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1 Introduction

Rapid access to genetic information is central to the revolution taking place in molecular ge-
netics B, 10]. Biological systems read, store and modify genetic information by molecular
recognition. Because each DNA strand carries with it the capacity to recognize a uniquely
complementary sequence through base pairing TAC—G) [11], the process of recognition,

or hybridization is highly parallel, as every nucleotide in a large sequence can in principle be
gueried at the same time. Thus, hybridization can be used to efficiently analyze large amounts
of nucleotide sequence. The primary approaches include array-based technologies that can
identify specific expressed gene products on high density formats, including filters, microscope
slides and micro-chip<].

Common to all array-based approaches is the necessity to analyze digital images of the
array. The images look like a grid with small, bright round spots. Figushows a typical
image generated in the course of an oligonucleotide fingerprint (ONF) experid@jt]:

The intensity of every spot corresponds to the amount of label remaining after hybridizing a
liquid containing the labelled probes and subsequently washing off probe not bound to the
genetic material. For details about the physical imaging process refé}. td lie grid of the

spots is generated by a robot in the following way: A rectangular piece of synthetic material,
the so-calleadnembraneis mounted on a fixed plane. The membrane is divided into rectangular
fields A robot arm carries a matrix of needles (see R&). Every needle has a small amount

of liquid sticked to it containing the genetic material to be spotted.

The DNA material is spotted onto the membrane in subsequent spotting cycles. In each cy-
cle, the spotting robot first loads from one well-plate (see By the needle matrix with liquid
containing the material to be spotted. Afterwards, it sets the matrix down onto the membrane
at a certain position within a field, thereby transferring the liquid to spots on the membrane.
For each field, this cycle is repeated with a set of defined offsets amdy-direction. As the
largest offset is smaller than the distance between two needles, this procedure yields a spot grid
of higher density than the needle matrix. The spots in one field originating from the same needle
form a pattern of a rectangulbfock

The ultimate image analysis goal is to automatically assign a quantity to every array element
(spot) giving information about the hybridization signaiéntificatior). For a successful quan-
tification of the hybridization signals it is necessary to assign to every array element a location
in the spot array image. We call this location assignnggit fitting. The grid fitting has to
cope with the following problems:

e Distortions: The spot grid in the image is only approximatively regular and rectangular
due to anisotropic shrinking and expansion of the membrane, inaccuracies of the spotting
robot, optical distortions, bent needles and other factors.

e Rotations: The grid need not be aligned with the image coordinates because the mem-
brane is put manually into the imaging device.

e Ouitliers: Not every node of the grid necessarily contains luminescent spots because the
intensity of the hybridization signal to be measured can be low or even zero.

When a large number of outliers is expected from the hybridization experiment (in ONF images
for example only 5-20% of all spots can be expected to hybridize) so-cglield@ spotsare
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Figure 1: Oligonucleotide Fingerprint (ONF) Image. The intensity of every spot corresponds to the
amount of label remaining after hybridizing a liquid containing the labelled probes and subsequently
washing off probe not bound to the genetic material. The ultimate image analysis goal is to automati-
cally assign a quantity to every array element (spot) giving information about the hybridization signal
(quantificatior). For a successful quantification of the hybridization signals it is necessary to assign to
every grid node an image location (grid fitting).
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(b) Well-plates

Figure 2:(a) A needle matrix is carried by a robot arm. Every needle has a small amount of liquid sticked
to it containing the genetic material to be spotted. The needle matrix is set down onto a membrane at
a certain position thereby transferring the liquid to spots on the membrane. (b)The genetic material is
spotted onto the membrane in subsequent spotting cycles. In each cycle, the spotting robot first loads
from one well-plate the needle matrix with liquid containing the material to be spotted.
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used: A spot at a certain position within a block contains DNA material which has always a
strong hybridization signal irrespective of the hybridization probe.

One solution of the grid fitting problem was already presented by Hartéljuis his Ph.D.
thesis. It involves an image rotation in order to align the grid with the image coordinates, block
finding and spot finding via Markov Random Fields (MRF) and Simulated AnnealirjigHis
algorithm is computationally demanding and is semi-automatic since the user must provide the
locations of the corner nodes of the grid. In this report we present a fully automatic grid fitting
approach for spot images containing guide spots. Our approach takes into account different
constraints inherent in the imaging process and involves simple image processing operators.
Quantification is a problem in its own right and is describedLlirahd [4].

This report is structured as follows: Sectidimtroduces the notations and definitions nec-
essary to describe the grid fitting in a formal manner. Seciaeals with the detection of
potential guide spot locations. Sectidrescribes the mapping of the potential guide spot lo-
cations to the nodes of the guide spot grid. Seclqmnesents experimental results for images
of different quality originating from different hybridization experiments.



2 Notation and Definitions

This section introduces the notation and definitions of the main modeling concepts of the spot
image and the spot array. The general notation of sets is shown irltable

Not. Description
A, B.C,... general sets
card(A),card(B), ... | cardinality of sets
0 empty set
N set of cardinal numbers (inclusive zero)
Z set of integer numbers
R set of real numbers
R? two-dimensional plane.
RMxN set of M/ x N matrices oveR M, N > 1
A B.C,... ¢ R™¥N | M x N matrices oveiR
AT BT .. e RVM | transpose ofi/ x N matrices oveiR
a,b,c,... cR? vectors (points)
o(.) Rounding operator to the nearest integer

Table 1: General notations used in this report.

2.1 Spot Array Image Representation

This section deals with the representation of the scanned spot array images.

Definition 1 (Spot array image)
A (scanned)\/ x N spot array images represented as a matfxc ZM>" with pixel coordi-
nates(m, n) and pixel intensitie$|m, n|:

S[1,1]  S[1,2] S[1, N]
g _ S[2,1] S[I2.,.2] S[2, N] 1)
S[M,1] S[M,2] ... S[M,N]

Two alternative Cartesian coordinate systems are used:

e aspatial coordinate systefn, y) with the origin at the upper left corner withincreasing
to the right and, increasing downward.

e acentral coordinate systelfr, y) with the origin at the image center widthincreasing
to right andy increasing upward.



2.2 Spot Array Representation

In the following we define the representation of the spot array in the spot array image. The
different dimensions of a spot array are illustrated in ¥ig

Definition 2 (Grid)
A grid Gisasetof nodes ifl... I} x {1....Js}, with I as the number of grid rows ani}
as the number of grid columns.

The grid row extraction relation Rextracts/; grid nodes belonging to one row of a ggd

Re({1...I.})={(.j) | i.j)eGnri=k} Vke{l.. I} )

Similarly, the column extraction relationg@xtracts/; grid nodes belonging to one column of
agridg:

Co({1...Je}) =16, 5) | (i,5) e GAJ =1} Vie{l...Js}. 3)
For a successful quantification of the hybridization signals it is necessary to assign to every
node(i, j) € G an element of a set of image locations with sub-pixel accuracy.

Definition 3 (Grid Fitting)
Grid fitting is the location assignment function:LG x S — £, wherel = {(x,y) | =,y €
R,z,y > 0}. The location of a grid nodéi, j) € G will sometimes be simply denoted as

L((z,7))-

In order to cope with inaccuracies of the spotting robot the grid is usually divided into subunits
to represent the nature of the spotting cycles.

Definition 4 (Field)

A field F,, C G is a subunit of a grid/ and is a set of nodes ifll ... I:} x {1...J:} with I;
as the number of field rows anfl as the number of field columns. A gridis partitioned into
F x I fields such that

F F;
U U L(}_pqu) =L(G,8) (4)
and
L(]:pqv S) m L(Frsv S) = ®7 V(p, q) 7& (’I", S). (5)

The row extraction and column extraction relationsdhd G- are defined similarly to EQng)
and @).

Definition 5 (Block)

A blockB;; C Fis a subunit of a field” and is a set of nodes 1 ... Iy} x {1...Js} with I,
as the number of block rows anfd as the number of block columns. A fiel is partitioned
into 1,, * J,, blocks such that

Iw Jw
UyULss,s) =L(F,s) (6)
i=1j=1

and
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Figure 3: An example grid and its subunits: The grid consistsi@fx J; = 36 x 36 spots and

F x F, = 3 x 2 fields. One field consists dt x J: = 12 x 18 spots and of, x J, = 4 x 6 blocks.

One block consists of; x Jz = 3 x 3 spots. Guide spots are centered in the blocks and marked black.
The guide spots definelgs x Jss = 12 x 12 guide spot grid.

The dimensions of a field counted in blocks corresponds to the dimensions of the well plate.
The following equations hold:

I =1,%1I; and Je = Jy * Jg. (8)

When a large number of outliers is expected from the hybridization experiment so-called
guide spotsare used: A spot at a certain position within a bldglcontains DNA material
which has always a strong hybridization signal irrespective of the hybridization probe. We
denoteregular spotsas spots not belonging to the class of guide spots.



Definition 6 (Guide spot grid)
A guide spot grid;* is a set of nodes ifil . .. Ios} x {1... Jos}, With I.s as the number of guide
spot grid rows andss as the number of guide spot grid columns, where

Iss = Fi* 1y and Jos = Fy*x Jy 9

The row extraction and column extraction relatiogs Bnd G;- are defined similarly to EQn&)
and Q).

Definition 7 (Guide spot field)

A guide spot fieldF*,, C G* is a subunit of a guide spot gri@* and is a set of nodes in
{1... 1y} x {1...Jy}. Aguide spot grids* is partitioned intoF, * F} guide spot fields such
that

K K
U ULF . S) =L(G"8) (10)
and
L(Fpg, S)NL(F*s,8) =0,  V(p,q) # (r,5). (11)

The row extraction and column extraction relations Bnd Gz are defined similarly to Eqn&)
and @).

2.3 Prior Knowledge

The prior knowledge used for grid fitting consists of the information about a theoretical grid of
a perfect experiment without any distortions. We therefore derive theoretical dictances in pixels
between grid nodes.

Definition 8 (Theoretical spot distance)

Thetheoretical horizontal spot distancg, € R and thetheoretical vertical spot distance,

R are the distances in pixels between two adjacent spots in the horizontal and vertical direction
computed as

— N _ Ny
Az Ay
with V, and N, as the spot (needle) distances on the filter in millimetersandind Ay as
the scanner resolution in millimeters per pixel. Note thiatind.S, are not rounded to integer
values.

Sy and Sy (12)

Definition 9 (Theoretical block distance)
The theoretical horizontal block distancB, € R and thetheoretical vertical block distance
B, € R are the distances in pixels between two adjacent blocks in the horizontal and vertical
direction computed as
By =S, * Jg and B, =S5, * 1 (13)

Table2 provides an overview of the notation introduced in this section.



Not. | Description Not. | Description
I; | # block rows Js | #block columns
I, | # well plate rows Jw | #well plate columns
# guide spot field rows # guide spot field columns
I | #field rows J: | #field columns
I = Iy * Iy Je = Jw* Jg
I, | #fields in vertical direction | F); | # fields in horizontal direction
Is | # grid rows Js | #grid columns
Is = F * I; Jo = Fyx J;
Iss | # guide spot grid rows Jss | # guide spot grid columns
Iss = F 1y Jos = Fyx Jy
Ay | vertical scanner resolution | Az | horizontal scanner resolution
N, | vertical spot distance [mm] | N, | horizontal spot distance [mm]
Sy | vertical spot distance S, | horizontal spot distance
(theoretical) [pixel] (theoretical) [pixel]
Sy = N, /Ay Sy = N, /Ax
B, | vertical block distance B, | horizontal block distance
(theoretical) [pixel] (theoretical) [pixel]
B, =S5, * Iy B, =5, % Jg
M | vertical spot array image siZze N | horizontal spot array image siz

Table 2: Overview of the notation of the spot array image and the spot array. The left part of the table

describes “vertical” entities, the right part of the table contains “horizontal” entities.
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3 Guide Spot Detection

The output of the grid fitting procedure must provide approximate image locations for every
spot. The guide spot grig* in a spot array image is a reliable “safety” grid which spans

the complete spot grid. It is therefore natural to focus the grid fitting efforts to the guide
spot grid fitting, i.e. the fitting of the guide spot locations to the nodes of the guide spot grid.
Consequently, the initial step of grid fitting consists of a detection of the guide spot locations.
The other spot locations can be entirely inferred from the guide spot locations, because only
local distortions are expected from the experiment. In the following we describe a guide spot
detection approach which includes two filter operations and a local maximum search. In a first
step, the spot array image is filtered with a matched filter describing the shape of the spots. Since
the shape of many regular spots resembles the shape of the guide spots, the guide spot locations
are amplified with the help of a nonlinear filter which considers the matched filter responses at
the theoretical guide spot neighborhoods. The resulting response image is expected to contain
maximum values at the guide spot locations. The guide spots can therefore be detected by a
local maximum search.

3.1 Spot Detection with Matched Filter

The first step towards a detection of guide spots is an amplification of their locations. We want
to find signals in the spot array image which resemble the shape of the guide spots. One possible
way is to use a matched filter (MF), which is a digital filter whose shape matches the shape of
the signal one is trying to findLf]. The MF is optimal with respect to Gaussian noise. In order

to find a random signal with non-zero mean in white noise, the filter should be matched to the
mean of the signal. The MF for guide spots is constructed by forming an average template from
a number of guide spots in the following way: The image patdhgs £ € {1...G} with

the dimensionV/,- x Ny contain the intensity values of tlie guide spots which are manually
selected by the user. The matched filter dimensitiys and N, should cover the guide spot
extension for a given image resolution and spotting geometry. We formally define the matched
filter dimensions as a function of the theoretical spot distasgesnd.S,, defined in (2):

_f o(Sy)+2 foro(S,)=2k+1
Mue = { o(S,) +1 otherwise (14)
e (5.)+2 foro(s,) =2
_f o(Sz)+2 Toro(S,) =2k+1
N = { o(S;) +1 otherwise (15)

with & € N ando(.) as the rounding operator. Irrespective of its parity, the theoretical spot size
rounded to the next integer is increased to the next higher odd number. This is done since the
guide spots may have very strong hybridization signals and might exceed the theoretical spot
size.

TheG images patche&, containing guide spots are formally rearrangedadimensional
vectorsg;, by lexicographical ordering, witl = M, - N:. The vectorg, are normalized as

gk = 8k — g, - 1, (16)

11



wherel is aD x 1 vector of ones angy, is the mean intensity value of the the image patch
defined as

1 D
e = 15 D Bl (17)

The matched filtem is constructed by averaging tlienormalized exampleg,:

1 G
m = 5 Z g (18)
k=1

Filtering of the spot array imag® with the matched filtem results in a response imad®"
which is constructed as follows: 4, ,; denotes anV/,- x N, image patch around a pixel
S[m, n| rearranged as R-dimensional vector, the image patsf, ,, is first normalized to the
local intensity mean valugs,, ., similarly to Equation {6) as

g[m,n} = Sim,;n] — Hspp n) 1. (19)
The matched filter response value is then the dot product
RM [m, TL] = g[mm] -m (20)

corresponding to the similarity or statistical covariance between the image patch and the matched
filter. High response values IR" indicate potential guide spot locations. Figdrehows a fil-

tering example. Figurdb is the matched filter response imag# of the image in Figurda.

Note that some spots in this example are very similar to the guide spots with regard to shape
and intensity. Consequently, regular spots can have higher response values than guide spots. We
want to detect guide spot locations based on maximum response values. Hence an additional
filtering step is necessary in order to get rid of the high response valug$ imhich do not

belong to guide spots.

3.2 Guide Spot Location Amplification (GSLA)

We saw in Fig4 that the shape of the guide spots can be very similar to the shape of the regular
spots. It is therefore not guaranteed that all high values in the matched filter response image
R" indicate guide spot locations. The main idea to overcome this problem is to amplify the
locations of potential guide spots by considering the MF response values at the theoretical guide
spot neighborhood locations. Since a guide spot location is part of a grid, its grid neighborhood
locations must also have high matched filter response values. If this is not the case, it is likely
that the location is not a guide spot.

We formally define the sefj,, ,; which includes the response vall'[m, n| and the re-
sponse values of the theoretical guide spot neighborhood locatigns ef in R" as

Timm) = {R"[m +k,n+1] | k €{0,0(By),o(=By}) ANl € {0,0(B:),0(=B.})}.  (21)

with B, and B, as the theoretical block distances defined 18)( Figure5 illustrates the
neighborhood sef},, ,; for the center black pixel assuming theoretical block distarigges-
B, = 15. The GSLA response valug*[m, n] is determined as

12
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(a) Part of a1300 x 1286 spot array image
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(b) Matched filter response image of (a)

Figure 4:Digital filtering with a matched filter. A high pixel value at the matched filter response image
(b) indicates a high similarity to the matched filter of the guide spots and is proportional to the probability
of a guide spot location in (a). Responses of regular spots can be stronger than the guide spots responses.
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Figure 5:Example for guide spot location amplification (GSLA): The black pixels are considered in the
computation of the GSLA response value for the center black pixel (assuming theoretical block distances
of 15 pixels). The median of the intensities at the 9 locations is taken as the response value of the center
pixel. If the center black pixel is a guide spot location, the grid neighborhood locations will have high
response values and the median of the response values will be high.

R*[m,n] = median{Zj, ). (22)

If a MF response value at a locatiom, n) and all the response values in the theoretical neigh-
borhood are highiitis likely thdtn, n) is a guide spot location. This is not the case for locations
where the neighborhood response values are low. Note that the median value is more robust for
the guide spot location amplification than the mean value. In case of a regular spot (or an ar-
tifact) with a very high MF impulse response compared to the theoretical neighbors, the mean
value measure would propagate high values to the theoretical grid neighbors and generate new
local grid structures. Figuré shows the GSLA respond®” of the MF response image in

Fig. 4b. The locations of the guide spots are strongly amplified. Nevertheless, it is still possible
that false maximum response values survive, especially if a set of bright regular spots establish
a local grid. A drawback of the median is that the ge@ner nodeswill be suppressed since

only at most three — and therefore less than 50 % — of the theoretical neighborhood positions
will have a high response value.

3.3 Local Maximum Search

After having applied the GSLA filter to the matched filter response image it is very likely that
maximum values in the GSLA response imdgeindicate guide spot locations. The strategy

of the maximum search is to reliably extract a set of guide spot locations £ from R*.

By reliable we mean that an image coordinétey) in £* should not belong to a regular spot
location even at the risk of not detecting all guide spot locations (the lacking guide spot lo-
cations are determined in a subsequent step). Put into other words, we want to minimize the
detection of false positives for guide spot locations. Since we assume one guide spot per block
B, local maximum values are searched in non-overlapping windows having approximately the
dimensions of the theoretical block size. Since it is by no means guaranteed that the maxima
are centered in the search windows, it is necessary to perform the local maximum search in
at least two passes. As mentioned above, even after the application of the GSLA filter it is

14
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Figure 6: Guide spot location amplification (GSLA) filtered reponse image of the matched filter re-
sponse image in Figlb. High intensity values indicate that locations of the theoretical guide spot neigh-
borhood also have high intensities. The guide spot location at the upper left grid corner is missing
because the median of 8 neighborhood positions is computed. A corner location only has 3 guide spot
neighbors.

still possible that maximum response values not belonging to guide spots could have survived.
These maxima can be removed in a third pass by considering again the theoretical guide spot
grid neighborhood. Before these three passes of maximum search are performed, it is necessary
to specify a region of interest (ROI) for the maximum search. Otherwise, the maximum search
would deliver local maxima in image regions containing no hybridization information.

3.3.1 Region-of-Interest and Prior Guide Spot Locations

When performing a maximum search for guide spot locations in local search windows, it is nec-

essary to constrain the search area to a region-of-interest (ROI). Without an ROI, even very low
local maximum values of the spot array image border (the image region not covering the physi-
cal spot filter) would be marked as potential guide spot locations and unnecessarily complicate
the grid fitting. The ROI is closely related to the concept of phier guide spot locations
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Figure 7:Projections of the spot array image intensities in Eiglhe regions31 and B2 are considered

to belong to the image border (the part of the image not containing the physical filter) and are determined
with the help of the prior knowledge about the image size and the spotting geometry. The projections
form the basis of the region-of-interest for the maximum search.

The prior guide spot locations.(G*, S) are initial estimates for the locations of the guide spots
based on the prior knowledge of the theoretical block dista#t;eand B,. The prior guide

spot locations can be obtained as follows: The image border of the spot array Srizae
significantly lower intensity values than the filter region. It is therefore possible to estimate the
locations of the prior corner guide spot locations with the hejprojectionsof the intensity val-

ues ofS to the axis of the spatial image coordinate system. A projection of a two-dimensional
function f(x, y) is a line integral in a certain direction. The line integral @f fy) in the vertical
direction is the projection of(f, y) onto thez-axis; the line integral in the horizontal direction

is the projection of fz, y) onto they-axis. Expressed in terms of &d x N image matrixS we

have

e anM x 1 horizontal projection vectdi in which thei-th element corresponds to the sum
of the components of theth row vector ofS.

e an/N x 1 vertical projection vectov in which thei-th element corresponds to the sum of
the components of theth column vector o8.

Figure7 shows the horizontal and vertical projection of the spot array image intensities ih Fig.
Thez-axis of Fig.7a corresponds to the components of the horizontal projection vie¢teith

x as the row number gj-coordinate of the spot array image). Tjexis of Fig.7a corresponds

to the projection values of the intensity values normalized by the image width. Filgsteows

the vertical projection. Projections of the image border have significantly lower projection
values than projections of the spot filter area. It is also expected that the comporieaisdf
belonging to the background form two connected regiBhend B2 (see Fig7). The expected
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number of component’/, belonging to the horizontal projections of the image background is
easily determined with the help of the theoretical vertical spot distahcéne grid height/,
and the spot array image height:

My=M—8,- I (23)

The numberV; of vertical projections belonging to the background is determined in a similar
manner. The location of the upper left prior guide spot locatigifll 1)) is determined with
the following algorithm:

1. Sort the components of the horizontal projectloty their projection values and label
the M; lowest projection values. Do the same for thiglowest projection values of the
vertical projectionv. We expect that the labeled components with the lowest projection
values correspond to the background regiBisand B2 in Fig. 7.

2. The first (“leftmost”) unlabeled componentslofandv plus an offset of half the theoret-
ical block distances(B,/2) ando(B, /2), respectively, are an estimate of the upper left
prior guide spot location d((1,1)). This estimate corresponds to the left dashed line in
Fig. 7a and b.

3. The locations of the other grid nodeg(lz, j)) have horizontal pixel distance3, and
vertical pixel distanced3,. The right dashed lines in Fig. mark the rightmost prior
guide spot location.

Figure8 shows the prior guide spot locations for the spot array image inlFsgperimposed

to the GSLA response imade”* of Fig. 6. Note that the spot grid in the spot array image

is significantly rotated. The prior guide spot grid is not rotated, so that the deviations from the
true guide spot locations are balanced (keep in mind thai8Esgows only at50 x 600 part of

the 1300 x 1286 image). In order to determine the rectangular ROI for the maximum search we
must add a tolerance area to the area covered by the prior guide spot locations. We define the
corner points of the rectangular ROI as the prior grid corner locations translated by a tolerance
offset vectott = (+B, + B,)” (the sign depends on the corner of the grid).

3.3.2 Maximum Search Algorithm

We expect that the guide spot locations correspond to maximum values in the ROI of the
GSLA response image. Since we assume one guide spot per Bldtle maximum values

are searched in non-overlapping windows of approximately the theoretical block size. The
maxima are searched in three passes.

Pass 1 The initial guide spot location sét* consists of the locations of the maximum value
in everynon-overlappingV/, x N_ window. The window dimensiond/, and NV, are the next
smaller odd number of the theoretical block dimensigrand 5,

[ o(B)—-2 ifo(B,)=2k+1
M, = { o(By) —1 otherwise (24)
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Figure 8: Prior locations for the guide spots in Fifjbased on the projections of Fig. The white

crosses mark the locations of the prior guide spot grid nodes. Thogether with a tolerance of approx-
imately one block size these locations span the ROI for the maximum search. The prior guide spot
locations are transformed in a later step in order to assing the detected guide spot locations to guide spot
grid nodes.

and

(25)

N — o(B;) —2 if o (B,) =2k+1
T o(By) =1 otherwise

for k£ € N. This window size avoids that two guide spot locations fall into one search window
and therefore avoids the cancellation of potential guide spot locations. Eigultestrates this
step. The black pixels indicate the maxima in fig x N, blocks. Note the two close maxima

in the second block row.

Pass 2 For every detected maximum locati¢n, y) € L£*, select the locatiof’, ') with the
maximum response value in dd, x N_ window around(z,y). If (2/,y') # (z,y), remove

(xz,y) from £* and add(2’,y’) to £*. After this pass it is guaranteed that two guide spot
locations have plausible distances. In Fig@bethe grey-shaded area illustrates the plausible
distance criterion. If we assume that in the second row the first local maximum value is higher
than the second maximum value, the second maximum will be canceled.
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(a) Pass 1 (b) Pass 2
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(c) Pass 3

Figure 9:Principle of 3-pass maximum search. Maxima are first searched in non-overlagpirgV,
windows which are smaller than the block size. Black pixels in (a) indicate local maxima. The Maximum
search is repeated in pass 2 in order to get plausible guide spot distances. In (b) the lower maximum from
the first pass will be canceled in the shaded area. The third pass tries to remove locations not belonging
to the guide spot grid. A location in is removed if it does not have a left and a right or a top and a bottom
neighbor.

Pass 3 For every maximum locatiofiz, y), define a left neighborhood location set(X ),

a right neighborhood location sek{\:, y), an upper neighborhood location set(l, y) and a
lower neighborhood location set,[\r, y) within a tolerances. Fig. 9c sketches the neighbor-
hood location sets for a toleranee= 2. For real spot array images, it is useful to chese the
theoretical spot distancg, or S,. The neighborhood sets should help eliminate false positives
that do not lie within the grid of the guide spots. Hence every locatiop) in £* that haso

left and no right neighboor no upper and no lower neighbas removed fromZ*. Formally,

we define the conditions

No(z,y) N L=0 A Np(z,y) N L=0 (26)

and
Ny(z,y) N L*=0 A Npo(z,y) N L =0. (27)
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Figure 10:Detected guide spot locations for the spot array image of Fsgiperimposed as white dots

to the GSLA response image in Fig. There are still false positives, for example at the top of the spot
array. The task of the grid fitting is to detect these false positives, to assign the true positives to grid
nodes and to determine the locations of the lacking guide spots.

If condition (26) or condition @7) holds for a detected guide spot locatieny) € £*, remove
(x,y) from L*.

Figure10 shows the guide spot detection results for the spot array image id Bigperim-
posed as white dots to the GSLA response image ofé-i@ne can see the following problems:

e Two corner locations (the upper left and the lower right) are not detected. This happens
because the GSLA filter suppresses grid corner locations.

e Two detected locations (on the top of the grid) are outside the guide spot grid. The
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ROI must include this area because of the rotation of the grid. If there are at least two
neighbored locations outside the grid, the third pass of the maximum search cannot erase
these locations because they are embedded into the grid structure.

e Some locations within the guide spot grid are false positives. This occurs when many
strong regular spots in contiguous blocks span a local grid.

3.4 Summary

The goal of the guide spot detection step is to extract a set of locations which are likely to belong
to guide spot centers in the spot array image. The guide spot locations are first searched with the
help of a matched filter whose signal resembles the shape of the guide spots. The matched filter
is built manually from a series of template guide spots and is normalized to its mean value. Since
the regular spots and guide spots may have similar shape and intensity, the guide spot locations
are amplified with a second nonlinear filter. This guide spot location amplification (GSLA)
filter amplifies locations that lie within the guide spot structure and suppresses isolated regular
spots. The set of potential guide spot locations is determined by a search of local maxima in
non-overlapping windows of approximately the block size. Since local maxima outside the area
covered by the physical filter do not make sense, the search is constrained to a region-of-interest
(ROI). The ROI is spanned by the prior guide spot locations which are determined with the help
of the horizontal and vertical projections of spot array image intensity values to- téued y-

axis of the image coordinate system. The maximum search also tries to eliminate locations that
do not lie within the grid structure. The guide spot detection does not guarantee that all the
detected guide spot locations are true positives. It is the task of the grid fitting to remove the
false positives, to assign the true positives to the nodes of the guide spot grid and to determine
the guide spot locations that were not detected.
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4 Grid Fitting

The grid fitting procedure tries to span a grid from the set of detected guide spot locations.
These potential guide spot locations which were found with the digital filters and the maximum
search as described in Segtare only an unordered set with no information about the position
on the guide spot grid. The first main task of the grid fitting is therefore to map the detected
locations to the correct nodes of the guide spot grid. We also call this mappirdjghenent
of the detected guide spot locations. The idea to align the detected locations is to transform
the prior guide spot locations of Se@t3.1in a way that they can serve as reference locations
for the detected locations. As illustrated in Fid., a reference location only has to be in the
near of the detected guide spot location. We assume that the nonlinear distortions of the guide
spot grid during the imaging process of a spot array image are small enough suchrteat a
transformationof the prior guide spot locations is sufficient. The nonlinearities of the guide
spot grid are captured by the local search for the detected guide spot locations. In order to apply
a linear transformation, we must extract information about two features of the grid: First, we
must estimate the global grid rotation. Second, we must know how to translate (or shift) the
prior guide spot locations.

The second main task of grid fitting is the construction of a consistent grid. A consistent
grid is a grid in which thdalse negatives.e. the guide spot locations that were not detected,
are fitted. Furthermore, a consistent grid does not coifiédse positivesi.e. locations, which

é
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(a) Prior guide spot locations (circles) (b) Transformed guide spot locations (circles)

Figure 11:Alignment of detected guide spot locations: The black circles in (a) indicate the prior guide
spot locations as defined in SeBt3.1, the squares indicate the detected guide spot locations. The prior
guide spot locations are transformed such that they define a reference grid for the detected guide spot
locations. A local search in the neighborhood of the reference locations then tries to map the detected

guide spot locations to the correct grid nodes.
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do not belong to guide spots. The main idea is to robustly fit straight lines for every column
and every row of every field. A lacking guide spot location can then be determined by the
intersection of the corresponding straight lines. Once a consistent guide spot grid is available,
the locations of the other (regular) spots are initialized. We provide a detailed description of the
solutions to all the grid fitting tasks in this section.

4.1 Alignment of Detected Guide Spot Locations

The first main task of the grid fitting is to map the detected guide spot locafiotwsthe correct
nodes of the guide spot grid, i.e. we want to find the locatigyii§'t) of the correct guide spot
grid. This is accomplished by computing a set of reference grid locatig{@s)-beingin the
near of the detected guide spot locations(G*). A search for a detected location (I(i, 7))

in a neighborhood of L((7, j)) should then provide us with the correct location mapping. A
reference locatiofr, yz]” in the central coordinate system is computed from a prior guide spot
location|z;, y5|” as follows:

Tr | cosfg sinbg Tp te
|:yR:|_|:—Sin9g coseg] [yp}—i_[ty}’ (28)
wheref; is an estimate of the global grid rotation angle and [¢, t,]” is an estimate for the

translation vector of the rotated prior guide spot locations. In the next two sections we describe
how the parameter; andt can be estimated.

4.1.1 Global Rotation Estimation

A rotation angledg which estimates the rotation of the spot array can be computed by general-
izing the concept of the horizontal and vertical projections (F)go projections in directions

of an arbitrary anglé. The theoretical framework of such projections is given by the the Radon
transform P]. In general, the Radon transform of a functign;,fy) is the line integral of f
parallel to they -axis:

Ry(x') = / f(z' cosf — ' sin 6, 2" sin @ — ¢ cos 0)dy’ (29)
where ,
x cosf sinf x
{y/]_{—sinecosﬁ]{y}' (30)

Figurel2illustrates the geometry of the Radon transform. Suppose the projections are applied
to a GSLA image (Fig6) in which only the guide spot locations are expected to have high
response values. When projecting these response values of the GSLA image along different
directionsf, only the projection for the correct grid rotation will go through all the guide spot
locations. The rotation angl; is therefore determined by the projection with theximum
projection valuedor the guide spot locations.

The discreteRadon transfornR" is defined as aiR x C' matrix. The number of rows
corresponds to the number of directions for which the projection is computetepends on
the angle resolutior\d of the projection angles and the maximum rotation adgle

20 +1
A0

R= (31)
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Figure 12: Geometry of the Radon transform. A functiofxfy) is projected along the’-axis of a
coordinate system rotated by the angle

Note that also negative rotation angles must be considered, hence the fact@1®. imlje
rotation angle)(r) belonging to a row index € {1... R} is given by

O(r) =rA0 — 0y — 1. (32)
The number of columné’ is defined as the size of the spot array image diagonal:

C=[VMT+N?|. (33)

Figure13 shows a part of a discrete Radon Transform for a GSLA image with an angle reso-
lution A9 = 0.2° and a maximum rotation angly = 10°. The global grid rotation estimate
0g = 0(r) is in the rowr of the Radon transforR'™ having the highest projection values. Let

Figure 13:Part of a discrete Radon transform. Every row is a projection of the GSLA response values
(Fig. 6) along a specific direction. The estimate for the grid rotation is given by the row with the highest
projection values for the/ss guide spot locations. Since the projection values between the guide spot
locations are low, the row with the highest median of thehighest projection values is determined as
the grid rotation. The median values are illustrated as horizontal bars at the left hand side of the image.
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M, be the set of thgss (number of guide spots in a row) highest projection values in the row
r of R'. The estimated rotation angle is then found in the row with the highest medj&h. of

r = arg ma{mediafM,)}. (34)

In Fig. 13, the values mediguM,.) for every row are visualized as horizontal bars. Note that
the row with the true rotation angle has the highest projection values but large intervals of low
projection values. The other rows have lower projection values, but they are distributed over
the columns. A simple horizontal addition of the projection values would therefore not lead to
reliable rotation estimations.

The computation of a row of the Radon transfoRn involves a transformation of all the
pixels of the spot array image. In order to increase the efficiency, one should compute the
Radon transform in a hierarchical manner, determine a reasonable maximum rotatiofj,angle
and an angle resolutiofA6.

Hierarchical Radon transform. It is useful to computeéR" in a hierarchical manner with
increasing angle resolutiods:

1. Start at the initial resolution, for examplef, = 1.0°, and compute a Radon transform
for the maximum rotation angle betweerd),, and+6,, in order go get a coarse rotation
estimatd, .

2. Double the angle resolution g, = Afy/2 = 0.5°. As the accuracy of the initial angle
estimatefg, is A6y, or £1°, it is sufficient to compute 5 projections for the angle set
{0g, — 2401, Og, — AOy, Og,, Og, + Ab1, Og, + 240, }.

3. Repeat step 2 until the desired angle resolutighis reached. Every step except of the
first one only requires the computation of 5 projections.

Table4.1.1illustrates the speedup that can be gained using the hierarchical approach.

Non-Hierarchical Radon transform Hierarchical Radon transform
Iteration A6 6 | Projections| | Iteration A6 0 | Projections
0 0.125° 1.625° 54 0 1.0° 2° 9
1 0.5° 1.5° 5
2| 0.25° 1.75° 5
3]0.125° 1.625° 5
Total number of projections: 54 | | Total number of projections: 24

Table 3: Speedup for the hierarchical Radon transform with am maximum rotation angle-ef4°.

For an angle resolution chd = 0.125°, the non-hierarchical Radon transform needs 54 projections
according to 81). the hierarchical approach gradually refines an initially coarse angle resoldgon (
shows the intermediate results for the grid rotation angle). Every refinement of the initial results only
needs 5 projections, the total number of projections for the desired angle resolution therefore sums up to
only 24 projections.
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Maximum Rotation Angle. For some spot array images it is feasible to compute a a maxi-
mum possible rotation which depends on the size of the physical filter and the size of the digital
spot array image. However, the pixel dimensions of some spot array images are much larger
than the pixel dimensions of the physical filter they comprise. As a consequence, a filter could
have theoretically any rotatiafy; in the digital image. We found empirically that no filter was
rotated more thaf®. In order to have an additional tolerance we&get 4°.

Angle Resolution. The necessary angle resolutidd depends on the size of thié x N spot

array images. The bigger the image, the more orientations a straight line can have in the digital
image. In the central coordinate system with the origin at the image center, the straight line with
the minimal possible rotation hasar of N/2 pixels and aAy of 1 pixel. Since we are dealing

with digital images withA/ > 1000 and N > 1000, there is barely a difference between a
straight lines withAy = 1 and a straight line witli\y = 2. We therefore fix the minimahy to

2 pixels and have
180 2 180 4
AG = T arctan (N—/Q) = 7 arctan <N> . (35)

Applying the estimated rotatiofy; to the set of prior guide spot locationg(G*) yields a set
L,(G*) of rotated prior guide spot locations.

4.1.2 Global Translation Estimation

The second step on the way to define the reference locatiggs Lfor the detected guide spot
locations L,(G*) is an estimation of how the rotated prior guide spot locatiofi§t) need to be
shifted. Formally, we must determine a global translation vectaith the following property:

Le(G") = Lo(G") +t = Lo (G¥). (36)

It is sufficient to determine the location of one grid node of the reference gf@l: If, for
example, the translatiot), to the reference locationgl(1, 1)) of the upper left node of* is
known, the shift for all the other grid nodes is the same. Formally, the translation ¥gcisr
given by R

ty = I—D((17 1)) - Le((lv 1))7 (37)
i.e. we subtract the rotated prior guide spot location of the upper left nagtefodm an estimate
for the detected guide spot location of the upper left corner node.dflote that the upper left
location Ly((1, 1)) is not yet available, since the determination of the grid of detected guide spot
locations l,(G*) is the task of the grid fitting itself. We must therefore determine an estimate
Lo((1,1)) for the location ((1,1)) of the upper left corner node from the s&t of detected
guide spot locations. In order to be more consistent, we also estimate the location of the lower
right corner nodé I, Jss) of G* and define the translation vectik as

t|_R = ED((LSS? JGS)) - LG((IGS7 JGS))- (38)
The translation vector ir3g) is then determined as

t = meartt,,, t.s). (39)
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The location estimatk,((1, 1)) can be computed in the following way: try to extract from
the setC* of detected guide spot locations the locatiopéRg- (1)) belonging to the first row
and the locations 4(Cg:(1)) belonging to the first column of*. L,((1,1)) is then the in-
tersection point of the straight lines fitted to the locations of the first row and first column,
respectively. Similarly, extract the locations(R¢-(1ss)) belonging to the last row and the lo-
cations L,(Cg-(Jss)) belonging to the last column @f* and intersect the corresponding fitted
straight lines in order to estimate the location of the lower right grid nodg of

Extracting the First Row. In the following, we describe an algorithm to extract the locations
Ly (Rg+(1)) belonging to the first row ofi*(see also Figl4):

1. Select as initial locatiorix,, y,) € L* the detected guide spot location with the biggest
y-coordinate in the central coordinate system.

2. Determine the end points,, y.) and(x., y.) of a digital straight line crossing the initial
location (z,, y,). The straight line has a slope corresponding to the estimated global grid
rotation angleg (Sect.4.1.1). The straight line reaches from the first pixel column of the
M x N spotimages to the last pixel column of the spot image.

3. Define an aread in which to look for the detected locations belonging to the first row.
The search ared includes locations of the digital straight line between the end points
(xe, ys) and(z., y.). These locations belonging to the digital straight line are determined

(a) Search area for first row and first column (b) Search area for last row and last column

Figure 14: Determination of the points belonging to the first/last row/column. A search.4r@me

of the four shaded bars) is spanned by a straight line with a slope corresponding to the estimated grid
rotation angle going to the point with the smallest/bigggstcoordinate. The width of the search area
corresponds to the theoretical block size.
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by a modified Bresenham algorithrg, [L6]. Add also all locations to the search arda
belonging to straight lines betweeén, y.+7) and(x., y.+7), wherer is a pixel tolerance
parameter with- € {1...0(B,/2)}. The height of the search area therefore corresponds
to the theoretical block size.

4. The locations belonging to the first grid row Gf correspond to the intersection of the
set of detected guide spot locatiofiswith the locations of the search arda

Lo(Rg-(1)) = AN L. (40)

The location set is only accepted if the number of locations in the intersedti)ms(at
least 50 % of the theoretical guide spot grid width. We therefore have the plausibility
condition

card(Lp(Rg+(1))) > Jas/2. (41)

Condition @1) is necessary to cope with outliers, which for example can be seen in
Fig. 10. If inequality (41) does not hold, the extraction restarts with step 1. Before,
all the locations previously assigned tg(Rg- (1)) are removed from the set of detected
guide spot locationg™.

The locations L(Rg-(Iss)) belonging to the nodes of the last row are determined in the same
way except that the initial poiritz,, y,) is chosen as the point with the smallgstoordinate in

the central coordinate system. Likewise, the locations belonging to the nodes of the first and last
column L,(Cg-(1)) and Ly,(Cg+(Jss)) are determined in a similar way, except that the digital
straight lines reach from the first row to the last row of the spot image.

Fitting Straight Lines. Once theR locations(zy, yx) € Lo(Rg«(1)), k € {1... R} belonging
to the first row are determined, we can fit to the location data the paramgtarsl b, of a
straight line model

y(x) = y(z;a,,b.) = a, + bx. (42)

The fitting is performed in the standard least squares sense , i.e. we want to minimize the sum
of the squares of the residualisbetween the location data poirits, y;) and the model:

R R
> e = (yr — ar — byay)? — min, (43)
k=1 k=1
The optimal solution is given bylp, 5]
G =py— by, and b =72 (44)
g

x

The mean values, andy, are computed as

1 & 1 &
o= w o and =5y (45)

k=0 =k
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(a) Determination of upper left location (b) Determination of lower right location

Figure 15:Determination of the location of the upper left grid node and the location of the lower right
grid node of the guide spot grid. The locations are determined by the intersection of straight line models
whose parameters are fitted to the locations belonging to the first/last row/column.

with (z;,y;) € Lo(Rg~(Iss)). The variancer? of the z-coordinates is given by

R

0320 = % Z(xk - /le>27 (46)

k=0
and the covariance,, between the--coordinates and thg-coordinates is given by

1 R

k=0

The parameters for the straight line of the last row are computed in the same way. As for the
parameter computation of the straight line of the first and last column;-tardy-coordinates

are swapped. This is necessary because an unrotated grid would result in an infinite slope. A
straight line of the form/ = a. + b.2’ in the swapped’, y/'-coordinate system has the form

y = —a./b. — 1/b.x in the original coordinate system (provided that# 0).

Intersecting straight lines. After having determined the straight line parameterandb,. for
the first row and:,. andb,. for the first column, the intersection point can be determined with the

following equation:
|
ay + bt = —Z— ——a forb. 0. (48)
Note that the right hand side of the equation is the straight line of the first column transformed to

the coordinate system of the straight line of the first row. After some manipulation we have the
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Figure 16:Reference guide spot locations. The grid of crosshairs illustrates the reference guide spot
locations, which are the prior guide spot locations of Bigotated by the estimated grid rotation angle

¢ and translated by the translation vedtoiT he detected guide spot locations (illustrated as white dots)
can be easily assigned to the corresponding nodes of the guide sp@t grid

following coordinates for the intersection poift, , 2. ) = Lo((1,1)) of the upper left corner:

Qe 1
) ) e o
Ty =

Qe for b. =0

(49)

Yoo = ar + by, (50)

The intersection pointz.g, yr) = ED((IGS, Jss)) for the lower right corner is computed in a
similar manner to49) and 60). The intersection pointSe,,, x, ) and(z s, ) are illustrated
in Fig. 15. The final translation vectaris the mean vector according t89).

4.1.3 Alignment of locations to grid nodes

Having an estimate of the rotation angleand the translation vectar= [t, ¢,|”, we are able
to linearly transform the prior guide spot locatidns i) 7 € L,(G?) to the reference guide spot
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locations[z y:]” € Lx(G?) according to 28). The reference guide spot locationg1, j) are
expected to be near the detected guide spot locativrisee Fig16). The detected guide spot
locations can therefore be assigned to guide spot grid Nedgsy investigating a rectangular
M, x N, location window W(L(3, j)) with Lg(7, j) in the window center:

Lo(i, §) = W (La(i, ) N L". (51)

The dimensiong/, and N, of W correspond to the size of maximum search window as defined
in (24) and @5).

4.2 Consistent Spot Grid

The algorithm for the detection of guide spots in S&dries to minimize the number of false
positives. Nevertheless, it cannot be guaranteed that all the detected locati&nisdlong to

guide spots (see also Fifj0). We must therefore find a way to eliminate the false positives
after the grid alignment of Sect.1 Additionally, in order to have a consistent grid, we must
eliminate the false negatives, i.e. compute the locations of the guide spots that were not detected.
Both tasks - the elimination of false positives and false negatives - can be accomplished by the
robust fitting of straight lines to the rows and columns of the fields. Finally, once a consistent
guide spot grid7* is available, we must initialize the locations of the regular spots.

4.2.1 Parameterization of the Guide Spot Grid

It is possible that during the assignment of the detected locations to the grid nodeg(§ect.
no location can be found in the search window (E&d)). Formally, this fact is expressed as

Loi, ) = W (L (i, ) N £* = 0. (52)

We call a nod€i, j) asinvalid if condition (52) holds. If a nod€s, ;) is invalid we must estimate
Lo (4, 7) from a subset of the aligned guide spot locatiop&i*).

One possible approach is to fit straight lines to every row and column of the guide spot grid
G* and estimate the lacking location by the intersection of the straight line of amal and the
straight line of columry. This would be equivalent to the computations of Séct.2 in which
the locations of the upper left and the lower right node are estimated. However, different fields
F*,, can be significantly shifted. It is therefore a good idea to perform straight line fits on the
fields F*,, of the guide spots instead of the whole guide spot grfid The parameter s&?,,
for a guide spot fieldc*,, is defined by

qu = {((aTi7b7'i)7 (acj7bcj)) ‘ 1 S i S IF; 1 S .] S JF}7 (53)

with the parameters andb as defined in42). If a node(i, j) of a guide spot field is not valid,
the parameter$(a,,, b,,), (a,,b.;)) modeling field row: and field column; can be used to
perform straight line intersection as introduced48)(and £0).
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. Outlier (False Positive)

(a) Non-robust Fitting (b) Robust Fitting

Figure 17:Example for the parameterization of the upper left 6 guide spot field grid. In order to

infer lacking guide spot locations (false negatives) from neighborhood locations, straight lines are fitted
to every row and every column of the guide spot field grid. (a) An outlier (false positive) biases the
straight line models such that intersections in which the biased straight line models are involved would
be inaccurate. (b) After the removal of the outlier (positidrb)), the corresponding straight line models

are no longer biased. Outliers are detected with the help of residual values from the model to the data.

4.2.2 Robust Grid Parameter Fitting

The field row and field column parameters as defined8) fnhust be fitted in aobustmanner
because false positives (outliers) can bias the fitted straight lines (se&7igOne possible
approach to perform robust fitting is to consider the residuats the fitted straight line model

and the data points (se€3)). The algorithm for the fitting of a straight line belonging to réw

of a guide spot field is outlined as follows (the application to column parameters is straightfor-
ward):

1. Initialization. Fitthe parameters,, andb,, according to44) if Ko > 2, whereK is the number
of valid nodes in row (see 62)). If Ky < 2goto 5.

2. Large residual removal. Sort the residuals; of the initial fit and mark the nodes with the
highest residuals as invalid, whesés a percentag®’; of the valid guide spot#.

3. Refitting. Re-fit the parameters,, andb,, if still at least 2 nodes in the roware valid; if fewer
than 2 nodes are valid, go to 5.

4. Outlier removal. Sort the residuals;. If the largest residual is below a threshelfpixel], the
fitting is finished and the parameters are valid; otherwise mark the corresponding node as invalid.
If more than 50 % of the initial number of valid nod&% are valid, go to 3. Else go to 5.

5. Algorithm abortion. Mark theparametersas invalid and return.
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A reasonable choice is to sBf = 10, meaning that the straight lines are re-fitted at least once
with 10 % fewer nodes than at the first fit (the 10 % with the highest residuals). After the re-fit,
the absolute values of the residuals are regarded. The parameters are re-fitted

o if the distance between a model point and a data point exceeds a threfhigkls] and
¢ if not more than 50 % of the initial valid nodes have already been marked as invalid.

The threshold is a percentagé’, of the theoretical block sizeB, and B,,, respectively, as
defined in (3). It is reasonable to also s&% = 10. The 50 % limit is set because an original
model with more than 50 % outliers cannot be restored with this kind of fitting procedure.

4.2.3 Field Parameter Correction

After the fitting of the guide spot field rows and columns, the parameters are checked:

1. a,, andb,, might be marked as invalid because of the failure of the straight line fitting
algorithm

2. the absolute value of the slopg might differ too much (.5°) from the absolute mean
value of all the valid slopes of the field rows. This situation may occur since it is not
guaranteed that the node with the highest residual value must necessarily be the outlier.
Sometimes it is therefore possible that - even after the repeated refitting - false positives
do survive.

If 1) or 2) holds for the parametets, andb,, of a row, they are estimated with the help of the
parameters of the nearest neighborhood apwandb,., . Since we do not expect large variation
between neighbored slopes we caniset b,, . The intercept,., can be estimated by setting

ar, = a,, — (n—1)By, (54)
i.e. subtracting the theoretical block distances from the neighbor depending on how far away
the neighbor on the grid is.
4.2.4 Abortion Criterion

After the robust determination of the field parameter se®, the entire guide spot gri@* is

tested for consistency. If — due to a very bad image quality — the final guide spot grid is not
plausible, the distance between the locations of at least two nodes must be too large. Formally,
there must exist at least one nodej) € G* for which the following condition holds:

IL(G ) = LG+ 1,5+ D) > ¢ (55)

wheret is the residual threshold entity of Sedt2.2 If (55) holds, the grid fitting is aborted
and the user is notified.
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4.2.5 Location initialization of regular spots

Locations belonging to regular spots in a bloBkare inferred from the guide spot location
with the help of the prior knowledge of the theoretical spot distaitesnd S, and the block
rotation. The rotatiors of a block in row i of a field F is given by the slopé,. of the field
grid parameter seb() as follows:

0p = arctan(b,,). (56)

Given the guide spdfi, j) € B and its location (4, j)) = [xs ys]?, the regular spot locations
L((m,n)) with (m,n) € Band(m,n) # (i, ) are initialized as follows:

| e cosfp sinfp (m —1)S, -
SR Bl R il I B G el B RO R N
Equation b7) is valid for blocks with guide spots residing at an arbitrary position of the block.

The regular spot locations7) are used as initial estimates of of the center of a parametric spot
model.

4.3 Summary

The goal of the grid fitting step is to map potential guide spot locations detected in33ect.

the guide spot grid nodes and to initialize the locations of the regular spots. The prior guide
spot locations introduced in Se@t.3.1are rotated and translated in order to serve as reference
locations for the detected guide spot locations. The global rotation is estimated with the help of
a Radon transform which is based on the projection of the image intensity values along different
directions. In order to save computation time, the Radon transform can be computed in a hier-
archical manner, in which the angle resolutions are successively refined. The global translation
of the prior guide spot locations is determined with the help of the upper left and lower right
guide spot grid corner points. These corner points are determined with the help of straight lines
which are fitted in the least squares sense to the points belonging to the first/last row/column. In
order to get a consistent grid, false negatives (lacking guide spots) and false positives (outliers)
are removed with the help of robust fitting of straight lines to the field rows and column. If the
residual values from the straight line model to the data are too large, the corresponding nodes
are marked as invalid which is equivalent to the removal of false positives. A lacking guide
spot location can be estimated with the help of the intersection of the corresponding straight
lines. Sometimes the parameters of the straight line model have to be estimated from the near-
est neighbor. This is the case for images with very bad quality or for image regions in which a
large majority of the spots has a strong hybridization signal.
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5 Experimental Results

The quality of the grid fitting cannot be assessed with a simple location distance measure, since
no ground-truth datas available for the spot array images. We haven chosen two other ways
to demonstrate the effectiveness of the grid fitting algorithm presented in this report. We first
show five examples of image types originating from different hybridization experiments, having
different quality, resolution and size. We then show that the grid fitting success is correlated with
the image quality.

5.1 Visual Examples

We present five examples of images for which the grid fitting was successful. In order to demon-
strate the different scanning resolutions of the images, the image parts t8F& are of the

same size and in scale, meaning that the spots of a high-resolution image are displayed larger
than the spots of a low-resolution image.

Figure 18a shows a part of 4596 x 1482 ONF image (Sectl) which has been scanned
at a resolution of 75um at the Max Planck Institute for Molecular Biology (MPIMG) Berlin.

The guide spots at the center of the 5 blocks in Fig.18a are bright and clearly identifiable.
Figure 18b shows the same image with the computed guide spot locations superimposed as
cross-hairs. For the sake of overview, the initialized locations of the regular spots are not shown
— they are simply derived from the guide spot locations as demonstratéd)inKlease note

that the locations need not necessarily be right in the center of the (guide) spot: They are just
the initializations for the center of a parametric spot model.

Figurel9a shows a part of 8300 x 1200 ONF image which has been scanned at a resolution
of 200um at the Novartis Forschungsinstitut (NFI) Vienna. The signals of the hybridization
signals of the guide spots at the center ofihe5 blocks are relatively low in comparison with
the signals of the hybridized regular spots, for example at the lower right corner of the filter.
Furthermore, there are regions in which the signal-to-noise ratio is very low. It can be seen in
Fig. 19 that our algorithm is able to restore the guide spot grid. In this example, the border
between two fields can be noticed by comparing guide spot coldrand5 of Fig. 19b: There
is a leap in theg/-coordinates indicating a field shift and therefore justifying the parameterization
(53) of the fields.

Figure20a shows a part of 8300 x 1586 image originating from hybridizations of complex
cDNA samples. It has been scanned at a resolutia?d@fm at the NFI Vienna. The grid is
nearly full, but the guide spots at the center of ihe 5 blocks are brighter than the majority of
the regular spots. Note the visible vertical field shift in pixel &0 of the image. The correct
grid fitting output can be seen in Figob.

Figure2la shows a part of 8300 x 1486 image originating from colony filter hybridizations.

The image has been scanned at a resoluti@d@fm at the NFI Vienna. The upper left field is
clearly noticeable. The intensities of the of the guide spots at the centerfokthblocks differ
significantly: They are very high at the first row and first column of the guide spot grid and are
partly not distinguishable from the regular spots in regions within the field. The dark rectangular
region around pixe{375, 250) in the image indicates that a needle was lacking (broken) on the
needle matrix (Fig2a). Due to the parameterizatiobd) of the fields, such lacking guide spot
grid information can be easily restored, as is demonstrated ir2 Hiy.
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Figure 18:Part of a1596 x 1482 ONF Image withl 75.m resolution scanned at MPIMG Berlin.
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Figure 19:Part of a1300 x 1286 ONF Image with200um resolution scanned at NFI Vienna.
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Figure 20:Part of a1300 x 1586 ComplexHyb Image witl200um resolution scanned at NFI Vienna.
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Figure 21:Part of a1300 x 1486 ColonyHyb Image witl200um resolution scanned at NFI Vienna.
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Figure 22:Part of a2400 x 3544 ComplexHyb Image with 00um resolution scanned at NFI Vienna.
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Fig. 22a shows a part of 8400 x 3544 image originating from hybridizations of complex
cDNA samples. If was scanned at a resolutiorn @ium at the NFI Vienna. It is an example
for a low signal-to-noise ratio hybridization image. Due to the high resolution of the image,
Fig. 22b also shows the computed locations of the regular spots superimposed as dots.

Figure | Image Name Experiment | Resolution [um] Size
18 | 016304260A1 ONF 175 1596 x 1482
19 | 0100295107yl ONF 200 1300 x 1286
20 | coctail2c64102y1 ComplexHyb 200 1300 x 1586
21 | 990401ptasdh111dkyl ColonyHyb 200 1300 x 1486
22 | u266-1-99031c64120x1 | ComplexHyb 100 2400 x 3544

Table 4:Overview of the image examples demonstrated in E&22.

Table5.1summarizes the image information and indicates the names of the image files.

5.2 Evaluation of Image Quality versus Grid Fitting Success

The largest test set consisted of ONF images from two cDNA-libraries nau®@¢855 images)
andw09 (885 images). These ONF images had been scanned at the Novartis Research Institute
Vienna at a resolution Az = Ay = 200um. The image quality of every image w08 and

w09 had been rated by a human with numbers between 1 (very good) and 5 (very bad). Hence
it is at least possible to investigate the correlation between the image quality and the success of
the grid fitting (abortion criteriony5)). Figure23 shows both fow08 andw09 images the Box

plot of image qualities for which the grid fitting fails (left hand side) and the Box plot of image
qualities for which the grid fitting was successful (right hand side). Fig8iean be interpreted

as follows:

e As expected, the grid fitting is successful for images with good quality. However, the
algorithm can also cope with some images the quality of which was rated as very bad.

e Most of the images for which the grid fitting fails are rated as bad. There are, however,
some outliers of images with good quality which do not meet the expectations.

The good quality images for which the grid fitting failed have one common feature: They violate
the assumption stated on patfgthat the image border of the spot array image has significantly
lower intensity values than the filter region. The background values of non-hybridized regions
are as dark as the image border regions. As a consequence, the Bgiand B2 in Fig. 7

do not contain all the lowest projection values and the prior guide spot locations are wrong.
Furthermore, whole rows of guide spots will not be detected because of the wrong region-of-
interest defined by the prior guide spot locations, resulting in a wrong guide spot grid. These
rare cases can be handled by trying several different prior guide spot locations. There should be
not too much computational overhead for this solution, since the most expensive computations
(matched filter, GSLA filter and Radon transform) must not be recomputed.
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wO08: Image quality evaluation vs grid alignment success
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Figure 23:Box plots of image qualities versus grid fitting success. The grid fitting is successful for
images with good quality. The algorithm can also cope with some images the quality of which was rated
as very bad. Most of the images for which the grid fitting fails are rated as bad. There are, however,
some outliers of images with good quality which do not meet the expectations
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6 Conclusion and Outlook

We have presented a grid fitting approach for genetic spot array images containing guide spots.
In the first main step, the guide spots are detected with a matched filter, a filter which amplifies
the guide spot locations and a maximum search. In the second step, the detected guide spots
are used to span a consistent guide spot grid. The fitted spot locations of our algorithm are
considered as spot center initializations for parametric spot motlels [

The crucial point of our algorithm is the region-of-interest (S8@&.1) which is determined
with the help of a horizontal and a vertical projection. Experimental results have shown that our
prior assumption of the spot image intensity distribution (much darker image border than filter
area) does not always hold. In these cases, our algorithm possibly rejects spot images of good
guality. The problem can be solved as follows:

e The horizontal projection is replaced with the GSLA projection of the correct angle which
is given by the Radon transform. Most peaks in the projection will then result from guide
spots.

e The vertical projection is replaced with the GSLA projection of the correct angle, prefer-
ably computed with an additional Radon transform.

e The two projections are considered simultaneously in order to solve an energy maximiza-
tion problem, where the energy contributions result from the intersections of the straight
lines belonging to guide spot location hypotheses.

e Non-linearities of the straight line intersections are considered by a local maximum search
in the matched filter response image.

The approach outlined above is applicable with minor changes to spot array images which do
not contain guide spots.

References

[1] N. Brandle, H-Y. Chen, H. Bischof, and H. Lapp. Robust parametric and semi-parametric
spot fitting for spot array images. ISMB-2000 8th Intl. Conference on Intelligent Systems
for Molecular Biology, August 20—2page 46, 20005, 43

[2] N. Brandle, H. Lapp, and H. Bischof. Automatic Grid Fitting for Genetic Spot Array
Images Containing Guide Spots. 8th Intl. Conf. on Computer Analysis of Images and
Patterns, Ljubljana, Slovenia, September 1p&ges 357-366, 1999.

[3] J. E. Bresenham. Algorithm for Computer Control of a Digital plottédBM Systems
Journal 4(1):25-30, 1965.28

[4] H-Y.Chen, N. BAndle, H. Bischof, and H. Lapp. Robust spot fitting for genetic spot array
images. In IEEE Signal Processing Society, edit©rP-2000 Intl. Conference on Image
Processing, September 10+-3&ncouver, Canada, 200, 43

43



[5] Vladimir S. Cherkassky and Filip M. MulieL.earning from Data : Concepts, Theory, and
Methods John Wiley and Sons, 19988

[6] M. Cheeet al. Accessing Genetic Information with High-Density DNA ArrayScience
274:610-614, 19962, 2

[7] R.J.Johnstoet al. Autoradiography using storage phosphor technol&ggctrophoresis
11:355-360, 19902

[8] K. Hartelius. Analysis of Irregularly Distributed PointsPhD thesis, Institute of Mathe-
matical Modelling, Technical University of Denmark, 19986.

[9] Anil K. Jain. Fundamentals of Digital Image Processirgrentice-Hall, 1986.23
[10] E. Lander. The new genomics: Global views of biolo§gience274:536-539, 19962
[11] Benjamin Lewin.Genes VI Oxford University Press, 19972

[12] S. Meier-Ewert, J. Lange, H. Gerst, R. Herwig, A. Schmitt, and J. Fretiatl Compara-
tive gene expression profiling by oligonucleotide fingerprintiNgicleic Acids Research
26(9):2216-2223, 19982

[13] S. Meier-Ewert, E. Maier, A. R. Ahmadi, J. Curtis, and H. Lehrach. An automated ap-
proach to generating expressed sequence catalojatse 361:375-376, 19932

[14] Shree K. Nayar and Tomaso Poggio, editdesrly Visual Learning Oxford University
Press, 1996.11

[15] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannd\y-
merical Recipes in CCambridge University Press, 19928

[16] A. Watt. 3D Computer GraphicsAddison-Wesley, 199428

[17] Gerhard Winkler.Image Analysis, Random Fields and Dynamic Monte Carlo Methods
Springer Verlag, 19955

44



	Introduction
	Notation and Definitions
	Spot Array Image Representation
	Spot Array Representation
	Prior Knowledge

	Guide Spot Detection
	Spot Detection with Matched Filter
	Guide Spot Location Amplification (GSLA)
	Local Maximum Search
	Region-of-Interest and Prior Guide Spot Locations
	Maximum Search Algorithm

	Summary

	Grid Fitting
	Alignment of Detected Guide Spot Locations
	Global Rotation Estimation
	Global Translation Estimation
	Alignment of locations to grid nodes

	Consistent Spot Grid
	Parameterization of the Guide Spot Grid
	Robust Grid Parameter Fitting
	Field Parameter Correction
	Abortion Criterion
	Location initialization of regular spots

	Summary

	Experimental Results
	Visual Examples
	Evaluation of Image Quality versus Grid Fitting Success

	Conclusion and Outlook

