Austrian Siene Foundation under S7002-

MAT.



1 Introdution

The multi-level representation of an image alled pyramid [8, 15℄ allows us

to de�ne di�erent levels of representation of a same objet. This method

introdued by Pavlidis [8℄ de�nes several partitions of a same image and link

eah onneted omponents de�ned at one level with its deomposition in the

next level. The top of a pyramid, is usually omposed of only one onneted

region desribing the whole image while its base desribes the lowest level of

representation available on the image. For example, given a grey-sale image,

the base of a pyramid an be omposed of onneted omponents having the

same grey level. Another usual way to de�ne the base of the pyramid onsists

to de�ne eah pixel of the input image as a basi region.

Reently, graphs have been used more frequently for representing and

proessing digital images. Typially suh graphs represent the pixel neigh-

borhood, the region adjaeny, or the semantial ontext of image objets.

In analogy to regular image pyramids, dual graph ontration [10℄ has been

used to build irregular graph pyramids with the aim to preserve the high

eÆieny of the regular anestors while gaining further exibility to adapt

their struture to the data. Experienes with onneted omponent analy-

sis [14℄, with universal segmentation [12℄, and with topologial analysis of

line drawings [11, 13℄ show the great potential of this onept.

In the present doument, we study the de�nition and the properties of

graph-pyramids de�ned by Combinatorial maps [6℄. Basi de�nitions and

properties of Combinatorial maps used in this doument may be found in a

previous tehnial report [16℄. Moreover, some de�nitions given in [16℄ are

generalized and ompleted in this doument.

The rest of the paper is organized as follow: In setion 2 we de�ne the

ontration kernel notion in term of ombinatorial maps. In setion 3 we

study the suessive appliation of several ontration kernels.

2 Contration Kernel

We will provide in this setion a de�nition of a tree and a forest. These

de�nitions will be used to de�ne a ontration Kernel and the onneting

walk map dedued from it. Finally we will show that the onneting walk

map is isomorph to a given ontrated map.
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2.1 Partition and Disjoint Vertex set

De�nition 1 Vertex Partition

Given a ombinatorial map G = (D; �; �), D

1

; : : : ;D

n

� D is a vertex-

partition of G i�:

1. All D

i

are non-empty:

8i 2 f1; : : : ; ng D

i

6= ;

2. Eah set D

i

is symmetri:

8i 2 f1; : : : ; ng �

�

(D

i

) = D

i

3. Eah vertex may be retrieved thanks to a dart in one D

i

:

8d 2 D 9i 2 f1; : : : ; ng; 9d

0

2 D

i

j d 2 �

�

(d

0

)

4. The set of darts of one vertex is inluded in only one D

i

:

8i; k 2 f1; : : : ; ng

2

; i 6= k �

�

(D

i

) \ �

�

(D

k

) = ;

This last de�nition generalizes the one given in [16℄ in order to �t with the

usual notion of a vertex partition (see Figure 1(b)).

De�nition 2 Disjoint Vertex Set

Given a ombinatorial map G = (D; �; �), D

1

; : : : ;D

n

� D is a disjoint

vertex-set of G i�:

1. All D

i

are non-empty:

8i 2 f1; : : : ; ng D

i

6= ;

2. Eah set D

i

is symmetri:

8i 2 f1; : : : ; ng �

�

(D

i

) = D

i

3. All darts of one vertex belong to exatly one D

i

:

8i; k 2 f1; : : : ; ng

2

; i 6= k �

�

(D

i

) \ �

�

(D

k

) = ;
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Figure 1: Example for (a) disjoint vertex set and (b) vertex-partition

This de�nition relaxes ondition (3) of a vertex-partition (de�nition 1) in

order to allow some verties to be una�eted by the operations whih may

be performed on the disjoint vertex-set (see Figure 1(a)).

Proposition 1 Given a ombinatorial map G = (D; �; �), and a dart d.

The sub ombinatorial map: G

0

= (�

�

('

�

(d)); �

0

; �) isolates the fae '

�

(d) of

G. The �nite fae in G' is bounded by the same darts

'

0�

(d) = '

�

(d)

Proof:

If d

0

2 '

�

(d) we have:

'

0

(d

0

) = �

n

(�(d

0

)) with n =Minfp 2 IN

�

j �

p

(�(d

0

)) 2 �

�

('

�

(d))g

Sine �(�(d

0

)) = '(d

0

) 2 �

�

('

�

(d)) we have, n = 1 and '

0

(d

0

) = '(d

0

).

Let us denote the two permutations:

'

0�

(d) = (d

0

0

= d; d

0

1

; : : : ; d

0

r

)

'

�

(d) = (d

0

= d; d

1

; : : : ; d

s

)

Let q denote the length of the shorter permutation Min(r; s), and let us

make the following reurrene hypothesis on k:

8i 2 f0; : : : ; kg d

i

= d

0

i
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The hypothesis is true for k = 0, let us suppose that it remains true for

a given k > 0. Then d

0

k+1

= '

0

(d

0

k

) = '

0

(d

k

) = '(d

k

) = d

k+1

. Thus the

property holds until k + 1. Moreover, due to this property, we must have

r = s. Indeed, if r < s we have:

d = '

0

(d

0

n

) = '(d

n

) = d

n+1

And in this ase ' is not a permutation sine a same dart an appear at most

one in one orbit. 2

2.2 Tree and forest

Two adjaent regions of a partition merge if the separating boundary seg-

ment is removed. The resulting larger region an merge with any of the new

neighbors and so forth. Eah time one of the separating boundary segments

is removed. Boundary segments are enoded by darts of the dual ombina-

torial map G. Sine any removal in G orresponds to a ontration in G

the sequene of removals of boundary segments orresponds to a sequene of

ontrations in G. Sine self-loops annot be ontrated a sequene of sues-

sive ontrations may not ontain a iruit (see [16℄). Thus the set of darts

involved must form a tree (see de�nition 3 below) or a forest (see de�nition 4

below).

De�nition 3 Map tree

Given a ombinatorial map G = (D; �; �), a set D' will be alled a subtree

of G i� �

�

(D

0

) = D

0

and the submap:

G

T

= (D

0

; �

0

= � Æ p

D;D

0

; �)

is onneted and has only one '

0

-orbit.

The Tree de�nition will be used to ontrat a set of verties into a single

vertex. More generally, if we ontrat a set of verties into a given set of

surviving verties, the set of darts involved in suh ontrations may be

enoded by a forest (see de�nition 4).

De�nition 4 Forest

Given a ombinatorial map G = (D; �; �), the setD

0

will be alled a forest

of G i� �

�

(D

0

) = D

0

and eah of its onneted omponents G

i

= (D

i

; �

i

; �)

is a tree.
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Theorem 1 Any sub ombinatorial map of a forest is a forest.

Proof:

See Tutte [18℄ 2

Proposition 2 Let G = (D; �; �), and F � D be a non-empty forest of G.

If CC(F ) denotes the set of onneted omponents of F then eah omponent

is a tree and CC(F ) is a disjoint vertex-set of G.

Proof:

Eah T 2 CC(F ) is a forest, as a sub-ombinatorial map of a forest, and

onneted. It is thus a tree. Moreover, sine F is supposed to be non-empty,

eah T is non-empty. Let us suppose that:

9d 2 D; 9(T ; T

0

) 2 CC(F )

2

; T 6= T

0

j d 2 �

�

(T ) \ �

�

(T

0

)

and let us onsider two darts (d

1

; d

2

) 2 T �T

0

. Sine T and T

0

are onneted

we an �nd two paths P

1

and P

2

(see [16℄), respetively inluded in T and T

0

,

whih onnet �

�

(d

1

) to �

�

(d) and �

�

(d) to �

�

(d

2

). The path P

1

:P

2

onnet

�

�

(d

1

) to �

�

(d

2

) and is inluded in T [ T

0

whih is thus onneted. This is

in ontradition with our de�nition of the set CC(F ). Thus:

�

�

(T ) \ �

�

(T

0

) = ;

Therefore, CC(F ) is a disjoint-vertex set of G. 2

The notions of tree and forest are losely linked to the notion of onne-

tivity. In partiular, a unique path (see de�nition 7) onnets two verties

of a tree. Moreover, a forest does not have any yle (see de�nition 8). The

paths and the yles may be onsidered as partiular ase of a more general

objet alled a walk.

De�nition 5 Walk

Given a onneted ombinatorial map G = (D; �; �), a walk in G is a

sequene of darts (d

1

; : : : ; d

n

) suh that:

8i 2 f1; : : : ; n� 1g �(d

i

) 2 �

�

(d

i+1

)

The walk is said to be losed if �(d

n

) 2 �

�

(d

1

) and open otherwise [7℄.
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Aording to Harary [7℄, di�erent kind of walks may be distinguish:

De�nition 6 Trail

A trail is a walk W = (d

1

; : : : ; d

n

) where all the edges are distint:

8(i; j) 2 f1; : : : ; ng

2

; i 6= j d

i

62 �

�

(d

j

)

De�nition 7 Path

A walk W = d

1

; : : : ; d

n

will be alled a Path if all its verties (and thus

all its edges) are distint:

(

8i 2 f2; : : : ; ng �

�

(d

i

) \ �

�

(W ) = fd

i

; �(d

i�1

)g

�

�

(d

1

) \ �

�

(W ) = fd

1

g

Note that aording to our de�nition a Path must be an open walk. A losed

path will be alled a yle.

De�nition 8 Cyle

A walk W = d

1

; : : : ; d

n

will be alled a yle if all its verties exept the

�rst and the last one are distint:

(

8i 2 f2; : : : ; ng �

�

(d

i

) \ �

�

(W ) = fd

i

; �(d

i�1

)g

�

�

(d

1

) \ �

�

(W ) = fd

1

; �(d

n

)g

The notions of paths and yles are onneted to the notion of tree by the

following theorem:

Theorem 2 The following statements are equivalent for a ombinatorial

map G:

1. G is a tree

2. G is onneted and p = q + 1, where p denotes the number of verties

and q the number of edges.

3. G is ayli and p = q + 1

4. Every two verties of G are joined by a unique path

6



Proof:

Equivalene between statements (2) to (4) is demonstrated in Harary's

Book [7℄. We have thus only to show that our de�nition of a tree is equivalent

to the one of Harary.

Let us show that, (1) implies (2). Using our de�nition a tree must be

onneted and have only one fae. Using Euler relationship we have: p� q+

1 = 2, therefore p = q + 1. Conversely, if G is onneted the relationship

p = q + 1 implies that the number of faes is equal to one. 2

2.3 Contration Kernel

In the following we will fous on onneted ombinatorial maps. If the om-

binatorial map is not onneted the following de�nitions and propositions

may be applied to every onneted omponent of the ombinatorial map.

Moreover, sine the verties of a ombinatorial map are impliitly de�ned by

the darts whih belong to their �-orbits, we must require that at least on dart

survives. In this last ase the resulting graph is redued to one vertex with

a self loop. The two previous restrition are used in de�nition 9 to de�ne a

ontration kernel and the set of surviving darts.

De�nition 9 Contration Kernel

Given a onneted ombinatorial map G = (D; �; �), the set K will be

alled a ontration kernel i�:

1. K is a forest of G,

2. K does not inlude all darts of G:

SD = D �K 6= ;

The set SD is alled the set of surviving darts.

Note that, using proposition 2, if a set K of darts is a forest of the ombi-

natorial map G, its set of onneted omponents CC(K) is a disjoint vertex

set. Moreover, eah element T of CC(K) is a tree (see proposition 2).

The following lemma shows that a tree T ontains at least one vertex

with surviving darts. This property may be understand as follow: Sine the

trees CC(K) form a disjoint vertex set, the verties of the trees should not be

7



diretly adjaent (see the last requirement of de�nition 2). The ombinatorial

map being onneted, the onnetion between these trees must be realized by

surviving darts. Moreover, if the ontration kernel ontains only one tree,

some surviving darts must remains by de�nition of a ontration kernel.

Therefore, the �-orbit of the tree must ontains these surviving darts.

Lemma 1 Given a onneted ombinatorial map G = (D; �; �), and a on-

tration kernel K, every onneted omponent T of CC(K) has at least one

vertex with a surviving dart:

8T 2 CC(K) �

�

(T ) \ SD 6= ;

These surviving darts onnet the trees of K.

Proof:

Let us onsider T 2 CC(K), a dart d 2 T and a dart d

0

2 SD. The

ombinatorial map G being onneted we have a path P = d

1

; : : : ; d

n

from

�

�

(d) to �

�

(d

0

). Now let us onsider the last dart in the sequene d

1

; : : : ; d

n

whih belongs to �

�

(T ). Its index i is equal to:

i =Maxfj 2 f1; : : : ; ng j 8k 2 f1; : : : ; jg d

k

2 �

�

(T )g

Note that the index i is at least equal to 1 sine d

1

2 �

�

(d) � �

�

(T ).

� Let us suppose that i < n

Using item 3 of de�nition 2 we have �

�

(d

i

)\ (K�T ) = ;. Thus d

i

2 T

or d

i

2 SD. If d

i

belongs to T , the tree T being symmetri we have

�(d

i

) 2 T . Thus d

i+1

2 �

�

(�(d

i

)) � �

�

(T ) whih is in ontradition

with the de�nition of i, thus we have d

i

2 SD. Sine d

i

2 �

�

(T ) the

lemma is demonstrated.

� If i = n

Then we an show, with the same kind of demonstration, that d

n

2

SD \ �

�

(T ) or d

n

2 T . In this last ase we have �(d

n

) 2 T and

d

0

2 �

�

(�(d

n

)) \ SD � �

�

(T ) \ SD.

2
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Proposition 3 Given a onneted ombinatorial map G = (D; �; �), and a

ontration kernel K not all darts of a fae may disappear:

8d 2 D '

�

(d) \ SD 6= ;

Proof:

The proposition is trivial if d 2 SD. Let us suppose that d belongs to a

given T 2 CC(K). The tree T being symmetri we have �(d) 2 T . Using

item 3 of de�nition 2 we have �

�

(�(d))\ (K �T ) = ;. Thus �(�(d)) 2 T or

�(�(d)) 2 SD . Written in terms of permutation ' we obtain:

'(d) 2 T or '(d) 2 SD

We an dedue from the above formula, that '

�

(d) interset SD or is inluded

in T .

Let us suppose that '

�

(d) � T : we have '

�

(d) = T sine the tree T has

only one '-orbit. Using Lemma 1 we have:

�

�

('

�

(d)) \ SD = �

�

(T ) \ SD 6= ;

We an thus onsider d

0

in '

�

(d) suh that �(d

0

) 2 SD. Then �(d

0

) 2 T =

'

�

(d) and '(�(d

0

)) = �(d

0

) 2 SD. Thus '

�

(d) \ SD = '

�

(�(d

0

)) \ SD 6= ;.

This is forbidden by our hypothesis '

�

(d) � T .

2

Lemma 1 and proposition 3 will be used in the following demonstrations.

However, as an immediate onsequene of proposition 3, we an state that a

ombinatorial map with at least two faes an't be redued to a single loop

by ontration operations solely. Indeed, sine one dart must survive in eah

fae the redued ombinatorial map should have at least one self loop for

eah fae of the initial ombinatorial map. Thus the redution of the initial

ombinatorial map must use ontration and dual ontration operations.

2.4 Map of Conneting Walks

In this setion we de�ne the notion of onneting walk. This notion may

be onsidered as the extension of the de�nition of onneting paths de�ned

within the Deimation Parameter framework [9, 16, 5℄.

Then we de�ne an involution �

K

and a permutation �

K

on the set of

onneting walks. The two permutations �

K

and �

K

de�ne a ombinatorial

9



map on the set of onneting walks. We will show in the next setion that

this ombinatorial map is isomorphi [16℄ to the one dedued from the on-

trations de�ned by the ontration kernel. We also study some properties

of the permutations �

K

and �

K

. Equivalent properties in the ontrated

ombinatorial map may be dedued thanks to the isomorphism.

De�nition 10 Conneting walk

Given a onneted ombinatorial map G = (D; �; �), a ontration kernel

K and a dart d 2 SD, the onneting walk assoiated to d is equal to:

CW (d) = d; '(d); : : : ; '

n�1

(d) with n = Minfp 2 IN

�

j '

p

(d) 2 SDg

Note that the onneting walk is de�ned for all darts d in SD sine the

set fp 2 IN

�

j '

p

(d) 2 SDg ontains, in the worse ase j'

�

(d)j.

We do not talk of onneting paths, sine the walk CW (d) is not always

a path (see [16℄ and Figure 2). If CW (d) is a path it onnets the vertex

�

�

(d) to the vertex �

�

('

n

(d)) where d and '

n

(d) belong to SD.

12

4

-33

CW(1) = 1,2,3,-3,4

: suviving darts

: a tree

Figure 2: A onneting walk whih is not a path

Proposition 4 Given a onneted ombinatorial map G = (D; �; �) and a

ontration kernel K, the set of non-surviving darts of a onneting walk is

inluded in exatly one onneted omponent of K:

8d 2 SD CW (d)� fdg = ; or 9!T 2 CC(T ) j CW (d)� fdg � T

10



Proof:

Let us onsider d 2 SD and:

CW (d) = d; '(d); : : : ; '

n�1

(d) with n =Minfp 2 IN

�

j '

p

(d) 2 SDg

If n = 1 we have CW (d) = d and CW (d)� fdg = ;. Otherwise, '(d) is not

a surviving dart, and there must exist one T suh that '(d) 2 T . Let us

onsider the last dart in the sequene '

j

(d) of darts in T :

p = Maxfk 2 f1; : : : ; n� 1g j 8j 2 f1; : : : ; kg '

j

(d) 2 T g

We have at least p = 1, let us suppose that p < n� 1. Sine '

p+1

(d) is not a

surviving dart, there must exist another set T

0

suh that '

p+1

(d) 2 T

0

. But,

T being symmetri, we have �('

p

(d)) 2 T . Sine '

p+1

(d) = �(�('

p

(d))) we

have:

'

p+1

(d) 2 �

�

(T ) \ �

�

(T

0

)

Whih is forbidden by the de�nition of a disjoint vertex-set (see de�nition 2).

2

De�nition 11 Set of Conneting Walks

Given a onneted ombinatorial map G = (D; �; �) and a ontration

kernel K with surviving darts SD, the set of all onneting walks will be

denoted by:

D

K

= fCW (d) j d 2 SDg

Proposition 5 Given a onneted ombinatorial map G and a ontration

kernel K, the appliation:

CW

 

SD ! D

K

d 7! CW (d)

is bijetive.

Proof:

This appliation is trivially surjetive sine the set of onneting walks is

generated from the set of surviving darts. Moreover, eah onneting walk

ontaining only one surviving dart the appliation is trivially injetive and

thus bijetive. 2

11



Proposition 6 Given a onneted ombinatorial map G = (D; �; �), and a

ontration kernel K eah dart of D belongs to exatly one onneting walk:

8d 2 D 9!d

0

2 SD j d 2 CW (d

0

)

Proof:

By de�nition, eah onneting walk ontains only one dart in SD, thus if

d belongs to SD, CW (d) exists and is unique.

Now let us onsider d 2 K. Aording to proposition 3 we have: '

�

(d) \

SD 6= ;. Let us onsider:

d

0

2 '

�

(d) \ SD j d

0

= '

�n

(d) with n =Minfp 2 IN

�

j '

�p

(d) 2 SDg

we have obviously d 2 CW (d

0

). Let us suppose that we an �nd another

dart d

00

2 SD suh that d 2 CW (d

00

). Then d

00

= '

�p

(d) with p > n. Thus

the walk:

CW (d

00

) = d

00

; '(d

00

); : : : ; '

p�n

(d

00

); : : : ; '

p

(d

00

); : : :

= d

00

; : : : ; d

0

; : : : ; d; : : :

ontains at least the two darts d

00

and d

0

in SD, whih is forbidden by the

de�nition of a onneting walk. 2

De�nition 12 Reversal of Conneting walks

Given a onneted ombinatorial map and a ontration kernel K, the op-

posite permutation �

K

from D

K

to itself maps eah onneting walk CW (d)

with d 2 SD to CW (�(d)):

�

K

 

D

K

! D

K

CW (d) 7! CW (�(d))

Remark 1 The funtion whih assoiates to eah dart its onneting walk

and the permutation � being bijetive �

K

is bijetive. It is thus a permutation

on D

K

. Moreover,

�

K

Æ �

K

(CW (d)) = CW (� Æ �(d)) = CW (d)

�

K

is an involution.

12



Lemma 2 Given a onneted ombinatorial map and a ontration kernel

K, the appliation

follow

 

SD ! SD

d 7! '

n

(d) with n = Minfp 2 IN

�

j '

p

(d) 2 SDg

is bijetive.

Proof:

Note that aording to the previous notations we have:

CW (d) = d; : : : ; '

n�1

(d)

The onneting walk CW (d), and thus '

n

(d), is de�ned for all darts in

SD. Now let us suppose that we an �nd two darts d and d

0

suh that

follow(d) = follow(d

0

). Then there exist two integers n, p, with n � p suh

that '

n

(d) = '

p

(d

0

). Thus we have d

0

= '

n�p

(d) 2 SD. The integer n being

the minimal integer di�erent from zero whih realizes this equality we have

n = p and thus d = d

0

. 2

Proposition 7 Given a onneted ombinatorial map G = (D; �; �) and

a ontration kernel K the appliation follow Æ � maps �

�

(T ) \ SD into

�

�

(T ) \ SD for all T 2 CC(K):

8T 2 CC(K); 8d 2 �

�

(T ) \ SD follow(�(d)) 2 �

�

(T ) \ SD

Proof:

Given a dart d in �

�

(T ) \ SD, we have :

CW (�(d)) = �(d); �(d); : : : ; '

n�1

(�(d))

If n = 1, we have follow(�(d)) = �(d) whih belongs to �

�

(T ) by hypothesis.

Otherwise, by de�nition of a onneting walk �(d) does not belong to SD.

Sine, we have by de�nition of a ontration kernel:

�

�

(d) � T [ SD

we must have �(d) 2 T . Thus we have thanks to proposition 4:

f�(d); : : : ; '

n�1

(�(d))g � T

13



The tree T being symmetri we have: �('

n�1

(�(d))) 2 T . Thus :

follow(�(d)) = '

n

(�(d)) = �(�('

n�1

(�(d))) 2 �

�

(T )

2

The appliation follow being bijetive, it an be onsidered as a permuta-

tion on the set of surviving darts. Moreover, the verties �

�

(d) � �

�

(T )\SD

may be interpreted as the leafs of the tree T . Thus the orbits of the permu-

tation follow Æ � desribe the leafs of the trees.

Proposition 8 Given a onneted ombinatorial map G = (D; �; �) and a

ontration kernel K, the appliations:

'

K

 

D

K

! D

K

CW (d) = d; '(d); : : : ; '

n�1

(d) 7! CW ('

n

(d))

and �

K

= '

K

Æ �

K

de�ne two permutations on D

K

.

Proof:

We have '

K

(CW (d)) = CW (follow(d)) thus:

'

K

= CW Æ follow Æ CW

�1

The appliation '

K

is bijetive as the omposition of bijetive appliations.

Moreover, the appliation �

K

is the omposition of two permutations and

is thus a permutation. 2

Proposition 9 Given a onneted ombinatorial map G = (D; �; �) and a

ontration kernel K, the onneting walks of two onseutive surviving darts

in a given �-orbit are onseutive in a �

K

-orbit:

8d 2 SD �(d) 2 SD ) �

K

(CW (d)) = CW (�(d))

Proof:

We have '(�(d)) = �(d) 2 SD. Thus the onneting walk CW (�(d)) is

redued to d and we have follow(�(d)) = �(d). Thus:

�

K

(CW (d)) = CW (follow(�(d))) = CW (�(d))

2

14



Corollary 1 Given a onneted ombinatorial map and a ontration kernel

K, if a �-orbit is inluded in SD, the onneting walks of any two onseutive

darts within this �-orbit, are onseutive in a �

K

-orbit:

8d 2 D �

�

(d) � SD ) 8d

0

2 �

�

(d) �

K

(CW (d

0

)) = CW (�(d

0

))

Corollary 2 With the same hypothesis as proposition 9, if a �-orbit is in-

luded in SD, the appliation CW maps this �-orbit to a �

K

-orbit. Moreover

two onseutive darts in the �-orbit are mapped into two onseutive onnet-

ing walks in the �

K

-orbit:

8d 2 D �

�

(d) � SD ) �

�

K

(CW (d)) = CW (�

�

(d))

Proof:

A basi reursion on the power of �

i

K

(CW (d)) 2

The proposition 9 and orollaries 1 and 2 show that the permutation �

K

may be immediately dedued from the permutation � for surviving darts.

Intuitively, this last property means that one vertex whih does not belong

to any tree, will not be a�eted by ontrations. Let us now study the �

K

-

orbit of ontrated verties:

Proposition 10 Given a onneted ombinatorial map, a ontration kernel

K and a tree T in CC(K). The �

K

-orbit of any onneting walk de�ned by

a dart d in �

�

(T ) \ SD is equal to CW (�

�

(T ) \ SD):

8T 2 CC(K); 8d 2 �

�

(T ) \ SD CW

�1

(�

�

K

(CW (d))) = �

�

(T ) \ SD

Proof:

Let us �rst show that:

8T 2 CC(K); 8d 2 �

�

(T ) \ SD CW

�1

(�

�

K

(CW (d))) � �

�

(T ) \ SD

Let us write the �

K

-orbits of CW (d) as:

(CW (d

0

) = CW (d); CW (d

1

); : : : ; CW (d

n

)):

We have to show that:

8i 2 f0; : : : ; ng CW

�1

(CW (d

i

)) = d

i

2 �

�

(T ) \ SD

15



The proposition is true for i = 0. Let us suppose that the proposition is true

for all k 2 f0; : : : ; ig. We have:

CW

�1

(CW (d

i+1

))) = CW

�1

(�

K

(CW (d

i

)))

= CW

�1

('

K

(�

K

(CW (d

i

))))

= CW

�1

('

K

(CW (�(d

i

))))

= CW

�1

(CW (follow(�(d

i

))))

= follow(�(d

i

))

We know, thanks to proposition 7 that follow(�(d

i

)) belongs to �

�

(T )\SD.

Thus d

i+1

belongs to the same set, and the reursive hypothesis holds until

i+ 1.

Thus:

CW

�1

(�

�

K

(CW (d))) � �

�

(T ) \ SD

Conversely, let us onsider the submap G

0

= (T ; �

0

; �) of G. Sine T

is a tree, we have: T = '

0�

(d

1

) = (d

1

; : : : ; d

m

) for a given d

1

2 T . Using

proposition 6 we know that eah dart belongs to only one onneting walk.

Thus,

8i 2 f1; : : : ; mg 9!d

0

i

2 SD j d

i

2 CW (d

0

i

)

Let us show that:

8k 2 f1; : : : ; mg CW (�(d

0

k+1

)) 2 �

�

K

(CW (�(d

0

k

))) (1)

If d

k+1

= '

0

(d

k

) = '(d

k

) 2 T , we have d

k+1

2 CW (d

0

k

) and thus d

0

k+1

=

d

0

k

.

Otherwise, we have:

d

k+1

= '

0

(d

k

) = �

p

(�(d

k

)) with 8k 2 f1; : : : ; p� 1g �

k

(�(d

k

)) 62 T

Sine �

�

(�(d

k

)) � T [ SD, we have:

8k 2 f1; : : : ; p� 1g �

k

(�(d

k

)) 2 SD

Moreover, sine '

0

(d

k

) 6= '(d

k

), we have '(d

k

) = �(�(d

k

)) 62 T and thus

�(�(d

k

)) 2 SD. This last property is equivalent to p > 1. Moreover, we have

by de�nition of the funtion follow, follow(d

0

k

) = �(�(d

k

)), thus:

'

K

(CW (d

0

k

)) = CW (follow(d

0

k

))

) �

K

(CW (�(d

0

k

))) = CW (�(�(d

k

)))

(2)

16



In the same way, we have: �

p�1

(�(d

k

)) 2 SD and '(�(�

p�1

(�d

k

))) =

�

p

(�(d

k

))

Thus:

d

k+1

= �

p

(�(d

k

)) 2 CW (�(�

p�1

(�(d

k

))))

Therefore, using proposition 6: d

0

k+1

= �(�

p�1

(�(d

k

))). Using proposition 9

we have:

CW (�(d

0

k+1

)) = CW (�

p�1

(�(d

k

))) 2 �

�

K

(CW (�(�(d

k

))))

Therefore, using equation 2:

CW (�(d

0

k+1

)) 2 �

�

K

(�

K

(CW (�(d

0

k

)))) = �

�

K

(CW (�(d

0

k

)))

We have thus:

8k 2 f1; : : : ; mg CW (�(d

0

k+1

)) 2 �

�

K

(CW (�(d

0

k

)))

Sine d belongs to �

�

(T ) \ SD, its �-orbit intersets T :

9p 2 IN

�

j �

p

(d) 2 T and 8k 2 f1; : : : ; p� 1g �

k

(d) 2 SD

If p = 1, we have CW (�(d)) = �(d); b

1

; : : : ; b

r

with b

1

= '(�(d)) = �(d) 2 T .

Thus it exists one k in f1; : : : ; mg suh that d = �(d

0

k

). We have thus:

CW (d) 2 �

�

K

(CW (�(d

0

k

)))() �

�

K

(CW (d)) = �

�

K

(CW (�(d

0

k

)))

Otherwise, we have: CW (�(�

p�1

(d))) = �(�

p�1

(d)); �

p

(d); : : : with �

p

(d) 2

T . Therefore, using proposition 6, we have:

9d

0

k

2 SD with k 2 f1; : : : ; mg j d

0

k

= �(�

p�1

(d))

Moreover, using proposition 9 we have:

�

p�1

K

(CW (d)) = CW (�

p�1

(d))

Thus

CW (d) 2 �

�

K

(CW (�

p�1

(d))) = �

�

K

(CW (�(d

0

k

)))

In the same way, given a dart d

0

in �

�

(T ) \ SD, we have:

9j 2 f1; : : : ; mg j CW (d

0

) 2 �

�

K

(CW (�(d

0

j

)))
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Using equation 1, we have:

CW (d

0

) 2 �

�

K

(CW (�(d

0

j

))) = �

�

K

(CW (�(d

0

k

))) = �

�

K

(CW (d))

Therefore:

8d

0

2 �

�

(T ) \ SD d

0

2 CW

�1

(�

�

K

(CW (d)))

Whih is equivalent to:

�

�

(T ) \ SD � CW

�1

(�

�

K

(CW (d)))

The equality between the two set is thus demonstrated. 2

Proposition 10 shows that if a onneting walk traverse a given tree its �

K

-

orbit is equal to the set of onneting walks traversing the same tree. There-

fore, given any tree T in CC(K), all the onneting walks in CW (�

�

(T )\SD)

belong to a same �

K

-orbit and are thus ordered. Moreover, the appliation

CW being bijetive, the order de�ned on CW (�

�

(T ) \ SD) indue an order

on the set of surviving darts adjaent to T : �

�

(T ) \ SD.

Corollary 3 Given a onneted ombinatorial map G, a ontration kernel

K, and a non-surviving dart d in K. The opposite of the two onneting

walks CW (d

0

) and CW (d

00

) inluding d and �(d):

(

d 2 CW (d

0

)

�(d) 2 CW (d

00

)

belong to the same �

K

-orbit:

CW (�(d

00

)) 2 �

�

K

(CW (�(d

0

)))

Proof:

The existene and the uniqueness of darts d

0

and d

00

is provided by propo-

sition 6. By de�nition of a ontration kernel it exists a unique tree T in

CC(K) suh that �

�

(d) � T . Using proposition 4 we have:

CW (d

0

)� fd

0

g � T

CW (d

00

)� fd

00

g � T

Thus:

�(�(d

0

)) = '(d

0

) 2 CW (d

0

)� fd

0

g � T

�(�(d

00

)) = '(d

00

) 2 CW (d

00

)� fd

00

g � T
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Therefore, we have �(fd

0

; d

00

g) � �

�

(T )\SD. Using proposition 10 we have:

�(d

00

) 2 CW

�1

(�

�

K

(CW (�(d

0

))))() CW (�(d

00

)) 2 �

�

K

(CW (�(d

0

)))

2

This last orollary shows that the opposite of two onneting walks on-

taining two opposite darts belong to the same �

K

-orbit.

2.5 Link between onneting walks and ontration

This short setion show that the onneting walk map (see de�nition 13

bellow) is isomorph to the ontrated map de�ned by the ontration kernel.

Thus, all the properties de�ned in the onneting walk map may be extended

to the ontrated one.

De�nition 13 Conneting walk map Given a onneted ombinatorial

map G and a ontration kernel K, the onneting walk map assoiated

to G and K is denoted GC and is de�ned by:

GC = (D

K

; �

K

= '

K

Æ �

K

; �

K

)

Theorem 3 Given a onneted ombinatorial map G and a ontration ker-

nel K, the onneting walk map GC is isomorph to the ontrated map

G

0

= G=K:

GC

�

=

G=K

Proof:

We have:

GC = (D

K

; �

K

; �

K

)

G

0

= (D �K; �

0

; �) = (SD; �

0

; �)

Now, let us onsider the appliation � = (�;CW ) from G

0

to GC suh that:

� :

�

0

7! �

K

� 7! �

K

Sine the appliation CW is bijetive (see proposition 5), � is bijetive. Let

us show that it is a morphism, thus that:

8d 2 SD

(

CW (�(d)) = �

K

(CW (d))

CW (�

0

(d)) = �

K

(CW (d))
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The �rst equality is given by the de�nition of the involution �

K

. Moreover

we have:

�

K

(CW (d)) = '

K

Æ �

K

(CW (d))

= '

K

(CW (�(d)))

= CW (follow(�(d)))

The appliation CW being bijetive, the seond equality will be demon-

strated i� we show that �

0

(d) = follow(�(d)).

We have, by de�nitionG

0

= G nK. Thus �

0

= '

0

Æ� with '

0

= 'Æp

D;SD

.

Thus �

0

(d) = ' Æ p

D;SD

(�(d)) = '

n

(�(d)) with:

n = Minfp 2 IN

�

j '

p

(�(d)) 2 SDg (3)

Moreover, aording to Lemma 2, we have follow(�(d)) = '

n

(�(d)) with n

satisfying equation 3. Thus:

�

0

(d) = follow(�(d))) CW (�

0

(d)) = �

K

(CW (d))

2

3 Equivalent Contrations Kernels

This setion is devoted to the appliation of suessive parallel ontrations.

Eah set of ontrations is de�ned by a ontration kernel. We show in

this setion that applying suessively two ontration kernels is equivalent

to applying a bigger one only one (see setion 3.1). Conversely, we show

that a ontration kernel may be deomposed into two smaller ones. The

suessive appliation of the resulting ontration kernels is equivalent to the

appliation of the initial one (see setion 3.2)

De�nition 14 Inlusion of Contration Kernels

Let us onsider a ombinatorial map G

1

, and two ontration kernels K

1

and K

2

de�ned on G

0

. We will say that the ontration kernel K

2

inludes

K

1

i� K

1

� K

2

. In this ase eah onneted omponent of K

1

is inluded in

exatly one onneted omponent of K

2

:

8T 2 CC(K

1

) 9! T

0

2 CC(K

2

) j T � T

0
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De�nition 15 Predeessor and Suessor Kernels

Given a ombinatorial map G

0

= (D; �; �), a ontration kernel K

1

of G

0

and the ontrated ombinatorial map G

1

= G

0

=K

1

. If K

2

is a ontration

kernel of G

1

then we say that K

1

is the predeessor of K

2

, or that K

2

is the

suessor of K

1

. This relation will be denoted K

1

� K

2

.

The suessive appliation of K

1

and K

2

forms a new operator on G

0

denoted by K

2

ÆK

1

.

Lemma 3 Given a ombinatorial map G

0

= (D; �; �) and two disjoint

forests of D, F

1

and F

2

. If F

1

[F

2

is a forest, we an ontrat G

0

in di�erent

ways, but the �nal ombinatorial map is always the same:

G

0

=(F

1

[ F

2

) = (G

0

=F

1

)=F

2

Proof:

This property may be trivially dedued from the ommutativity of on-

tration operations. 2

This lemma shows that the �nal ombinatorial map does not depend on

the order of the ontrations. Thus, given two suessive ontration kernels

K

1

and K

2

, if a ontration kernel K

0

may be dedued from K

1

[ K

2

, the

appliation of K

0

will be equivalent to the suessive appliation of K

1

and

K

2

. In the same way, given two ontration kernels K

1

and K

0

suh that

K

1

� K

0

if we an de�ne a ontration kernel K

2

on the set of darts K

0

�K

1

,

the suessive appliation of K

1

and K

2

is equivalent to the appliation of

K

0

.

3.1 Deriving an Inlusion Kernel from Suessor Ker-

nels

This setion is devoted to the demonstration of Theorem 4 whih shows that,

given two suessive ontration kernels K

1

and K

2

of a ombinatorial map

G

0

, with K

1

� K

2

, we an de�ne a third ontration kernel K

0

2

suh that:

(G

0

=K

1

)=K

2

= G

0

=K

0

2

. The following notations will be used in this setion

(see Figure 3):

� G

0

= (D; �; �) denotes the initial ombinatorial map.

� K

1

and K

2

denote the two suessive ontration kernels suh that

K

1

� K

2

. Note that we have K

1

� D and K

2

� D.
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� G

1

= (SD

1

; �

1

; �) denotes the ontrated ombinatorial map G

0

=K

1

.

� G

0

= (K

2

[K

1

; �

0

; �) and G

0

1

= (K

2

; �

0

1

; �) denote respetively, two

submaps of G

0

and G

1

. The ombinatorial maps G

0

1

and G

0

are based

on respetively the darts that are ontrated by K

2

on G

1

and the darts

that are ontrated by the suessive appliations of K

1

and K

2

on G

0

.

�

�

K

1

K

2

G

0

1

= (K

2

; �

0

1

; �)

G

2

= (SD

2

; �

2

; �)

G

1

= (SD

1

; �

1

; �)

G

0

= (D; �; �)G

0

= (K

2

[K

1

; �

0

; �)

�

G

00

= (K

1

; �

00

; �)

Figure 3: Combinatorial maps that will be used in this setion. The ontrations

are represented by arrows.

We know, by de�nition of the ontration kernel K

2

that G

0

1

is a forest of

G

1

. One of the aims of this setion is to show that G

0

is also a forest of G

0

.

Note that, G

0

1

is not a submap of G

0

besides the fat that K

2

� K

2

[K

1

.

Indeed, G

0

1

is a submap of G

1

, sine G

1

is not a sub-map of G

0

, G

0

1

is not a

sub-map of G

0

. The relation between the ombinatorial map G

0

1

and G

0

is

given by equation 5.

Lemma 4 Using previously de�ned notations, the following relations hold:

1. K

2

� SD

1

and K

2

6= SD

1

2. K

1

\K

2

= ;

3. (K

2

[K

1

) \ SD

1

= K

2
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4. D �K

2

[K

1

= SD

1

�K

2

Proof:

1. The ontration kernel K

2

being de�ned on G

1

= (SD

1

; �

1

; �), we have,

by de�nition of a ontration kernel:

K

2

� SD

1

and K

2

6= SD

1

2. We have:

K

2

� SD

1

= D �K

1

Thus:

K

2

\K

1

= ;

3. This is a onsequene of the two preeding equalities:

K

2

[K

1

\ SD

1

= (K

1

[K

2

) \ SD

1

= (K

1

\ SD

1

) [ (K

2

\ SD

1

)

= K

2

4. We have:

D �K

2

[K

1

= D � (K

1

[K

2

)

= (D �K

1

)�K

2

= SD

1

�K

2

2

Note that lemma 4 is demonstrated for two suesive ontration kernel.

Nevertheless, this lemma using only quite general properties of ontration

kernels it remains true in the following ases:

� K

1

and K

2

are both dual ontration kernels.

� K

1

is a ontration kernel and K

2

is a dual one.

� K

2

is a ontration kernel and K

1

is a dual one.

The following lemmata (5, 6, 7 and 8) establish a link between the '-orbits

of the ombinatorial map G

0

and the ones of the ombinatorial map G

0

1

. The

'-orbits of G

0

1

being dedued from the ones of G

1

whih is isomorphi to the

onneting walk map of G

0

, we will �rst, study the onnetions between the

'-orbits of G

0

and the onneting walks of G

0

.
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Lemma 5 Given a ombinatorial map G

0

= (D; �; �), and two ontration

kernels K

1

and K

2

suh that K

1

� K

2

. The sub map G

0

= (K

2

[K

1

; �

0

; �)

veri�es:

1. Eah onneting walk of K

1

de�ned by a dart d in K

2

is inluded in

the '

0

-orbit: '

0�

(d). Moreover the same order on the elements applies

in CW (d) and '

0�

(d):

8d 2 K

2

CW (d) � '

0�

(d)

2. Eah non-surviving dart of K

1

belongs to a onneting walk. All the

non surviving darts of this onneting walk appear in a '

0

-orbit of G

0

in the same order as in the onneting walk:

8d 2 K

1

9!d

0

2 SD

1

j d 2 CW (d

0

)� fd

0

g � '

0�

(d)

Where, the onneting walks are de�ned in G

0

by K

1

and '

0

denotes the

permutation ' in the sub map G

0

.

Proof:

1. Let us onsider d in K

2

. Sine K

2

� SD

1

, d is a surviving dart and

we an onsider the onneting walk:

CW (d) = d; '(d) : : : ; '

n�1

(d) with n = Minfp 2 IN

�

j '

p

(d) 2 SD

1

g

If n = 1, CW (d) is redued to d and is thus inluded in '

0�

(d).

Otherwise, let us onsider the following proposition:

8j 2 f0; : : : ; ig with i < p '

0j

(d) = '

j

(d)

This proposition is true at least for i = 0 sine '

00

(d) = '

0

(d) = d. Let

us suppose that the proposition is true for a given i < p.

We have by de�nition of the restrition operator:

'

0i+1

(d) = �

q

(�('

0i

(d))) with

q = Minfk 2 IN

�

j �

k

(�('

0i

(d))) 2 K

2

[K

1

g

Sine �(�('

0i

(d))) = �((�('

i

(d))) = '

i+1

(d) 2 K

1

� K

2

[K

1

we have

q = 1 and the reurrene hypothesis hold until i+ 1.

24



2. If d 2 K

1

we know, thanks to proposition 6 that:

9!d

0

2 SD

1

j d 2 CW (d

0

)

Moreover, sine d 6= d

0

, CW (d

0

) is not redued to d

0

. Let CW (d

0

) =

d

0

; '(d

0

); : : : ; '

p�1

(d

0

). Sine CW (d

0

)�fd

0

g is not empty we must have

p > 1. Moreover, by de�nition of a onneting walk:

8l 2 f1; : : : ; p� 1g '

l

(d) 2 K

1

� K

2

[K

1

Thus, as previously: 8l 2 f1; : : : ; p� 1g '

l

(d) = '

0l

(d). Therefore,

CW (d

0

)� fd

0

g � '

0�

('(d

0

)) = '

0�

(d)

2

Eah onneting walk is by de�nition, inluded in one '-orbit. The last

lemma only shows that this property remains true in the ombinatorial map

G

0

for the onneting walks de�ned in G

0

by K

1

. Intuitively, this proposition

is due to the fat that restriting a ombinatorial map enlarge the set of darts

of eah fae. Thus a onneting walk inluded in one '-orbit '

�

(d) with d in

K

2

[K

1

will be inluded in '

0�

(d).

Lemma 6 Given a ombinatorial map G

0

= (D; �; �), and two ontration

kernels K

1

and K

2

suh that K

1

� K

2

. For all d in K

2

, the '

0

-orbit of d:

'

0�

(d), in G

0

= (K

2

[K

1

; �

0

; �) may be expressed by (see Figure 4):

'

0�

(d) = d

1

; : : : ; d

2

; : : : ; d

m

: : : with fd

1

; : : : ; d

m

g � K

2

Moreover, for eah i in f1; : : : ; mg it exists a serie of darts (d

1

i

; : : : ; d

n

i

i

) in

SD

1

�K

2

suh that:

'

0�

(d) = P

1

:P

2

: : : : ; P

m

with

P

i

= CW (d

i

):(CW (d

1

i

)� fd

1

i

g) : : : (CW (d

n

i

i

)� fd

n

i

i

g)

In other words, any fae of G

0

whih ontains at least one dart in K

2

may

be onsidered as a onatenation of onneting walks, without the darts

belonging to SD

1

�K

2

.

Proof:
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d

i+1

d

i

:K

2

:SD

1

�K

2

:K

1

CW (d

i

)

CW (d

1

i

)

d

1

i

Figure 4: One P

i

de�ned by two onneting walks

Sine d belongs to K

2

we know that the intersetion between '

0�

(d) and

K

2

is not empty. We an thus suppose the existene of the darts fd

1

; : : : ; d

m

g

with m at least 1. Moreover, the demonstration being the same for eah P

i

it is suÆient to show it for a given i and to show that the permutation '

0

maps the last dart of P

i

to d

i+1

.

Using Lemma 5 we have: CW (d

i

) � '

0�

(d

i

) = '

0�

(d). Let us denote

CW (d

i

) = b

1

; : : : ; b

r

. We have '(b

r

) = follow(d

i

) = '

1

(d

i

). Moreover,

'

0

(b

r

) = �

p

((�(b

r

)) with

8k 2 f1; : : : ; p� 1g �

k

(�(b

r

)) 2 D �K

2

[K

1

= SD

1

�K

2

� If '

0

(b

r

) 2 K

2

we have aording to our notations '

0

(b

r

) = d

i+1

and

P

i

= CW (d

i

).

� If p = 1, we have '

0

(b

r

) = '(b

r

) = '

1

(d

i

). Moreover, '

0

(b

r

) 2 K

2

[K

1

and '

1

(d

i

) 2 SD

1

, thus '

0

(b

r

) 2 (K

2

[K

1

)\SD

1

= K

2

(see Lemma 4).

Thus as previously, '

0

(b

r

) = d

i+1

and P

i

= CW (d

i

).

b

r

�

p

(�b

r

)

: SD

1

�K

2

: K

1

��

p�1

(�b

r

)

Figure 5: A zoom on a onnetion between two onneting walks

� Otherwise, we have p > 1 and '

0

(b

r

) 2 K

1

(see Figure 5). In this ase

we have: �

p�1

(�(b

r

)) 2 SD

1

�K

2

and '(�(�

p�1

(�(b

r

)))) = �

p

(�(b

r

)),

Thus:

'

0

(b

r

) = �

p

(�(b

r

)) 2 CW (�(�

p�1

(�(b

r

))))

26



Using Lemma 5 we have:

CW (�(�

p�1

(�(b

r

))))� f�(�

p�1

(�(b

r

)))g � '

0�

(b

r

) = '

0�

(d)

If we denote d

1

i

= �(�

p�1

(�(b

r

))) we obtain: P

i

= CW (d

i

):(CW (d

1

i

)�

fd

1

i

g) : : :.

Let us suppose, that P

i

an be written as:

P

i

= CW (d

i

):(CW (d

1

i

)� fd

1

i

g) : : : (CW (d

j

i

)� fd

j

i

g) : : :

for a given j. Let us denote CW (d

j

i

) by:

CW (d

j

i

) = b

0

1

; : : : ; b

0

r

0

we have '

0

(b

0

r

0

) = �

p

0

(�(b

r

0

)).

As previously, if '

0

(b

0

r

0

) 2 K

2

, or p

0

= 1 we have '

0

(b

r

0

) = d

i+1

and

j = n

i

. Otherwise, if d

j+1

i

denotes �(�

p

0

�1

(�(b

0

r

0

))) we have CW (d

j+1

i

)�

fd

j+1

i

g � '

0�

(d) and P

i

an be written as:

P

i

= CW (d

i

) : : : (CW (d

j

i

)� fd

j

i

g)(CW (d

j+1

i

)� fd

j+1

i

g) : : :

Thus the reursive hypothesis holds until j + 1.

2

Intuitively, this last lemma may be interpreted has follow: Sine eah

onneting walk is inluded in one fae of the initial ombinatorial map, eah

fae of the initial ombinatorial map may be onsidered has a onatenation

of onneting walks. Using the restrited ombinatorial map G

0

, we have to

remove the darts whih belong to D �K

2

[K

1

= SD

1

�K

2

. The removed

dart being surviving ones, we only have to remove the starting dart of some

onneting walks.

The following lemma show that eah P

i

in inluded in one tree of the

ontration kernel K

1

. Intuitively, this last proposition is true beause the

walk P

i

does not ross a surviving dart (we never have d 2 SD

1

and '(d) in

the same walk). Sine the surviving darts onnet the di�erent trees of the

ontration kernel a walk P

i

must remains in a given tree.

Lemma 7 Let us use the same notation for the walks P

1

; : : : ; P

m

and the

hypothesis as in Lemma 6. If, the dart d belongs to K

2

then every walk P

i
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onsists either of the dart d

i

alone or all the other darts of P

i

are part of one

onneted omponent of K

1

.

8i 2 f1; : : : ; mg P

i

= (d

i

) or 9!T 2 CC(K

1

) j P

i

� fd

i

g � T

Proof:

Let us onsider a given walk P

i

with i 2 f1; : : : ; mg suh that P

i

6= (d

i

),

we have:

P

i

= CW (d

i

):(CW (d

1

i

)� (d

1

i

)) : : : (CW (d

n

i

i

)� (d

n

i

i

))

Sine P

i

6= (d

i

), CW (d

i

) is not redued to d

i

and we have by proposition 4:

9!T 2 CC(K

1

) j CW (d

i

)� fd

i

g � T

If P

i

is redued to CW (d

i

) nothing remains to be demonstrated. Otherwise,

let:

CW (d

i

) = b

1

; : : : ; b

r

Sine P

i

= CW (d

i

):(CW (d

1

i

)�fd

1

i

g) : : : � '

0�

(d), we have '

0

(b

r

) 2 CW (d

1

i

)�

fd

1

i

g with (see Figure 5):

'

0

(b

r

) = �

p

(�(b

r

)) with p = Minfk 2 IN

�

j �

k

(�(b

r

)) 2 K

2

[K

1

g

Therefore, '

0

(b

r

) 2 �

�

(�(b

r

)) with b

r

2 T . By de�nition of a ontration

kernel, we have:

�

�

(�(b

r

)) � T [ SD

1

Sine P

i

6= CW (d

i

), '

0

(b

r

) is not a surviving dart, thus we have '

0

(b

r

) 2 T .

Therefore:

CW (d

1

i

)� fd

1

i

g � T

Let us suppose that this property is true until the rank k with k < n

i

. Then,

if:

CW (d

k

i

) = d

k

i

: : : ; b

0

r

0

We have '

0

(b

0

r

0

) 2 CW (d

k+1

i

)� fd

k+1

i

g with b

0

r

0

belonging to T by our reur-

rene hypothesis. We an thus onlude has previously that:

CW (d

k+1

i

)� fd

k+1

i

g � T

This property being true for all k in f1; : : : ; n

i

g, we have P

i

� T . 2
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Lemma 8 Let us use the same notation for the darts d

1

; : : : ; d

m

and the

hypothesis as in Lemmata 6 and 7. If d belongs to K

2

the ordered set of darts

d

1

; : : : ; d

m

satisfy the following relationship:

8i 2 f1; : : : ; mg d

i+1

= '

0

1

(d

i

)

Where '

0

1

denotes the permutation ' of the sub map G

0

1

of G

1

(see Figure 3).

Proof:

Using Lemma 6, the set of darts between two onseutive darts d

i

and

d

i+1

may be deomposed into the set of onneting walks:

P

i

= CW (d

i

):(CW (d

1

i

)� (d

1

i

)) : : : (CW (d

n

i

i

)� (d

n

i

i

)) with

8j 2 f1; : : : ; n

i

g d

j

i

2 SD

1

�K

2

Let us �rst show that, for a given i in f1; : : : ; mg, we have:

8j 2 f1; : : : ; n

i

� 1g 9k

j

j �(d

j+1

i

) = �

k

j

1

(�(d

j

i

)) with

8k 2 f1; : : : ; k

j

g �

k

1

(�(d

j

i

)) 2 SD

1

�K

2

(4)

Let us onsider a given j in f1; : : : ; n

i

� 1g and let us denote CW (d

j

i

) by:

CW (d

j

i

) = d

j

i

; b

1

; : : : ; b

r

we have:

'

1

(d

j

i

) = follow(d

j

i

) = '(b

r

) = �(�(b

r

))

Moreover, by de�nition of a submap it exists one k

j

(see Figure 6) suh

that '

0

(b

r

) = �

k

j

+1

(�(b

r

)) with:

8k 2 f1; : : : ; k

j

g �

k

(�(b

r

)) 2 D �K

2

[K

1

= SD

1

�K

2

If k

j

= 0, we have '

0

(b

r

) = �(�(b

r

)) = '

1

(d

j

i

) 2 SD

1

\K

2

[K

1

= K

2

(see

Lemma 4). Thus d

i+1

= '

1

(d

j

i

). This last equality is in ontradition with

our hypothesis: j < n

i

. Thus we have k

j

� 1. Moreover, sine �

k

(�(b

r

))

belongs to SD

1

for eah k in f1; : : : ; k

j

g we have:

8k 2 f1; : : : ; k

j

� 1g CW (�(�

k

(�(b

r

)))) = �(�

k

(�(b

r

)))

Thus :

8k 2 f1; : : : ; k

j

� 1g

8

>

<

>

:

�

1

(�

k

(�(b

r

))) = follow(�(�

k

(�(b

r

))))

= '(�(�

k

(�(b

r

))))

= �

k+1

(�(b

r

))
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b

r

: SD

1

�K

2

: K

1

�

k

j

+1

(�(b

r

))

�(�

2

(�(b

r

))) �(�

k

j

(�(b

r

))) = d

j+1

i

Figure 6: A zoom on a onnetion between two onneting walks of a '

0

-orbit. In

this example, k

j

= 4

This last equality may be iterated in order to obtain:

�

k

j

�1

1

(�(�(b

r

))) = �

k

j

�2

1

(�

2

(�(b

r

))) = : : : = �

k

j

(�(b

r

))

Therefore:

�

k

j

1

(�(d

j

i

)) = �

k

j

�1

1

(�

1

(�(d

j

i

)))

= �

k

j

�1

1

(�(�(b

r

)))

= �

k

j

(�(b

r

))

= � Æ '

�1

Æ �

k

j

+1

(�(b

r

))

= �(d

j+1

i

)

We have thus:

�(d

j+1

i

) = �

k

j

1

(�(d

j

i

)) with 8k 2 f1; : : : ; k

j

g �

k

1

(�(d

j

i

)) 2 SD

1

�K

2

In the same way, if b

0

denotes the last dart of CW (d

n

i

i

) we have:

'

1

(d

n

i

i

) = follow(d

n

i

i

) = �(�(b

0

))

d

i+1

= '

0

(b

0

) = �

p

(�(b

0

))

If p = 1, we have '

0

(b

0

) = �(�(b

0

)) = '

1

(d

n

i

i

) = �

1

(�(d

n

i

i

)), thus d

i+1

=

�

1

(�(d

n

i

i

)) and we an take k

n

i

= 1. Otherwise, the same demonstration as

above may be applied with k

n

i

= p� 1. We thus obtain:

d

i+1

= �

k

n

i

1

(�(d

n

i

i

)) with 8k 2 f1; : : : ; k

n

i

� 1g �

k

1

(�(d

n

i

i

)) 2 SD

1

�K

2

Using equation 4 we have:

d

i+1

= �

k

n

i

1

Æ �

k

n

i

�1

1

: : : Æ �

k

1

1

(�(d

i

)) = �

q

1

(�(d

i

))
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with q =

P

n

i

j=1

k

j

. Moreover, we have:

8k 2 f1; : : : ; qg �

k

1

(�(d

i

)) 2 SD

1

�K

2

Thus: '

0

1

(�(d

i

)) = �

0

1

(�(d

i

)) = �

q

1

(�(d

i

)). 2

The Lemma 8 shows that the '-orbits of ombinatorial map G

0

1

are in-

luded in the '-orbits of the ombinatorial map G

0

. Thus, the ombinatorial

map G

0

1

may be onsidered as the dual of the restrition to K

2

of the om-

binatorial map G

0

:

G

0

1

= G

0

jK

2

(5)

where G

0

jK

2

denotes the subgraph of G

0

de�ned by K

2

.

Theorem 4 Given a ombinatorial map G

0

= (D; �; �), and two ontration

kernels K

1

and K

2

suh that K

1

� K

2

. Then K

1

[ K

2

de�nes a new

ontration kernel suh that: (G

0

=K

1

)=K

2

= G

0

=(K

1

[K

2

).

Proof:

Given the ombinatorial map G

0

= (K

2

[K

1

; �

0

; �) de�ned as the restri-

tion of G

0

to K

2

[K

1

, let us suppose that G

0

is not a forest, thus that we

an �nd one dart d in K

2

[K

1

suh that �(d) 62 '

0�

(d).

The set K

1

being a ontration kernel, and thus a forest, '

0�

(d) annot

be inluded in K

1

. Thus:

'

0�

(d) \K

2

6= ;

Let us denote by fd

1

; d

2

; : : : ; d

m

g the previous intersetion:

fd

1

; d

2

; : : : ; d

m

g = '

0�

(d) \K

2

Using Lemma 8,the darts d

1

; : : : ; d

m

de�ne a '

0

1

-orbit:

'

0�

1

(d

1

) = (d

1

; d

2

; : : : ; d

m

)

In the same way, we an de�ne a set of darts fd

0

1

; : : : ; d

0

m

0

g suh that:

fd

0

1

; d

0

2

; : : : ; d

0

m

0

g = '

0�

(�(d)) \K

2

Using Lemma 8, we obtain:

'

0�

1

(d

0

1

) = (d

0

1

; d

0

2

; : : : ; d

0

m

0

)
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Sine two orbits of a permutation are equal or disjoint and �(d) 62 '

0�

(d) the

orbits '

0�

(d) and '

0�

(�(d)) must be disjoint. Thus,

fd

1

; : : : ; d

m

g \ fd

0

1

; : : : ; d

0

m

0

g = ;

Moreover, if d belongs to K

2

, it exists two indies i and j suh that d = d

i

and �(d) = d

0

j

. Thus, in this ase, the two faes, '

0�

(d

i

) and '

0�

(d

0

j

) belong

to a same onneted omponent.

Otherwise, sine d belongs to K

2

[ K

1

, �

�

(d) is inluded in K

1

. By

de�nition of a ontration kernel, it exists a tree T 2 CC(K

1

) suh that

�

�

(d) � T . Moreover, using Lemma 6 we an �nd two walks P

i

and P

0

j

suh

that:

(

d 2 P

i

� '

0�

(d)

�(d) 2 P

0

j

� '

0�

(�(d))

Using Lemma 7, the non-surviving darts of eah walk belong to one tree of

K

1

. Sine �

�

(d) � T the walks P

i

� fd

i

g and P

0

j

� fd

0

j

g are inluded in T :

d 2 P

i

� fd

i

g � T and

�(d) 2 P

0

j

� fd

0

j

g � T

Moreover:

'(d

i

) = �(�(d

i

)) 2 T

and

'(d

0

j

) = �(�(d

0

j

)) 2 T

1

C

A

) �(fd

i

; d

0

j

g) � �

�

(T ) \ SD:

Using proposition 10 we obtain: �(d

0

j

) 2 �

�

1

(�(d

i

)), Thus �(d

0

j

) 2 �

0�

1

(�(d

i

)).

Thus in all ases (�

�

(d) � K

2

or �

�

(d) � K

1

) the two faes '

0�

1

(d

1

) and

'

0�

1

(d

0

1

) belong to the same onneted omponent of the submap G

0

1

of G

1

.

Thus we an �nd two distint faes in one onneted omponent of G

0

1

.

The map G

0

1

being a forest, by de�nition of the ontration kernel K

2

, we

obtain the desired ontradition. Therefore, eah onneted omponent of

G

0

is a tree and G

0

is a forest. Moreover, we have, by lemma 4:

D �K

2

[K

1

= SD

1

�K

2

6= ;

Thus, the onneted omponents of G

0

de�ne a ontration kernel on G

0

. 2
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3.2 Deriving Suessor Kernels from Inlusion Kernels

We will show in this setion, that given two ontration kernels K

1

and K

2

suh that K

1

� K

2

we an �nd another ontration kernel K

0

2

suh that the

suessive appliations of K

1

and K

0

2

is equivalent to the appliation of K

2

.

Proposition 11 Given a ombinatorial map G

0

and two ontration kernels

K

1

� K

2

. A tree T of K

1

annot be adjaent to a tree T

0

of K

2

unless

T � T

0

:

8T 2 CC(K

1

); 8T

0

2 CC(K

2

) �

�

(T ) \ �

�

(T

0

) 6= ; ) T � T

0

Proof:

The set T is inluded in one T

00

. Let us suppose that T

0

6= T

00

, we have

then:

�

�

(T ) \ �

�

(T

0

) � �

�

(T

00

) \ �

�

(T

0

)

By de�nition of a ontration kernel we must have, sine T

0

6= T

00

�

�

(T

0

) \ �

�

(T

00

) = ;

This last equation ontradit the hypothesis �

�

(T ) \ �

�

(T

0

) 6= ;. 2

Proposition 12 Given a ombinatorial map G

0

and two ontration kernels

K

1

and K

2

with K

1

� K

2

. If G

1

and G

2

denote the two ontrated maps:

G

1

= (SD

1

; �

1

; �) = G=K

1

G

2

= (SD

2

; �

2

; �) = G=K

2

then the smaller ontration kernel K

1

reates the larger graph:

SD

2

� SD

1

where SD

1

and SD

2

denote respetively the surviving darts of K

1

and K

2

.

Proof:

The ontration kernel K

1

is inluded in K

2

, therefore SD

2

= D �K

2

is

inluded in SD

1

= D �K

1

. 2

33



Proposition 13 Given a ombinatorial map G

0

and two ontration kernels

K

1

and K

2

with K

1

� K

2

. Eah tree T

0

2 CC(K

2

) may be written as an union

of trees T 2 CC(K

1

) together with some surviving darts in SD

1

whih onnet

the trees of K

1

inluded in T

0

:

8T

0

2 CC(K

2

) 9C

T

0

� CC(K

1

) j T

0

= (

S

T 2C

T

0

T ) [ A

T

0

with A

T

0

� SD

1

where SD

1

denotes the set of surviving darts of the ontration kernel K

1

.

Proof:

Given the set:

C

T

0

= fT 2 CC(K

1

) j T � T

0

g

We have only to prove that:

8T

0

2 CC(K

2

) A

T

0

= T

0

�

[

T 2C

T

0

T � SD

1

Let us onsider d 2 T

0

, then d 2 SD

1

or belongs to one T 2 CC(K

1

). Let

us suppose that d 2 T with T 62 C

T

0

. Then, by de�nition of inluded

ontration kernels there must exist T

00

6= T

0

suh that: d 2 T � T

00

. Thus

d 2 T

0

\T

00

whih is forbidden by the de�nition of a ontration kernel. Thus

we must have T 2 C

T

0

. Therefore, if d 2 T

0

�

S

C

T

0

T then d 2 SD

1

. 2

Lemma 9 Using the same notations and hypothesis as proposition 13, the

sets C

T

0

with T

0

2 CC(K

2

) form a partition of CC(K

1

):

[

T

0

2CC(K

2

)

C

T

0

= CC(K

1

)

Proof:

If a tree T of CC(K

1

) belongs to two sets C

T

0

and C

T

00

with T

0

6= T

00

,

we have T � T

0

and T � T

00

. Therefore, T onnets T

0

to T

00

. This

is in ontradition with the de�nition of the trees T

0

and T

00

as onneted

omponents ofK

2

. Therefore, all the sets C

T

0

with T

0

in CC(K

2

) are disjoint.

Let us show that these sets form a partition of CC(K

1

).
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For every T

0

2 CC(K

2

), C

T

0

is inluded in CC(K

1

), thus:

[

T

0

2CC(K

2

)

C

T

0

� CC(K

1

)

If T 2 CC(K

1

), we have, by de�nition of inluded ontration kernels:

9!T

0

2 CC(K

2

) j T � T

0

Thus: T 2 C

T

0

�

S

T

0

2CC(K

2

)

C

T

0

.

Finally we obtain:

[

T

0

2CC(K

2

)

C

T

0

= CC(K

1

)

2

Corollary 4 Using the same notations and hypothesis as proposition 13, the

sets A

T

0

with T

0

2 CC(K

2

) form a partition of K

2

�K

1

:

[

T

0

2CC(K

2

)

A

T

0

= K

2

�K

1

Proof:

Given a tree T

0

in CC(K

2

), A

T

0

is equal to (see proposition 13):

A

T

0

= T

0

�

[

T 2C

T

0

T

Eah set A

T

0

is inluded in T

0

. The onneted omponent of K

2

being

disjoint by de�nition, the sets A

T

0

are disjoint. The union of all the sets

A

T

0

is thus equal to:

S

T

0

2CC(K

2

)

A

T

0

=

S

T

0

2CC(K

2

)

T

0

�

S

T

0

2CC(K

2

)

S

T 2C

T

0

T

= K

2

�

S

T 2CC(K

1

)

T (with lemma 9)

= K

2

�K

1

2
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Lemma 10 With the same notations and hypothesis as proposition 13, if

K

2

�K

1

is not empty, it de�nes a forest of G

0

.

Proof:

The ontration kernels K

2

and K

1

being symmetri, the set K

2

�K

1

is

symmetri and an be onsidered as a sub-ombinatorial map of the forest

K

2

. We an thus onlude with Theorem 1. 2

This last lemma will be used by Theorem 5 to ontrat G

0

.

Theorem 5 Given a ombinatorial map G

0

, and two ontration kernels K

1

and K

2

. If:

G

1

= G

0

=K

1

G

2

= G

0

=K

2

and if K

1

is inluded in K

2

, e.g. K

1

� K

2

, G

2

an be derived from G

1

by

additional ontrations using the same notations as in Proposition 13:

G

2

= G

1

=(K

2

�K

1

)

Proof:

G

2

= G

0

= K

2

= G

0

= (K

1

[ (K

2

�K

1

))

= (G

0

= K

1

)=(K

2

�K

1

) (with lemma 10 and 3)

= G

1

= (K

2

�K

1

)

2

We know, thanks to Theorem 5, that ontrating the darts K

2

� K

1

on

the ombinatorial map G

1

provides the ombinatorial map G

2

. We have now

to show that a ontration kernel of G

1

may be de�ned on the set K

2

�K

1

.

This last hypothesis may be easily shown if we demonstrate that K

2

� K

1

is a forest of the ombinatorial map G

1

. The following lemma, de�nes an

intermediate result,whih is used in the proof of proposition 14.

Lemma 11 Given a ombinatorial map G

0

= (D; �; �), two ontration

kernels K

1

and K

2

with K

1

� K

2

and the ontrated graph:

G

1

= (SD

1

; �

1

; �) = G

0

=K

1
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Using the same notations as proposition 13, the �

1

-orbits of eah set A

T

0

is

inluded in the �-orbits of T

0

interseted with SD

1

:

8T

0

2 CC(K

2

) �

�

1

(A

T

0

) � �

�

(T

0

) \ SD

1

Proof:

First note that �

�

1

(A

T

0

) is well de�ned sine A

T

0

is inluded in SD

1

.

Let us onsider d in the �

1

orbit of A

T

0

. In this ase the �

1

-orbit of d

interset A

T

0

:

�

�

1

(d) \ A

T

0

6= ;

Let us onsider the two ases:

1. If �

�

(d) is inluded in SD

1

. Then we have thanks to orollary 1 and to

the isomorphism between the ontrated graph G

1

and the onneting

walks map G

K

1

= (D

K

1

; �

K

1

; �

K

1

):

�

�

1

(d) = CW

�1

(�

�

K

1

(CW (d)) = CW

�1

(CW (�

�

(d))) = �

�

(d):

Thus:

; 6= �

�

1

(d) \ A

T

0

� �

�

1

(d) \ T

0

= �

�

(d) \ T

0

) d 2 �

�

(T

0

)

Moreover, d belongs to SD

1

by de�nition of G

1

. Thus:

d 2 �

�

(T

0

) \ SD

1

2. If �

�

(d) intersets one tree T 2 CC(K

1

), we have thanks to proposi-

tion 10:

�

�

1

(d) = CW

�1

(�

�

K

1

(CW (d))) = �

�

(T ) \ SD

1

� �

�

(T )

Thus:

; 6= �

�

1

(d) \ T

0

� �

�

(T ) \ T

0

Using proposition 11 we an dedue:

T � T

0

Thus:

d 2 �

�

1

(d) = �

�

(T ) \ SD

1

� �

�

(T

0

) \ SD

1
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2

Corollary 5 The intersetion between the �

1

-orbits of any two sets A

T

0

and

A

T

00

is empty:

8(T

0

; T

00

) 2 CC(K

2

)

2

�

�

1

(A

T

0

) \ �

�

1

(A

T

00

) = ;

Proof:

Given two distint trees T

0

and T

00

in CC(K

2

), the �

1

-orbits of the sets

A

T

0

and A

T

00

are inluded in the �-orbits of T

0

and T

00

(see lemma 11) whih

are disjoint:

�

�

1

(A

T

0

) \ �

�

1

(A

T

00

) � �

�

(T

0

) \ �

�

(T

00

) = ;

2

Lemma 12 Given a ombinatorial map G

0

= (D; �; �), two ontration

kernels K

1

and K

2

with K

1

� K

2

and the two ontrated graphs:

G

1

= (SD

1

; �

1

; �) = G

0

=K

1

G

2

= (SD

2

; �

2

; �) = G

0

=K

2

Any walk of G

1

inluded in K

2

� K

1

is inluded in a given A

T

0

with T

0

2

CC(K

2

).

Proof:

First let us note that (see orollary 4):

K

2

�K

1

=

[

T

0

2CC(K

2

)

A

T

0

Let us onsider a walk W = (d

1

; : : : ; d

n

) inluded in K

2

�K

1

. Sine the sets

A

T

0

form a partition of K

2

�K

1

it exists a given tree T

0

suh that d

1

2 A

T

0

.

Let us onsider, the length of the longest sequene of W starting from d

1

and inluded in A

T

0

:

r = Maxfs 2 f1; : : : ; ng j 8i 2 f1; : : : ; sg d

i

2 A

T

0

g

We have r � 0, let us suppose that r < n, then we have: d

r

2 A

T

0

and

d

r+1

2 A

T

00

with T

00

6= T

0

. Moreover, we have, by de�nition of a walk:

d

r+1

2 �

�

1

(�(d

r

)) � �

�

1

(A

T

0

)
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Thus:

d

r+1

2 A

T

00

\ �

�

1

(A

T

0

) � �

�

1

(A

T

00

) \ �

�

1

(A

T

0

)

this is in ontradition with orollary 5. 2

Intuitively, this last proposition may be understood has follow: The set

A

T

0

only onnets the di�erent sets (T )

T 2C(T

0

)

inluded in T

0

and not T

0

to

another tree T

00

. Thus a walk de�ned in K

2

�K

1

= [

T

0

2CC(K

2

)

A

T

0

annot

onnet two trees T

0

and T

00

and is therefore inluded in one A

T

0

.

Proposition 14 Given a ombinatorial map G

0

, two ontration kernels

K

1

� K

2

and the two ontrated graphs:

G

1

= (SD

1

; �

1

; �) = G

0

=K

1

G

2

= (SD

2

; �

2

; �) = G

0

=K

2

The submap K

01

of G

1

de�ned by K

2

� K

1

is a forest (see Figure 7 for an

illustration of the relationships between the di�erent ombinatorial maps).

G

0

= (D; �; �)

G

2

= (SD

2

= D �K

2

; �

2

; �)

�

K

2

G

1

= (SD

1

=D �K

1

; �

1

; �)

K

1

K

01

= (K

2

�K

1

; �

0

1

; �)

Figure 7: The relationships between the ombinatorial maps G

0

, G

1

, G

2

and

K

01

= (K

2

�K

1

; �

0

1

; �). The arrows represent ontrations.

Proof:

We will demonstrate this important proposition by showing that if K

01

is

not a forest, then we an �nd a yle of G

0

inluded in one tree T

0

of CC(K

2

).

If K

01

is not a forest of G

1

, then we an �nd a yle C of G

1

inluded in

K

01

. A yle, being also a walk, we have by lemma 12:

9T

0

2 CC(K

2

) j C � A

T

0

� T

0
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if C

T

0

is empty, the set A

T

0

de�nes a new tree:

C � A

T

0

= T

0

� SD

1

The permutation �

1

and � being idential on SD

1

(see proposition 9 and

theorem 3) C is also a yle of G

0

. We thus obtain the desired ontradition

sine C is inluded in T

0

whih is a tree of G

0

(see theorem 2).

If C

T

0

6= ;, let us show that we an extend C into an other yle C

0

of

G

0

inluded in T

0

. If C is de�ned by the darts d

1

; : : : ; d

n

, let us write C

0

(see

Figure 8) as:

C

0

= d

1

:P

1

: : : d

n

P

n

Where (P

i

)

i2f1;:::;ng

denotes a set of path to be determined.

d

1

T

1

P

1

d

2

P

2

T

2

T

3

T

n

T

0

d

n

P

n

P

n�1

Figure 8: The yle C = (d

1

; : : : ; d

n

) extended to C

0

= (d

1

:P

1

: : : d

n

P

n

)

Given an index i in f1; : : : ; ng, Let us onsider two ases:

1. If �

�

(�(d

i

)) � SD

1

, the �

1

-orbit of �(d

i

) is equal to its �-orbit, and we

have:

d

i+1

2 �

�

1

(�(d

i

)) = �

�

(�(d

i

))

In this ase we take P

i

= ;.

2. If �(d

i

) belongs to the �-orbit of a tree T

i+1

� K

1

d

i+1

2 �

�

1

(�(d

i

)) = �

�

(T

i+1

) \ SD

1

Then �

�

(�(d

i

)) and �

�

(d

i+1

) belong to the same tree T

i+1

of K

1

and

it exists a unique path P

i

in T

i+1

from �

�

(�(d

i

)) to �

�

(d

i+1

)) (see

theorem 2).

Note that if �

�

(�(d

i

)) = �

�

(d

i+1

) the path is again empty.
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The serie C

0

so de�ned is by onstrution a walk of G

0

. Let us show that

it is losed.

If �

�

(d

1

) is inluded in SD

1

, we have:

�

�

(d

1

) \ �

�

(C

0

) = �

�

1

(d

1

) \ �

�

(C

0

) = fd

1

; �(d

n

)g

If not, �

�

(d

1

) intersets a tree of K

1

, and ontains d

1

and the opposite of the

last dart of P

n

by de�nition of P

n

. Therefore the walk C

0

is losed. Let us

show that it is a yle. If C

0

is denoted by:

C

0

= b

1

; : : : ; b

p

we must show that:

8i 2 f2; : : : ; pg �

�

(b

i

) \ �

�

(b

1

; : : : ; b

p

) = fb

i

; �(b

i�1

)g

If b

i

belongs to a path P

j

, its �-orbits ontains b

i

and �(b

i

) by de�nition of a

path. If some other darts in �

�

(C

0

) belong to the same �-orbit, we must have

some other darts than d

j

and �(d

j�1

) in C inident to the same tree. Sine

eah tree of K

1

is ontrated into a single vertex, this is in ontradition with

the de�nition of C as a yle of G

1

.

Given a dart d

i

in C, if �

�

(d) is inluded in SD

1

, we have:

�

�

(d

i

) \ �

�

(b

1

; : : : ; b

p

) = �

�

1

(d

i

) \ �

�

(b

1

; : : : ; b

p

) = fd

i

; �(d

i�1

)g

If not, �

�

(d

i

) must ontains d

i

and the opposite of the last dart of P

i�1

by de�nition of the paths P

i

. If �

�

(d

i

) ontains some other darts in �

�

(C

0

)

we ontradit as previously the de�nition of C as a yle of G

1

.

Therefore, C

0

is a yle of G

0

inluded in the tree T

0

. We obtain the

desired ontradition. 2

The above demonstration is based on the fat that ontrations de�ned

by ontration kernels do not remove nor reate yles. Therefore, a yle

de�ned in G

0

is ontrated in a yle of G

1

. Conversely, a yle C de�ned

in G

1

an be extended in a yle C

0

of G

0

suh that the ontration of C

0

is

equal to C.

Using the notations of proposition 14 , the set K

2

� K

1

de�nes a forest

K

01

of G

1

. The following theorem shows that K

2

�K

1

is also a ontration

kernel of G

1

.
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Theorem 6 Given a ombinatorial map G

0

, two ontration kernels K

1

�

K

2

. If G

1

denotes the ontrated map assoiated to K

1

:

G

1

= (SD

1

; �

1

; �) = G=K

1

The ontration kernel K

2

�K

1

is a suessor of K

1

.

Proof:

We have only to show that:

SD

1

� (K

2

�K

1

) 6= ;

We have:

SD

1

� (K

2

�K

1

) = D �K

1

� (K

2

�K

1

)

= D �K

2

= SD

2

6= ;

Note that this last property may also be demonstrated thanks to proposi-

tion 12:

(SD

1

�

[

T

0

2CC(K

2

)

A

T

0

) \ SD

2

= SD

2

\ SD

1

= SD

2

6= ;

2

4 Conlusion

We have presented in this tehnial report the notions of ontration kernel

and equivalent ontration kernel. Our main result on equivalent ontration

kernels is illustrated in Figure 9 (see also Figure 10): Given the two suessor

kernels K

1

and K

2

, we an de�ne, thanks to Theorem 4, a ontration kernel

K

3

with K

1

� K

3

providing the same ombinatorial map than the suessive

appliations of K

1

and K

2

on G

0

. Conversely, given two inlusion kernels K

1

and K

3

we an de�ne, thanks to theorem 6, a new ontration kernel K

2

with

K

1

� K

2

suh that the suessive appliations of K

1

and K

2

is equivalent to

K

3

.

The design of eÆient parallel algorithms is under development. The

design of suh algorithms should be ahieved by using some properties of

the evolution of onneting walks along ontrations. This expeted result
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G

0

G

2

G

1

K

1

K

2

= K

3

�K

1

K

3

= K

1

[K

2

Figure 9: The relations between equivalent ontration kernels

together with the ones obtain in this report should allow us to study inter-

esting appliations of our model suh as:segmentation [3, 1, 2, 4℄, strutural

mathing [17℄ or integration of moving objets. Finally, the extension of our

model to higher dimensional spaes (3D) should be studied.
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K

1

K

2

K

1

K

2

K

3

= K

1

[K

2

Figure 10: Two ontration kernels K

1

and K

2

suessively applied on a regular

grid. The appliation of K

2

Æ K

1

is equivalent to the appliation of K

3

. The

ontration kernel K

1

is represented with dashed lines while K

2

is represented with

dotted lines.
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