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Abstra
t

Content based image retrieval is the task of sear
hing images from a database, whi
h are

visually similar to a given example image. Sin
e there is no general de�nition for visual

similarity, there are di�erent possible ways to query for visual 
ontent. In this work we

present methods for 
ontent based image retrieval based on texture similarity using interest

points and Gabor features. Interest point dete
tors are used in 
omputer vision to dete
t

image points with spe
ial properties, whi
h 
an be geometri
 (
orners) or non-geometri


(
ontrast et
.). Gabor fun
tions and Gabor �lters are regarded as ex
ellent tools for texture

feature extra
tion and texture segmentation. We present methods how to 
ombine these

methods for 
ontent based image retrieval and to generate a texture des
ription of images.

Spe
ial emphasis is devoted to distan
e measures for the texture des
riptions. Experimental

results of the query system on di�erent test image databases are given.
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Chapter 1

Introdu
tion

1.1 Motivation

Sin
e its invention photography has rapidly 
onquered the world. No wonder, it

was photography whi
h made it possible to transfer and store visual impressions

and experien
es. People began to 
olle
t photographs and soon 
ompanies like

newspaper publishers had large ar
hives. However, �nding spe
i�
 pi
tures in

these vast quantities of information was time 
onsuming manual work.

The invention of the 
omputer 
hanged a lot about the ways information 
an be

stored, but did not solve all problems. The equivalents of photographs | digital

images | found their way into the information so
iety as soon as the 
omputers

be
ame powerful enough to pro
ess, display and transfer them. At the time this

do
ument is written the average desktop PC (already 
alled "Multimedia PC") has

enough memory and pro
essing power to store large image and video databases.

The hardware ne
essary to 
reate and 
apture images is available, 
heap and easy

to use. S
anners, digital 
ameras and even digital video 
ameras able to 
onne
t

to 
omputers are 
ooding the markets and found their way into the average home.

The latest te
hnology dis
overed by the publi
 is the Internet and the world wide

web | an almost unlimited sour
e of information.

The problem of �nding spe
i�
 pie
es of information in this large ar
hives

remains unresolved. Solutions for text information have been found. Databases

based on keywords or full text sear
h are used su

essfully all over the world. The

prin
iple of keyword based sear
h te
hniques has been applied to image databases

as well. However, it is not possible to des
ribe images with words to the same

extent as 
ontents in text form, sin
e the information visible on images 
an be

seen from di�erent viewpoints or aspe
ts.

Figure 1.1 shows two examples. How do we des
ribe the 
ontents of these

images? People looking at Figure 1.1.a 
ould be interested in the people or the

fashion in the foreground, the ar
hite
ture in the ba
kground or any other part of

the image. The s
ene displayed in Figure 1.1.b is equally diÆ
ult to des
ribe.

1



Figure 1.1: How do we des
ribe visual information?

The equivalent of a full text sear
h for an image database is a 
ontent based image

retrieval system using query by example as "query language". The user spe
i�es a

query image or parts of it. The system answers with images similar to this query

image. The key question of this approa
h is, how do we de�ne similarity between

images? We distinguish two di�erent approa
hes[27℄:

� Systems based on attentive s
an use 
ons
ious pro
esses and high level rea-

soning to 
ompare information. Similarity is derived from the knowledge

about the semanti
 
ontents of the images. Humans use this 
on
ept to

sear
h for spe
i�
 do
uments (or images) in ar
hives.

� Systems based on pre-attentive s
an use un
ons
ious pro
esses to 
ompare

information. Applying image pro
essing algorithms they extra
t features of

di�erent nature: Colour, texture, stru
ture and 
ontour features have been

used in former approa
hes for image des
riptions.

An ideal 
ontent based query system should be based on attentive s
an. Only by

understanding the 
ontents of ar
hives and the desires of the user it is possible to

deliver exa
tly the required information. However, the general image understand-

ing problem has not yet been solved, i.e. 
omputers and their software are not yet

sophisti
ated enough to a
tually understand the semanti
 meaning of the 
ontents

of do
uments, and it is subje
t to s
ienti�
 dis
ussion until now if arti�
ial pro-


esses will ever rea
h this degree of intelligen
e. Up to now all methods have been

pre-attentive and the work des
ribed in this do
ument is based on this approa
h

as well.

The way and method how an image retrieval system is 
hoosing and delivering

its results depends on the purpose of the appli
ation. There is no general measure

for visual similarity so there are no general purpose image retrieval systems for all

kind of images, whi
h always deliver 
orre
t results a

ording to the user's wishes.

The known approa
hes 
an be 
lassi�ed into systems more or less spe
ialised to

2



spe
i�
 tasks and systems trying to implement a general purpose retrieval system

working for all kinds of images. Examples for the former are medi
al systems like

databases of X-ray images, appli
ations spe
ialised to fa
ial images et
.

An appli
ation for a general purpose retrieval software 
an be found on the

web: The Internet sear
h engine Altavista

1

allows to sear
h for text, images,

video and audio 
ontents of the web by keywords. On
e an image is found the

user is able to sear
h what is 
alled a visual similar. Obviously a system like

this designed for general purposes will not work in all 
ases, sin
e there is no

feedba
k from the user whi
h kind of information she desires. However, for the non

business 
riti
al usage of the average user they 
an be useful enough. The demand

of powerful image retrieval systems is not yet satis�ed by existing appli
ations.

Not only the vast quantities of information available on the Internet need to be

handled by sear
h engines. Industries like TV broad
asting stations, magazines,

newspapers, advertisement agen
ies, hospitals and even governments store huge

amounts of visual information. Without being able to sear
h for spe
i�
 do
uments

this knowledge 
annot be used to the full extent.

The work des
ribed in this do
ument introdu
es a new image retrieval system

based on pre-attentive s
an. The aim was to develop an approa
h based on texture

similarity without performing a full texture segmentation of the images. Instead

we are using lo
al texture features gathered from a representative set of image

pixels to des
ribe images. The system 
an be outlined as follows:

� We sele
t a �xed number of image pixels (
alled interest points) using interest

point operators. The 
riteria for the sele
tion of the points is how well they

represent the 
ontents of the image.

� Around ea
h interest point we extra
t windows of �xed sizes from the image.

From these windows, whi
h we 
all interest regions, we extra
t texture fea-

tures by applying a Gabor �lter bank. The output of the Gabor �lter bank

is used to 
reate di�erent image representations.

� Finally we developed di�erent distan
e measures appli
able to our image

representations.

The system itself has been tested on di�erent test image databases and proved to

perform well. Future work will integrate it into a bigger appli
ation (Se
tion 2.3)

using di�erent types of similarity (
olour, texture, stru
ture and 
ontour) and user

feedba
k.

1.2 Stru
ture of this Do
ument

Chapter 2 gives an overview of the prin
ipal 
omponents of a 
ontent based image

query system based on pre-attentive s
an. We give a short overview of the former

1

http://www.altavista.
om
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approa
hes and the state of the art of image retrieval in
luding di�erent types of

features.

Chapter 3 des
ribes di�erent interest point dete
tors | We used some of these

dete
tors in our system.

Chapter 4 explains how texture information 
an be gathered from digital images

and how Gabor fun
tions and a Gabor �lter bank | the heart of our indexation

algorithm | 
an be used for this purpose.

Chapter 5 gives an overview about the pro
ess of 
olle
ting Gabor features on

interest points and the ways to interpret the results of this pro
ess.

Chapter 6 introdu
es an image des
ription and methods based on the results of

the Gabor �lters for indexation purposes: Colle
tions of feature ve
tors where one

ve
tor 
orresponds to an interest point.

Chapter 7 des
ribes histogram based indexation methods. The histograms are

built from the same Gabor �lter outputs explained in se
tion 5. Di�erent image

des
riptions and di�erent distan
e measures are 
ompared.

Chapter 8 des
ribes the environment used to develop and test the system. Two

di�erent databases with di�erent types of images have been used. A short overview

of the appli
ations of the system is given.

Chapter 9 shows the performan
e results of the query algorithms introdu
ed in

this do
ument on our test environment. We explain in great detail the methods

used to measure query performan
e.

Chapter 10 draws 
on
lusions and gives some outlook on future resear
h and im-

provements of the methods introdu
ed.

4



Chapter 2

State of the Art of Content Based

Image Retrieval

The requirements for a 
ontent based image retrieval system depend on its appli-


ation and the wishes of the user. Let's imagine a user who wishes to sear
h an

image whi
h resembles her query image. This pi
ture 
ontains a bea
h of white

sand, light blue sea, dark blue sky and a red 
ar in the foreground. She provides

her query image to an image indexation system whi
h in our 
ase responds to

this query by di�erent pi
tures showing bea
hes and skies with the same 
olours.

But a
tually our user wanted some more photographs of the 
ar model shown in

the foreground. What went wrong? The user did not spe
ify whi
h type of sim-

ilarity she desired for her response images. The �rst image indexing approa
hes

used global 
olour information to 
al
ulate the similarity of images [33℄. Sin
e the

dominant 
olour information in our �
titious example is the ba
kground | bea
h,

sea and sky | and these areas have been the same at the results, the system re-

turned these entries. A system responding with the desired results would need to

know whi
h parts of the image are relevant and whi
h kind of similarity is desired.

Colour based similarity would not return blue 
ars if the 
ar in the query image is

red. On the other hand for some appli
ations 
olours are a good 
hoi
e to use.

Sin
e resear
h on image indexation began, lots of di�erent algorithms have been

developed to satisfy these di�erent types of queries. These algorithms are based

on various kinds of image des
riptions and methods to 
ompare them. However,

there are some parts whi
h stay the same. We will des
ribe the 
omponents of

indexation systems and the asso
iated terms in this 
hapter as well as the di�erent

approa
hes.

2.1 Components of an indexation system

Figure 2.1 shows s
hemati
ally of the prin
ipal 
omponents of a 
ontent based

image retrieval system. Two di�erent pro
esses need to be supported by these sys-

5



Feature Extraction

Feature Extraction

Image Description
Input Image

Query Image

Image Database

Comparison

Result set

(a)

(b)

Figure 2.1: Components of an image retrieval system: (a) Building the index (b)

Comparing images using the similarity fun
tion

tems: Indexing (uploading) images and querying the database. The main fun
tion

for the user is to query the database providing an example image, whi
h means

that this image has to be 
ompared with the images in the database. Sin
e image

pro
essing algorithms tend to be 
omputational expensive the 
omparison is not

done using the images themselves but pre-
omputed image des
riptions. The step

to 
reate these des
riptions is 
alled indexation. For the 
ontents of the database

it 
an be performed o�-line and if ne
essary parallel for di�erent images on dif-

ferent ma
hines, so the performan
e demands are not as high as for the query

step. However, the index for the query image needs to be 
reated on-line during

the query pro
ess unless the query image is taken from the database itself. The

pro
ess 
an be des
ribed by three steps:

Pre-pro
essing The �rst step before 
reating the image des
ription is to prepare

the image data. The operation being performed depends on the type of

features taken in the next step. Usual pre-pro
essing steps are appli
ations of

�lters (e.g. Gaussian, median �lter), segmentation of the image into regions

of homogeneous 
olour or texture, or sele
tion of spe
ial regions in the image.

Feature extra
tion The feature extra
tion step is gathering the a
tual informa-

tion needed to des
ribe the image. What kind of information needs to be

extra
ted depends on the type of queries that shall be performed. We will

des
ribe di�erent feature types (
olour, texture, shape and stru
ture) in this

se
tion.

En
oding The en
oding step takes the extra
ted feature information and pro-

du
es 
ompa
t 
oded byte sequen
es whi
h 
an be stored in the database.

6



The result of the indexation pro
ess is an image key, i.e. a byte sequen
e, for

ea
h image in the database together with a link to its sour
e image. During the

query pro
ess the systems uses a distan
e fun
tion to 
ompare these keys with the

query image. The distan
e fun
tion (or similarity fun
tion) 
ompares two images

and returns the distan
e of the two images in feature spa
e. The database images

whose features have minimum distan
e to the features of the query image are

returned to the user as result of the query. It follows from this algorithm, that

the image features and the distan
e fun
tion are depending on ea
h other. The

following properties of features and distan
e fun
tion are desirable:

Distin
tion This property means, that des
riptions for images with di�erent 
on-

tents should be di�erent, i.e. their distan
e should be big, while des
riptions

of images with similar 
ontents should have a small distan
e. To satisfy

these 
onditions the features should re
e
t the user requirements. E.g. if

the desired result images should resemble the query image in 
olour, then

the features should also be distin
tive in 
olour. The property of distin
tion

is hard to measure, sin
e there is no general measure of visual similarity.

Compa
t size The obvious advantage of 
ompa
t keys are the small spa
e re-

quirements for the database. The di�eren
e in disk spa
e for an image

database whi
h stores millions of images is 
onsiderable, even if the sizes

of the single keys 
an be de
reased by small values.

Fast distan
e 
al
ulation During the query pro
ess the distan
e fun
tion is


alled often. Hen
e a fast 
al
ulation of this distan
e value is essential and

determines the query speed. Before 
omparing two image des
riptions they

are read from the database and de
oded by the query pro
ess. Then a data

stru
ture is built. The requirements for fast de
oding of the stored image

des
riptions often 
on
i
ts with the desire of small key sizes.

2.2 Previous Work

This se
tion des
ribes previous work done in the �eld of image indexation. Al-

though the algorithms developed in this work are based on texture similarity we

will give here an overall overview about indexing algorithms in
luding brief des
rip-

tions of other similarity types like 
olour and stru
ture. More spe
i�
 information

about texture and texture features will be given in 
hapter 4.

2.2.1 Colour Based Image Retrieval

Resear
h in the development of image features usable for indexation purposes

began with the usage of global features. Global features are in
uen
ed by the

whole image whereas lo
al features are 
al
ulated by parts of the image or even

7



a few pixels of it. An early indexing system on 
olour basis had been introdu
ed

by Swain and Ballard [33℄. They �lled global histograms with the RGB 
olour

values of the input images and used the L

1

and the L

2

histogram distan
es to


ompare the histograms (See Se
tion 7.3 on histogram distan
es). The algorithms

were simple but performed surprisingly well. Improvements 
an be found in [19℄.

The main disadvantage of this method were the missing spatial 
onstraints.

The 
olour distribution stored in the histograms was 
al
ulated from the whole

image area. Stri
ker et al. [32℄ developed an improvement by in
luding limited

spatial 
oheren
e. They introdu
ed �ve partly overlapping, regions - one in the


entre and one at ea
h 
orner of the image, as additional 
riteria for the mat
hing

pro
ess. The 
ontribution of ea
h of the regions to the mat
hing pro
ess 
an

be adjusted by the user via weighting parameters, so the user himself 
an stress

spe
i�
 regions of the query image as being important and ex
lude other regions.

Furthermore they �lled 3-dimensional histograms with 
olour distributions with

the �rst three moments (mean 
olour values, weighted varian
e and skewness)

instead of the raw RGB values.

One step further towards of lo
al features is the solution of Matas et. al [18℄

| a 
olour based approa
h as well. Their image des
riptions 
onsists of a 
olor

adja
en
y graph whi
h to build after fully segmenting the image into regions of

homogeneous 
olour. Nodes in this graph represent 
lusters of 
hromati
 
om-

ponents whi
h are 
onne
ted by edges if they are spatial neighbours. Sear
hing

parts of an image in the database 
an be implemented by sub graph mat
hing.

However, the power of this method | the segmentation | is also a disadvantage.

The performan
e of the query depends on the 
orre
t segmentation of the images.

If this �rst pro
ess is not robust enough the quality of the response de
reases.

2.2.2 Lo
al invariant features

A di�erent approa
h of feature extra
tion 
an be followed by using lo
al features.

Unlike global features they are not 
al
ulated from the whole image, but from

small spatial areas or even single pixels instead. But 
al
ulating lo
al features on

every pixel of the images 
reates too mu
h data, so not all pixels usually result

in feature information. Instead the features are extra
ted from previously 
hosen

regions of interest. One of the basi
 questions is how these regions of interest are

sele
ted, and what kind of spe
ial properties do they have. One idea is to sele
t

spe
ial points in the image, 
alled interest points, and to extra
t features on areas

around these points. Sin
e we followed this idea in our work as well there is a


hapter on interest points (Chapter 3), where di�erent types and implementations

of interest operators are dis
ussed.

In [28℄ S
hmidt and Mohr present an image retrieval method based on lo
al

features extra
ted on interest points. They 
hoose the Harris 
orner dete
tor (see

se
tion 3.2) to sele
t key points of the image. For ea
h key point they 
ompute

a ve
tor with values invariant to similarity transformations, like the average lu-

8



minan
e, the square of the gradient magnitude, the Lapla
ian et
. These feature

ve
tors 
hara
terise the neighborhood of the key points they were 
olle
ted on.

The similarity fun
tion ne
essary to 
ompute the distan
e values for two feature

ve
tors is the Mahalanobis distan
e. This distan
e takes into a

ount the di�er-

ent magnitudes as well as the di�erent se
ond-order statisti
al distributions of the

elements of the feature ve
tors. Distan
es between two images are based on the

distan
es of their feature ve
tors, sin
e images are represented as sets of feature

ve
tors. A voting algorithm de
ides about the image of the database most simi-

lar to the query image (See Se
tion 6.4.1). Performing a query the set of feature

ve
tors is 
reated for the query image, and every ve
tor is 
ompared with the pre-


omputed features of the database images. If the distan
e is below a threshold t,

then the involved database image gets a vote. The images having maximum votes

are returned to the user.

The authors re�ne the indexing algorithm by adding multi s
ale representation.

The pre-
omputed feature ve
tors of the database images are 
al
ulated at several

s
ales. This 
an be a
hieved by di�erent quantities of smoothing of the Gaussian

derivatives whi
h are basis for the 
omputation of the invariants. The feature ve
-

tors of the query image are still 
omputed at one s
ale only, but they are 
ompared

to the feature ve
tors of the database, whi
h are extra
ted at several s
ales. This

adds invarian
e to s
ale to the retrieval algorithm at the 
ost of a higher possibility

of wrong mat
hes. To 
ompensate for that, semi lo
al 
onstraints are introdu
ed.

The 
onstraints in
rease the requirements for a mat
h by demanding not only a

mat
h of the two feature ve
tors but also of 50% of their neighbor ve
tors. An

additional geometri
 
onstraint further de
reases the possibility of wrong mat
hes.

Angles between key points have to remain 
onsistent (e.g. the angles �

1

and �

2

in

Figure 2.2).

�

1

�

2

Figure 2.2: Semilo
al 
onstraints for the mat
hing 
onditions of feature ve
tors

Siggelkow and Burkhard also use lo
al invariant features [29℄ gathered on what they


all key points, whi
h "are distinguished and di�er from the other points by some

very stru
tured neighbourhood". Basi
ally they use rotation invariant histograms,

whose features are built by taking integrals over all possible rotation fun
tions
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applied to the key point. Remarkable is their method to built the histograms from

the features. One feature does not 
orrespond to a single histogram bin, but to

a 
ir
ular area of bins whi
h is 
entred at the destination bin. Ea
h bin re
eives

a weighted input of this features, where the weights are smaller at the borders of

the area. This approa
h makes histogram 
omparisons less sensible to small shifts

in the pixel values.

For his obje
t re
ognition algorithm Lowe [17℄ uses features on interest points as

well, applying a method whi
h he 
alls SIFT (S
aled Invariant Feature Transform).

The basi
 idea is similar to the methods for image retrieval based on interest

points: An obje
t is re
ognised in an image if suÆ
ient number of SIFT keys of a

region, i.e. the features extra
ted on these interest points, mat
h the obje
ts keys.

The lo
ations are determined by sear
hing maxima and minima of a di�eren
e of

Gaussian fun
tion in an image pyramid. A

ording to the author the operator

dete
ts points at regions and s
ales of high variations.

To ea
h interest point a feature ve
tor (
alled SIFT key ve
tor) is 
reated.

To make the feature data invariant to 
hanges of rotation and s
ale, 
anoni
al

orientation and s
ale values are assigned to ea
h ve
tor. The feature data is stored

relative to these values. The 
anoni
al s
ale 
an be determined by the pyramid

level at whi
h the key was dete
ted. The 
anoni
al orientation R

ij

for a pixel A

ij

is 
omputed by pixel di�eren
es R

ij

= atan(A

ij

� A

i+1;j

; A

i;j+1

� A

ij

). To make

the orientation more robust it is 
omputed by using the peak values of a histogram

of lo
al orientations.

A SIFT key ve
tor 
ontains gradient values separated into di�erent orientation

planes, where ea
h plane 
ontains only gradients whi
h 
orrespond to its orien-

tation. The orientations of the planes are 
omputed relative to the 
anoni
al

orientation of the ve
tor. The regarded pixels are lo
ations that fall in a 
ir
le

around the key lo
ation. These orientation planes are 
omputed for two levels:

The level at whi
h the interest point lo
ation was dete
ted and the neighbouring

level one o
tave higher.

A

ording to the author these SIFT keys give enough measurements for high

spe
i�ty, whereas they are invariant to s
ale, orientation and small variations in

illumination.

2.2.3 Texture Based Algorithms

Rubner and Tomasi present in [25℄ an image retrieval algorithm based on texture

features. By applying a di
tionary of Gabor �lters to ea
h image they get a 
loud

of points in a multi dimensional spa
e, where ea
h point belongs to an image

lo
ation. They post pro
ess this distribution using a 
lustering algorithm. The

results are 
luster 
entres plus their 
orresponding weights, whi
h are inserted into

a texture signature. The Earth Mover's distan
e is used to 
ompare the signatures

representing an image. This distan
e has been 
hosen for its interesting properties

like robustness to small shifts in the histogram/signature distribution.

10



Similar to our approa
h Bhatta
harjee uses in [1℄ a method based on interest

points and texture features 
olle
ted on regions around these feature points. See

se
tion 3.5 for a des
ription of this interest point dete
tor based on Morlet wavelets.

An interest region is 
reated around ea
h interest point and a �lter bank applied to

it. Bhatta
harjee uses three di�erent �lter types: the �rst-, se
ond- and third-order

derivatives of Gaussians. Ea
h �lter type is applied in di�erent dire
tions to the

interest region. The maximum response of ea
h �lter is pi
ked. This results in an

n-dimensional ve
tor for a �lter bank of n �lters. In analogy to text based retrieval

systems he 
alls these ve
tors tokens. However, instead of 
omparing these token

sets dire
tly, an indexing vo
abulary 
onsisting of indexing terms is built. The

ve
tor spa
e 
reated by the n-dimensional tokens 
reates an n dimensional hyper


ube. In this hyper 
ube an n-dimensional grid is 
reated by partitioning the axis

into intervals. The set of indexing terms 
onsists of all grid points in this 
ube.

Ea
h image is represented as a ve
tor of weights based on these indexing terms.

The weighting is either binary (1 - the term has been in
uen
ed by at least one

token of the image, 0 - else) or more sophisti
ated using the signi�
an
e of the

indexing terms. The signi�
an
e of an indexing term is 
ontrolled by two measures:

� The distan
e of the tokens to the indexing term. The bigger the distan
e the

more likely the indexing term is a noisy version of the token

� The number of times the term appears in the whole database. A term that

appears in many images is not very useful for retrieval

The similarity measure between two images is de�ned by the inner produ
t of their

weights ve
tors.

2.2.4 Methods Based on Stru
ture

Image databases based on stru
tural similarity take into a

ount geometri
 des
rip-

tions of images, thus are aimed to index primarily drawings or other images showing

strong geometri
 properties. For this reason Huet and Han
o
k implemented stru
-

ture features to index databases of 
artographi
 material in [11℄. They developed

their image des
riptions to �t the 
ontents of their database | aerial images of


ities. The features were based on line segments. Hen
e the pre-pro
essing phase

in
ludes an edge dete
tion step and a segmentation pro
ess to divide the edges

of the image into straight line segments. A following step 
omputes attributes

from pairs of line segments (Figure 2.3). They use features invariant to s
ale and

rotation by extra
ting relative measures:

The relative orientation between the lines:

�

ab;
d

= min[(�

ab

� �


d

); (�


d

� �

ab

)℄

The ratio of line-segment length:
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Figure 2.3: Attributes 
omputed from line segments

r

ab;
d

=

min[l

ab

; l


d

℄

max[l

ab

; l


d

℄

The line-segment proje
tion 
ross-ratio:

xr

ab;
d

=

min[l

ad

; l

b


℄

max[l

ad

; l

b


℄

where l

ab

is the length of the line-segment and �

ab

is its orientation. These at-

tributes are used to in
rease the respe
tive histograms, i.e. di�erent tests using

angle histograms, length ratio histograms and 
ross ratio histograms have been

performed. However, experiments using the angle histograms delivered the best

results, the line-segment proje
tion 
ross-ratio was not as dis
riminative, and the

length ratio was not dis
riminative at all. Huet and Han
o
k also applied di�erent

histogram distan
es (L

1

, L

2

, Bhatta
haryya, Matusita, Divergen
e | see se
tion

7.3 on histogram distan
es) and re
ommended the Bhatta
haryya distan
e as the

most suitable for this kind of indexation.

The main disadvantage of this solution is its spe
ialisation to aerial images

by segmenting them into straight lines segments, whi
h makes it less usable for

other s
enes. Popes
u adopts in [23℄ the pairwise histograms of Huet and Han
o
k

to hold interest point lo
ations, thus extending the domain of usage to natural

images. Instead of edge dete
tion and segmentation an interest point dete
tion

step is applied to pre-pro
ess the images. He uses the multi resolution 
ontrast

based interest operator of Jolion (See se
tion 3.6 for details on this operator). To
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reate the pairwise histograms only the lo
ation of the points is used, no more

information is taken from the image. The following steps are performed:

� Appli
ation of the interest operator to get the point lo
ations.

� For ea
h interest point 
al
ulate the spatially n-nearest neighbouring interest

points.

� For ea
h interest point 
al
ulate the set T of all possible triples of points,

where the �rst point is the interest point itself, and the remaining two points

are neighbors, whi
h are immediately following ea
h other in distan
e rank-

ing:

T = f(P;N

i

; N

i+1

) 2 N j i 2 [1; n℄g

where N is the set of the spatially n-nearest neighbouring points and the

index i of the N

i

denotes the ranking of the neighbouring points regarding

the original point P , i.e. the nearest neighbour is spe
i�ed by N

1

, the se
ond-

nearest by N

2

et
.

� For ea
h triple of T in
rease a histogram bin of the two dimensional fea-

ture histogram. The bin is determined by the neighborhood ranking of the

neighbor points (�rst 
oordinate) and the angle between lines 
onne
ting the

interest point with the neighbors.

Figure 2.4 shows a 
on�guration of points whi
h leads to an in
rement of the

feature histogram. The nearest neighbor sear
h for the interest point P �nds the

lo
ations of the neighbors N

1

, N

2

and N

3

. The set of tripels 
an be given with

T = f(P;N

1

; N

2

); (P;N

2

; N

3

)g. In our example the triple (P;N

2

; N

3

) is examined:

The properties to determine the histogram bin whi
h needs to be in
reased are the

neighborhood ranking of the neighbor N

2

= 2 and the angle � between the two

lines 
onne
ting the point P with its neighbors N

2

and N

3

.

P
�

N

1

N

2

N

3

Figure 2.4: Indexing interest point lo
ations

The two dimensional histograms 
reated in the indexation step are 
ompared

by 
al
ulating the Bhatta
harya distan
e during the query phase. Results on a

database of images of various kinds proved, that the algorithms gives good results

on drawings as well as on natural images.
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2.2.5 Shape based methods

Mokhtarian et al. present in [21℄ an algorithm retrieving images through shape

features. The basi
 prin
iple of their method is the representation of images as


urves. For this reason the images in their test database 
ontain only one obje
t

per image. The representation is based on the 
urvature s
ale spa
e theory: A


losed planar 
urve 
an be given as

� = f(x(u); y(u))ju 2 [0; 1℄g

where u is the normalised ar
 length parameter and x(u) and y(u) are the 
oordi-

nate fun
tions. The starting point of the 
urve is 
hosen randomly. By applying a

one-dimensional Gaussian smoothing �lter to the 
oordinate fun
tions, the number


urvature zero 
rossings de
reases with in
reasing width � of the Gaussian kernel,

until the 
urve be
omes 
onvex and there are no more 
urvature zero 
rossings.

This pro
ess 
an be modelled in a 
urvature s
ale spa
e image (CSS image) as

shown in Figure 2.5. The x-axes shows the ar
 length parameter u and the y-axis

shows the width � of the Gaussian kernel. The 
urves in the CSS image show

the progress of 
on
avities and 
onvexities in the image. The original 
urve is

represented by the maximas of the 
urves in the CSS image.

Figure 2.5: The CSS image of an example 
urve

The distan
e fun
tion 
ompares the maxima lo
ations of the two CSS images.

Sin
e the starting point of the 
urves has been 
hosen randomly, the 
urves have

to be mat
hed �rst. This 
an be done by 
hoosing one point of ea
h CSS image

and shifting one image so that these two points mat
h. This is done with several

times and the best mat
h is taken. The �nal distan
e is the sum of the straight line

distan
es of the mat
hed maxima pairs plus the y 
oordinates of the unmat
hed

maximas.

The performan
e of the system has been evaluated on database of marine ani-

mals. The results sets of the query algorithm have been 
ompared with the results

sets 
reated by di�erent humans evaluators.
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2.2.6 Commer
ial Systems

Content based image retrieval is a young domain, but there are already some

su

essful 
ommer
ial systems. One of the �rst presented is the system QBIC

developed by the 
ompany IBM [6℄. This query appli
ation in
ludes a graphi
al

query tool whi
h not only allows to use example images to query the system, but

also to 
reate a query spe
i�
ation by drawing, sket
hing and sele
ting 
olours et
.

The query methods support 
olour, texture and shape features. The user may


hoose the type of query or the weights for the similarity measures. The features

are global. For 
olour queries 3-dimensional 
olour histograms are taken. Tex-

ture oriented queries 
ompare 
oarseness, 
ontrast and dire
tionally features and

queries measuring shape similarity 
ompare measures of area, 
ir
ularity, e

en-

tri
ity, major-axis dire
tion et
.

In order to de
rease query time several indexation te
hniques are applied. Fast

�ltering te
hniques eliminate a large number of 
andidates. For low dimensional

features as 3D-histograms the database images are indexed using 
onventional

index te
hnologies known from database theory. Higher dimensional features are

redu
ed to lower dimensions using the prin
ipal 
omponent transform.

A similar appli
ation has been developed by the 
ompany Virage, In
.[9℄: The

system VIR (Visual Information Retrieval) also powers the 
ontent based image

retrieval sear
h fun
tion of the web sear
h engine altavista

1

. Like QBIC, VIR

supports di�erent feature types like 
olour, texture, stru
ture and shape. The

features are either 
al
ulated globally or lo
ally for smaller regions of the image.

The Virage 
ore image indexing engine in
ludes a programmers interfa
e whi
h

makes it possible to invoke the fun
tionality from di�erent appli
ations. The engine

operates stateless and performs operations like the 
reation of feature ve
tors for

images and the 
omparison. The appli
ations are responsible for the storage of

the images and the feature data. The system also supports query re�nement by

re-
al
ulating the weights for the query methods a

ording to the desires of the

user (See se
tion 2.3).

2.2.7 Summary

A summary of the methods for 
ontent based image query 
lassi�ed by feature

type 
an be found in Table 2.1.

2.3 Environment of this work

The algorithms and methods des
ribed in this work have been developed at the

Laboratoire Re
onnaissan
e de Formes et Vision (RFV ) of the Institute National

de S
ien
e Appliquee de Lyon and the Pattern Re
ognition and Image Pro
essing

1

http://www.altavista.
om
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Author(s) Feature

Type

Des
ription

Swain and Ballard

[33℄

Colour Colour histograms

Stri
ker et al. [32℄ Colour Colour histograms for �xed regions

Matas et. al [18℄ Colour Color adja
en
y graph

S
hmidt and

Mohr [28℄

Invariant

features

Sets of feature ve
tors with invariant fea-

tures. A voting algorithm 
al
ulates the

distan
e

Siggelkow and

Burkhard [29℄

Invariant

features

Histograms with invariant features

Lowe [17℄ Invariant

features

Obje
t re
ognition using feature ve
tors

with invariant features.

Rubner and

Tomasi [25℄

Texture Gabor �lters and Histograms

Bhatta
harjee [1℄ Texture Texture features on interest regions. The

features are distan
es of texture tokens to

indexing terms

Huet and Han
o
k

[11℄

Stru
ture Pairwise histograms �lled with geometri


attributes of line segments

Popes
u [23℄ Stru
ture Pairwise histograms �lled with geometri


attributes taken from the lo
ations of in-

terest points

Mokhtarian et al.

[21℄

Shape Features taken from the 
urvature s
ale

spa
e

IBM Colour, tex-

ture, shape

The system uses global 
olour histograms,

global texture features and global shape

features.

Virage Colour, tex-

ture, shape

Feature are the dominant 
olour and the


olour variation, variations in 
olour and

global shape features.

Table 2.1: A summary of the methods des
ribed in this 
hapter
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Group (PRIP) at Vienna University of Te
hnology. The aim was to 
reate a


ontent based image retrieval system based on texture similarity, whi
h should |

after further development | be part of an indexation algorithm based on user

feedba
k, whi
h is under development at RFV. Figure 2.6 shows the s
heme of

a query system in
luding user feedba
k. The pro
ess starts with the �rst query,

whi
h presents its results to the user, who 
hooses the images 
orresponding the

most to her wishes as well as the ones having the least (subje
tive) similarity.

Based on this subset of the results the system adjusts its parameters and re-runs

the query, thus a
hieving a re�nement of the original query results. The essential

requirement to ensure the in
reasing quality of the query results is to translate the

user's digest of the results into the right adjustments of the system parameters.

results
Manual Selection
of images

parameter adjustment

Query 

Figure 2.6: Image retrieval system with user feedba
k and parameter adjustment

A variant of this user feedba
k method is the multi feature retrieval system de-

veloped at RFV, where the adjustable parameters are weights for di�erent query

engines. Figure 2.7 shows a s
hemati
 overview of this system. The basi
 
ompo-

nents are query engines based on 
olour, texture, stru
ture and shape similarity.

Starting a query ea
h of these engines retrieves a result set of images out of the


ommon database, whi
h in
ludes images of maximum similarity to the query im-

ages a

ording to its respe
tive similarity measure. All result sets are 
ombined

to one �nal result set using individual weights for ea
h query method. These ini-

tial weights 
ould be set to default values gathered from empiri
 studies of visual

per
eption or they 
ould simply be histori
 values preferred by the users.

The 
ombined results of this �rst stage are presented to the user, who 
hooses

her preferred images. A

ording to this subset of the results the weights for the

query engines are adjusted. This is done by 
he
king whi
h similarity types have

been favoured by the user. Query engines whose images have been 
hosen prefer-

ably are rewarded by in
reased weights, whereas engines whose images did not

manage to get in the users digest are punished by de
reased weights. This way the

image database adopts to the users wishes and delivers images a

ording to the

similarity desired by the user. One drawba
k of this method is that these weights

di�er from image to image. In one query texture is important, in another 
olour

et
.
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Chapter 3

Interest Points

Image pro
essing is a domain whi
h depends on high 
omputational power. Com-

puters are getting more powerful, but still the task of storing and 
omparing large

amounts of image and espe
ially video data needs high 
apa
ities of both memory

and CPU. Today a typi
al image 
ontains 512�512 pixels, i.e. an indexation algo-

rithm has to des
ribe features for 260,000 pixels per image. Performan
e problems

are not the only issue resulting from this large quantities of information. Most

of this information is redundant. Pixels of homogeneous regions 
ontain similar

information, so adding them to an image des
ription will not in
rease its quality


onsiderably. In the area of image indexation mu
h resear
h was done to de
rease

redundan
y and the amount of information ne
essary to des
ribe images. Di�erent

attempts have been made:

Global features Global image features like 
olour histograms [33℄ des
ribe the

whole image only. However, the 
osts are rather high. Global features are

sensible to outliers and mat
hing only parts of images is not possible.

Segmentation Some algorithms perform a segmentation step in a pre-pro
essing

phase [18℄ to segment the image into regions whi
h are homogeneous in the

desired property (e.g. 
olour or texture). Features are extra
ted on ea
h


omponent.

Dete
tion of interest points Instead of performing a full segmentation an in-

terest operator dete
ts points with spe
i�
 properties. Features are extra
ted

on these points or on regions around these points.

In our approa
h we de
ided to use an interest operator to lo
ate key points in the

input images. These points of spe
ial interest should hold the main information of

an image both using their lo
ation and texture information gathered on their lo
al

surrounding region. This 
hapter will des
ribe requirements for interest dete
tors,

their histori
al development, and will explain some types of operators putting the

emphasis on those we used in this work.
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3.1 Overview

The �rst interest point dete
tors have been developed for 3D vision and roboti
s

[22℄,[10℄ to extra
t 
orners. They have been used | and are still used | for motion

dete
tion or tra
king systems, where it is ne
essary to have stabil features whi
h

remain un
hanged in a sequen
e of video frames. The de�nition whi
h points in

an image are 
orners di�ers. Morave
 and Harris de�ned 
orners as points, where

a shift of re
tangular window in all 4 dire
tions 
hanges the intensities of this

window signi�
antly (See se
tion 3.2). Smith and Brady dete
t 
orners by applying

a 
ir
ular mask to ea
h pixel and evaluating the di�ern
es of the grayvalues in this

mask (See se
tion 3.3). But in all 
ases 
orner dete
tors rely on information of

geometri
 nature whereas not all image features used for image indexation are

geometri
. Be
ause the requirements for interest operators are not the same as

those for 
orner dete
tors, more re
ently operators have been developed expli
itly

for indexation purposes. We will try to state the most 
ommon requirements for

interest operators:

Stability An interest operator determines the lo
ations in the image where fea-

tures are extra
ted to 
reate the image des
riptions. Therefore it is important

that for two similar images the interest points are dete
ted at similar lo
a-

tions. Espe
ially for algorithms using weak features where the lo
ation itself

is used for indexation this property is of uttermost importan
e.

Des
riptiveness The interest points need to be lo
ated at areas where the gath-

ered features are most des
riptive, i.e. the des
riptiveness of a point lo
ation

is dependent on the type of features used. However, most interest point oper-

ators de�ne this des
riptiveness as the amount of "signal variation" that 
an

be found at that lo
ation. These interest points are also sometimes 
alled

"salient points".

Invarian
e to rotation and s
ale Most image similarity measures demand ro-

bustness to 
hanges of rotation and s
ale, whi
h also requires the interest

operator to have this property.

Robustness to JPEG and MPEG 
odation Images 
oded in the JPEG for-

mat or extra
ted from MPEG 
oded video streams su�er from artifa
ts due

to information loss in the 
ompression step. Espe
ially at high 
ompres-

sion rates the quality of the images de
reases fast. The JPEG algorithm


ompresses images in blo
ks of 8 � 8 pixels using the dis
rete 
osine trans-

formation (DCT). At high 
ompression rates, where less DCT 
oeÆ
ients

are used for re
onstru
tion, neighbouring blo
ks do not �t together, produ
-

ing square shaped artifa
ts. These squares do not only disturb the visual

impression of the image, they also pose problems to image pro
essing algo-

rithms, thus also 
orner and interest point dete
tors. However, sin
e already
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large quantities of available image and video material are stored in the JPEG

and MPEG formats an interest operator is required to be robust against the

types of artifa
ts they produ
e.

3.2 The Harris Corner Dete
tor

The 
orner dete
tor des
ribed by Harris and Stephens [10℄ is also known as Plessey


orner dete
tor. The algorithm is based on the dete
tor of Morave
 [22℄, whi
h

uses a small window and the 
hanges in image intensity when shifting the window

in di�erent dire
tions. Morave
 des
ribes the 
hange E as:

E

x;y

=

X

u;v

w

u;v

j I

x+u;y+v

� I

u;v

j

2

Depending on the grey-level distribution of the image under the window the fol-

lowing 
ases are possible:

1. If the image intensities are almost 
onstant, then the 
hanges after shifting

the windows will be small

2. If the window is 
rossing an edge, then a shift parallel to the edge will 
ause

small 
hanges, whereas a shift perpendi
ular to the edge will 
ause a large


hange

3. If the window is 
rossing a 
orner, then shifts in every dire
tion will 
ause a

signi�
ant 
hange in image intensity

Harris and Stephens proposed some improvements to Morave
s dete
tor. First a

Taylor expansion about the shift origin was performed:

E

x;y

=

X

u;v

w

u;v

j x

�I

�x

+ y

�I

�y

+O(x

2

; y

2

) j

2

E

x;y

= Ax

2

+ 2Cxy +By

2

where

A =

�I

�x


 w

B =

�I

�y


 w

C =

�I

�x

�

�I

�y


 w

Furthermore they 
hanged the re
tangular window for a Gaussian window:
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w

u;v

=

1

�

2
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The 
hange E 
an be rewritten as

E

x;y

= (x; y)M (x; y)

T

M =

�

A C

C B

�

On edge pixels one of the two eigenvalues � and � ofM will be large and the other

one stay small, whereas on 
orner pixels both eigenvalues will be large. Hen
e,

using � and � a rotationally invariant response fun
tion 
an be 
reated:

R = Det(M) � k (� + �)

2

The a
tual interest points are 
reated by a non lo
al maxima suppression of this

fun
tion.

The behaviour and the performan
e of the dete
tor thus depends on 5 parameters.

In this work we use two di�erent implementations of the Harris operator with

di�erent parameters. The �rst version (referred to as Harris 1 from now on) was

implemented by Ni
u Sebe

1

, the se
ond one (referred to as Harris 2 ) by Jean-

Mi
hel Jolion

2

. The parameters are the following:

� The parameter k of the response fun
tion. This parameter is the same for

both versions: k = 0:04.

� The varian
e � of the Gaussian fun
tion. Harris 1 uses a �lter kernel of [1 2

1℄, whereas Harris 2 uses a kernel of [ 1 3 3 1 ℄.

� The kernel of the derivative fun
tion. The kernel for Harris 1 is [-1 8 0 -8 1℄.

Harris 2 uses a re
ursive derivative fun
tion (Deri
he).

� The size of the window of the algorithm to extra
t the lo
al maxima. Harris

1 uses a window of 3� 3, Harris 2 uses 5� 5.

� A �nal threshold to get the desired number of points. This value 
an be


hosen by the user.

1

Leiden Imaging and Multimedia Group

2

Laboratoire Re
onnaissan
e des Formes et Vision, INSA Lyon
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3.3 SUSAN

The SUSAN 
orner dete
tor is part of the low level image pro
essing approa
h

introdu
ed by Smith and Brady [30℄ whi
h 
ombines edge dete
tion, 
orner dete
-

tion and noise redu
tion using the same basi
 prin
iple. The basi
 feature of the

SUSAN algorithms is a 
ir
ular mask applied to ea
h pixel of the image. The pixel

in the 
enter of the mask is 
alled the nu
leus. All other pixels 
an be 
lassi�ed

into two 
lasses: Pixels having the same (or similar) gray value as the nu
leus and

pixels having a di�erent gray value. The area of pixels having the same gray value

as the nu
leus is 
alled USAN ("Univalue Segment Assimilating Nu
leus").

Figure 3.1: The prin
iple of the SUSAN 
orner dete
tor

Figure 3.1 shows 5 masks applied on di�erent lo
ations to an image 
ontaining a

white re
tangle on a dark gray ba
kground. As 
an be seen in the �gure, the size

of the USAN relative to the size of the whole mask 
ontains information about

the stru
ture of the image. If the mask is pla
ed on a homogeneous area then the

USAN takes all the area of the mask (Figure 3.1.e). Approa
hing edges the size

of the USAN de
reases until it only 
overs 50% (Figure 3.1.b), whereas on 
orners

it de
reases even further (Figure 3.1.a). The SUSAN 
orner dete
tion algorithm

takes advantage of this prin
iple. The following steps are ne
essary to 
ompute

the 
orner response of a pixel:

� Appli
ation of the 
ir
ular mask and determination of the gray value of the

nu
leus (= the pixel whose 
orner response shall be 
omputed).
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� Determination of the pixels having the same or similar gray values as the

nu
leus. But instead of thresholding the gray value di�eren
e, the following

fun
tion is used:


(~r; ~r

0

) = e

�(

I(~r)�I( ~r

0

)

t

)

6

where I(~r) is the gray value of the nu
leus and I(~r

0

) is the gray value of

the point to pro
ess. The fun
tion evaluates to 1 for small di�eren
es, i.e.

pixels whose gray values are similar to the nu
leus, 0 for big di�eren
es, and

is smoothly des
ending near the "threshold value" t. The size of the USAN

area on pixel r

0

, 
an be 
al
ulated by the sum for all pixels in the mask:

n(~r

0

) =

X

~r


(~r; ~r

0

)

� Threshold the size of USAN and subtra
t the size from the threshold value

g to get the 
orner response:

R(~r

0

) =

(

g � n(~r

0

) if n(~r

0

) < g

0 otherwise

where R(~r

0

) is the 
orner response and g is the geometri
 threshold, whi
h

determines whi
h types of 
orners shall be dete
ted. The lower this value,

the sharper a 
orner has to be in order to be dete
ted by the algorithm.

� Dete
tion of false positives is ne
essary in 
ertain 
ases, e.g. when the nu
leus

is set on stripes of thin lines. The size of the USAN will be small and

eventually below the threshold g be
ause of the small stripe of gray values

similar to nu
leus. However, the 
orner response is not justi�ed in this 
ase.

To re
ognize situations like this the 
entroid of the USAN is 
omputed and


ompared with the position of the nu
leus. In our example they will be

almost identi
al whereas in the 
ase of a real 
orner the positions will be

quite di�erent. An additional 
onstraint is added to the algorithm: Corner

responses are removed, if not all pixels on the line between the nu
leus and

the 
entroid of the USAN belong to the USAN. This 
onstraint removes false

positives in images with lots of noise.

� A �nal step of non lo
al maxima suppression delivers the lo
al maxima as


orners.

The algorithm is 
ontrolled by two parameters: The "quality" parameter g, whi
h


ontrols the shape of the 
orners, and the "quantity" parameter t, whi
h a�e
ts

the number of 
orners the system delivers.
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3.4 Interest Point Extra
tion Using Haar Wavelets

The interest point dete
tor of Loupias et al. [16℄ is based on the non standard

de
omposition of Haar and Daube
hie wavelet transforms. Primers to wavelets


an be found in [31℄, [8℄. Generally Wavelets are used to hierar
hi
ally de
ompose

fun
tions. Similar to the windowed Fourier transform, wavelets allow to analyse

fun
tions in the frequen
y domain. The Fourier analysis transforms a periodi


fun
tion into its frequen
y representation by representing it as sums of sine and


osine fun
tions. For ea
h frequen
y a 
oeÆ
ient is 
al
ulated, the \energy" of

this frequen
y in the signal. However, the lo
ation of this energy 
annot be found

easily. The windowed Fourier transform is used for non periodi
 fun
tions. The

signal is 
ut into windows of �xed size, and the Fourier transform applied to ea
h

window. This allows to lo
alise the frequen
y 
oeÆ
ients more or less pre
isely

a

ording to the window size.

One of the biggest disadvantages of the windowed Fourier transform is the �xed

size of its windows. The perfe
t windows size is dependent on the frequen
ies

whi
h shall be lo
alised. Low frequen
ies need bigger windows. If the window is

too small, the period of the signal is not 
overed by the windows. High frequen
ies

need smaller windows. If the window size is too big the lo
alisation of the signal is

not pre
ise enough. Wavelets use windows of variable size. The basis fun
tions are

derived from a mother wavelet fun
tion. The basis fun
tions for high frequen
ies

are short 
ompressed versions of the mother fun
tion, whereas the basis fun
tions

for the low frequen
ies are long, stret
hed versions of the mother wavelet.

Applied to image pro
essing wavelets are used to represent images at di�erent

resolutions with di�erent levels of details. A spe
ial type of wavelets are Gabor

wavelets, whi
h use Gabor fun
tions as mother wavelet fun
tion. In our work

we use a bank of �lters built from these wavelet fun
tions for texture feature

extra
tion. In se
tion 4.2 we give further details on Gabor fun
tions and �lters.

The interest point dete
tor of Loupias uses the Haar and the Daube
hie wavelet.

The perhaps most simple wavelet is the Haar Wavelet, whose fun
tionality will be

explained in the next se
tion.

3.4.1 The Haar Transform

As an example the gray values of an image are given in Figure 3.2.

1 7 6 2

9 7 1 3

4 5 6 2

3 4 9 3

Figure 3.2: Example image for a Haar wavelet
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We are 
al
ulating the se
ond level of a multi resolution representation by 
om-

puting the average values of the pixels, whi
h gives us an image half the size of

the original image (Figure 3.3).

6 3

4 5

Figure 3.3: Average values after �lter appli
ation

However, information is lost on this step. To be able to re
onstru
t the original

image, the di�eren
es of the average values to the original values have to be 
al-


ulated and stored as well. This results in a matrix of the original size, with the

average values in the upper left quadrant and the detail 
oeÆ
ients in the other

quadrants (Figure 3.4).

6 3 -4 2

4 5 -2 10

-8 4 -8 6

2 -4 0 -2

Figure 3.4: The Haar wavelet after 
omputation of the se
ond level

This pro
ess 
an be applied re
ursively to the upper left quadrant 
ontaining the

average values. An example of this de
omposition applied to the example image


ameraman (�gure 3.6a) 
an be seen in �gure 3.6b. Note, that the gray values in

the three other quadrants 
ontain di�erential values of di�erent �lters (Figure 3.5).

Hen
e the Haar transform is a multi resolution representation of the frequen
y


oeÆ
ients of an image. High 
oeÆ
ients 
orrespond to high variations in the

image, thus salient points. These points 
an be extra
ted on di�erent levels of the

wavelet.

+ + + -

+ + + -

+ + + -

- - - +

Figure 3.5: The �lters applied on ea
h level

Many other wavelet fun
tions are suitable for this algorithm. The se
ond form

of the Loupias operator is based on the Daube
hie wavelet[16℄, whi
h is basi
ally

a more general version of the Haar wavelet. Loupias used for his interest point

dete
tor a �lter size of 4 � 4. The 
oeÆ
ients of the �lter are derived from the
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Figure 3.6: The Haar wavelet based interest operator(a) Example pi
ture "
am-

eraman" (b) The 
oeÆ
ients after Haar wavelet transform for example "
amera-

man"(
) Example pi
ture "square" (d) Tra
ing an interest point trough the di�er-

ent levels for example "square"
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onstraint of orthogonality of the basis fun
tions. Like with the Haar wavelet the

size of a higher level is half the the size of the parent level. However, Sin
e the

mask size is 4� 4, the masks are overlapping.

3.4.2 Extra
tion of the Interest Points

Ea
h point in the transformed image 
orresponds to a salien
y on it's respe
tive

level. If we go down one level in the hierar
hy this point 
orresponds to 4 points

in the lower level, i.e. these 4 
hild points have been used to 
al
ulate the original

value. Of these 4 points the one with the highest 
oeÆ
ient 
an be seen as the

one 
ontributing the most to the value of the upper level, i.e. we 
an 
onsider this

point as the "origin" of the salien
y.

The basi
 idea is to tra
e the salien
y from level to level until we rea
h the

lowest level. Ea
h level of the pyramid 
ontains the appli
ations of the 3 di�erential

�lters in quadrants 2, 3 and 4 (Figure 3.5). The pro
ess starts at all levels of the

transformed image and for all 3 di�erent �lter dire
tions. For ea
h point in the


urrent level the maximum 
oeÆ
ients are tra
ed down until the lowest level is

rea
hed. To ea
h path the sum of it's 
oeÆ
ients 
an be assigned, whi
h gives

the value of it's salien
y. Figure 3.6d shows an example of su
h a tra
e for the

simple image of a square. Paths are sear
hed starting on every level of the image.

However, paths started from lower levels 
an be parts of paths started from higher

levels. In this 
ase the longest route will be taken. Finally, the lo
ations of all

tra
ed points in the lowest level are returned to the user, in
luding their assigned

values. A threshold 
an be applied to return the desired number of interest points.

The results obtained by these dete
tors are di�erent from the results of Harris

and Susan, whi
h assume that key points are 
orners. The points extra
ted by

the wavelets dete
tor are not 
orners, they are points were "something" happens

at various levels of the image. They 
orrespond to areas of high variations in the

image.

3.5 Interest Points based on Morlet Wavelets

Bhatta
harjee des
ribes in [1℄ a solution for image retrieval based on stru
ture using

interest points and lo
al texture features. His interest point dete
tor is based on

a 
ontinuous Morlet wavelet, whose mother wavelet fun
tion in frequen
y domain

is de�ned by

d

ES

1

(u; v) = �iue

�(

u

2

+v

2

2

)

e

�(

u

2

+(v�y

1

)

2

2

)

The algorithm to extra
t the interest points works as follows:

1. Filter the image with the ES

1

wavelet at 18 di�erent orientations. Only one

resolution is used. The image is �ltered with a "suitable" s
aled version of
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the mother wavelet.

2. For ea
h pixel store the maximum of all �lter responses in a maxima image.

3. Sear
h lo
al maxima. The lo
al maxima are returned as feature points.

A

ording to the author the interest points are usually pla
ed on the end points

of linear stru
tures, similar to the response of end-stopped 
ells found in the mam-

malian 
ortex.

3.6 Contrast Based Interest Points

Jolion and Bres introdu
ed the multi resolution 
ontrast based dete
tion of interest

points in [2℄. Like the Haar wavelet approa
h of Loupias this dete
tor uses a multi

resolution representation of an image to 
al
ulate the key points on di�erent levels.

The method is based on a 
ontrast pyramid.

3.6.1 The Contrast Pyramid

The 
ontrast pyramid built from an image is de�ned by

C

k

(P ) �

G

k

(P )

B

k

(P )

for 0 � k � N � 1 and C

N

(P ) � 1

where G(P ) is an intensity pyramid and B(K) is a ba
kground pyramid. N is

the size of the pyramid given an image of the size 2

N

� 2

N

pixels. The intensity

pyramid is modelled by

G

k

(P ) =

X

M2sons(P )

w(M) �G

k�1

(M)

The ba
kground pyramid is de�ned by

B

k

(P ) =

X

Q2fathers(P )

W (M) �G

k+1

(Q) = Expand[G

k+1

℄(P )

Hen
e, the ba
kground is 
al
ulated using the luminan
e of the father pixels in the

upper level of the pyramid. A weight fun
tion W (M), whi
h takes into a

ount

the way the pyramid is built, is applied to the sum of the luminan
e of the father

pixels. The ratio of the 
ontrast is 
hanged slightly from

G

k

(P )

B

k

(P )

to equation 3.1

in order to get a symmetri
al 
ontrast measure whi
h is not dependent on low or

high intensity situations:

C

�

k

(P ) = min

 

jG

k

(P )� B

k

(P )j

B

k

(P )

;

jG

k

(P )� B

k

(P )j

255� B

k

(P )

!

(3.1)

An example for the 
ontrast pyramid de�ned above is depi
ted in Figure 3.7b.

29



3.6.2 Extra
tion of the Interest Points

First on ea
h level the lo
al maxima are extra
ted and summed up, resulting in a

new pyramid:

C

�

k

(P ) =

(

C

�

k

(P ) if P is a lo
al maximum

0 otherwise

This 
reates a pyramid with interest points extra
ted on every level. To 
ollapse

this pyramid into an image the following top down s
heme is applied:

E

�

k

(P ) =

C

�

k

(P )

k + 1

+ Expand[E

�

k+1

℄(P ) for k = N � 1; : : : ; 0 and E

�

N

= 0

The result is an energy map with higher values for key points with high 
ontrast.

An example for this energy map is shown in Figure 3.7
. To extra
t the desired

number of interest points a pro
ess of non maxima suppression and thresholding

is ne
essary.

Like the Haar wavelet dete
tor, the multi resolution 
ontrast approa
h does

not return 
orners, sin
e it is not based on any a priori model. A

ording to the

authors the dete
ted interest points are less sensitive to dis
retisation and to jpeg


oding noise than the Harris and the Susan dete
tors. Currently resear
h is done

using this interest operator for motion analysis in video indexing appli
ations [4℄.

3.7 Other operators

Zitova et al. propose in [35℄ an operator whi
h they 
all feature point dete
tor.

Feature points are points whi
h belong to 
rossings of two edges of a spe
i�


angle. This property is 
al
ulated by 
ounting the sign 
hanges traversing a 
ir
le

around ea
h point, where this 
ir
le holds the di�eren
es of the gray value to a

lo
al mean. A

ording to the authors the prin
ipal property of their operator is

rotation invarian
e and robustness to blurred images.

3.8 Comparison and Remarks

In our image indexation algorithm des
ribed in this do
ument we also use interest

point dete
tors to determine interest regions. However, the methods des
ribed

in this work do not rely on a spe
i�
 dete
tor. Instead we performed experi-

ments 
ombining our texture feature des
riptions with 4 di�erent interest opera-

tors, whi
h from now on will be referred to as Harris (The Harris 
orner dete
tor),

Haar (The Haar-wavelet based operator of Loupias), Daube
hie (The Daube
hie-

wavelet based operator of Loupias), Contrast (The multi-resolution 
ontrast based
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interest points of Jolion). For the Harris 
orner dete
tor both implementations of

Sebe and Jolion (se
tion 3.2) have been 
ompared.

Figure 3.8 shows a 
omparison of these interest operators applied to two di�er-

ent test images. One is an arti�
ial image, the other one the well known natural

image "Lenna". A di�eren
e whi
h is visible at the �rst sight is the performan
e

of the Harris operator 
ompared to the other dete
tors. Looking at the arti�
ial

image it is immediately 
lear that the Harris operator dete
ts 
orners. In Figure

3.8.a 300 points are dete
ted. This setting is too high for this image, i.e. the

algorithms have to dete
t more points than there are 
orners in the image. How-

ever, the Harris operator is designed to dete
t 
orners, not edges. Unlike the other

interest point dete
tors, whi
h also deliver points on edges (E.g. on the border

of the re
tangle), the Harris operator needs to have high gradients in at least two

dire
tions. Harris sometimes returns points on uniform areas. On the other hand

the salient point dete
tors (Harris, Daube
hie and Jolion) almost never return

points on rather uniform areas. If the number of points required rises they tend

to dete
t points on edges instead.

A look at the results on the image "Lenna" 
on�rms these observations. The

points dete
ted by the Harris operator are on 
orners (windows, eyes, mouth, the


rossings of hair et
.) and 
urves. The results of the wavelet based operators are

di�erent. The distribution of the points is more spread out, i.e. there are more

points on the ba
kground of the image.

We believe that a performan
e evaluation of these di�erent interest operators


an only be performed for a spe
i�
 appli
ation. For 
ontent based retrieval sys-

tems there is a strong interplay between interest operator, features and indexing

methods. For our indexing algorithm based on texture features we performed

experiments using all 4 operators. Details and results 
an be found in 
hapter 9.
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Figure 3.7: The multiresolution 
ontrast based interest points (a) input image (b)

The 
ontrast pyramide (
) The 
ollapsed energy map.
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Figure 3.8: Comparison of the interest point dete
tors applied to an arti�
ial

image: Harris (upper left), Haar-wavelet (upper right), Daube
hie-wavelet (lower

left) and multi resolution 
ontrast based points (lower right) (a) 300 points dete
ted

(b) 50 points dete
ted.

33



Figure 3.9: Comparison of the interest point dete
tors applied to the Lenna test

image: Harris (upper left), Haar-wavelet (upper right), Daube
hie-wavelet (lower

left) and multi resolution 
ontrast based points (lower right) (a) 300 points dete
ted

(b) 50 points dete
ted.
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Chapter 4

Texture Features

The similarity measure des
ribed in this work is based on texture features. Tex-

tures are espe
ially important for natural images, let's think about images of wood,

grass, trees, sand, marbles, but also of metalli
 obje
ts. Unlike 
olour, texture is

not a property whi
h 
an be extra
ted from a point, but of areas instead. A

single pixel does not have a texture. A 
ommon de�nition is the repetition of

basi
 texture elements, where the type of this repetition di�ers from 
ase to 
ase.

Real periodi
 textures 
an be found in arti�
ial images only, whereas natural tex-

tures are quasi periodi
 or random in nature. Figure 4.1 shows some examples for

textures.

Figure 4.1: Examples for texture

To be able to des
ribe or to 
lassify textures we need to de�ne their properties.

Commonly used properties are frequen
y, dire
tion, phase et
. However, these

properties are dependent on the s
ale the image analysed. A nearly 
onstant area


ould be textured with a big 
onstant texture or a very �ne (in�nite) texture. A

pullover 
ould show textures on two s
ales: The printed pattern of squares at a

higher s
ale and the stru
ture of the wool at a lower s
ale.

Several te
hniques have been used during the past time for texture des
ription

and 
lassi�
ation. Statisti
al methods like auto
orrelation fun
tions, 
o-o

urren
e

matri
es, gray level run length statisti
s have been presented as well as methods of
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the signal pro
essing domain, e.g. �ltering te
hniques. Our work is 
on
entrated

on the �ltering te
hniques. A survey of the statisti
al methods 
an be found in

[34℄, a 
omparative study of the �ltering te
hniques has been done by Randen and

Husoy in [24℄.

4.1 Filtering for Texture Feature Extra
tion

A 
ommon 
hara
teristi
s of signal pro
essing approa
hes to texture analysis is the

�ltering step. This step is justi�ed by the periodi
 nature of texture information.

Randen and Husoy give an introdu
tion into �ltering for texture 
lassi�
ation

and an overview of the di�erent �lter types used [24℄. As we stated before, a

main 
hara
teristi
 of textures is the frequen
y and the dire
tional information.

A 
ommon method to determine the frequen
y of a signal is to �lter it with band

pass �lters whi
h pass di�erent frequen
y bands, a so-
alled �lter bank, and to

measure the energy of the �lter responses. For a signal of high frequen
y the �lter

passing high frequen
ies will have high energy output, whereas the other �lters

will show signi�
ant lower responses. These responses need to be measured using

an estimation fun
tion. We 
an summarize the ne
essary pra
ti
al steps to �lter

an image as follows:

� Transformation of the image or the region into the frequen
y domain. This

is done be
ause most �lters are faster and easier to apply in the Fourier

domain.

� Appli
ation of the �lter bank.

� Estimation of the energy of the responses.

Di�erent types of �lters have been used for texture analysis. Laws [15℄ was one

of the �rst to introdu
e �lters. He proposed 25 separable two-dimensional �lters

whi
h were 
onstru
ted from 5 one-dimensional ones. The one-dimensional �lters


onsisted of one low pass, one high pass and 3 band pass �lters responding to

di�erent frequen
y bands.

Coggins and Jain introdu
ed a �lter bank designed to extra
t frequen
y and

dire
tional information [3℄. They used Gaussian ring and wedge shaped �lters.

The ring �lters extra
ted frequen
y information and the wedge �lters extra
ted

dire
tional information.

For the work des
ribed in this do
ument we 
hose a �ltering approa
h based

on Gabor �lters, whi
h are already widely used for texture analysis [12℄.

4.2 Gabor Fun
tions and Gabor Filters

A Gabor �lter bank is based on �lters derived from Gabor fun
tions, whi
h have

been introdu
ed by Denise Gabor in his "Theory of 
ommuni
ations" [7℄. He pro-
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posed a family of fun
tions whi
h 
an be used to de
ompose arbitrary fun
tions -

similar to the sinus and 
osinus waves for the Fourier transform. The aim he had

in mind was to send 
oeÆ
ients of this de
omposition in 
ommuni
ation appli-


ations. Only re
ently these Gabor fun
tions have been re-dis
overed and a new

resear
h domain 
alled Gabor Analysis has been formed [5℄.

One of the main driving for
es was the sear
h for a signal representation whi
h

should be situated between the time (spatial) representation and the frequen
y

(Fourier) representation. Both representations have advantages and disadvantages:

Using the time series of a signal we are able to follow the order of the amplitudes

through a temporal sequen
e. But we do not know whi
h frequen
ies are used in

the signal. Analysing the Fourier transform of the signal we 
an immediately see

the spe
trum of the frequen
ies whi
h are part of the signal. However, lo
alising

one of the signals is diÆ
ult, sin
e this information is hidden in the phase infor-

mation of the representation. Gabor proposed to 
ompose a signal not into sinus

and 
osinus waves but into a series of fun
tions whi
h are derived from one single

�xed fun
tion as follows:

f(t) =

X

n;m




m;n

gm; n(t):

g

m;n

(t) = g(t� na)e

2�imbt

m;n 2 Z

where the fun
tion f(t) is represented as a series of the fun
tions g

m;n

. The fun
-

tions g

m;n

are 
reated by shifting the fun
tion g(t) in time and frequen
y, where

a and b are the shift parameters. For the fun
tion g(t) Gabor proposed the Gaus-

sian fun
tion. The image representation des
ribed above is 
alled Gabor wavelet.

More general wavelets hierar
hi
ally de
ompose fun
tions into sums of elemen-

tary fun
tions. The elementary fun
tions are 
ompressed or stret
hed version of a

"mother wavelet" fun
tion. In se
tion 3.4 we des
ribed an interest point operator

introdu
ed by Loupias [16℄ whi
h uses Haar and Daube
hie wavelets to represent

images.

A Gabor �lter bank 
onsists of several �lters based on the family of Gabor

fun
tions des
ribed above: Several Gaussian �lters whi
h are obtained by dilating

and rotating the mother fun
tion. The two-dimensional fun
tions used for image

pro
essing and their Fourier transform 
an be written as follows:

h

�;�

(x; y) = h

0

exp

(

�

1

2

x

02

+ y

02

�

2

�

2

)

exp

2�Ix

0

=�

x

0

= x 
os�� y sin�

y

0

= x sin� + y 
os�
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where

� � is the orientation of the �lter.

� � is the size of the �lter (the varian
e of the Gaussian fun
tion).

� � is the spatial period of the sinusoid plane wave (the "frequen
y band" of

the �lter).

� h

0

=

�

2�

��

�

2

is a normalisation parameter.

In this work we adapted the parameter settings used by Megret in [20℄, whi
h were

justi�ed by Farrokhina and Jain in [12℄. The sigma is �xed to � = 2�. The main

parameters are the orientation � and the s
ale �. To obtain all �lters of the bank

these two parameters are 
hanged su

essive in the following way:

� The orientations � of the �lters are 
y
led through the interval [0; �℄: � =

a�

K

;

where a = f0; � � � ; K � 1g and K is the number of orientations of the �lter

bank.

� The frequen
y band � is shifted: � =

p

2

k

�

0

where �

0

=

2

�

and k = f0; 1; � � �g.

k is limited to

2�

�

0

.

Figures 4.3 and 4.3 show the spatial domain and the real part of the Fourier

transform of the Gabor �lter bank used in this work. The �lters of one 
olumn

pass frequen
ies of the same band, whereas the �lters of one row pass waves with

the same orientations. Note, that the �lters passing high frequen
y 
ontents show

strong values in the 
entre of the Fourier spe
trum, where the 
oeÆ
ients of the

high frequen
ies are situated, whereas the �lters passing low frequen
ies show

strong values at the borders of the Fourier image. The orientations passed by

the �lters 
an be seen by the angle of the Gaussian distribution to the 
entre of

spe
trum (see �gure 5.2).

The Gabor �lter bank des
ribed above is used in this work to extra
t lo
al

texture features from images. The next 
hapters des
ribe the appli
ation of the

�lters and how di�erent image representations are built from the �lter responses.
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Figure 4.2: The �lters of the Gabor �lter bank represented in the spatial domain
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Figure 4.3: The real part of the Fourier transform of the Gabor �lter bank
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Chapter 5

Texture Features on Interest

Points

The last two 
hapters des
ribed methods to 
olle
t texture features on images and

to extra
t key points. This se
tion explains methods of 
ombining both texture

features on interest points.

The basi
 idea in this work is to extra
t a �xed number of interest points N

from the image and to sele
t regions of �xed size R around ea
h point, referred to

as interest regions. To ea
h interest region we apply a (Gabor) �lter bank of S�K

�lters, K being the number of orientations and S the number of s
ales. Figure 5.1

shows the basi
 s
heme.

From ea
h of the resulting S �K �lter responses per point the following 
har-

a
teristi
s 
an be extra
ted (see Figure 5.2):

S
ale The s
ale is a property of the �lter and determines the frequen
y interval

that is passed by the �lter.

Orientation Like the s
ale the orientation is a property of the �lter. It denotes

the orientation of the frequen
y that is passed by the �lter. All other orien-

tations are suppressed.

Amplitude The most important des
ription of the �lter response is the maxi-

mum amplitude of the response, from now on referred to as amplitude only.

It tells how strong this interest region responds to the �lter applied to it.

Literally spoken, we 
ould say that it spe
i�es how mu
h stru
ture of the

given orientation in the given s
ale 
an be found in the interest region.

Phase Although the phase information is important to lo
alise the regular stru
-

ture and to re
onstru
t an image from the responses of a �lter bank, it is not

used very often in indexing te
hniques, it will therefore not be 
onsidered

further.

u0, v0 The 
oordinates of the maximum response in frequen
y spa
e.
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Input Image

Find Regions
around Points

Interest Point
Image

Interest
Operator

A

(Frequency Domain)
Bank of Gabor Filters

Collection of 
interst regions

Filter responses

(Frequency Domain)

to each interest region of the image
Application of the Gabor filter bank 

Collect features Collect features Collect features

Figure 5.1: Pro
ess s
heme of 
olle
ting texture features on interest points
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Filter response

vo

u0

0 deg.

max

Interest region Gabor filter

�

Figure 5.2: Feature information available from a �lter response

Angle The angle of the maximum amplitude regarding the 
entre frequen
y of

the �lter. This value is 
orrelated to the orientation of the �lter. However,

if the main orientations of a �lter response are 
al
ulated, it 
an be useful

to get a �ner range of values.

What kind of information do we get after the extra
tion pro
ess? There are di�er-

ent possible interpretations of this data, whi
h makes di�erent models and 
om-

parison algorithms possible. Figure 5.3 shows the result of the feature extra
tion

pro
ess. Let's assume, that for ea
h �lter response only one feature is extra
ted:

The maximum amplitude. Then the output will 
onsist of the outputs of the �lter

bank for ea
h of the N interest regions. For ea
h region S �K responses, thus S �K

amplitudes (F

1

; F

2

; : : : F

S

_

K

) are extra
ted.

....

.... ....

Image
IP

N

IP

1

F

SK

F

1

F

SK

F

1

Figure 5.3: The output of the feature extra
tion pro
ess
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Di�erent 
ombinations of these features are possible. One interpretation is a set

of feature points, ea
h asso
iated with a ve
tor of amplitudes (Figure 5.4.a). Ea
h

ve
tor holds the amplitudes of the set of S s
ales and K orientations. The ve
tors

des
ribe the responses of the regions around the points to �lters of di�erent ori-

entations and s
ales, giving a rough des
ription of \what is happening" around a

point. Hen
e, the des
ription of an image is a set of these features extra
ted on

interest regions. We des
ribe a method of modelling and 
omparing these sets in


hapter 6.

(a)

...

(b)
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); : : : F

1

(IP

N

)

Figure 5.4: Interpretations of the available feature data ordered by interest point

index (a) and by �lter index (b)

A di�erent and more statisti
al interpretation 
ould be to order the data a

ording

to the s
ales and orientations of the �lter bank (Figure 5.4.b). So for ea
h of the

S�K �lters we get a set ofN features | one for ea
h interest point (e.g. amplitude

and point lo
ation). What we get here would be distribution of the amplitude

responses for ea
h �lter, literally speaking how mu
h the image is responding to

the �lter passing this frequen
y and orientation.

Please note, that by simply re-ordering the data we 
an get a di�erent view

of the image, provided that it is supported by the 
al
ulation of the distan
e al-

gorithm. The representation ordered by interest point index is 
entered on the

interest regions of the image. Every region has an assigned feature ve
tor des
rib-

ing it's texture 
ontents, thus the distan
e algorithms 
ompare regions. On the

other hand the representation ordered by �lter index provides a view 
entered on

the responses for one �lter. A way to des
ribe them is a histogram for ea
h �lter

des
ribing the amplitude distribution for the whole image responding to this �l-

ter. Distan
e fun
tions for this representation work di�erent, they 
ompare �lter

responses. Di�erent approa
hes to the se
ond representation based on histograms

are treated in 
hapter 7.
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Chapter 6

Feature ve
tors on interest points

The last 
hapters presented our method to extra
t texture features from digital

images using interest point operators and a Gabor �lter bank. We explained the

di�erent interpretations for the feature data gathered from the images, making

it is possible to develop di�erent feature representations. This 
hapter des
ribes

an indexation method based on an image representation, whi
h orders the feature

data by interest point index. This 
an be interpreted as a set of des
riptions for

interest points.

6.1 Motivation

Methods using feature ve
tors gathered on interest points have already been used in

image indexation and espe
ially obje
t re
ognition. The goals of obje
t re
ognition

systems are similar to the ones of image databases: Pre-sele
ted obje
ts have to

be found and lo
ated in one or more digital images. Some of the problems arising

are 
aused by the o

lusion of parts of the obje
t by other obje
ts or due to its

position to the 
amera. One way to solve this are feature ve
tors on interest points

(See the method of Lowe [17℄ in Se
tion 2.2.2). The basi
s 
an be des
ribed as

follows: Some points are dete
ted in the obje
t whi
h needs to be lo
ated in the

images. Together with the point lo
ations features are gathered (based on 
olour,

texture et
.). In the dete
tion step these points are sear
hed in the images. If a

spe
i�
 number of points 
an be found, then it 
an be assumed that the image


ontains the obje
t. Even if parts of the obje
t are o

luded then still other points

of the obje
t 
an be found.

The requirements for image indexation systems are similar, so also in this

domain algorithms based on feature ve
tors have been published. S
hmidt and

Mohr introdu
ed an image retrieval method based on invariant features in [28℄

(See se
tion 2.2.2). To 
ompare two images, they dete
t interest points in both

images using the Harris 
orner dete
tor (See se
tion 3.2) and 
olle
t invariant

features from a lo
al environment around these points. Then a feature ve
tor is
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reated from the features of ea
h interest point. This way an image is represented

by a set of feature ve
tors.

6.2 Representation

Our image representation presented in this 
hapter is based on a similar prin
iple.

Like already des
ribed in 
hapter 5, we use an interest point operator to extra
t a

�xed number of regions of the image and a Gabor �lter bank to extra
t features

from these interest regions. The result of this �ltering step are N � K � S �lter

responses, where N is the number of interest points, K the number of orientations

and S the number of s
ales of the Gabor �lter bank. From ea
h �lter response

we keep only one value: The maximum amplitude extra
ted from the frequen
y

representation. Reordering this data a

ording to interest point index we 
an

assign to ea
h point K � S amplitude values, whi
h we put into a ve
tor. Thus,

an image is represented by a set of N feature ve
tors similar to the solution of

S
hmid and Mohr.
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4
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Figure 6.1: Feature ve
tor storing amplitude for ea
h orientation

We 
reated two di�erent types of features ve
tors. A simple version is shown in

Figure 6.1. It 
onsists of K entries, where ea
h entry 
orresponds to one of K

orientations of the Gabor �lter bank. To 
al
ulate the value for one entry the

maximum of all S amplitudes for this orientation is taken, i.e. the maximum for

all s
ales of this orientation, and it's logarithm is stored in the entry. All possible

ve
tors span a K-dimensional feature spa
e, where ea
h ve
tor 
an be seen as a

point.

The �nal, s
ale sensitive version of our feature ve
tor keeps the s
ale informa-

tion (Figure 6.2). The ve
tor is split into 3 parts, one for ea
h s
ale, where ea
h

part 
ontains the amplitudes for ea
h orientation like the �rst ve
tor type. Our

experiments have been 
ondu
ted using the s
ale sensitive version of the feature

ve
tor. The simple �rst version does not represent the multis
ale information,

nevertheless it is a ni
e "vehi
le" for the demonstration of distan
es.

46



0

1

2

3

4

5

6

7

Scale 1

Scale 2

Scale 3

for the
different
orientations

Amplitudes

Figure 6.2: The s
ale sensitive version of the feature ve
tor storing amplitude for

ea
h s
ale and orientation

6.3 Comparing feature ve
tors

Above we introdu
ed a representation for images. To be able to retrieve images

we need a distan
e fun
tion. Our methods to 
al
ulate the distan
e of two images,

i.e. two sets of feature ve
tors, are based on the distan
es of feature ve
tors.

So we need to de�ne a distan
e between two single feature ve
tors �rst. This

distan
e is di�erent for the two types of ve
tors. Like we already stated, the simple

version of the feature ve
tors 
an be interpreted as points in aK-dimensional ve
tor

spa
e. We have to �nd a distan
e measure whi
h re
e
ts the distribution of the

points in this ve
tor spa
e. Let's 
onsider the 
loud of points (feature ve
tors)

gathered from the images of our image database. Ea
h dimension represents one

of the K orientations in the image. Provided that the orientations in the images

of the database are distributed equally, we 
an assume that these points in the

ve
tor spa
e are distributed equally a
ross all 
omponents as well. Thus, given

two feature ve
tors � and �, the Eu
lidean distan
e d

E


an be used as distan
e

measure between the two ve
tors:

d

E

(�; �) =

s

X

i

(�

i

� �

i

)

2

where �

i

is the amplitude for dire
tion i of the ve
tor �. Figure 6.3 shows in 3

histogram plots the distribution of the elements of our feature ve
tors for one of the

test image databases used in this work (See Se
tion 8.2). One 
urve 
orresponds

to a histogram plot for one element (i.e. one orientation) of the ve
tor. As we 
an

see, our assumption that the di�erent orientations are distributed almost equally


an be 
on�rmed in this 
ase.

The Eu
lidean distan
e d

E

applied to two feature ve
tors provides in this 
ase

an eÆ
ient manner to 
ompare the frequen
y 
hara
teristi
s of two regions. How-

ever, the feature ve
tors are not rotation invariant, so the 
omparison of two regions

is not invariant to rotation as well. That means, that two regions 
ontaining the

same textures have a higher distan
e if one of the regions is rotated towards the

other one. A human on the other hand would per
eive the two textures as similar
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Figure 6.3: Histogram plots of the distribution of the di�erent orientations for all

features of a test database, separated by s
ales.
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regardless if they are rotated or not. Classi
 image indexation appli
ations like

image or video indexing, are not interested in a 
omplete rotational invarian
e

but must take into a

ount small variations of orientations. For this reason we

introdu
ed some shifting into the distan
e measure to 
ompensate for rotation.

We not only 
al
ulate the Eu
lidean distan
es between the two original ve
tors �

and � but also the distan
es between � and two di�erent 
y
li
 permutations of �.

These 
y
li
 permutations of feature ve
tors are equivalent to rotations of the 
or-

responding interest regions. Given a ve
tor �, the permutated ve
tor � = perm(�)

is de�ned by

� = perm(�); �

i

=

(

�

i�1

for i = 2 : : :K

�

K

for i = 1

(6.1)

The K orientations of our Gabor �lter bank are spread a
ross an angle of �, there-

fore the 
y
li
 permutation des
ribed above is equivalent to a geometri
 rotation

of

�

K

. Given a Gabor �lter bank of e.g. K = 8 orientations the features are ro-

tated by

�

8

= 22:5

o

. Hen
e, to make the distan
e measurement (We 
all it D

F

1

- distan
e for the �rst version of our feature ve
tors) less "rotational sensitive"

we add permutated ve
tors to the 
omparison pro
ess: The distan
e between two

feature ve
tors � and � is a
tually the minimum of 3 distan
es: The Eu
lidean

distan
e between � and �, the Eu
lidean distan
e between perm(�) and �, and

the Eu
lidean distan
e between � and perm(�).

d

F

1

(�; �) = min

(

d

E

(�; �)

d

E

(perm(�); �)

d

E

(�; perm(�))

)

(6.2)

A similar distan
e is used for the s
ale sensitive version of the feature ve
tor

(Figure 6.2), whi
h keeps 3K elements | K for ea
h s
ale. But the permutation

of the ve
tor elements is done a

ording to the stru
ture of the ve
tor, whi
h

resembles the stru
ture of the �lter Bank. Hen
e, the K elements for one s
ale are

permutated separately, i.e. the distan
e d

F

2

of two ve
tors � and � is 
al
ulated by


omputing the distan
es separately for the 3 sub ve
tors averaging these distan
es.

Denoting the sub ve
tor of �, whi
h 
ontains the feature elements for s
ale x, as

�(x), we get the distan
e d

F

2

:

d

F

2

(�; �) =

1

S

X

i=1:::S

d

F

1

(�(i); �(i)) (6.3)

Please note, that during the distan
e 
al
ulation we handle the Gabor orientations

di�erent than the s
ales. We shift the orientations of the ve
tor and 
al
ulate in-

termediate distan
es. These distan
es are 
ombined using the minium fun
tion.

It is not possible that a texture is present at more than one orientation, so only

one of the distan
es is taken. On the other hand, we 
al
ulate these intermediate

49



distan
es on ea
h s
ale, and these distan
es are 
ombined using the average fun
-

tion. The reason is the hierar
hi
al nature of textures, whi
h need to be examined

at di�erent s
ales. The distan
e measurement de�ned above 
omputes a distan
e

measure between two interest regions, where small 
hanges in the orientation are

tolerated.

6.4 Querying the database

To query the database a distan
e fun
tion for images is needed, whi
h 
ompares

two sets of feature ve
tors. Our distan
e measurements are based on the distan
es

of ve
tors. However, there are di�erent ways to 
ombine the distan
es of single

ve
tors to a distan
e of sets.

6.4.1 Voting

S
hmidt and Mohr proposed in [28℄ (See Se
tion 2.2.2) a voting algorithm to query

a database of images represented by sets of feature ve
tors. They pre-
ompute the

ve
tors V

j

of all database imagesM

k

o�ine and store them in the database together

with a link to their sour
e images. Given the query image I, it's set of feature

ve
tors V

i

is 
omputed, and ea
h ve
tor is 
ompared to ea
h ve
tor V

j

in the

database. If the distan
e between V

i

and V

j

is below a threshold t, the respe
tive

image M

k

gets a vote. The maximum votes are returned to the user. The 
ost

of 
omparing two images is the 
ost of 
omparing all feature ve
tors of the query

image with all feature ve
tors of the image to 
ompare, thus O(N

2

), where N is

the number of ve
tors per image, i.e. the number of interest points.

We adopted this algorithm to our image representation. This 
ould be done

easily, sin
e the representations are very similar. We used our distan
e measure

d

F

2

des
ribed above for the distan
es between two feature ve
tors. The algorithm

sear
hes for images in the database, whi
h have a high number of interest regions

whi
h are similar to the interest regions found in the query image. One region in the

query image 
an be similar to one or more regions in one of the database images

and vi
e-versa. I.e. it is irrelevant if ten regions 
orrespond to ten equivalent

regions, or if one region 
an be found ten times in a database image, the result

will be same. Results of our experiments are shown in se
tion 9.

6.4.2 Sear
hing Corresponding Interest Points

We developed a di�erent algorithm, whi
h 
ompares image by image and tries to

sear
h pairs of 
orresponding interest points in both images. The sear
h is done in

a greedy manner: The means to qualify two points as being a pair is the minimum

distan
e in feature spa
e. To do this we build a matrix whi
h stores the distan
es

of all possible feature pairs (�gure 6.4), the lines i denoting the interest points of
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the query image, the 
olumns j the interest points of the 
ompared image, and

the elements E

i;j

the distan
e between point i of the query image and point j of

the 
ompared image.

Image 1

Feature vectors
Image 2

Feature vectors

V

A

1

V

B

1

V

A

2

V

A

3

V

B

2

x

1

y

1

P

1

P

2

x

2

y

2

Figure 6.4: The algorithm for sear
hing 
orresponding interest points

Then we sear
h the minimum element of the matrix. The 
olumn and line number

of this element denote the �rst pair of 
orresponding interest points. Both 
olumn

and line are deleted from the matrix, sin
e these two points are not available for

other pairs anymore. Then we again sear
h the minimum element of the remaining

matrix. This algorithm is 
ontinued until the matrix vanishes (The points of at

least one image are exhausted) or the minimum distan
e does not ex
eed a given

threshold t (There are no more points having a 
orresponding partner). The

distan
e d(A;B) between the two images A and B is 
al
ulated using the number

of 
orresponding points found:

d(A;B) =

2 � Number of 
orresponding points

N(A) +N(B)

(6.4)

where N(A) denotes the number of interest points of the image A.

The performan
e of the algorithm depends on the threshold t. If the threshold is

too high, then too many 
ouples of 
orresponding interest points are found and the

system will retrieve false positives. If the threshold is too low, then no or too few


ouples will be found | false negatives or non deterministi
 ordering of the result

set (in the 
ase of t = 0) will be the 
onsequen
e. We performed experiments with

di�erent threshold values for di�erent image 
olle
tions, whose results we present

in 
hapter 9.

The distan
e measure presented above has one short
oming, whi
h will be
ome

visible for queries against large databases only. The reason is the granularity of
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the distan
e fun
tion. Looking at equation 6.4 we 
an see, that we 
an get at most

2N di�erent distan
e values, where N is the number of 
olle
ted interest points

per image. Imagine that there are more than 2N images in a database, whi
h

are relevant for the query image, i.e. whi
h have a high number of 
orresponding

interest points. Although all these images have small distan
es and will be in the

�rst positions of the result set, the ordering of these images in the result set among

themselves will not be deterministi
 in some 
ases due to la
k of suÆ
ient di�erent

distan
e values.

Motivated by this drawba
k we developed another distan
e measurement, whi
h

uses not only the number of 
orresponding interest points for the distan
e 
al
u-

lation, but also the distan
es of the feature ve
tors involved. We give the new

measure as

d(A;B) =

2 �

X

�2C

s(�)

N(A) +N(B)

(6.5)

where C is the set of pairs of 
orresponding feature ve
tors and s(�) is the similarity

of the 
orresponding ve
tors � = (�; �) 2 C. We 
al
ulate this similarity on the

basis of the distan
e in feature spa
e d

F

2

(�; �). However, we s
ale the distan
e,

so that the similarity is equal to 1 if the distan
e in feature spa
e is minimal, i.e.

equal 0, and the similarity is 0 if the distan
e is maximal. Sin
e the sear
h for


orresponding feature ve
tors is stopped at a threshold t, this threshold is equal to

the maximum distan
e of two feature ve
tors. Hen
e we 
an write the similarity

of two 
orresponding feature ve
tors as

s(�) = 1�

d

F

2

(�; �)

t

; � = (�; �) 2 C

Please note, that this distan
e measure 
orresponds to the �rst measure de�ned in

equation 6.4 if all ve
tor similarities s(�) are set 
onstant to 1. Literally spoken, if

we 
onsider images represented as sets of sub images (regions), then our measure

de�ned above allows a �ner granularity of the distan
e values sin
e not only the

number of "similar" regions 
ontributes to the distan
e, but also the similarity

itself.

We performed experiments using both distan
e measures as well as the voting

algorithm introdu
ed by S
hmid and Mohr. Results of these experiments 
an be

found in 
hapter 9.

The 
ost for 
al
ulating the distan
e matrix is O(N

2

) . The sear
h of the


orresponding pairs is dependent on the similarity of the two images. The higher

the similarity the higher the 
ost, sin
e the sear
h for the minimum distan
e in

the matrix has to be done more often. The �rst sear
h takes O(N

2

), the next

one O((N � 1)

2

) et
. So, if for all interest points 
orresponden
es 
an be found,

the overall 
ost of the algorithm is O(N

3

), where the 
ost of one step is small

(
omparing the value of the matrix with the 
urrent maximum). However, in
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Figure 6.5: Two images and their map of 
orresponding interest points
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reality the maximum number of point pairs is almost never found. The overall


ost of the algorithm is

O(N

2

) +O(N

3

)

Figure 6.5 shows two test images and their map of interest points. Corresponding

points are 
onne
ted by a line or by a single big re
tangle, if their spatial distan
e

is smaller than 5 pixels.
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Chapter 7

Histograms

In the last 
hapters we des
ribed our method to extra
t texture features from

digital images using interest point operators and a Gabor �lter bank. We also

introdu
ed one of the di�erent possible interpretations for the feature data, whi
h

uses feature ve
tors sets to represent images. This 
hapter des
ribes an indexation

method based on an image representation, whi
h orders the feature data by �lter

index and uses histograms for the representation. Histograms have already been

used for image indexing extensively, espe
ially 
olour based histograms [33℄ and

stru
ture based methods [11℄. They provide an e�e
tive and eÆ
ient means to


ompare image 
ontents. However, they rely on raw image data like 
olour or gray

values, whi
h are not available for textures without pre-pro
essing. In this 
hapter

we des
ribe a method based on histograms �lled with the data gathered from our

feature extra
tion method des
ribed in 
hapter 4.

There are several reasons to use histograms to des
ribe image 
ontents:

Well known distan
e measures Unlike other image representations the dis-

tan
e measures for histograms are not as dependent on the type of features

and the 
ontents of the histogram, so the standard distan
e measures 
an be

taken. Histograms are standard tools of statisti
s and also image pro
essing,

so powerful distan
e measures to 
ompare them have already been developed

(See se
tion 7.3).

Speed One of the main strong points of histograms is the availability of fast 
om-

parison algorithms. Using interest points one advantage is the independen
e

of the number of interest points, whereas our previously developed methods

su�er from high 
omputational 
omplexity (O(N

2

)).

View Histogram representations provide a di�erent view on the data. The algo-

rithms we presented in the last 
hapters des
ribed images as a set of feature

ve
tors 
olle
ted around points of interest. Comparison was done by sear
h-

ing 
orresponding interest points, the main \dimension" of our image key
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being the set of interest points. Histograms are more 
exible. Their des
rip-

tive power depends on the way how they are "�lled", i.e. their power depends

on the way how the feature data is translated into the raw data ne
essary to


reate them.

For the development of image retrieval systems the emphasis is not laid on the

distan
e measure but on the design of the image representation, i.e. the 
ontents

of the histogram. It is ne
essary to design the 
ontents in a way, that the his-

tograms are representative. Di�erent images should have di�erent histograms, i.e.

their distan
es should be large. We already mentioned this general requirement

for image features in se
tion 2.1. However, even if the image features, whi
h need

to be 
olle
ted before building the histograms, ful�ll this requirement of des
rip-

tiveness, it is still possible to generate badly s
aled histograms by 
hoosing wrong

parameters.

The parameters need to be designed a

ording to the feature data. Firstly, it

is ne
essary to �nd a way to transform the feature data into a raw format suitable

to "�ll" it into the histograms. Moreover, size and format of the histograms must

be well 
hosen. The main parameters, whi
h need to be �xed for a histogram

based representation, are the borders, and the bin 
ount. The borders spe
ify the

interval whi
h is represented by the histogram. Values, whi
h do not �t into this

interval are pla
ed into the lowest or highest bin respe
tively. If this interval does

not �t the distribution of the data, then the possibility of similar histograms for

di�erent features arises, be
ause the di�eren
es of the feature data are hidden in

single histogram bins.

In the following se
tions of this 
hapter we will present two di�erent represen-

tations based on histograms. We 
lose the 
hapter with a survey and des
ription

of histogram distan
es in se
tion 7.3.

7.1 Amplitude representation using sets of His-

tograms

Considering the output of our Gabor �lter bank the main information we gathered

is the amplitude information for di�erent orientations and s
ales of the Gabor

�lters per interest region. If we re-order the data we get a distribution of responses

(i.e. amplitudes) per s
ale and orientation. The �lter responses for one �lter 
an

be �lled into a histogram, whi
h therefore models the response of the image to this

�lter with the given orientation and the given s
ale. Images responding mu
h to

this �lter have high bins with high bin indi
es and low bins with low bin indi
es

and vi
e versa. Thus, the feature data of the whole image, i.e. of all �lters of the

�lter bank, 
an be stored in an ordered set of K � S histograms, where S is the

number of s
ales and K is the number of orientations.
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Filling the histograms this way we ignore the spatial 
oheren
e of the di�er-

ent interest regions, i.e. the lo
ations of the regions are not represented in the

histogram. It does not matter where an interest region is found, sin
e only the


ontents (translated into �lter responses) is used to 
reate the histograms. In

order to add the spatial 
oheren
e to our representation we use two-dimensional

histograms instead of one-dimensional ones. We need 
ouples of data instead of

single values to in
rease the histogram bins. These 
ouples are 
reated by per-

forming a n-nearest neighbour sear
h for every interest point.

(a,b)

Figure 7.1: Nearest neighbour sear
h

The entries, whi
h in
rease the histograms, are pairs of interest points. All points

of the image are traversed and taken as �rst points of these pairs. The se
ond

points are the neighbours found by a n-nearest neighbour sear
h performed for ea
h

interest point found during the traversal. (Figure 7.1). Hen
e, for ea
h interest

point traversed we 
reate n pairs of points. The amplitudes of the 
ouples are

entered into the histogram: The amplitude of the �rst point is used to 
al
ulate the

x-index of the bin, the amplitude of the se
ond point (the neighbour) to 
al
ulate

the y-index.

Figure 7.2: Image representation using ordered sets of histograms 
ontaining am-

plitudes: Example pi
ture (a) and two histograms of the ordered set: orientation

0 = 0

o

(b) and orientation 2 = 45

o

(
) for s
ale index 0

Figure 7.2 shows an example image and two histograms of the set. We 
hose an

image whi
h 
ontains frequen
ies mainly in the horizontal orientation (orientation
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0). Therefore, the histogram for orientation 0 shows a distribution of strong re-

sponses, i.e. strong bins from indi
es 4 to 6. The histogram for orientation index

2, whi
h 
orresponds to stru
tures in orientations around 45 degrees, shows only

one strong bin at index (0; 0), i.e. almost no response.

The distan
e fun
tion ne
essary to 
ompare this image representation needs to


ompare two sets of histograms. Our distan
e measure is based on the histogram

distan
e measures dis
ussed in se
tion 7.3. A simple possible distan
e measure


ompares 
orresponding histograms of both sets and averages the distan
es:

D

set

(A;B) =

1

S �K

S

X

u=1

K

X

v=1

D(H

Auv

; H

Buv

)

where D

set

(A;B) is the distan
e of the two images A and B, i.e. the distan
e

of the two ordered sets, and H

Auv

is the histogram for s
ale u and orientation

v of image A. However, similar to the distan
e of feature ve
tors we in
luded

some 
ompensation for rotation by 
omparing ea
h histogram not only with its


orresponding histogram but as well with the immediate neighbours of the same

s
ale. In our feature ve
tor approa
h (
hapter 6) we used rotations of the feature

ve
tors to 
ompensate image rotations (equation 6.1). Similar we 
an partition

our ordered set of S � K histograms into a set of S ve
tors, ea
h 
ontaining

K histograms. For ea
h ve
tor, whi
h 
orresponds to one s
ale of the Gabor

�lter bank, we 
al
ulate intermediate distan
es. Furthermore we perform 
y
li


permutation to de
rease the sensitiveness to rotations of the interest regions.

c)b)

a)

Figure 7.3: Comparison of ordered histogram sets: to 
ompensate for rotation

not only the 
orresponding histograms are 
ompared (a), but also the immediate

neighbours by rotating on
e in both dire
tions (b), (
) and using the minimum.

Figure 7.3 depi
ts this rotation pro
ess. We not only 
al
ulate the distan
es be-

tween the two histogram ve
tors � and � but also the distan
es between � and
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two di�erent 
y
li
 permutations of �. These 
y
li
 permutations of histogram

ve
tors are equivalent to rotations of the 
orresponding interest regions. Given a

ve
tor �, the permutated ve
tor � = perm(�) is de�ned by equation 6.1, similar

to the rotation of ve
tor ve
tors in 
hapter 6. The �nal distan
e between the two

histogram ve
tors � and � (whi
h do not represent a whole image but one s
ale

only) is the minimum of the 3 distan
es:

d(�; �) = min

(

d

E

(�; �)

d

E

(perm(�); �)

d

E

(�; perm(�))

)

(7.1)

The �nal distan
e d(A;B) of two images A and B, i.e. of two histogram sets


ontaining histogram ve
tors for ea
h s
ale, is the average of the intermediate

distan
es 
al
ulated for ea
h s
ale.

d(A;B) =

1

S

X

i=1:::S

d(�(i); �(i))

where the �(i) are the histogram ve
tors for s
ale i of image A and �(i) are the

histogram ve
tors for s
ale i of image B. Please note, that the distan
e 
al
ulation

for the histogram sets 
orresponds to the distan
e 
al
ulation of ve
tor ve
tors in


hapter 6. The histogram ve
tors des
ribed above 
orrespond to subve
tors of a

feature ve
tor, and the 
omplete histogram set 
orresponds to a 
omplete feature

ve
tor for one interest point.

7.2 Di�eren
es of Amplitude and Neighbourhood

Ranking

The histograms des
ribed in the last se
tion were built on raw image data, like

amplitudes. The data was fed pairwise, but still there was no relation whatsoever

between the points. Huet and Han
o
k used pairwise geometri
 histograms to

index large databases of line patterns [11℄. They took pairwise geometri
 attributes

like di�eren
es of angles and di�eren
es of length of pairs of line segments to build

histograms. The idea was later adopted to stru
tural image retrieval based on

interest points by Popes
u in [23℄. The idea was to use the lo
ations of the interest

points to determine geometri
 attributes. Instead of pairs triples of interest points

are taken, and the angle of the points is used to 
reate the histograms (See se
tion

2.2.4).

The main idea of these algorithms is the storage of relative feature data. Huet

and Han
o
k �ll histograms with di�eren
es of angles, i.e. a relative measure

between two geometri
 elements. The images are des
ribed by the information

how geometri
 attributes of line segments 
hange in a lo
al neighbourhood.
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We use a similar approa
h based on the output of the Gabor �lter bank. Like in

the last se
tion an image is 
hara
terised by an ordered set of S �K histograms.

But instead of the absolute amplitude values we store di�eren
es of amplitudes

for 
ouples of interest points. For ea
h �lter response we traverse all points and

sear
h the n nearest neighbours. To 
al
ulate the bin index of the �rst dimension

of the two dimensional histogram, we use the di�eren
e of amplitudes for ea
h pair

interest point and neighbour. The bin index of the se
ond dimension is de�ned by

the ranking of the neighbourhood.

Figure 7.4: Image representation using ordered sets of histograms 
ontaining dif-

feren
es of amplitudes and neighbourhood ranking: Two example pi
tures and

their histograms for s
ale index 0 and orientation 0 = 0

o

.

The information we store in this representation 
an be des
ribed in the following

way: Like in our �rst histogram representation the data is separated by �lter

index, i.e. one histogram for ea
h orientation and s
ale of the �lter bank. Ea
h

histogram holds the information how the amplitudes for this �lter 
hange between

the interest points to their neighbours. The y dimension of the histogram stores
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the neighbourhood ranking of the n-nearest neighbourhood sear
h, thus the bins

with higher y indi
es store the di�eren
es of amplitudes between interest points

whi
h are further away than 
ouples of interest points stored in the bins with lower

y indi
es.

Figure 7.4 shows two example images of one of our test databases and their

histograms for s
ale index 0 and orientation index 0, whi
h 
orresponds to an

orientation of 0

o

. The histogram of the texture example (Figure 7.4.a) shows an

almost uniform distribution along the y 
oordinate of the histogram. This 
an

be explained by the periodi
 nature of the texture example, where the di�eren
es

in the amplitudes are almost 
onstant a
ross the di�erent distan
es between two

interest points. Considering the histogram of the natural image on the other

hand (7.4.b), we remark the di�eren
e in the bin sizes along the y 
oordinate

of the histogram. The reason is the di�erent type of the image, whi
h 
ontains

sharp 
hanges in stru
ture. In this image the distan
e between two interest points

determines the di�eren
e in their responses to a spe
i�
 �lter, hen
e the di�eren
e

in amplitudes.

The 
omparison of the histogram sets is done the same way as for the represen-

tation using the absolute amplitude values des
ribed in se
tion 7.1. The distan
es

between the 
orresponding histograms are 
ombined in a way to tolerate small

rotational 
hanges in the images.

7.3 Histogram Distan
es

Our query methods based on histogram set representations use standard histogram

distan
e measures whi
h are already well known. Surveys of di�erent measures


an be found in [26℄. Huet and Han
o
k also used di�erent histogram distan
e

measures to index 
artographi
 material [11℄ (Se
tion 2.2.4).

Histograms 
an be seen from di�erent viewpoints. Depending on the point of

view various distan
e measurements are possible:

The Minkowski form distan
es

One dimensional histograms with n bins 
an be seen as ve
tors in an n-dimensional

ve
tor spa
e. Therefore, the distan
e measures known from ve
tor spa
es 
an be

used. One example is the family of the Minkowski distan
es, whose general form

is given by

D(H

A

; H

B

) =

X

i

jH

A

(i)�H

B

(i)j

r

Well known examples are the L

1

and the L

2

distan
es for r = 1 and r = 2

respe
tively. The L

2

distan
e of two histograms is equivalent to the Eu
lidean

distan
e of the 
orresponding ve
tors.
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B
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X

i

jH

A

(i)�H

B
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D

L

2

(H

A

; H

B

) =

s

X

i

(H

A

(i)�H

B

(i))

2

The Bhatta
haryya distan
e

The Bhatta
haryya distan
e is a measure of 
orrelation between to dis
rete distri-

butions. Bins with zero 
ontents do not 
ontribute to the distan
e value, so the

distan
e measure works best with histograms that are "well �lled". The Bhat-

ta
haryya distan
e measure is given by

D

Batt

(H

A

; H

B

) = �ln

X

i

q

H

A

(i) �H

B

(i)

The earth mover's distan
e

To understand the earth mover's distan
e, the two histograms whi
h have to be


ompared must be understand as a set of piles of earth and a set of holes. The

distan
e of two histograms is the minimal 
ost of transporting the �lling the holes

(the se
ond histogram) with the earth from the piles (the �rst histogram). Thus,


al
ulating the distan
e 
orresponds to solving a linear transportation problem.

A big advantage of the earth mover's distan
e is its 
hara
teristi
 as 
ross bin

histogram distan
e measure. I.e., that not only the sizes of 
orresponding bins

are 
ompared but also neighbouring bins. This way the distan
e is less sensitive

to shifts in the feature data and it allows for partial mat
hes. A

ording to Rub-

ner et al. the distan
e better mat
hes per
eptual similarity than other distan
es

[26℄. A disadvantage of this distan
e measure is its high 
omputational 
omplexity


ompared to other measures.

We performed experiments using the measures L

1

, L

2

and Bhatta
haryya. In our

query methods we store the feature data in two dimensional histograms. However,

the distan
e measures are applied in a similar way. Results of these experiments

are given in 
hapter 9.
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Chapter 8

The Test Environment

This 
hapter explains the environment used to realise and test the proposed meth-

ods. The following se
tions des
ribe the di�erent test images databases we used

in our experiments. We spe
ify the size of the test databases by two values: The

symbol B denotes the number of images in the database and F denotes the number

of images used as query images in the experiments. This number depends on the


ontents of the database, sin
e only images whi
h have enough empiri
al similar

images, 
an be used as query images.

8.1 The �rst test database

Our �rst test database 
ontains B = 609 images grabbed from a single Fren
h

television 
hannel. The images are all of the same format (384x288 pixels) and


oded in JPEG with 75% quality. The 
ontents di�ers from outdoor a
tivities

(reports of sport a
tivities) to talk shows, full s
ope shots of people, weather

fore
asts, logos and advertisement.

To be able to measure query performan
e (see 
hapter9.2) a 
lustering of the

image set was ne
essary. The 
lustering was done manually using empiri
 
riteria

in a way that all images in a 
luster are per
eived as similar by us. In fa
t, the

pi
tures of one group mostly are taken from the same tele
ast and sometimes

even from the same s
ene. Figure 8.2 shows examples of these groups. However,

although all images of the database are queried not all of them are grouped into


lusters. The reason was to avoid too small groups, whi
h would degrade the query

performan
e 
urves without justi�
ation. Eliminating all 
lusters with less than

10 images, we get 568 (referred to as F in this do
ument) images grouped into 11


lusters (Table 8.1). Figure 8.1 shows the representants of ea
h 
luster.
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nr. 1 2 3 4 5 6 7 8 9 10 11

images 10 11 14 15 15 19 32 36 86 156 174

Table 8.1: The 
luster sizes of test database 1

Figure 8.1: The representants of the 11 image 
lusters used in the �rst test database

8.2 The se
ond test database

The se
ond test database 
ontains B = 179 images from various sour
es 
olle
ted

by Jean-Mi
hel Jolion

1

. The 
ontents di�ers from portraits, textures, lands
ape

s
enes to drawings et
. Figure 8.3 shows examples of this database. Again the

images of one 
olumn belong to the same 
luster of images per
eived as similar.

Table 8.2 shows the 
lustering of this database. Again we eliminated all 
lusters

with less than 10 images, whi
h left F = 105 images for this database to use as

query images, grouped into 6 
lusters with the following sizes.

nr. 1 2 3 4 5 6

images 10 12 14 15 26 28

Table 8.2: The 
luster sizes of test database 2

8.3 The third test database

To evaluate the dependen
ies of our algorithms on some parameters we use an ad-

ditional third image database. This 
ommer
ial database 
ontains various natural

images (ar
hite
ture, lands
apes, animals et
.). Figure 8.4 shows examples of this

database. Again the images of one 
olumn belong to the same 
luster of images

per
eived as similar. Table 8.3 shows the 
lustering of this database. F = 105 im-

1

Laboratoire Re
onnaissan
e de Formes et Vision, INSA de Lyon
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ages are used as query images whi
h are grouped into 9 
lusters with the following

sizes:

nr. 1 2 3 4 5 6 7 8 9

images 12 17 18 19 35 83 99 131 163

Table 8.3: The 
luster sizes of test database 3
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Figure 8.2: Examples of the �rst image database used (609 images total). All

images in one 
olumn belong to the same 
luster of images per
eived as similar.
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Figure 8.3: Examples of the se
ond image database used (179 images total). All

images in one 
olumn belong to the same 
luster of images per
eived as similar.
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Figure 8.4: Examples of the third image database used (1505 images total). All

images in one 
olumn belong to the same 
luster of images per
eived as similar.
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Chapter 9

Experimental Results

This 
hapter presents a detailed experimental evaluation of the proposed methods.

Before we 
an do that we have to dis
uss how to measure query performan
e in

image retrieval. Considering a single query from a given image whi
h returns a

result set of d images, there are two relevant 
riteria to take 
are of: query speed

and quality (the relevant-ness) of the result set. The former is easy to measure,

we will dis
uss it in se
tion 9.1. The latter is not as easy to 
ompare, never the

less there are well de�ned methods. We will dis
uss it in se
tion 9.2

9.1 Speed

Speed is a performan
e 
riteria easy to measure. Two pro
esses are relevant: The


reation of the index of an image and the 
omparison of the query image with the

database images. The time to index an image is independent of the number of

the images in the database. It is needed when uploading a new image and when

querying the database. It 
onsist of several steps: Eventually 
onverting the image

to the desired format and to gray s
ale, applying the interest operator, 
reating the

interest regions, applying the �lter bank to ea
h region, and 
reating and writing

the key stru
ture. Table 9.1 gives an overview of the di�erent parts of the index


reation algorithm and their speed/time issues.

Applying the �lter bank is the part whi
h takes most of the time and heavily

depends on the number of interest points and the size of the interest regions used.

If histograms are produ
ed then the time to �ll them e�e
ts indexing speed as well.

Espe
ially with growing numbers of interest points histogram 
reation be
omes an

issue as well (The algorithm is O(N

2

)).

Table 9.2 gives an overview of indexing performan
e dependent on di�erent

values of region sizes and numbers of 
olle
ted interest points. The values are

measured indexing a single image ex
luding the time to 
olle
t the interest points,

whi
h is dependent of the dete
tor. The hardware platform was a standard indus-

trial PC equipped with a Pentium I pro
essor at 300 MHz. The query system has
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Task Time depends of

Dete
tion of interest points Size of the image

Appli
ation of the �lter bank Number of interest points, size of the interest region,

size of the �lter bank

Creation of histograms Number of interest points, number of neighbours

sear
hed for ea
h point, size of the �lter bank if his-

togram sets are used

Table 9.1: The di�erent steps during the 
reation of an index

been implemented in C++.

points / region size 64 32 16

100 n.s. 5s n.s.

200 22s 8s 3s

300 n.s. 12s n.s.

Table 9.2: Query speed for di�erent interest point 
ounts

The time to query the database depends on the method and the number of images


ompared. Table 9.3 gives an overview of the speed of the di�erent query algo-

rithms applied to the B = 609 images of our test database 1. To obtain pre
ise

results for ea
h method we used every image of the referen
e set of F images as

query image and queried against the whole database of B images. The response

time divided by F gives us the average time it takes to query one image against the

database of B images. If not stated otherwise the methods used N = 200 interest

points and a region size of 32� 32 pixels. The time spe
i�ed does not in
lude the

time to 
reate the indi
es.

Algorithm Time to query one image

against F images

Sear
hing 
orresponding interest points 37s/9s/5s/2.9s

(100/70/50/30 points)

Histogram set: amplitude � amplitude 2.6s

(24 histograms of 8 � 8 bins)

Histogram set: di�eren
e of amplitudes � ranking 5.1s

(24 histograms of 8 � 16 bins)

Table 9.3: Query speed for di�erent algorithms

The query time using the method of sear
hing 
orresponding interest points de-

pends on the number of interest points 
olle
ted (O(N

2

)). However, although the
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query performan
e is depending on the point 
ount as well the di�eren
es between

the performan
e 
urves are not that big (Figure 9.14).

9.2 How to measure Query Performan
e

The more important 
riteria of an indexation method is the quality of the result set,

referred to as query performan
e from now on. Sin
e there is no exa
t de�nition

for similarity between images, measuring retrieval performan
e is a diÆ
ult task.

As an example see �gure 9.1. These two images have been split up into 2

di�erent 
lusters of the test database, i.e. from the users point of view they are

not similar. Nevertheless some query methods return image (9.1.b) when querying

for image (9.1.a). Can we blame any statisti
al pro
ess, whi
h does not a
tually

understand the 
ontents of an image, to judge the images to be similar? From a

texture point of view the images are similar. They both 
ontain mainly stru
tures

in verti
al dire
tions in similar frequen
y bands. Thus to be able to 
ompare two

query methods we need to know the stru
ture of the test database, the type of

images used, the 
lustering into similar images et
.

Figure 9.1: How do we measure query performan
e - are these images similar?

User annotation is ne
essary to observe the query pro
ess and 
he
k the quality of

the query methods. We solved this problem by 
reating a set of referen
e images

for ea
h image used as query image. The referen
e images have been 
lassi�ed

as "similar" to the image by us a

ording to what we think is visual similarity.

For our test databases (See 
hapter 8) we used the images of the same 
luster

as referen
e images of a given image. Thus, the query performan
e measurement

depends on the user and it's judgement of similarity. All experimental results

depend on the judgement of the user, who himself pi
ks similar referen
e images

for all query images.

In 
hapter 8 we explained the stru
ture of our test image databases and their


lustering into 
lusters of images regarded as visual similar. A single query sear
hes

visual similar images for a single query image taken from these databases. The
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query image is a member of a 
luster C, whi
h 
ontains d images. These d images

are 
alled "relevant" images. The system answers with 
 images of whi
h r are

from the original 
luster C. For a single query two measures are widely used for

indexation systems: Pre
ision and re
all. Their de�nition is given by:

P =

r




; R =

r

d

where the following symbols where used:

P Pre
ision

R Re
all

r Number of relevant images (i.e. from the same 
luster) in the return

set


 Total number of images in the return set

d Total number of relevant images (i.e. from the same 
luster) in the

database

9.2.1 Performan
e 
urves

As the name suggests the pre
ision of the result of a single query denotes how

pre
ise the result set responds to the desires of the user. The higher the pre
ision

the higher the per
entage of relevant images in the result set. By 
hanging the

number 
 of returned images by the system we get a 
urve of pre
ision:

P (
) =

r




For most querying methods the set of result images is ordered, returning the most

similar images �rst. The images having higher indi
es in the result set are less

likely to be relevant to the query image. Hen
e, the 
urve will generally show a

de
reasing value of pre
ision for an in
reasing 
.

Re
all of a single query denotes how many of the relevant images in the database

have been returned. The higher the re
all the more the set of relevant images in

the database has been \
overed" by the query.

R(
) =

r

d

Sin
e the denominator d is independent of the size of the result set and r will grow

with in
reasing 
, the 
urve of re
all will in
rease with in
reasing 
.

Both of the measures are dependent of the size and the stru
ture of the database,

espe
ially the number and size of the groups of similar images (see 
hapter 8). How-

ever, generally it is pre
ision whi
h is regarded as the more important measure to


ompare di�erent methods. To 
reate the performan
e 
urve for a method we use

every image of the referen
e set of F images as query image and query against the

whole database of B images. For ea
h query we 
reate a 
urve 
hanging the size
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 of the results set. The �nal 
urve is the average value of all 
urves for the single

queries:

P (
) =

1

F

F

X

i=1

r

i




; R(
) =

1

F

F

X

i=1

r

i

d

i

(9.1)

where r

i

is the number of relevant images in the result set of query image i and d

i

is the total number of relevant images for query image i in the database.

The �gures in this 
hapter display the query performan
e we a
hieve using our

test databases and di�erent query methods. The x-axis of all 
urves 
orresponds

to the number of images in the return set 
, with a range from 1 to 30. If not stated

otherwise the y-axis displays the average pre
ision for all query images (equation

9.1). Other possible measures are the varian
e of pre
ision or the average re
all.

For 
onvenien
e the legends of the di�erent query 
urves are sorted by perfor-

man
e in ea
h �gure. The legend of the best method is displayed at the top of the

list. Ex
eptions are 
urves, whi
h 
ross other 
urves. However, this 
ase does not

o

ur very often.

9.2.2 The limits of query performan
e

As we already noted the 
urves are dependent on the 
lustering of the database. A

theoreti
al best 
urve of 
onstant 100% pre
ision 
an be rea
hed only if the sizes of

all 
lusters are equal or greater than the maximum number of returned images 
.

A query using a query image within a 
luster having n < 
 images 
annot return

more than n relevant images (= r). But that means that the pre
ision p =

r




is less

than 100%. Our results display 
urves between 1 and 50 returned images. Sin
e

our test image databases 
ontain groups with less than 50 images (see se
tions 8.1

and 8.2) we need to know the theoreti
al query limit, i.e. the optimal 
urve whi
h


an never be beaten by any method. A query produ
ing the optimal result always

returns the maximum number of relevant images, i.e. either the whole return set

is relevant if the 
luster is big enough, or at least the whole 
luster:

r

max

= min(
; d)

Hen
e the 
urve of the optimal method is de�ned by

P

max

(
) =

1

F

F

X

i=1

min(
; d)




In a similar way the lower limit of query performan
e 
an be 
al
ulated. The lower

limit would be a query that returns as many false images as possible. A
tually it

is not this limit whi
h is interesting but the 
urve of a random query. A random

query performs better than the worst query possible. However, a good method

should perform better than a random query. A single query 
hoosing random

images will return r

random

images:
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r

random

= 


d

B

Hen
e the 
urve of a method 
hoosing random images 
an be written as

P

random

(
) =

1

F

F

X

i=1




d

i

B




=

1

F

F

X

i=1

d

i

B

(9.2)

The upper and lower limits depend only on the 
lustering of the test database. The


urves 
reated for our test databases are displayed in �gures 9.2, 9.3, 9.4 and 9.5.

The 
urves for a random query are 
reated with two di�erent methods: Cal
ulated

using equation 9.2 and experimentally using a random number generator.

9.3 The Experiments

In this se
tion we present our experiments and the results measured using the

methods des
ribed above. We explain in detail the parameters used for the exper-

iments and their in
uen
es on the query performan
e. We 
ompare the results for

the di�erent query methods we implemented in
luding the parameters we used and

we show the di�eren
es of the performan
e of our system applied to our di�erent

test databases.

In the previous 
hapters we introdu
ed query methods based on two types of

image representations, whi
h we want to 
ompare in this se
tion:

� The feature ve
tor set representation using S
hmid and Mohr's voting dis-

tan
e and the distan
e fun
tion sear
hing 
orresponding interest points.

� The representations using sets of histograms whi
h store amplitudes or dif-

feren
es of amplitudes and neighbourhood ranking respe
tively.

We 
ondu
ted experiments to evaluate and to optimize the performan
e of our

proposed methods. Se
tion 9.3.1 gives an overview of the parameters of our system

and their signi�
an
e. Se
tions 9.3.2 and 9.3.3 explain the experiments for the two

respe
tive methods and their optimal parameters. Se
tion 9.3.5 
ompares the two

methods and gives 
on
lusions on the experimental evaluation.

9.3.1 Parameters and Dependen
ies

Our query methods are dependent on a number of parameters, like the number

of interest points 
olle
ted, the sizes of the interest regions, thresholds et
. We

performed experiments with di�erent values for ea
h parameter and 
ompared the

results. However, for reasons of 
omputational 
omplexity we did not perform

experiments on all di�erent 
ombinations of di�erent values for the parameters.

Instead we only tested di�erent values for one parameter at a time. I.e. we assigned
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Figure 9.2: DB 1 - The best algorithm: The 2D histogram set method storing

amplitudes in 
omparison with the limits of query performan
e (see 
hapter 9.2.2).

0

20

40

60

80

100

0 5 10 15 20 25 30

A
ve

ra
ge

 r
ec

al
l (

%
)

Number of images in the return set

Theoretical uppper limit of query performance

0

20

40

60

80

100

0 5 10 15 20 25 30

A
ve

ra
ge

 r
ec

al
l (

%
)

Number of images in the return set

Histogram(24x2d) amplitude-amplitude

0

20

40

60

80

100

0 5 10 15 20 25 30

A
ve

ra
ge

 r
ec

al
l (

%
)

Number of images in the return set

Random query (calculated)

0

20

40

60

80

100

0 5 10 15 20 25 30

A
ve

ra
ge

 r
ec

al
l (

%
)

Number of images in the return set

Random query (generator)

Figure 9.3: DB 1 - The 2D histogram set method in 
omparison with the limits of

query performan
e (see 
hapter 9.2.2). Re
all is displayed.
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Figure 9.4: DB 2 - Di�erent algorithms and the limits of performan
e - pre
ision

0

20

40

60

80

100

0 5 10 15 20 25 30

A
ve

ra
ge

 p
re

ci
si

on
 (

%
)

Number of images in the return set

(a) Theoretical upper limit of query performance 

0

20

40

60

80

100

0 5 10 15 20 25 30

A
ve

ra
ge

 p
re

ci
si

on
 (

%
)

Number of images in the return set

(c) Feature vectors V2 

0

20

40

60

80

100

0 5 10 15 20 25 30

A
ve

ra
ge

 p
re

ci
si

on
 (

%
)

Number of images in the return set

(d) Random query (calculated)

Figure 9.5: DB 3 - The feature ve
tors set based algorithm with the limits of

performan
e - pre
ision
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�xed values to all other parameters, and performed experiments with a range of

values for the tested parameter.

Table 9.4 shows the standard values we used for our parameters for all di�erent

methods if not spe
i�ed otherwise. There are two di�erent values for the number

of interest points, be
ause we used 100 interest points for experiments with feature

ve
tors set representations and 200 interest points for experiments with histogram

based representations. The two histogram dimensions 
orrespond to the two dif-

ferent representations (Amplitudes � amplitudes and di�eren
es of amplitudes �

neighbourhood ranking).

Parameter Des
ription Standard value

N Number of interest points 100/200

- Interest region size 32� 32 pixels

S Number of s
ales of the Gabor �lter bank 3

K Number of orientations of the Gabor �lter

bank

8

n Number of neighbours for the n-nearest

neighbour sear
h

48

t Threshold for the voting algorithm 1:0

- Histogram dimensions 8� 8/8� 16

Table 9.4: Standard parameter values used during the experiments

The following parameters are present in all of our image representations and query

methods:

The number of interest points The number of interest points is an essential

parameter of the indexation system. It determines how many interest regions

are taken from the images and therefore also how mu
h area of the image

is 
overed by the des
ription. Indexation speed and for some methods also

query speed strongly depend on this parameter, so we are interested to keep

it as low as possible (See se
tion 9.1).

The region size The region size determines how mu
h area is 
overed by the

features 
olle
ted on an interest point. The larger we set the area, the less

sensitive the algorithm is to shifts of the interest point lo
ations. On the other

hand, the larger we set the size of the area, the less des
riptive the features

will be. The frequen
y spe
trum of a whole image does not ne
essarily give

lots of information about the texture 
ontents of images, sin
e most images


ontain more than one texture.

The number of s
ales of the Gabor �lter bank This parameter determines

how sensitive the Gabor �lter bank is to 
hanges of frequen
y.
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The number of orientations of the Gabor �lter bank This parameter deter-

mines how sensitive the Gabor �lter bank is to 
hanges of orientation.

9.3.2 Representation by Feature Ve
tor Sets

In this se
tion we explain the results of our experiments using the query methods

based on the image representation by sets of feature ve
tors des
ribed in 
hapter

6. We des
ribe the experiments we 
ondu
ted to optimize the algorithms. The

values of the following parameters have to be optimised:

� The distan
e formula

� The threshold value

� The number of interest points

� The interest region size

The distan
e formula

We performed experiments with three di�erent distan
e formulas: The voting

algorithm introdu
ed by S
hmid and Mohr (See Se
tion 6.4.1) and the two distan
e

measures for our method sear
hing 
orresponding interest points using equations

6.4 and 6.5. The 
urves for the voting algorithm 
ompared to the unweighted

distan
e measure (Equations 6.4) are presented in Figures 9.6 and 9.4 for the

image databases 1 and 2 respe
tively.

The �gures show, that the performan
e of the algorithm sear
hing 
orrespond-

ing interest points is superior to the voting algorithm. However, more striking

is the fa
t, that for both databases the 
urve of the voting algorithm does not

only show a di�erent performan
e. It is also shaped di�erently than the other

performan
e 
urves. If we 
ompare the 
urves of the di�erent algorithms in Figure

9.6, then we see that most of them are more or less parallel. Even the 
urves

for the histogram based methods are almost parallel to the feature ve
tors 
urves

using 
orresponding interest points. On the other hand the 
urves for the voting

distan
e show a di�erent progression. The performan
e drops qui
kly at the be-

ginning, but with growing sizes of the result set the algorithm 
onverges to the

same performan
e as the algorithm sear
hing 
orresponding points.

The explanation of the poorer performan
e of the voting distan
e 
an be ex-

plained with di�erent fa
ts. Firstly, in our test database for most similar image

pairs one interest point of the query image 
orresponds to only one point in the

database image. The se
ond and probably more important explanation is the be-

haviour of feature ve
tors on 
at or almost 
at interest regions taken from the

ba
kground of the images. A feature ve
tor 
orresponding to one of these regions

has a small distan
e 
ompared with any other feature ve
tor of this group of 
at
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Figure 9.6: DB 1 - Comparison of the di�erent retrieval algorithms for this work.

For all methods the Haar transform interest point dete
tor has been used. (a)

Feature ve
tors on interest points. Comparison using the method of sear
hing 
or-

responding interest points (Equation 6.4). (b) Feature ve
tors on interest points.

Comparison using voting. (
) The ordered set of two dimensional histograms

storing the amplitude � amplitude distribution. (d) The ordered set of two di-

mensional histograms storing di�eren
es of amplitude � neighbourhood ranking.
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Figure 9.7: DB 1 - The results of the di�erent methods - the varian
e of pre
ision

is plotted instead of the average pre
ision.
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regions. During the algorithm sear
hing 
orresponding interest points these fea-

ture ve
tors are eliminated one by one and do not "harm" the distan
e fun
tion

very mu
h. Considering the voting algorithm on the other hand, one of these

ba
kground feature ve
tors will mat
h against possibly all other ba
kground fea-

ture ve
tors, whi
h produ
es an enormous amount of votes. If we examine e.g.

the 
omparison of two images, where ea
h of them has 10 interest points taken

from the ba
kground among all their 100 points ea
h, then the 
omparison step

produ
es approximately 100 votes, whereas the other votes will be in the range of

50 votes in the average 
ase. I.e. that in this 
ase

2

3

of the votes 
orrespond to

the homogeneous ba
kground. This low relation between representative votes and

unrepresentative ba
kground votes 
auses a worse query performan
e.

We performed experiments for the two di�erent distan
e equations of the

method sear
hing 
orresponding interest points. From now on we will refer to

the method de�ned by equation 6.4 as unweighted distan
e and to the method

de�ned by equation 6.5 as weighted distan
e. Figures 9.8 and 9.9 show the perfor-

man
e 
urves for the two di�erent distan
e measures for two of our test databases.

The performan
e is almost equal for both distan
es within the order of statisti
al

un
ertainty. Nevertheless we believe, that the weighted distan
e measure works

better than the unweighted measure on bigger test databases (See se
tion 6.4.2).

This fa
t has not yet been 
on�rmed by experiments, sin
e we did not perform

any experiments with databases of suÆ
ient sizes yet.

The threshold value

Unlike the histogram based algorithms the query methods for the feature ve
tor

set representations are equipped with a threshold value t whi
h needs to be set.

We 
ondu
ted experiments with di�erent values for this threshold: t = 0:7; 1:0; 1:6

and 2:0. The �gures 9.11, 9.12 and 9.13 display result 
urves for the three test

image databases using di�erent threshold values applied to the method of sear
hing


orresponding interest points (Equation 6.4). As we 
an see, the query performan
e

seems to be dependent on this value. One of the reason is the distan
e formula

of the algorithm (equation 6.4). The dis
retisation of the distan
e values depends

of the number of 
olle
ted interest points, whi
h was set to N = 100 in our

experiments. Hen
e, there are at most 2N di�erent values for the distan
e between

two images. If the threshold values are too low or too high, then the distribution

of distan
e values will shift to the respe
tive end of the range of possible values,

where the values 
annot be distinguished.

A priori this fa
t is not very 
onvenient. If a method depends on the 
orre
t

settings of a parameter, then we need to �nd a solution how to �nd this parameter

and under whi
h 
ir
umstan
es it 
hanges. However, a 
loser look to the results

for all 3 image databases relativates this judgement. The optimal threshold value

seems to be equal for all 3 databases, we set it to 1:0. We 
on
lude, that the

parameter is not strongly dependent on the input images, i.e. it is possible to
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Figure 9.8: DB 2 - Feature ve
tors on interest points. Comparison using the

method of sear
hing 
orresponding interest points and two di�erent distan
e for-

mulas: (a) The distan
e 
al
ulation is based on the numbers of 
orresponding

interest points found (Equation 6.4). (b) For the distan
e 
al
ulation not only the

number of 
orresponding interest points is used, but also the distan
es between the


orresponding feature ve
tors (Equation 6.5). Region size is 32� 32, 100 interest

points were 
olle
ted.

81



0

20

40

60

80

100

0 5 10 15 20 25 30

A
ve

ra
ge

 p
re

ci
si

on
 (

%
)

Number of images in the return set

Feature vectors version 2

0

20

40

60

80

100

0 5 10 15 20 25 30

A
ve

ra
ge

 p
re

ci
si

on
 (

%
)

Number of images in the return set

Feature vectors version 2 - weight

Figure 9.9: DB 3 - Feature ve
tors on interest points. Comparison using the

method of sear
hing 
orresponding interest points and two di�erent distan
e for-

mulas: (a) The distan
e 
al
ulation is based on the numbers of 
orresponding

interest points found (Equation 6.4). (b) For the distan
e 
al
ulation not only the

number of 
orresponding interest points is used, but also the distan
es between the


orresponding feature ve
tors (Equation 6.5). Region size is 32� 32, 100 interest

points were 
olle
ted.
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assign it a �xed value before hand.

Another surprising result 
on
erning the optimal threshold value is it's a
tual

value, or the position of this value in the range of the possible distan
es between

ve
tors in feature spa
e. Figure 9.10 shows this distribution of the ve
tor dis-

tan
es in a normalised histogram plot, whi
h has been 
reated by 
al
ulating and

subsampling all possible distan
es of ve
tors in the �rst test image database and

pla
ing them into a one dimensional histogram. The x axis spe
i�es the distan
e

between two ve
tors (Equation 6.3), the y axis spe
i�es the 
ount of ve
tor pairs

having this distan
e. The histogram has been normalised, so that the sum of all

bins is equal to 1.
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Figure 9.10: The distribution of the feature ve
tor distan
es as normalised his-

togram plot

We used the threshold values t = 0:7; 1:0; 1:6 and 2:0 in our experiments, they

are displayed in Figure 9.10 as thin verti
al lines. We note, that the optimal

threshold of t = 1:0 is situated near the lower end of the range of found distan
es.

This low threshold has the e�e
t, that the number of 
orresponding interest points

is low. This fa
t 
an be seen e.g. in Figure 6.5, where in two rather similar images

only few of the 100 sele
t interest points are a
tually found as 
orresponding.

Number of interest points

Figure 9.14 depi
ts query performan
e 
urves for the feature ve
tor set method

with di�erent 
ounts of 
olle
ted interest points. We used 
ounts of 30; 50; 70 and

100 points. The reason for the limitation of the number of points is the strong
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Figure 9.11: DB 1 - Di�erent thresholds applied to the method using feature

ve
tors on interest points, version 2. Comparison using the method of sear
hing


orresponding interest points (Equation 6.4). Region size is 32 � 32, 100 interest

points 
olle
ted.
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Figure 9.12: DB 2 - Di�erent thresholds applied to the method using feature

ve
tors on interest points, version 2. Comparison using the method of sear
hing


orresponding interest points (Equation 6.4). Region size is 32 � 32, 100 interest

points 
olle
ted.
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dependen
y of the method on the number of points. It is 
omputationally too

expensive to perform the algorithm with 200 interest points 
olle
ted on ea
h

image.

The query performan
e of the feature ve
tor set based method does depend

on the number of interest points. This 
an be explained by the nature of the

distan
e algorithm. Sin
e the distan
e of two images is based on the 
omparison

of points, the importan
e of a single point is very high. Hen
e, in
reasing the query

performan
e of the feature ve
tor set based method by in
reasing the number of

interest points N is possible but limited due to the 
omputational 
omplexity of

the algorithm (O(N

3

)).

Interest region size

We performed experiments using interest region sizes of 64 � 64 pixels, 32 � 32

pixels and 16� 16 pixels to 
he
k if they in
uen
e query performan
e. From the


omputational point of view the size of the interest regions strongly determines

indexation speed, but it has almost no e�e
t on the query speed. Nevertheless we

want to keep it as low as possible. Figure 9.15 shows query performan
e 
urves

using the feature ve
tor set based method and the three di�erent region sizes. As

we 
an see the query performan
e is not signi�
antly a�e
ted by the 
hange of the

region sizes.

The interest point operator

For our experiments we used di�erent interest operators, whi
h we des
ribed in


hapter 3: Two di�erent implementations of the Harris 
orner dete
tor, two dif-

ferent versions of the Loupias wavelet based interest point dete
tor based on the

Haar and the Daube
hie wavelet respe
tively, and the Jolion multiresolution 
on-

trast based interest point dete
tor. To evaluate the dependen
y of our algorithms

on the 
hoi
e of the interest point operator, we additionally implemented an "in-

terest point operator" sele
ting a �xed number of random points in an image.

The results of our experiments are displayed in Figure 9.16 for our �rst test

database. As we 
an see, the di�eren
es in performan
e between the various de-

te
tors are not big. The performan
e of the algorithms in experiments where the

random interest point dete
tor is used is not as good as the performan
e of the

other interest operators, but still surprisingly good. The di�eren
es are in the order

of the statisti
al un
ertainty of the measurement of the algorithms. We 
on
lude,

that the performan
e of our algorithms only weakly depends on the lo
ations of

the interest points, i.e. on the 
hoi
e of the interest point dete
tor. This fa
t 
an

be explained by the ri
hness of our image features. The feature data 
olle
ted on

the interest points has enough des
riptive power.

85



0

20

40

60

80

100

0 5 10 15 20 25 30

A
ve

ra
ge

 p
re

ci
si

on
 (

%
)

Number of images in the return set

1.0 no spatial distance

0

20

40

60

80

100

0 5 10 15 20 25 30

A
ve

ra
ge

 p
re

ci
si

on
 (

%
)

Number of images in the return set

1.6 no spatial distance

0

20

40

60

80

100

0 5 10 15 20 25 30

A
ve

ra
ge

 p
re

ci
si

on
 (

%
)

Number of images in the return set

2.0 no spatial distance

0

20

40

60

80

100

0 5 10 15 20 25 30

A
ve

ra
ge

 p
re

ci
si

on
 (

%
)

Number of images in the return set

0.7 no spatial distance

Figure 9.13: DB 3 - Di�erent thresholds applied to the method using feature

ve
tors on interest points, version 2. Comparison using the method of sear
hing


orresponding interest points (Equation 6.4). Region size is 32 � 32, 100 interest

points 
olle
ted.
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Figure 9.14: DB 1 - Di�erent 
ounts of 
olle
ted interest points applied to the

method sear
hing 
orresponding interest points (Equation 6.4). Region size is

32� 32, Haar transform dete
tor.
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Figure 9.15: DB 1 - Di�erent interest region sizes applied to the method sear
hing


orresponding interest points (Equation 6.4). Region size is 32�32, multiresolution


ontrast based IP dete
tor.
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Figure 9.16: DB 1 - The results for the method sear
hing 
orresponding feature

ve
tors), using di�erent interest point dete
tors. Region size is 32�32, 100 interest

points were 
olle
ted.
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9.3.3 Representation by Histogram Sets

This se
tion des
ribes the experiments that have been 
ondu
ted using the two

histogram set representations des
ribed in 
hapter 7. As for the feature ve
tor

methods, we optimised the parameters of the algorithms to obtain the optimal

query performan
e.

The histogram dimensions

An important parameter of the image representation is the dimensions of the

histograms, i.e. the number of bins, and the borders, i.e. the interval of the

raw data whi
h is represented by the histograms. We designed the histogram

borders a

ording to the distribution of the feature data. Table 9.5 shows the

histogram borders and dimensions for the two di�erent representations used during

our experiments.

Parameter Amplitude � Amplitude Amplitude � Ranking

x-bin 
ount 8 8

y-bin 
ount 8 16

x-min value 7 -6

y-max value 12 6

x-min value 7 1

y-max value 12 n = number of neighbours

Table 9.5: The histogram dimensions used during the experiments

In the 
ase of the amplitude-amplitude histogram the values on the x and on the y

axis are logarithmi
 amplitude values. The given borders have been 
al
ulated by

de
reasing step by step the borders of an a

umulated histogram, whi
h has been


omputed by summing up all histograms of our �rst test image database, until the

amplitude data is best 
overed by the interval of the histogram. The same has

been done for the x axis of the se
ond histogram type, whi
h stores di�eren
es of

amplitudes in it's x axis. The y axis of the se
ond histogram type, whi
h stores

the neighbourhood ranking of the n-nearest neighbour sear
h, has trivial borders,

whi
h we did not need to 
al
ulate.

The histogram dimensions have been found by experiments. Like we already

experien
ed with other parameters, the histogram dimensions in
uen
e the query

speed, so we want to keep them as small as possible. However, too small histograms

are not representative anymore, whereas too large histograms 
ontain too many

empty bins, whi
h is not a good 
hara
teristi
 if we want to apply histogram

distan
es.
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The number of neighbours

The number of neighbours n for the n-nearest neighbour sear
h determines how

mu
h in
uen
e of the spatial 
oheren
e of the feature data is represented in the

histogram. However, the number has to be adjusted to the data. If the algorithm

does not sear
h enough neighbours, then the spatial 
oheren
e is under represented

in the histogram. If the algorithm sear
hes too many neighbours on the other

hand, then the information about the spatial 
oheren
e is lost, sin
e the found

neighbours tend to be the same for points near to ea
h other. We 
ondu
ted

experiments using 3, 6, 12, 24 and 48 neighbours. Surprisingly there is almost no

di�eren
e in the query performan
e (Figure 9.17), although 
ounts of n = 12 or

even n = 48 are far too high to store any spatial information in the histograms,


onsidering that N = 200 interest points are 
olle
ted on ea
h image. We 
on
lude,

that the additional information about the spatial 
oheren
e does not 
hange the

des
riptiveness of the histograms.

The histogram distan
e measure

We also 
ondu
ted experiments with the histogram distan
e measurements de-

s
ribed in se
tion 7.3. As 
an be seen in Figure 9.18 the best results are obtained

with the Batta
haryya distan
e. This has been 
on�rmed by Huet and Han
o
k

in their work as well [11℄.

The histogram representation

We introdu
ed two di�erent histogram based image representations. Represen-

tation 1 
onsists of a set of histograms storing amplitudes and representation 2


onsists of a set of histograms storing di�eren
es of amplitudes and the ranking of

the neighbours of the n-nearest neighbour sear
h. We performed experiments using

both of the two representations. Comparing the query performan
e of the methods

applied to test image database 1 (Figure 9.6) and test image database 2 (Figure

9.4). We remark that the �rst method based on the amplitude distribution only

performs better than the se
ond one. We 
on
lude, that the absolute amplitude

information is more des
riptive than the relative information. I.e. the information,

whi
h orientations and s
ales are present in the image is more des
riptive than the

information how mu
h the amplitudes 
hange in the spatial neighbourhood of the

interest points.

The number of interest points

As for the feature ve
tor approa
h we 
ondu
ted experiments with di�erent 
ounts

of 
olle
ted interest points to optimise the algorithm for this parameter. Figure

9.19 depi
ts the experiments with numbers of 50; 100; 200 and 300 points. For this

algorithm it was possible use higher numbers of interest points, be
ause unlike the
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Figure 9.17: DB 1 - The method using ordered set of histograms (storing amplitude

� amplitude), di�erent 
ounts of neighbours for the n-nearest neighbour sear
h.

Region size is 32� 32, Haar transform dete
tor.
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Figure 9.18: DB 2 - The results for the ordered set of histograms (storing amplitude

� amplitude), using di�erent histogram distan
es. Region size is 32 � 32, 200

interest points were 
olle
ted.
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feature ve
tor set method the query speed does not depend on this parameter. As

we 
an see the performan
e of the histogram based algorithm is weakly dependent

on the number of interest points. The di�eren
es in the query performan
e are

within the statisti
al un
ertainty of the measurement algorithms.

For the histogram based methods the 
ount of interest points is not as im-

portant. If enough area of the image is 
overed by interest regions, and if the

histograms are �lled enough | i.e. the number of non-zero bins of the normalised

histogram is suÆ
iently high | then in
reasing the number of interest points does

not in
rease query performan
e.

The interest region size

Similar to the feature ve
tor set method we performed experiments with di�erent

interest region sizes. We used sizes of 64 � 64 pixels, 32 � 32 pixels and 16 � 16

pixels. Figure 9.20 shows query performan
e 
urves using the histogram set based

query method (histograms sets storing the amplitude distribution) and the three

di�erent region sizes. As for the feature ve
tor set method, the query performan
e

is not signi�
antly a�e
ted by the 
hange of the region sizes.

The interest point operator

In our experiments we used the same interest point operators we already applied

in the feature ve
tor set methods. The results are displayed in Figure 9.21 for

test database 1 and in Figure 9.22 for test database 2. The results are similar to

the results of the experiments for the feature ve
tor set methods: The di�eren
es

in performan
e between the various dete
tors are not big. However, surprising is

the good performan
e of the algorithms in experiments where the random interest

point dete
tor is used. The performan
e of the random points operator is equal to

the performan
e of the other operators.

We already explained the weak dependen
y of our algorithms to the 
hoi
e of

the interest operator with the ri
hness of our image features. However, the his-

togram based approa
h is even less sensitive to the 
hoi
e of the interest operator

than the feature ve
tor set approa
h. This 
an be explained by the fa
t, that we

do not 
ompare single feature ve
tors, i.e. single interest points, but distributions

of interest points. The feature data 
olle
ted on the interest points has enough de-

s
riptive power, whi
h is not improved by a stable interest point dete
tor 
hoosing

points "appropriate" for our type of features.

9.3.4 Comparison of the Methods per Query Image

The query 
urves show the performan
e of the di�erent query methods as the

pre
ision averaged for all query images. We don't get any information whi
h query

method works well with whi
h type of image. To produ
e this kind of information
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Figure 9.19: DB 1 - Di�erent 
ounts of 
olle
ted interest points applied to the

method using ordered set of histograms (storing amplitude � amplitude). Region

size is 32� 32, Haar transform dete
tor.
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Figure 9.20: DB 1 - The results for the ordered set of histograms (storing amplitude

� amplitude), using di�erent interest region sizes. Haar transform dete
tor, 200

interest points 
olle
ted.
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Figure 9.21: DB 1 - The results for the ordered set of histograms (storing amplitude

� amplitude), using di�erent interest point dete
tors. Region size is 32� 32, 200

interest points were 
olle
ted.
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Figure 9.22: DB 2 - The results for the ordered set of histograms (storing amplitude

� amplitude), using di�erent interest point dete
tors. Region size is 32� 32, 200

interest points were 
olle
ted.
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we 
reated statisti
s at a lower level of detail, i.e. the level of single query images.

For ea
h query image and ea
h query method we 
al
ulated the query pre
ision

for a return set of 10, 20, 30 and 40 images, and the average pre
ision for all

return sets with sizes between 1 and 50 images. Then we 
ompared the pre
ision

values for all methods for ea
h query image. The query method whi
h is best for

this query image gets a vote. Continuing this pro
ess for all query images we get

several statisti
s for ea
h size of the return set how many queries work best for

ea
h method.

Algorithm / Images in the return set 10 20 30 40 avg. 1-50

Histogram set amplitude �amplitude 347 248 235 220 201

Histogram set di�. amplitudes � ranking 93 122 126 142 126

Feature ve
tors version 2 129 199 208 207 242

Table 9.6: Results for di�erent sizes of the result set

It 
an be seen, that with growing size of the return set the histogram set method

storing amplitudes looses performan
e against the growing performan
e of the

feature ve
tor method. However, more important is the information, whi
h query

method is preferable for whi
h type of image. So we 
lassi�ed the same information

a

ording to the image 
lusters in the following two tables. The rows represent

the di�erent query methods, the 
olumns the di�erent image 
lusters. An entry

in the table spe
i�es how many images of this 
luster had the best results for this

query method. The following tables were produ
ed for 10 images in the return set

and the average value of 1 to 50 images in the return set respe
tively.

Algorithm / 
luster 1 2 3 4 5 6 7 8 9 10 11 total

Histogram set 3 11 1 12 14 3 26 25 79 81 92 347

amplitude �amplitude

Histogram set 5 0 0 3 0 5 3 8 0 49 20 93

di�. amplitudes � ranking

Feature ve
tors 2 0 13 0 1 11 3 3 7 26 63 129

version 2

Table 9.7: Results: 10 images in the return set

The di�eren
e of the two tables is not small, whi
h means that the ordering of the

\good" results in the return set is di�erent for the di�erent methods.

9.3.5 Comparison and Con
lusion

In our experiments we evaluated two query methods applied to the three di�er-

ent test databases des
ribed in 
hapter 8. As we 
an see, the algorithmi
 distan
e

94



Algorithm / 
luster 1 2 3 4 5 6 7 8 9 10 11 total

Histogram set 0 10 1 7 14 1 0 25 43 49 51 201

amplitude �amplitude

Histogram set 5 0 0 6 0 6 0 6 14 67 22 126

di�. amplitudes � ranking

Feature ve
tors 5 1 13 2 1 12 32 5 29 40 102 242

version 2

Table 9.8: Results: Average value of 1 - 50 images in the return set

methods using the feature ve
tor set representation perform slightly better then the

statisti
al distan
e methods based on the histogram set representations. Consider-

ing, that the di�eren
e in query performan
e between the feature ve
tor methods

and the histograms is almost insigni�
ant, then the relation between 
ost (query

speed) and bene�t (query performan
e) is signi�
antly better for the histogram

based methods.

The performan
e of our algorithms is only weakly dependent on parameters.

Both algorithms are invariant to 
hanges of the interest region size. The threshold

t of the feature ve
tor set algorithm 
an be �xed a

ording to our experiments.

The performan
e of the histogram based method does not depend on the number

of the interest points 
olle
ted.

As we already noted, the query performan
e of the feature ve
tor set based

method 
an be improved by in
reasing the number of interest points, but the

amelioration is limited due to the 
omputational 
omplexity of the algorithm.

Future work 
ould be done to 
ombine the feature ve
tor set representation with

hierar
hi
al representations and methods [14℄ in order to redu
e the 
omplexity of

the distan
e algorithm.
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Chapter 10

Con
lusion and Outlook

The main 
ontribution of this thesis has been the des
ription of several possibili-

ties to realise a 
ontent based image retrieval system whi
h uses texture similarity

to 
al
ulate distan
es between images. We showed how to 
ombine interest point

dete
tors and the appli
ation of a Gabor �lter bank to 
reate des
riptive image

representations. We introdu
ed two di�erent query methods whi
h used di�erent

image representations. We des
ribed an algorithmi
 method based on frequen
y

des
riptions of image regions and a statisti
al method based on histogram repre-

sentations of the images. Both query algorithms give good results a

ording to our

test image databases. For indexation purposes we re
ommend the histogram based

statisti
al method, be
ause it needs mu
h less 
omputational e�orts, whereas the

performan
e de
rease is statisti
ally not signi�
ant.

Figure 10.1: Example Query

96



Our algorithms do not use any a priori model of the image 
ontents. They have

been evaluated and tested in various experiments using di�erent databases of test

images of various sour
es. Be
ause we did not restri
t the set of images supported

to a spe
i�
 group, the question arises, whi
h type of queries 
an be handled by

our methods.

The image representation introdu
ed in this thesis holds a rough texture de-

s
ription of images. The similarity measure is able to distinguish groups of images

of the same type, i.e. images having similar 
ontent without 
onsidering many

details. Typi
al appli
ations 
ould be e.g. databases of television broad
ast sta-

tions, whi
h need to �nd s
reenshots of similar s
enes or shots of the same tele
ast

in a large set of television s
reenshots. Experiments with one of our test image

databases whi
h 
ontains television s
reenshots, prove the good performan
e for

this task.

Figure 10.1 shows a typi
al result set of a query against one of our test databases


ontaining images of various types (portraits, drawings, s
reenshots of video se-

quen
es, textures et
.). The query image | a portrait | is displayed in the left

upper position, the result image are ordered from left to right and from top to

bottom. Our query algorithms are 
apable to retrieve the other portraits of the

database. However, they are unable to re
ognise details of the images, i.e. in this


ase they do not retrieve the images showing the person on the query image on the

�rst positions of the result set. Tasks like this need to be done by spe
ialised re
og-

nition systems, whi
h use spe
i�
 image data to 
reate image similarities designed

for the appli
ation domain.

Other possible appli
ations of our methods 
ould be to use them as pre-

pro
essing steps to spe
ialised image databases. Be
ause our query methods are


apable of retrieving images of the same type from a database 
ontaining images

of various types they 
an be used to narrow the set of images to sear
h for other

methods whi
h perform sear
h algorithms spe
ialised for a spe
i�
 task. Consider-

ing the example des
ribed above, one possibility would be to sear
h all portraits of

a general database using our texture based method, and to apply a fa
e re
ognition

algorithm afterwards on the result set of our method.

The following future tasks are planned to deepen the experien
es we made

during this work:

� The integration of a stru
tural 
omponent by 
ombining our feature ve
-

tor set based query method with attributed graph pyramids [13℄ [14℄. The

aim is redu
e the 
omplexity of the feature 
omparison step and to add a

hierar
hi
al 
omponent to the image similarity.

� Another task 
urrently pursued is to join this texture based approa
h with

methods based on 
olour, stru
ture and shape into one weighted indexation

system, whi
h uses feedba
k of the user to determine the preferen
es and to

re
al
ulate the weights of the system (See Se
tion 2.3).
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Appendix A

Table of symbols

The following symbols have been used through out this work:

Symbol Des
ription

Database

B Number of images in the database

F Number of images used as query images

N Number of interest points 
olle
ted on an image

Filters

S Number of s
ales of the Gabor �lter bank

K Number of orientations of the Gabor �lter bank

u0 The x-
oordinate in frequen
y spa
e of the max. ampli-

tude of a �lter response

v0 The y-
oordinate in frequen
y spa
e of the max. ampli-

tude of a �lter response

Algorithms

t The threshold for the distan
e of feature ve
tor sets.

n The number of neighbours for the n-nearest neighbour.

sear
h

�; � Feature ve
tors or histogram ve
tors

Measures

P (
) Pre
ision of a query returning a result set of 
 images

R(
) Re
all of a query returning a result set of 
 images

Table A.1: Symbols used in this do
ument
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Appendix B

S
reenshots

For demonstration purposes and to make tests of our algorithms easier we devel-

oped a query system with graphi
al interfa
es. S
reenshots of these tools for the

X-window system and the web are displayed in Figures B.1 and B.2. The system

is a

essible via the world wide web at the following address:

http://www.prip.tuwien.a
.at/Resear
h/ImageDatabases/Query
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Figure B.1: The graphi
al Frontend for the X-window System
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Figure B.2: The Main Page of the Web Frontend
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