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Abstra
t

Images sequen
es present a high degree of redundan
y be
ause obje
ts are repeated over

the su

essive images. When their apparent displa
ements are well approximated by a

simple parametri
 model, the whole sequen
e 
an be summed up by pasting together all

the images onto a so 
alled mosai
 image. Then ea
h image of the original sequen
e 
an be


onsidered as a part of the �nal mosai
. When the displa
ements of distin
t obje
ts di�er,

we must 
hoose whi
h obje
ts have to be represented and how.

In this report a framework is presented that produ
es the mosai
 image 
orresponding

to the ba
kground obje
t of an image sequen
e. It is based on the dominant motion

assumption, that is the ba
kground motion is parametri
 and the ba
kground o

upates

the main part of the images. The foreground obje
ts are lo
alised by their di�erent motion.

This lo
alisation is 
omputed together with the ba
kground motion in an iterative method.

The regions 
orresponding to the ba
kground are then pasted onto the mosai
 image using


lassi
 methods adapted to our problem or a new pasting method based on the distan
e to

the foreground obje
ts that a
hieve 
learer mosai
s.
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1 Introdu
tion

In this paper, we propose a framework to build a panorami
 view representing the ba
k-

ground of a given image sequen
e, by dis
arding the foreground obje
ts. The segmentation

foreground/ba
kground is based on motion estimation, and 
omputed in relation to the

alignment of images, whi
h uses a model for the ba
kground motion. A new method is

exposed that 
ombines the sour
e images into a 
lear mosai
 in presen
e of foreground

obje
ts, and under the dominant motion assumption.

Image mosai
ing and motion segmentation Video sequen
es generally present a

high temporal redundan
y, be
ause the ba
kground and the foreground obje
ts are re-

peated over the 
onse
utive images. The mosai
ing te
hnique allows to produ
e a single

image that represents a whole shot, by eliminating this temporal redundan
y. The general

stru
ture of su
h algorithms is the following [IAH95℄: �rst, the images are aligned using

a parametri
 motion model, then they are pasted together to produ
e the mosai
 image.

Alignement of an image pair 
onsists in �nding global parametri
 transformation that

maps one of the images onto the other. We 
an distinguish two kind of methods.

The �rst ones align the whole images by minimizing an error fun
tion asso
iated with

the parametri
 model. When multiple 
oherent motions are present in the sequen
e this

framework 
an only be used to �nd the dominant motion in a given region of interest. In

[BAHH92, PH97, RPFRA98℄ the presen
e of multiple motions is ignored; a multiresolution

framework [BAHH92℄ and the dominant motion assumption are needed to obtain the


onvergen
e to a real motion. In [IRP92℄ this assumption is maintained and the dete
tion

of outlier obje
ts is introdu
ed to avoid taking them into a

ount, thereby redu
ing their

in
uen
e on the 
omputed motion.

Another kind of methods are based on the preliminary 
omputation of a lo
al motion

�eld. Regression te
hniques are then applied to these data to segment images into regions

with 
oherent motions, and evaluate their motion. A 
lustering into two regions (fore-

ground/ba
kground) is exposed in [MBK98, DML95℄, while the number of regions is not

de�ned a-priori for the layered representation in [WA94a, WA94b℄.

Whatever the alignment method for image pairs may be, global alignment frameworks

[SHR98, Dav98℄ may improve the �nal pre
ision by de
reasing the a

umulation of small

errors.

When images are aligned, they 
an be pasted onto the mosai
 spa
e, that is ea
h pixel

value in the mosai
 spa
e is determined by 
ombining the values of the 
orresponding

pixels from the aligned images.

When obje
t elimination is not an issue, values are averaged or a median is 
omputed

[IAH95℄. Clearer mosai
s 
an be obtained by segmenting the mosai
 image into regions

and 
opying all the pixels in one region from the same sour
e image; the risk is to produ
e

mosai
s with dis
ontinuities at the boudaries of the regions. The segmentation may be

guided by global motion, as in the striping te
hnique [PH97, RPFRA98℄, or 
omputed

from lo
al displa
ements as in [Dav98℄.

Apart from the 
ombining method obje
t elimination was introdu
ed in [WA94b℄ with

the layered representation. In ea
h sour
e image a mask sele
ts the pixels asso
iated with

3
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a given layer. The layer mosai
 is then produ
ed by 
ombinating pixels in the masks,

thereby dis
arding obje
ts situated outside the masks.

Assumed ba
kground properties The ba
kground is expe
ted to have the three

following properties. It is situated behind the rest of the s
ene, so there may be parts

o

luded by the other obje
ts. Appearan
e remains 
onstant over the time, the only


hanges in the gray levels are due to global motion. Ba
kground pixels o

upate the main

part of the image. This property is not always true, sin
e a big obje
t 
an go 
lose past

the 
amera and o

lude most part of the ba
kground. Nevertheless, the re
onstru
tion

of the ba
kground of a video sequen
e makes sense only if it is not too mu
h o

luded

by other obje
ts. So there should be images in the sequen
e in whi
h the ba
kground

o

upates a main part.

To sum up, the ba
kground is a big obje
t at the ba
k of the s
ene, following the

movement of the 
amera, and with eventually other obje
ts in front of it. These properties

will be taken into a

ount for the 
hoi
e of the used methods.

Proposed method The method we implemented is based on motion segmentation.

Obje
ts with a motion di�erent from the ba
kground motion are not taken into a

ount

for the 
omposition of the mosai
. The problem is to lo
ate the ba
kground and keep it

aligned within the sequen
e, then to 
ombine its di�erent views into a mosai
 image.

In se
tion 2 we present an overview of the whole mosai
ing framework, that dete
ts

the foreground obje
ts and eliminate them. This framework mainly 
onsists in two parts:

analysis of image sequen
e, and then synthesis of the mosai
 image. The analysis part is

des
ribed in detail in se
tion 3, where the alignent and motion segmentation algorithms

are presented, as well as how we 
ombine them to a
hieve a robust alignment and the

lo
alisation of ba
kground. The 
onstru
tion of the mosai
 given a set of aligned images

and their asso
iated ba
kground mask is ta
kled in se
tion 3. All a
ross the arti
le, we

will also present results obtained with our implementation, whi
h is des
ribed in annex

D.

2 General framework

The basi
 stru
ture of the algorithm is derived from the 
lassi
al mosai
ing algorithm

[IAH95℄, by introdu
ing dete
tion and removing of foreground obje
ts.

We repla
e the 
lassi
al alignment step by a module that aligns images and dete
ts

foreground pixels using an iterative framework des
ribed in this se
tion. Ba
kground is

supposed to be the main obje
t in the s
ene, so that the dominant motion 
orresponds

to the ba
kground motion. Then the segmentation of foreground obje
ts is based on

motion: pixels asso
iated with a lo
al motion that is di�erent from the dominant motion


onstitute the foreground mask.

The pasting step takes one more parameter: the foreground masks asso
iated with

ea
h images, and that are 
omputed in the alignment/segmentation step.
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2.1 Stru
ture

The video 
ow is �rst analysed. This involves registration, but also segmentation to dete
t

moving obje
ts. Using the motion parameters and ba
kground masks, the mosai
 view

is then synthesized from the input images in the pasting module. Figure 1 shows a 
hart


ow of the program stru
ture.

REGISTRATION SEGMENTATION PASTING

Motion
parameters

Background
mask

Mosaic image
of the background

Video
sequence

ANALYSIS SYNTHESIS

Figure 1: Chart 
ow of the mosai
ing framework

2.2 Registration and Segmentation

Finding the ba
kground motion (registration) and its lo
ation (segmentation) are two

related problems. Indeed if the general motion is known, we 
an 
ompute a more pre
ise

lo
al motion on aligned images. Reversely, the motion 
omputation 
an be biased if the

parameters are evaluated on an image that 
ontains no 
oherent motion or more than

one.

These two tasks (registration and segmentation) 
onstitute an independent module

that takes the video 
ow in input and gives the ba
kground motion and lo
ation. Whi
h

task is pro
essed �rst is a 
on
eption 
hoi
e. Be
ause of the expe
ted properties of the

ba
kground, we de
ided to use a dominant motion approa
h (see se
tion 3). That is, the

ba
kground motion is 
omputed. The segmentation is then performed based on motion

information. The used method is explained in se
tion 3.

2.3 Pasting

On
e the registration is performed, and that we have the ba
kground mask for ea
h image,

we 
an past the images to the mosai
. First, from motion parameters between image pairs,

global warping parameters are 
omputed, to warp ea
h sour
e image onto the mosai
.

Using these parameters images are aligned towards the mosai
 
oordinates. Then the

values of the mosai
 pixels are 
omputed by 
ombining the asso
iated pixels from the

original images. Only pixels whi
h were 
lassi�ed as ba
kground by the segmentation are

used. Classi
al pasting te
hniques that do not handle moving obje
ts will be presented,

as well as proposed extensions, in se
tion 4.
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3 Registration and Segmentation

In this se
tion we will pre
ise the base framework used to align an image pair images,

while dete
ting the moving obje
ts (se
tion 3.1). We will then explain more parti
ularly

the alignment, and the motion segmentation we used (se
tions 3.2 and 3.3). Finally the

method used to produ
e a global alignment out of pairwise alignment is exposed (se
tion

3.4).

Related existing methods To handle the registration of ba
kground motion and the

segmentation of foreground obje
ts, several approa
hes 
an be used.

In [WA94b℄ a lo
al motion is 
omputed for ea
h image dire
tly from the video sequen
e

with an opti
al 
ow. Then the image is partitioned into regions that have a 
oherent lo
al

motion with an iterative re�ning framework. Opti
al 
ow is also used in [MDK95℄, to

dire
tly partition the image into two regions, using a 
lustering te
hnique. The bigger

region is assimilated to the ba
kground, and its motion 
an be 
omputed pre
isely using

the region mask, and a parametri
 model.

In [IRP92℄ the dominant motion of the image pair is �rst evaluated to �nd a rough

estimation of the ba
kground motion. Then a ba
kground mask is 
omputed, by seg-

menting the aligned images on lo
al motion intensity. The �rst motion estimation may

be modi�ed by some moving obje
ts. For this reason a re�nement is performed by 
om-

puting extra aligment and segmentation, where ea
h registration is 
omputed only for the

previously segmented region.

Our approa
h We 
hose to use a dominant motion approa
h with an asso
iated seg-

mentation as introdu
ed in [IRP92℄ for the registration of images. Lo
al motion estimation

is 
omputed only on aligned images, whi
h in
rease their a

ura
y. The ba
kground is

expe
ted to o

upy the main part of the image, so the dominant motion e�e
tively repre-

sents its motion. As the ba
kground is supposed to be stati
 in the real world its apparent

motion is just the e�e
t of the 
amera movement. Furthermore it is the furthest obje
t in

the image, so the image need only a foreground/ba
kground segmentation, and a single

motion model 
an represent the whole ba
kground motion, provided it is of a suÆ
ient

order.

3.1 Iterative framework

The dominant motion approa
h is not biased by foreground obje
ts for translation, by

using the hierar
hi
al method exposed in [BAHH92℄. But it is less robust as soon as

higher order models (aÆne, planar) are used. We used an adaptation of the framework

proposed by [IRP92℄ to over
ome this problem.

The ba
kground motion and lo
alisation are 
omputed in an iterative framework in-

volving two submodules: registration and segmentation.

1. Initialize the ba
kground mask to be the whole image
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2. Repeat steps 3.,4.,5.,6. several times to 
onverge towards the motion and lo
alisation

of the ba
kground. For ea
h motion model, the �rst pass gives a rough result for

the parameters, and the se
ond step aÆnes it using the segmentation mask.

3. Find the dominant motion between the two original images using the ba
kground

mask. Only pixels belonging to this mask are taken into a

ount.

4. Align the two images using the parameters 
omputed in step 3.

5. Segment out pixels with a lo
al motion over some threshold in images from step 4.

This threshold 
an be �xed (typi
ally 1.0 pixel), or de
rease at ea
h step to take

into a

ount the ina

urate approximation due to too low order models in the �rst

steps.

6. Set the ba
kground mask from the result of step 5.

The inner stru
ture of the registration and segmentation is not really important. But

the registration shouldn't be too perturbated by the presen
e of obje
ts moving di�erently

from the ba
kground.

The model in step 3. 
hanges during the iterations. For the �rst passage in the loop, a

dominant translation is 
omputed. The mask resulting of the segmentation then 
ontains

only pixels with the same motion. In the following passages higher order models 
an be

used, sin
e they are 
omputed only on pixels belonging to the ba
kground region.

3.2 Pairwise alignment

Given two images I

1

and I

2

, we would like to �nd a parametri
 transformation su
h

that warped I

1

is the 
losest to I

2

. With ea
h pixel ~x in the se
ond image 
oordinates

we asso
iate a motion ve
tor ~u(~x) that represents the displa
ement of pixel ~x by the

transformation.

A parametri
 model is 
hosen to represent the whole motion with a small number of

parameters ~p. The registration of an image pair 
onsists in �nding the parameters that

minimizes the di�eren
e between the �rst image warped using these parameters and the

se
ond image. Translational, aÆne and planar motion models are generally used [IAH95℄

(see tab.1). They are suÆ
ient to approximate the motion of obje
ts when parallax is

small. This hypothesis is supported by the ba
kground property to be the furthest obje
t

from the 
amera.

We use a least-square error as a measure for the di�eren
e between aligned images.

Given a parameters ve
tor p, this error 
an be 
omputed for support regions R

1

and R

2

(resp. in �rst and se
ond image) as follows:

E( ~u

p

) =

X

~x

fI

2

(~x)� I

1

(~x� ~u

p

(~x))g

2

(1)

where ~x and its 
orresponding pixel in image 1 are inside the support regions: ~x 2 R

2

and ~x� ~u

p

(~x) 2 R

1

.
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model motion form

translational ~u(x; y) =

�

a

d

�

aÆne ~u(x; y) =

�

a+ bx + 
y

d+ ex + fy

�

planar ~u(x; y) =

�

a + bx + 
y + gx

2

+ hxy

d+ ex + fy + gxy + hy

2

�

Table 1: Expression of parametri
 motion models

E is minimum when the images are well aligned. Registering the images a

ording to

the motion model given by ~u

p


onsists in minimizing E with respe
t to the parameters ~p.

This is a non-linear problem.

In [BAHH92℄, a framework is presented to solve this problem, using multi-resolution

pyramids within an iterative gradient-based re�ning loop. This method was implemented.

See annex A for its des
ription. The advantages of su
h a framework is to be relative

robust to lo
al minima, allow large displa
ements, and although give pre
ise results at

subpixel s
ale. It is less robust when the number of parameters for the parametri
 motion

in
rease.

3.3 Segmentation

Given images pairs aligned with respe
t to the ba
kground motion, our purpose in seg-

mentation is to 
lassify pixels into moving and stationary ones. This 
an be done using

the framework of appendix C, where the normal-
ow intensity is 
omputed using a hier-

ar
hi
al gradient based approa
h. In our implementation we used a 3� 3 neighborhood

around ea
h point to 
ompute spatial gradients.

The implementation 
hosen has the advantage of being 
omputationaly eÆ
ient, and

to involve only lo
al 
omputations. However it is not very robust to 
hanges in light,

and is not a real motion intensity. Indeed, as the 
omputation is lo
al and be
ause of

the aperture problem, only the normal 
omponent of the lo
al gradient is 
omputed. As a


onsequen
e the motion intensity �eld obtained with this method is not very smooth, and

depends on the dire
tion of spatial gradient. To 
orre
t this, we post-pro
ess the motion

using morphologi
al operators. We used morphologi
al opening [aS94℄ and 
losing both to

eliminate small artifa
ts, and to smooth the values. An example of su
h a postpro
essing

of the motion values is shown in �gure 2. The advantage of these operators is that they

preserve the edges a

ura
y, as opposed to 
onvolution methods whi
h blur the image.

This lo
al motion intensity is �nally thresholded to produ
e a foreground mask. This

mask 
an be used for the next registration, to determine on whi
h region the global

motion should be 
omputed (see subse
tion 3.1), and also in the pasting step, to dis
ard

the foreground pixels (se
tion 4).
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a b

Figure 2: Postpro
essing of the motion intensity using morphologi
al opening and 
losing.

Original motion intensity image (a), postpro
essed image (b). (High motions in bla
k, low

motion in white.) The values are made more uniform, while keeping the edges sharp.

3.4 Global registration

Registration is based on pairwise alignment, but we need to know the transformation

between the images and the mosai
 
oordinates.

Registration of original image pairs A �rst solution 
onsists in registering 
onse
-

utive original images by pairs, and 
omposing the parameters to align all the images to

one of them, in the way presented in �gure 3.

parameters towards
the reference 
coordinates

parameters for
consecutive images

p0 p1 p2 p3 p4
image 0 image 1 image 2 image 3 image 4 image 5

p2

inv(p3)

p0*p1*p2

p1*p2

inv(p3*p4)

reference coordinates

Figure 3: Global registration by 
omposition of pairwise registrations

Appendix B des
ribe some operations on 
omposition of parametri
 motions.

Integrating referen
e image over time By using sour
e images dire
tly, foreground

pixels are in
uen
ing the motion estimation. The te
hnique 
an be made more robust by


onsidering the alignment of ea
h new sour
e image with an integrated referen
e image,

instead of with the previous sour
e image.

The referen
e image is obtained by 
ombining the images already registered, aligned

on the global motion. Moving obje
ts then appear dissolved, so that the algorithm is

less likely to align a foreground obje
t with its blurred version from the referen
e image.
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The method proposed by [IRP92℄ is to 
ombine the new image I

t+1

with the old referen
e

image I

ref

t

:

I

ref

t+1

= �W (I

ref

t

) + (1� �)I

t+1

(2)

where � is a real 
oeÆ
ient between 0 and 1, and W is the warping transformation to

keep the referen
e image in the 
urrent image 
oordinates. When � = 0, we 
ome ba
k

to the 
ase with no temporal integration.

Figure 4 shows the e�e
t of the integration s
heme on the referen
e image.

a b


 d

Figure 4: E�e
t of integration on the referen
e image. First (a) and last (b) image of the

integrating sequen
e. Integrated image 
orresponding to the third image (
), and to the

seventh one (d).

Use of the old segmentation mask as a 
ue In the alignment/segmentation pro-


ess, ea
h alignment is performed by taking into a

ount only pixels belonging to the

ba
kground mask. This mask is initialized to the whole image for the �rst step of an

image pair alignment, and updated by ea
h segmentation.

The risk is that the �rst steps 
onverge towards the motion of a foreground obje
t

instead of the ba
kground. This 
an happen if the foreground motion is better approx-

imated by the low order parametri
 model than the ba
kground. For example, if the

ba
kground is rotating whereas an obje
t is translating, then the �rst alignment will give

the translational motion, even if the ba
kground o

upates the main part of the image.

If we suppose that the moving obje
ts are not too fast, the ba
kground mask doesn't

vary mu
h between 
onse
utive images. We 
ould avoid the �rst dete
tion of foreground

obje
ts for ea
h new image pair by using the ba
kground mask 
omputed for the previous

image pair. With this method:
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� The 
onvergen
e is faster, be
ause the ba
kground lo
ation has just to be updated.

Indeed we don't need the �rst pass that is supposed to give a rough idea of the

parameters.

� The result is more robust to moving obje
ts be
ause less foreground surfa
e in
u-

en
es the motion. The only foreground pixels to be taken into a

ount for the global

motion estimation belong to newly o

luded regions.

The improvement of the stability is shown in �gure 5 where we applied the registering

framework on a sequen
e made of the images 3�i of the 
ower garden sequen
e. Choosing

non 
onse
utive images should in
rease the diÆ
ulty of �nding the true global motion.

(a) without mask 
ue (b) with mask 
ue

Figure 5: Improvement of registration stability using the mask of previous segmentation

as a 
ue for the next alignment. (see the text for experiment des
ription) Lo
al motion

between the 5th and 6th aligned images of the sequen
e, without (a) and with (b) a mask


ue. (White = low motion, Bla
k = High motion)

We implemented the two methods (with and without mask 
ue) in order to 
ompare

them. The algorithms are exa
tly the same, ex
epted for the initialization of the align-

ment mask and the number of alignment/segmentation steps. In the method without


ue, the mask is set to the whole image for ea
h new image pair, whereas in the method

with 
ue, it is 
opied from the ba
kground mask of the previous pair. The �rst align-

ment/segmentation step is suppressed in the 
ue method, as it should be repla
ed by the

mask 
ue.

The �rst method does not use the segmentation mask for the �rst registration. The

iteration number is set to 2: �rst alignment with a translation model over the whole

image, then segmentation with a motion threshold of 1.0 pixel, alignment with an aÆne

model.

The se
ond method uses the segmentation mask of a pair for the �rst alignement of

next pair. The translational alignement is then skipped: registration simply 
onsist in an

aÆne model alignment over the region determined by the mask.

The alignement of images without mask 
ue is wrongly exe
uted. Indeed it takes into

a

ount for ea
h image pair the tree for the �rst alignment. This is avoided with our

method. In spite of the use of only one image out of three the good alignment is found.
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4 Pasting

At this stage, the following data is available:

� warping parameters between ea
h image and the mosai
. For ea
h pixel ~x of the

mosai
, we 
an 
ompute the 
orresponding pixel ~y

t

= P

t

(~x) in the image I

t

.

� ba
kground mask for ea
h image in the sequen
e. bg

t

(~y

t

) is equal to 1 if ~y

t

is a

ba
kground pixel in image I

t

, and to 0 otherwise.

Our purpose is to 
ombine the image pixels to get a mosai
 image without the moving

obje
ts.

In the followingM(~x) will denote the value of the lo
al motion intensity for the pixel ~x

in the stati
 mosai
, where ~x is expressed in the mosai
 
oordinates. y

t

is the 
oordinates

of the pixel 
orresponding to ~x in the image at time t, expressed in this image 
oordinates.

4.1 Classi
al solutions

Most of the mosai
ing algorithms don't handle the presen
e of moving obje
ts in the

pasting step. They must be modi�ed to ex
lude foreground obje
ts pixels.

4.1.1 Simple 
ombination

Basi
 integration The simplest method 
onsists in 
ombining the pixels values I

t

(~y

t

)


orresponding to the mosai
 pixel ~x with a simple 
ombining fun
tion f , as in eq.3.

M(~x) = f(I

1

(~y

1

); : : : I

N

(~y

N

)) (3)

The simple 
ombining fun
tion f is usually a mean or a median [IAH95℄. With this

method, moving obje
ts pixels are 
ombined with ba
kground pixels. Small or fast moving

obje
ts have less pixels in temporal 
ombination, and so their pixel values have a small

in
uen
e on the mosai
 pixel values. With a mean, big obje
ts are blurred, and small

obje
ts leave a ghost like tra
k. When using a median, there is less blur, and small moving

obje
ts 
an be totally eliminated if there are enough images in whi
h the 
orresponding

region shows the ba
kground. However, unless they are very small and moving fast, the

foreground obje
ts are still present in the mosai
.

Extension to ex
lude foreground pixels This method 
an be naturally extended to

take into a

ount the ba
kground mask bg(~y), by 
ombining only pixels 
orresponding to

the ba
kground.

M(~x) = g

��

I

1

(~y

1

); bg

1

(~y

1

)

�

; : : :

�

I

N

(~y

N

); bg

N

(~y

N

)

��

(4)

where the extended 
ombining fun
tion g 
an be expressed as fun
tion of a simple fun
tion

f :

g ((v

t

; bg

t

)

t

) = f

�

(v

t

)

ftjbg

t

=1g

�

(5)

12



Building the ba
kground mosai
 of an image sequen
e

Figure 6 shows the mosai
s obtained with the basi
 integration on the �rst 30 images of

the 
ower garden sequen
e, using a median 
ombiner. Image (a) is a simple 
ombination

of original images. The tree leaves a blurring mark, where it was in the original images.

On image (b), motion information was used to segment out the foreground (the tree), so

that only the ba
kground is present.

4.1.2 Partitioning

To avoid the blurring 
aused by the 
ombination of many pixel values, a solution is to


hoose for ea
h pixel only one sour
e images. The mosai
 image is partitioned into regions,

and ea
h region is asso
iated with one sour
e image.

The 
ombining pro
ess is then expressed by:

M(~x) = p

s(~x)

�

I

1

(~y

1

); : : : I

N

(~y

N

)

�

= I

s(~x)

�

��!

y

s(~x)

�

(6)

where

� s(~x) is the number of the sour
e image from whi
h the image mosai
 pixel ~x is


opied.

� p is a proje
tion fun
tion indexed by s: p

s

(v

1

: : : v

N

) = v

s

.

The region partitioning is expressed entirely by the index s(~x).

An usual way to partition the mosai
 is to asso
iate ea
h pixel with the 
losest 
enter

image, using a Voronoi tesselation like in [PH97℄. The mosai
 image is then partitioned

into stripes, that is regions orthogonal to the general motion. The moving obje
ts, are

not blurred, but they may be sli
ed and have non 
oherent appearan
e on the strips

boundaries, be
ause of their displa
ement. A possibility to ex
lude foreground obje
ts


onsists in 
hoosing for ea
h pixel the image whose 
enter is the 
losest among those where

the 
orresponding pixel is in the ba
kground mask.

In [Dav98℄, an original method is proposed to 
hoose the strips a

ording to the

presen
e of moving obje
ts. The region are 
omputed to minimize the presen
e of motion

on their boundaries. Moving obje
ts are 
opied from a single sour
e image, thus avoiding

blurring, and in
oherent stripes boundaries. But foreground obje
ts are still in the mosai
,

whereas we want to segment them out and re
onstru
t the ba
kground behind them. Su
h

a method 
ould be used as a last stage of our pasting step, to lower un
oheren
es in the

ba
kground mosai
, when the parametri
 model does not des
ribe the ba
kground motion

pre
isely enough.

4.2 Extended formulation

We propose here a general framework that should englobe the previous extended 
lassi



ombination methods (simple 
ombination and Voronoi tessellation, ex
luding foreground

pixels), and that will allow us to better 
ontrol the pasting of the images.
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a

b

Figure 6: Mosai
 of the 
ower garden sequen
e using median 
ombining. Simple 
om-

bination (a). Combination of pixels belonging to the ba
kground masks (b). The bla
k

regions on the sides and in the tree's bran
hes don't belong to the ba
kground.
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4.2.1 General expression

Ea
h pixel ~y in ea
h sour
e image I

t

is asso
iated a positive 
on�den
e 
oeÆ
ient C

t

(~y)

that tells in whi
h measure the pixel should appear in the �nal mosai
. During 
ombina-

tion more 
on�dent pixels will be given a more important in
uen
e.

The 
ombination pro
ess is only based on the 
on�den
e of 
orresponding pixels, as

expressed in eq. 7.

M(~x) = g

��

I

1

(~y

1

); C

1

(~y

1

)

�

; : : :

�

I

N

(~y

N

); C

N

(~y

N

)

��

(7)

where

� C

t

(~y

t

) is the 
on�den
e 
oeÆ
ient of pixel ~y

t

in image at time t

� g is a general 
ombination fun
tion, su
h that pixels with a null 
on�den
e (C

t

(~y

t

) =

0) don't in
uen
e the mosai
 pixel value M(~x).

We 
an 
ontrol two parameters: the 
ombination fun
tion g, and the de�nition of the


on�den
e 
oeÆ
ients C

t

(~y).

4.2.2 Classi
al methods as parti
ular 
ases

This general method 
an handle the two more parti
ular te
hniques des
ribed in se
tion

4.1 by properly 
hoosing g and C.

Simple 
ombination Eq. 7 is quite similar to eq. 4. A simple 
ombination of pixels

is then done by taking the same g fun
tion, and a 
on�den
e equal to 1 for ba
kground

pixels and 0 for foreground pixels.

Voronoi striping Lets take for 
on�den
e a fun
tion null for foreground pixels and

de
reasing with respe
t to the distan
e to the 
enter of the image for ba
kground pixels.

For example:

C

t

(~y) =

(

0

if ~y is outside the image or

in the foreground

(1 + d

t

(~y))

�1

or exp(�d

t

(~y)=�) else

where d

t

(~y) is the distan
e between pixel ~y and the 
enter of the image t. Su
h a 
on�den
e

image is shown in �gure 7b.

Let be g the fun
tion sele
ting the pixel value with the highest 
on�den
e.

Then applying the general framework with these fun
tions leads to a Voronoi tessel-

lation, where ea
h mosai
 pixel is 
opied from the 
orresponding pixel in the image with

the 
losest 
enter.

4.2.3 Framework possibilities

Choosing g and C lead to a parti
ular behaviour of the framework.
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Combination fun
tion g There are roughly two kinds of 
ombination fun
tions: weight-

ing, and sele
ting.

Weighted mean, or weighted median are of the �rst kind. All the pixels with a non

null 
on�den
e are used, but their in
uen
e is weighted by the 
on�den
e 
oeÆ
ient.

Sele
ting fun
tions pi
k among the most reliable pixels to give a value for their 
om-

bination. Choosing the highest 
on�den
e pixel will lead to a partition. By using a


ombination of a few most reliable pixels, transitions are smoother.

Con�den
e 
oeÆ
ient C(~y) This 
oeÆ
ient expresses the likelihood that a pixel

should appear in the mosai
. It 
an be 
omputed from di�erent 
riteria, to 
ompen-

sate some errors:

� segmentation errors: the ba
kground mask may 
ontain some foreground pixels,

be
ause of in
ertainty in segmentation. By de�ning the 
on�den
e as in
reasing

with the distan
e from the foreground mask, we lower the parti
ipation of su
h

pixels.

� opti
al deformations on borders: the images are more deformed far from their 
en-

ters. By setting high 
on�den
e near the 
enter and di
reasing with the distan
e,

we give the priority to the 
entral regions, whi
h are less deformed.

Combinations of those parameters are also possible. Indeed an extension of the Voronoi

striping with a better 
ompensation of segmentation errors 
ould be de�ned, by adding

the 
on�den
e related to segmentation, and the inverted distan
e to 
enter of image:

C(~y) =

�

0 if C

bg

(~y) = 0

C


enter

(~y) + �C

bg

(~y) else

where C


enter

is high for pixels 
lose to the 
enter of images, and C

bg

(~y) is low for pixels

too 
lose from the foreground obje
ts. � is intended to 
ontrol the relative in
uen
e of

ea
h parameter. With this 
on�den
e 
oeÆ
ient, the framework would 
reate the mosai


by giving the priority to pixels 
lose to the 
enter, but not 
lose to foreground obje
ts.

Figure 7 shows the foreground mask of an image from the 
owerbed sequen
e, and the

asso
iated 
on�den
e image

The 
on�den
e of �gure 7b was used to produ
e the mosai
 in �gure 8. We 
an


ompare it with the mosai
 obtained by a masked median 
ombination (�g. 6). The

advantage of striping is to avoid blurring, be
ause on one region, all pixels 
ome from the

same sour
e image, whi
h is not the 
ase with a median. The problem is to de�ne the

stripes so that there is no dis
ontinuity at their boundaries. In our implementation there

is no expli
it treatment to avoid this. But by de�ning a 
on�den
e depending on the

distan
e to the 
enter of the image, pixels that are 
lose on the mosai
 
ome from sour
e

images that are 
lose in time, and that are well aligned. This was not the 
ase with the


lassi
al median te
hnique.
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a b

Figure 7: Con�den
e images for the 14

th

image of the 
ower garden sequen
e using

di�erent rules. White is low 
on�den
e, and bla
k a high one. Ba
kground mask (a) 
an

be 
onsidered as a 
on�den
e image for simple 
ombination (median). Con�den
e based

on distan
e to the foreground obje
ts and to the 
enter on the image (b)

Figure 8: Mosai
 obtained using a striping method, with a 
on�den
e based on distan
e

to the foreground obje
ts and to the 
enter on the image. The bla
k regions on the sides

and in the tree's bran
hes don't belong to the ba
kground.

17



Building the ba
kground mosai
 of an image sequen
e

5 Con
lusion

In this report a framework was proposed to produ
e a ba
kground mosai
 from a video

sequen
e, and detailed algorithms were des
ribed to implement it. Our method involves

two steps: 1) alignment of images and lo
alisation of foreground obje
ts, 2) pasting of the

images onto the mosai
.

The stru
ture of the �rst step relies on the assumption that the ba
kground is the

dominant obje
t in the sour
e image , so that a dominant approa
h 
an be used (see

se
tion 3). Lo
alisation of foreground obje
ts is based on lo
al motion intensity between

aligned images. To improve a

ura
y and robustness, these two modules are run in an

iterative re�ning pro
ess where alignment is 
omputed on the segmented region, and

segmentation use aligned images.

Con
erning the pasting step (se
tion 4), we reviewed two 
lassi
al methods that do

not take into a

ount the presen
e of moving obje
ts, and extended them to eliminate

foreground obje
ts. A new framework was proposed to a
hieve 
learer mosai
s, using a

striping depending on the distan
e to foreground obje
ts.

The whole framework was implemented and tested on the well-known 
ower-garden

sequen
e. The proposed pasting method revealed to a
hieve a 
learer mosai
 than usual

methods. The limitations of the whole framework 
ome from the algorithm we 
hose for

obje
t dete
tion (namely the ba
kground should be the main obje
t in the sequen
e, and

have a motion that is approximated by a parametri
 motion). This 
ould be improved by

using more a

urate obje
t dete
tion.

Appli
ations of su
h an algorithm 
an be found in video indexation, where a whole

sequen
e 
an be summed up by a single mosai
 image that represents its ba
kground.
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A Hierar
hi
al dominant motion 
omputation

In this se
tion, a parti
ular solution to the registration problem of se
tion 3 is exposed.

It is based [BAHH92℄.

A.1 Linear approximation

A standard Gauss-Newton method, to solve su
h minimizations problems is to approxi-

mate the quantity under bra
kets to the �rst-order:

E

i

(~u) =

X

~x

n

�I(~x; ~u

i

) +

~

rI(~x) � (~u� ~u

i

)

o

2

(8)

where

�I(~x; ~u

i

) = I(~x; t)� I(~x� ~u

i

(~x); t� 1)

~

rI(~x) =

�

�I

�x

�I

�y

�

Then the solution is found iteratively:

�!

u

0

is an initial guess for ~u

��!

u

i+1

minimizes E

i

A.2 Multi-resolution framework

[BAHH92℄ proposed a hierar
hi
al approa
h to avoid lo
al minima and to provide an ef-

�
ient 
onvergen
e. A Gaussian or Lapla
ian pyramid is �rst 
omputed ([Ros84℄). Then

parameters are 
omputed sequentially for ea
h level, in a 
oarse to �ne way. The param-

eters found for one level i are used as a starting point to �nd the parameters at level i� 1

(see �g. 9).

The pyramidal approa
h makes the iterative approa
h eÆ
ient and robust to noise

and lo
al minima. On 
oarser levels, the motion is at the s
ale of some pixels, so a rough

approximation of the motion is qui
kly found. At ea
h level the parameters be
ome more

pre
ise. On the �nest level, the parameters are �nally more a

urate than the pixel.

A.3 Realization

We have implemented the registration for translation motion and aÆne motion using the

framework previously exposed.

Resolution of registration equations Ea
h motion model leads to di�erent equa-

tions. The aÆne motion englobes the translation motion, but it is more sensitive to noise.

The translation model has less parameters and is more robust.

� For translation, the motion model is uniform:

~u(~x; ~p) = ~p =

�

a

d

�
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+
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warping of image1 toward image2

motion estimation
using linear approximation
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(convolution + sampling)

motion composition
image1
warped

Figure 9: Multi-resolution framework for registration

Equation 8 simpli�es itself into

E

i

(~p) =

X

~x

�

�I(~x; ~u

i

) +

�

�I

�x

�I

�y

�

~p

�

2

(9)

Finding its minimum is equivalent to solving a 2� 2 linear system.

� With aÆne motion, the motion �eld is:

~u(~x; ~p) = X~p =

�

a + bx + 
y

d+ ex + fy

�

where

X =

�

1 x y 0 0 0

0 0 0 1 x y

�

and ~x =

�

x

y

�

and

~p = (a b 
 d e f)

T

Then Equation 8 
an be simpli�ed into:

E

i

(~p) =

X

~x

�

�I(~x; ~u

i

) +

�

�I

�x

�I

�y

�

X~p

�

2

(10)

Its minimum is solution of a 6� 6 linear system.

In both 
ases, the system is solved by a Gauss-pivot method.
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B Manipulation of parametri
 motion �elds

Motion �elds used in the registration step should be 
omposed and inverted. If we know

the transformation from I

1

to I

2

and the transformation from I

2

to I

3

, then the transfor-

mation from I

1

to I

3


an be obtained by 
omposing the two previous ones. Also, when

the transformation from I

1

to I

2

is known, I

2


an be warped towards I

1

using the inverse

transformation.

It is straightforward for translations, and also possible for the aÆne motion model

when 
onsidering motions due to 
amera movement. AÆne model has a good property:


omposing and inverting aÆne �elds leads to aÆne �elds.

B.1 Composition of aÆne motion �elds

Let us note p

1

the parameters of the aÆne transformation from I

1

to I

2

and p

2

those

between I

2

and I

3

. Then the transformation from I

1

to I

3

is aÆne, with parameters p

su
h that (with the notations of eq.1):

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

a = a

1

+a
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1

d

2

b = b

1

+b
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+b

1
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2
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1

e
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1

+
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+b
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1

f

2

d = d

1

+d

2

+e

1

b

2

+f

1

a

2

e = e

1

+e

2

+e

1

e

2
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B.2 Inversion of aÆne motion �elds

Let us note p the parameters of the aÆne transformation from I

1

to I

2

. Then the trans-

formation from I

2

to I

1

is aÆne, with parameters p

0

. p

0

is the solution of the following

equation:

2

4

1 0 0

a

0

b

0

+ 1 


0

d

0

e

0

f

0

+ 1

3

5

=

2
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1 0 0

a b+ 1 


d e f + 1

3

5

�1

(12)

C Lo
al motion intensity 
omputation

C.1 Motion evaluation

As pointed out in [IRP94℄, a motion intensity 
an be 
omputed out of the spatial and

temporal gradients.

M(~x; t) =

P

~x2N(~x

0

)

jI(~x; t)� I(~x; t� 1)j:j

~

rI(~x; t)j

P

~x2N(~x

0

)

j

~

rI(~x; t)j

2

+ C

(13)

where N(~x) is a neighborhood of ~x, and C is a 
onstant to avoid numeri
al instabilities.

Be
ause it is gradient based, this measure is valid only for motions at the s
ale of the

pixel.
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C.2 Reliability 
oeÆ
ient

For ea
h pixel, a reliability 
oeÆ
ient is 
omputed too. This 
oeÆ
ient is the inverse of the


ondition number of the matrix in the opti
al-
ow equation 14, indi
ating its numeri
al

stability.

�

P

I

2

x

P

I

x

I

y

P

I

x

I

y

P

I

2

y

� �

�x

�y

�

=

�

�

P

I

x

I

t

�

P

I

y

I

t

�

(14)

where I

x

(resp. I

y

and I

t

) represents the partial derivative of I with respe
t to x (resp. y

and t). The sums are 
omputed over a neighborhood of ~x.

Noting �

min

and �

max

the largest and smallest eigenvalues of the matrix, the reliability


oeÆ
ient is:

R(~x; t) =

�

min

�

max

(15)

where:

� =

(
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I

2

x

) +

�

P

I

2

y

�

2
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r
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X
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2
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�

�

�

X

I

2

y

��

2
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�
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(16)

C.3 Hierar
hi
al framework

To handle motions with an speed greater than one pixel a pyramidal approa
h is used. A

Gaussian pyramid is �rst built[Ros84℄. The gradient based motion and the reliability are


omputed for ea
h level.

Starting at the 
oarser level, the de�nitive motion measure M

f

(~x; t) is 
omputed as

follows.

� M

f

(~x) be
omes M(~x) if

8

<

:

M(~x) is high enough

or

M(~x) is low and R(~x) is high

� M

f

(~x) is obtained by s
aling the M

f

(~y) 
orresponding in the 
oarser level in other


ases.

D Implementation of the mosai
ing framework

The framework des
ribed in this arti
le has been implemented as a C program

1

and run

over video sequen
es. It takes in input a sequen
e of gray-s
ale images and produ
es the

mosai
 image asso
iated, using the methods exposed.

The following options 
an be set to modify the methods used in the mosai
ing pro
ess.

1

Our implementation is available on the Internet at http://www.prip.tuwien.a
.at/~megret/

24



Building the ba
kground mosai
 of an image sequen
e

Alignment/Segmentation

� Compute the dominant motion with only translationnal model, or with translation-

nal model, and then aÆne model.(see se
tion 3.2)

� Use a ba
kground mask 
ue for ea
h �rst alignment of an image pair.(see se
tion

3.4)

� Number of alignment/segmentation steps, and eventually the thresholds used at

ea
h step by the motion segmentation.(see se
tion 3.1)

� Use an integrated image as referen
e for alignment or not, and set the � value (see

se
tion 3.4) that 
ontrols the importan
e of new images in the referen
e image.

Pasting

� Sele
t the type of pasting among median (with 
on�den
e or not) or striped

� Sele
t the type of 
on�den
e 
omputed among ba
kground mask, Voronoi 
on�den
e

or Voronoi 
on�den
e with penalty to pixels 
lose to foreground obje
ts (see se
tion

4.2.3).

� Give the 
olor images asso
iated to the gray-level input to produ
e a 
olor mosai
.

Controls

� Save alignment parameters to �le, and retrieve them to skip the alignment steps.

� Save segmentation masks and parameters to �le, to skip the analysis pro
ess.

� Produ
e a mosai
 or not

� Save temporary �les for ea
h separate step
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