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Abstrat

Content based image retrieval is the task of searhing images from a database, whih are

visually similar to a given example image. Sine there is no general de�nition for visual

similarity, there are di�erent possible ways to query for visual ontent. In this work we

present methods for ontent based image retrieval based on texture similarity using interest

points and Gabor features. Interest point detetors are used in omputer vision to detet

image points with speial properties, whih an be geometri (orners) or non-geometri

(ontrast et.). Gabor funtions and Gabor �lters are regarded as exellent tools for texture

feature extration and texture segmentation. We present methods how to ombine these

methods for ontent based image retrieval and to generate a texture desription of images.

Speial emphasis is devoted to distane measures for the texture desriptions. Experimental

results of the query system on di�erent test image databases are given.
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Chapter 1

Introdution

1.1 Motivation

Sine its invention photography has rapidly onquered the world. No wonder, it

was photography whih made it possible to transfer and store visual impressions

and experienes. People began to ollet photographs and soon ompanies like

newspaper publishers had large arhives. However, �nding spei� pitures in

these vast quantities of information was time onsuming manual work.

The invention of the omputer hanged a lot about the ways information an be

stored, but did not solve all problems. The equivalents of photographs | digital

images | found their way into the information soiety as soon as the omputers

beame powerful enough to proess, display and transfer them. At the time this

doument is written the average desktop PC (already alled "Multimedia PC") has

enough memory and proessing power to store large image and video databases.

The hardware neessary to reate and apture images is available, heap and easy

to use. Sanners, digital ameras and even digital video ameras able to onnet

to omputers are ooding the markets and found their way into the average home.

The latest tehnology disovered by the publi is the Internet and the world wide

web | an almost unlimited soure of information.

The problem of �nding spei� piees of information in this large arhives

remains unresolved. Solutions for text information have been found. Databases

based on keywords or full text searh are used suessfully all over the world. The

priniple of keyword based searh tehniques has been applied to image databases

as well. However, it is not possible to desribe images with words to the same

extent as ontents in text form, sine the information visible on images an be

seen from di�erent viewpoints or aspets.

Figure 1.1 shows two examples. How do we desribe the ontents of these

images? People looking at Figure 1.1.a ould be interested in the people or the

fashion in the foreground, the arhiteture in the bakground or any other part of

the image. The sene displayed in Figure 1.1.b is equally diÆult to desribe.
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Figure 1.1: How do we desribe visual information?

The equivalent of a full text searh for an image database is a ontent based image

retrieval system using query by example as "query language". The user spei�es a

query image or parts of it. The system answers with images similar to this query

image. The key question of this approah is, how do we de�ne similarity between

images? We distinguish two di�erent approahes[27℄:

� Systems based on attentive san use onsious proesses and high level rea-

soning to ompare information. Similarity is derived from the knowledge

about the semanti ontents of the images. Humans use this onept to

searh for spei� douments (or images) in arhives.

� Systems based on pre-attentive san use unonsious proesses to ompare

information. Applying image proessing algorithms they extrat features of

di�erent nature: Colour, texture, struture and ontour features have been

used in former approahes for image desriptions.

An ideal ontent based query system should be based on attentive san. Only by

understanding the ontents of arhives and the desires of the user it is possible to

deliver exatly the required information. However, the general image understand-

ing problem has not yet been solved, i.e. omputers and their software are not yet

sophistiated enough to atually understand the semanti meaning of the ontents

of douments, and it is subjet to sienti� disussion until now if arti�ial pro-

esses will ever reah this degree of intelligene. Up to now all methods have been

pre-attentive and the work desribed in this doument is based on this approah

as well.

The way and method how an image retrieval system is hoosing and delivering

its results depends on the purpose of the appliation. There is no general measure

for visual similarity so there are no general purpose image retrieval systems for all

kind of images, whih always deliver orret results aording to the user's wishes.

The known approahes an be lassi�ed into systems more or less speialised to

2



spei� tasks and systems trying to implement a general purpose retrieval system

working for all kinds of images. Examples for the former are medial systems like

databases of X-ray images, appliations speialised to faial images et.

An appliation for a general purpose retrieval software an be found on the

web: The Internet searh engine Altavista

1

allows to searh for text, images,

video and audio ontents of the web by keywords. One an image is found the

user is able to searh what is alled a visual similar. Obviously a system like

this designed for general purposes will not work in all ases, sine there is no

feedbak from the user whih kind of information she desires. However, for the non

business ritial usage of the average user they an be useful enough. The demand

of powerful image retrieval systems is not yet satis�ed by existing appliations.

Not only the vast quantities of information available on the Internet need to be

handled by searh engines. Industries like TV broadasting stations, magazines,

newspapers, advertisement agenies, hospitals and even governments store huge

amounts of visual information. Without being able to searh for spei� douments

this knowledge annot be used to the full extent.

The work desribed in this doument introdues a new image retrieval system

based on pre-attentive san. The aim was to develop an approah based on texture

similarity without performing a full texture segmentation of the images. Instead

we are using loal texture features gathered from a representative set of image

pixels to desribe images. The system an be outlined as follows:

� We selet a �xed number of image pixels (alled interest points) using interest

point operators. The riteria for the seletion of the points is how well they

represent the ontents of the image.

� Around eah interest point we extrat windows of �xed sizes from the image.

From these windows, whih we all interest regions, we extrat texture fea-

tures by applying a Gabor �lter bank. The output of the Gabor �lter bank

is used to reate di�erent image representations.

� Finally we developed di�erent distane measures appliable to our image

representations.

The system itself has been tested on di�erent test image databases and proved to

perform well. Future work will integrate it into a bigger appliation (Setion 2.3)

using di�erent types of similarity (olour, texture, struture and ontour) and user

feedbak.

1.2 Struture of this Doument

Chapter 2 gives an overview of the prinipal omponents of a ontent based image

query system based on pre-attentive san. We give a short overview of the former

1

http://www.altavista.om
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approahes and the state of the art of image retrieval inluding di�erent types of

features.

Chapter 3 desribes di�erent interest point detetors | We used some of these

detetors in our system.

Chapter 4 explains how texture information an be gathered from digital images

and how Gabor funtions and a Gabor �lter bank | the heart of our indexation

algorithm | an be used for this purpose.

Chapter 5 gives an overview about the proess of olleting Gabor features on

interest points and the ways to interpret the results of this proess.

Chapter 6 introdues an image desription and methods based on the results of

the Gabor �lters for indexation purposes: Colletions of feature vetors where one

vetor orresponds to an interest point.

Chapter 7 desribes histogram based indexation methods. The histograms are

built from the same Gabor �lter outputs explained in setion 5. Di�erent image

desriptions and di�erent distane measures are ompared.

Chapter 8 desribes the environment used to develop and test the system. Two

di�erent databases with di�erent types of images have been used. A short overview

of the appliations of the system is given.

Chapter 9 shows the performane results of the query algorithms introdued in

this doument on our test environment. We explain in great detail the methods

used to measure query performane.

Chapter 10 draws onlusions and gives some outlook on future researh and im-

provements of the methods introdued.
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Chapter 2

State of the Art of Content Based

Image Retrieval

The requirements for a ontent based image retrieval system depend on its appli-

ation and the wishes of the user. Let's imagine a user who wishes to searh an

image whih resembles her query image. This piture ontains a beah of white

sand, light blue sea, dark blue sky and a red ar in the foreground. She provides

her query image to an image indexation system whih in our ase responds to

this query by di�erent pitures showing beahes and skies with the same olours.

But atually our user wanted some more photographs of the ar model shown in

the foreground. What went wrong? The user did not speify whih type of sim-

ilarity she desired for her response images. The �rst image indexing approahes

used global olour information to alulate the similarity of images [33℄. Sine the

dominant olour information in our �titious example is the bakground | beah,

sea and sky | and these areas have been the same at the results, the system re-

turned these entries. A system responding with the desired results would need to

know whih parts of the image are relevant and whih kind of similarity is desired.

Colour based similarity would not return blue ars if the ar in the query image is

red. On the other hand for some appliations olours are a good hoie to use.

Sine researh on image indexation began, lots of di�erent algorithms have been

developed to satisfy these di�erent types of queries. These algorithms are based

on various kinds of image desriptions and methods to ompare them. However,

there are some parts whih stay the same. We will desribe the omponents of

indexation systems and the assoiated terms in this hapter as well as the di�erent

approahes.

2.1 Components of an indexation system

Figure 2.1 shows shematially of the prinipal omponents of a ontent based

image retrieval system. Two di�erent proesses need to be supported by these sys-

5



Feature Extraction

Feature Extraction

Image Description
Input Image

Query Image

Image Database

Comparison

Result set

(a)

(b)

Figure 2.1: Components of an image retrieval system: (a) Building the index (b)

Comparing images using the similarity funtion

tems: Indexing (uploading) images and querying the database. The main funtion

for the user is to query the database providing an example image, whih means

that this image has to be ompared with the images in the database. Sine image

proessing algorithms tend to be omputational expensive the omparison is not

done using the images themselves but pre-omputed image desriptions. The step

to reate these desriptions is alled indexation. For the ontents of the database

it an be performed o�-line and if neessary parallel for di�erent images on dif-

ferent mahines, so the performane demands are not as high as for the query

step. However, the index for the query image needs to be reated on-line during

the query proess unless the query image is taken from the database itself. The

proess an be desribed by three steps:

Pre-proessing The �rst step before reating the image desription is to prepare

the image data. The operation being performed depends on the type of

features taken in the next step. Usual pre-proessing steps are appliations of

�lters (e.g. Gaussian, median �lter), segmentation of the image into regions

of homogeneous olour or texture, or seletion of speial regions in the image.

Feature extration The feature extration step is gathering the atual informa-

tion needed to desribe the image. What kind of information needs to be

extrated depends on the type of queries that shall be performed. We will

desribe di�erent feature types (olour, texture, shape and struture) in this

setion.

Enoding The enoding step takes the extrated feature information and pro-

dues ompat oded byte sequenes whih an be stored in the database.

6



The result of the indexation proess is an image key, i.e. a byte sequene, for

eah image in the database together with a link to its soure image. During the

query proess the systems uses a distane funtion to ompare these keys with the

query image. The distane funtion (or similarity funtion) ompares two images

and returns the distane of the two images in feature spae. The database images

whose features have minimum distane to the features of the query image are

returned to the user as result of the query. It follows from this algorithm, that

the image features and the distane funtion are depending on eah other. The

following properties of features and distane funtion are desirable:

Distintion This property means, that desriptions for images with di�erent on-

tents should be di�erent, i.e. their distane should be big, while desriptions

of images with similar ontents should have a small distane. To satisfy

these onditions the features should reet the user requirements. E.g. if

the desired result images should resemble the query image in olour, then

the features should also be distintive in olour. The property of distintion

is hard to measure, sine there is no general measure of visual similarity.

Compat size The obvious advantage of ompat keys are the small spae re-

quirements for the database. The di�erene in disk spae for an image

database whih stores millions of images is onsiderable, even if the sizes

of the single keys an be dereased by small values.

Fast distane alulation During the query proess the distane funtion is

alled often. Hene a fast alulation of this distane value is essential and

determines the query speed. Before omparing two image desriptions they

are read from the database and deoded by the query proess. Then a data

struture is built. The requirements for fast deoding of the stored image

desriptions often onits with the desire of small key sizes.

2.2 Previous Work

This setion desribes previous work done in the �eld of image indexation. Al-

though the algorithms developed in this work are based on texture similarity we

will give here an overall overview about indexing algorithms inluding brief desrip-

tions of other similarity types like olour and struture. More spei� information

about texture and texture features will be given in hapter 4.

2.2.1 Colour Based Image Retrieval

Researh in the development of image features usable for indexation purposes

began with the usage of global features. Global features are inuened by the

whole image whereas loal features are alulated by parts of the image or even

7



a few pixels of it. An early indexing system on olour basis had been introdued

by Swain and Ballard [33℄. They �lled global histograms with the RGB olour

values of the input images and used the L

1

and the L

2

histogram distanes to

ompare the histograms (See Setion 7.3 on histogram distanes). The algorithms

were simple but performed surprisingly well. Improvements an be found in [19℄.

The main disadvantage of this method were the missing spatial onstraints.

The olour distribution stored in the histograms was alulated from the whole

image area. Striker et al. [32℄ developed an improvement by inluding limited

spatial oherene. They introdued �ve partly overlapping, regions - one in the

entre and one at eah orner of the image, as additional riteria for the mathing

proess. The ontribution of eah of the regions to the mathing proess an

be adjusted by the user via weighting parameters, so the user himself an stress

spei� regions of the query image as being important and exlude other regions.

Furthermore they �lled 3-dimensional histograms with olour distributions with

the �rst three moments (mean olour values, weighted variane and skewness)

instead of the raw RGB values.

One step further towards of loal features is the solution of Matas et. al [18℄

| a olour based approah as well. Their image desriptions onsists of a olor

adjaeny graph whih to build after fully segmenting the image into regions of

homogeneous olour. Nodes in this graph represent lusters of hromati om-

ponents whih are onneted by edges if they are spatial neighbours. Searhing

parts of an image in the database an be implemented by sub graph mathing.

However, the power of this method | the segmentation | is also a disadvantage.

The performane of the query depends on the orret segmentation of the images.

If this �rst proess is not robust enough the quality of the response dereases.

2.2.2 Loal invariant features

A di�erent approah of feature extration an be followed by using loal features.

Unlike global features they are not alulated from the whole image, but from

small spatial areas or even single pixels instead. But alulating loal features on

every pixel of the images reates too muh data, so not all pixels usually result

in feature information. Instead the features are extrated from previously hosen

regions of interest. One of the basi questions is how these regions of interest are

seleted, and what kind of speial properties do they have. One idea is to selet

speial points in the image, alled interest points, and to extrat features on areas

around these points. Sine we followed this idea in our work as well there is a

hapter on interest points (Chapter 3), where di�erent types and implementations

of interest operators are disussed.

In [28℄ Shmidt and Mohr present an image retrieval method based on loal

features extrated on interest points. They hoose the Harris orner detetor (see

setion 3.2) to selet key points of the image. For eah key point they ompute

a vetor with values invariant to similarity transformations, like the average lu-
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minane, the square of the gradient magnitude, the Laplaian et. These feature

vetors haraterise the neighborhood of the key points they were olleted on.

The similarity funtion neessary to ompute the distane values for two feature

vetors is the Mahalanobis distane. This distane takes into aount the di�er-

ent magnitudes as well as the di�erent seond-order statistial distributions of the

elements of the feature vetors. Distanes between two images are based on the

distanes of their feature vetors, sine images are represented as sets of feature

vetors. A voting algorithm deides about the image of the database most simi-

lar to the query image (See Setion 6.4.1). Performing a query the set of feature

vetors is reated for the query image, and every vetor is ompared with the pre-

omputed features of the database images. If the distane is below a threshold t,

then the involved database image gets a vote. The images having maximum votes

are returned to the user.

The authors re�ne the indexing algorithm by adding multi sale representation.

The pre-omputed feature vetors of the database images are alulated at several

sales. This an be ahieved by di�erent quantities of smoothing of the Gaussian

derivatives whih are basis for the omputation of the invariants. The feature ve-

tors of the query image are still omputed at one sale only, but they are ompared

to the feature vetors of the database, whih are extrated at several sales. This

adds invariane to sale to the retrieval algorithm at the ost of a higher possibility

of wrong mathes. To ompensate for that, semi loal onstraints are introdued.

The onstraints inrease the requirements for a math by demanding not only a

math of the two feature vetors but also of 50% of their neighbor vetors. An

additional geometri onstraint further dereases the possibility of wrong mathes.

Angles between key points have to remain onsistent (e.g. the angles �

1

and �

2

in

Figure 2.2).

�

1

�

2

Figure 2.2: Semiloal onstraints for the mathing onditions of feature vetors

Siggelkow and Burkhard also use loal invariant features [29℄ gathered on what they

all key points, whih "are distinguished and di�er from the other points by some

very strutured neighbourhood". Basially they use rotation invariant histograms,

whose features are built by taking integrals over all possible rotation funtions

9



applied to the key point. Remarkable is their method to built the histograms from

the features. One feature does not orrespond to a single histogram bin, but to

a irular area of bins whih is entred at the destination bin. Eah bin reeives

a weighted input of this features, where the weights are smaller at the borders of

the area. This approah makes histogram omparisons less sensible to small shifts

in the pixel values.

For his objet reognition algorithm Lowe [17℄ uses features on interest points as

well, applying a method whih he alls SIFT (Saled Invariant Feature Transform).

The basi idea is similar to the methods for image retrieval based on interest

points: An objet is reognised in an image if suÆient number of SIFT keys of a

region, i.e. the features extrated on these interest points, math the objets keys.

The loations are determined by searhing maxima and minima of a di�erene of

Gaussian funtion in an image pyramid. Aording to the author the operator

detets points at regions and sales of high variations.

To eah interest point a feature vetor (alled SIFT key vetor) is reated.

To make the feature data invariant to hanges of rotation and sale, anonial

orientation and sale values are assigned to eah vetor. The feature data is stored

relative to these values. The anonial sale an be determined by the pyramid

level at whih the key was deteted. The anonial orientation R

ij

for a pixel A

ij

is omputed by pixel di�erenes R

ij

= atan(A

ij

� A

i+1;j

; A

i;j+1

� A

ij

). To make

the orientation more robust it is omputed by using the peak values of a histogram

of loal orientations.

A SIFT key vetor ontains gradient values separated into di�erent orientation

planes, where eah plane ontains only gradients whih orrespond to its orien-

tation. The orientations of the planes are omputed relative to the anonial

orientation of the vetor. The regarded pixels are loations that fall in a irle

around the key loation. These orientation planes are omputed for two levels:

The level at whih the interest point loation was deteted and the neighbouring

level one otave higher.

Aording to the author these SIFT keys give enough measurements for high

spei�ty, whereas they are invariant to sale, orientation and small variations in

illumination.

2.2.3 Texture Based Algorithms

Rubner and Tomasi present in [25℄ an image retrieval algorithm based on texture

features. By applying a ditionary of Gabor �lters to eah image they get a loud

of points in a multi dimensional spae, where eah point belongs to an image

loation. They post proess this distribution using a lustering algorithm. The

results are luster entres plus their orresponding weights, whih are inserted into

a texture signature. The Earth Mover's distane is used to ompare the signatures

representing an image. This distane has been hosen for its interesting properties

like robustness to small shifts in the histogram/signature distribution.
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Similar to our approah Bhattaharjee uses in [1℄ a method based on interest

points and texture features olleted on regions around these feature points. See

setion 3.5 for a desription of this interest point detetor based on Morlet wavelets.

An interest region is reated around eah interest point and a �lter bank applied to

it. Bhattaharjee uses three di�erent �lter types: the �rst-, seond- and third-order

derivatives of Gaussians. Eah �lter type is applied in di�erent diretions to the

interest region. The maximum response of eah �lter is piked. This results in an

n-dimensional vetor for a �lter bank of n �lters. In analogy to text based retrieval

systems he alls these vetors tokens. However, instead of omparing these token

sets diretly, an indexing voabulary onsisting of indexing terms is built. The

vetor spae reated by the n-dimensional tokens reates an n dimensional hyper

ube. In this hyper ube an n-dimensional grid is reated by partitioning the axis

into intervals. The set of indexing terms onsists of all grid points in this ube.

Eah image is represented as a vetor of weights based on these indexing terms.

The weighting is either binary (1 - the term has been inuened by at least one

token of the image, 0 - else) or more sophistiated using the signi�ane of the

indexing terms. The signi�ane of an indexing term is ontrolled by two measures:

� The distane of the tokens to the indexing term. The bigger the distane the

more likely the indexing term is a noisy version of the token

� The number of times the term appears in the whole database. A term that

appears in many images is not very useful for retrieval

The similarity measure between two images is de�ned by the inner produt of their

weights vetors.

2.2.4 Methods Based on Struture

Image databases based on strutural similarity take into aount geometri desrip-

tions of images, thus are aimed to index primarily drawings or other images showing

strong geometri properties. For this reason Huet and Hanok implemented stru-

ture features to index databases of artographi material in [11℄. They developed

their image desriptions to �t the ontents of their database | aerial images of

ities. The features were based on line segments. Hene the pre-proessing phase

inludes an edge detetion step and a segmentation proess to divide the edges

of the image into straight line segments. A following step omputes attributes

from pairs of line segments (Figure 2.3). They use features invariant to sale and

rotation by extrating relative measures:

The relative orientation between the lines:

�

ab;d

= min[(�

ab

� �

d

); (�

d

� �

ab

)℄

The ratio of line-segment length:
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Figure 2.3: Attributes omputed from line segments
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ab;d

=

min[l

ab
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℄

max[l

ab
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℄

The line-segment projetion ross-ratio:

xr

ab;d

=

min[l

ad

; l

b

℄

max[l

ad

; l

b

℄

where l

ab

is the length of the line-segment and �

ab

is its orientation. These at-

tributes are used to inrease the respetive histograms, i.e. di�erent tests using

angle histograms, length ratio histograms and ross ratio histograms have been

performed. However, experiments using the angle histograms delivered the best

results, the line-segment projetion ross-ratio was not as disriminative, and the

length ratio was not disriminative at all. Huet and Hanok also applied di�erent

histogram distanes (L

1

, L

2

, Bhattaharyya, Matusita, Divergene | see setion

7.3 on histogram distanes) and reommended the Bhattaharyya distane as the

most suitable for this kind of indexation.

The main disadvantage of this solution is its speialisation to aerial images

by segmenting them into straight lines segments, whih makes it less usable for

other senes. Popesu adopts in [23℄ the pairwise histograms of Huet and Hanok

to hold interest point loations, thus extending the domain of usage to natural

images. Instead of edge detetion and segmentation an interest point detetion

step is applied to pre-proess the images. He uses the multi resolution ontrast

based interest operator of Jolion (See setion 3.6 for details on this operator). To

12



reate the pairwise histograms only the loation of the points is used, no more

information is taken from the image. The following steps are performed:

� Appliation of the interest operator to get the point loations.

� For eah interest point alulate the spatially n-nearest neighbouring interest

points.

� For eah interest point alulate the set T of all possible triples of points,

where the �rst point is the interest point itself, and the remaining two points

are neighbors, whih are immediately following eah other in distane rank-

ing:

T = f(P;N

i

; N

i+1

) 2 N j i 2 [1; n℄g

where N is the set of the spatially n-nearest neighbouring points and the

index i of the N

i

denotes the ranking of the neighbouring points regarding

the original point P , i.e. the nearest neighbour is spei�ed by N

1

, the seond-

nearest by N

2

et.

� For eah triple of T inrease a histogram bin of the two dimensional fea-

ture histogram. The bin is determined by the neighborhood ranking of the

neighbor points (�rst oordinate) and the angle between lines onneting the

interest point with the neighbors.

Figure 2.4 shows a on�guration of points whih leads to an inrement of the

feature histogram. The nearest neighbor searh for the interest point P �nds the

loations of the neighbors N

1

, N

2

and N

3

. The set of tripels an be given with

T = f(P;N

1

; N

2

); (P;N

2

; N

3

)g. In our example the triple (P;N

2

; N

3

) is examined:

The properties to determine the histogram bin whih needs to be inreased are the

neighborhood ranking of the neighbor N

2

= 2 and the angle � between the two

lines onneting the point P with its neighbors N

2

and N

3

.

P
�

N

1

N

2

N

3

Figure 2.4: Indexing interest point loations

The two dimensional histograms reated in the indexation step are ompared

by alulating the Bhattaharya distane during the query phase. Results on a

database of images of various kinds proved, that the algorithms gives good results

on drawings as well as on natural images.
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2.2.5 Shape based methods

Mokhtarian et al. present in [21℄ an algorithm retrieving images through shape

features. The basi priniple of their method is the representation of images as

urves. For this reason the images in their test database ontain only one objet

per image. The representation is based on the urvature sale spae theory: A

losed planar urve an be given as

� = f(x(u); y(u))ju 2 [0; 1℄g

where u is the normalised ar length parameter and x(u) and y(u) are the oordi-

nate funtions. The starting point of the urve is hosen randomly. By applying a

one-dimensional Gaussian smoothing �lter to the oordinate funtions, the number

urvature zero rossings dereases with inreasing width � of the Gaussian kernel,

until the urve beomes onvex and there are no more urvature zero rossings.

This proess an be modelled in a urvature sale spae image (CSS image) as

shown in Figure 2.5. The x-axes shows the ar length parameter u and the y-axis

shows the width � of the Gaussian kernel. The urves in the CSS image show

the progress of onavities and onvexities in the image. The original urve is

represented by the maximas of the urves in the CSS image.

Figure 2.5: The CSS image of an example urve

The distane funtion ompares the maxima loations of the two CSS images.

Sine the starting point of the urves has been hosen randomly, the urves have

to be mathed �rst. This an be done by hoosing one point of eah CSS image

and shifting one image so that these two points math. This is done with several

times and the best math is taken. The �nal distane is the sum of the straight line

distanes of the mathed maxima pairs plus the y oordinates of the unmathed

maximas.

The performane of the system has been evaluated on database of marine ani-

mals. The results sets of the query algorithm have been ompared with the results

sets reated by di�erent humans evaluators.
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2.2.6 Commerial Systems

Content based image retrieval is a young domain, but there are already some

suessful ommerial systems. One of the �rst presented is the system QBIC

developed by the ompany IBM [6℄. This query appliation inludes a graphial

query tool whih not only allows to use example images to query the system, but

also to reate a query spei�ation by drawing, skething and seleting olours et.

The query methods support olour, texture and shape features. The user may

hoose the type of query or the weights for the similarity measures. The features

are global. For olour queries 3-dimensional olour histograms are taken. Tex-

ture oriented queries ompare oarseness, ontrast and diretionally features and

queries measuring shape similarity ompare measures of area, irularity, een-

triity, major-axis diretion et.

In order to derease query time several indexation tehniques are applied. Fast

�ltering tehniques eliminate a large number of andidates. For low dimensional

features as 3D-histograms the database images are indexed using onventional

index tehnologies known from database theory. Higher dimensional features are

redued to lower dimensions using the prinipal omponent transform.

A similar appliation has been developed by the ompany Virage, In.[9℄: The

system VIR (Visual Information Retrieval) also powers the ontent based image

retrieval searh funtion of the web searh engine altavista

1

. Like QBIC, VIR

supports di�erent feature types like olour, texture, struture and shape. The

features are either alulated globally or loally for smaller regions of the image.

The Virage ore image indexing engine inludes a programmers interfae whih

makes it possible to invoke the funtionality from di�erent appliations. The engine

operates stateless and performs operations like the reation of feature vetors for

images and the omparison. The appliations are responsible for the storage of

the images and the feature data. The system also supports query re�nement by

re-alulating the weights for the query methods aording to the desires of the

user (See setion 2.3).

2.2.7 Summary

A summary of the methods for ontent based image query lassi�ed by feature

type an be found in Table 2.1.

2.3 Environment of this work

The algorithms and methods desribed in this work have been developed at the

Laboratoire Reonnaissane de Formes et Vision (RFV ) of the Institute National

de Siene Appliquee de Lyon and the Pattern Reognition and Image Proessing

1

http://www.altavista.om

15



Author(s) Feature

Type

Desription

Swain and Ballard

[33℄

Colour Colour histograms

Striker et al. [32℄ Colour Colour histograms for �xed regions

Matas et. al [18℄ Colour Color adjaeny graph

Shmidt and

Mohr [28℄

Invariant

features

Sets of feature vetors with invariant fea-

tures. A voting algorithm alulates the

distane

Siggelkow and

Burkhard [29℄

Invariant

features

Histograms with invariant features

Lowe [17℄ Invariant

features

Objet reognition using feature vetors

with invariant features.

Rubner and

Tomasi [25℄

Texture Gabor �lters and Histograms

Bhattaharjee [1℄ Texture Texture features on interest regions. The

features are distanes of texture tokens to

indexing terms

Huet and Hanok

[11℄

Struture Pairwise histograms �lled with geometri

attributes of line segments

Popesu [23℄ Struture Pairwise histograms �lled with geometri

attributes taken from the loations of in-

terest points

Mokhtarian et al.

[21℄

Shape Features taken from the urvature sale

spae

IBM Colour, tex-

ture, shape

The system uses global olour histograms,

global texture features and global shape

features.

Virage Colour, tex-

ture, shape

Feature are the dominant olour and the

olour variation, variations in olour and

global shape features.

Table 2.1: A summary of the methods desribed in this hapter
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Group (PRIP) at Vienna University of Tehnology. The aim was to reate a

ontent based image retrieval system based on texture similarity, whih should |

after further development | be part of an indexation algorithm based on user

feedbak, whih is under development at RFV. Figure 2.6 shows the sheme of

a query system inluding user feedbak. The proess starts with the �rst query,

whih presents its results to the user, who hooses the images orresponding the

most to her wishes as well as the ones having the least (subjetive) similarity.

Based on this subset of the results the system adjusts its parameters and re-runs

the query, thus ahieving a re�nement of the original query results. The essential

requirement to ensure the inreasing quality of the query results is to translate the

user's digest of the results into the right adjustments of the system parameters.

results
Manual Selection
of images

parameter adjustment

Query 

Figure 2.6: Image retrieval system with user feedbak and parameter adjustment

A variant of this user feedbak method is the multi feature retrieval system de-

veloped at RFV, where the adjustable parameters are weights for di�erent query

engines. Figure 2.7 shows a shemati overview of this system. The basi ompo-

nents are query engines based on olour, texture, struture and shape similarity.

Starting a query eah of these engines retrieves a result set of images out of the

ommon database, whih inludes images of maximum similarity to the query im-

ages aording to its respetive similarity measure. All result sets are ombined

to one �nal result set using individual weights for eah query method. These ini-

tial weights ould be set to default values gathered from empiri studies of visual

pereption or they ould simply be histori values preferred by the users.

The ombined results of this �rst stage are presented to the user, who hooses

her preferred images. Aording to this subset of the results the weights for the

query engines are adjusted. This is done by heking whih similarity types have

been favoured by the user. Query engines whose images have been hosen prefer-

ably are rewarded by inreased weights, whereas engines whose images did not

manage to get in the users digest are punished by dereased weights. This way the

image database adopts to the users wishes and delivers images aording to the

similarity desired by the user. One drawbak of this method is that these weights

di�er from image to image. In one query texture is important, in another olour

et.
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Query
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results
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Texture

Combination of results
according to the weights

Shape
query

Figure 2.7: Multi feature retrieval system with user feed bak and weight adjust-

ment

18



Chapter 3

Interest Points

Image proessing is a domain whih depends on high omputational power. Com-

puters are getting more powerful, but still the task of storing and omparing large

amounts of image and espeially video data needs high apaities of both memory

and CPU. Today a typial image ontains 512�512 pixels, i.e. an indexation algo-

rithm has to desribe features for 260,000 pixels per image. Performane problems

are not the only issue resulting from this large quantities of information. Most

of this information is redundant. Pixels of homogeneous regions ontain similar

information, so adding them to an image desription will not inrease its quality

onsiderably. In the area of image indexation muh researh was done to derease

redundany and the amount of information neessary to desribe images. Di�erent

attempts have been made:

Global features Global image features like olour histograms [33℄ desribe the

whole image only. However, the osts are rather high. Global features are

sensible to outliers and mathing only parts of images is not possible.

Segmentation Some algorithms perform a segmentation step in a pre-proessing

phase [18℄ to segment the image into regions whih are homogeneous in the

desired property (e.g. olour or texture). Features are extrated on eah

omponent.

Detetion of interest points Instead of performing a full segmentation an in-

terest operator detets points with spei� properties. Features are extrated

on these points or on regions around these points.

In our approah we deided to use an interest operator to loate key points in the

input images. These points of speial interest should hold the main information of

an image both using their loation and texture information gathered on their loal

surrounding region. This hapter will desribe requirements for interest detetors,

their historial development, and will explain some types of operators putting the

emphasis on those we used in this work.
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3.1 Overview

The �rst interest point detetors have been developed for 3D vision and robotis

[22℄,[10℄ to extrat orners. They have been used | and are still used | for motion

detetion or traking systems, where it is neessary to have stabil features whih

remain unhanged in a sequene of video frames. The de�nition whih points in

an image are orners di�ers. Morave and Harris de�ned orners as points, where

a shift of retangular window in all 4 diretions hanges the intensities of this

window signi�antly (See setion 3.2). Smith and Brady detet orners by applying

a irular mask to eah pixel and evaluating the di�ernes of the grayvalues in this

mask (See setion 3.3). But in all ases orner detetors rely on information of

geometri nature whereas not all image features used for image indexation are

geometri. Beause the requirements for interest operators are not the same as

those for orner detetors, more reently operators have been developed expliitly

for indexation purposes. We will try to state the most ommon requirements for

interest operators:

Stability An interest operator determines the loations in the image where fea-

tures are extrated to reate the image desriptions. Therefore it is important

that for two similar images the interest points are deteted at similar loa-

tions. Espeially for algorithms using weak features where the loation itself

is used for indexation this property is of uttermost importane.

Desriptiveness The interest points need to be loated at areas where the gath-

ered features are most desriptive, i.e. the desriptiveness of a point loation

is dependent on the type of features used. However, most interest point oper-

ators de�ne this desriptiveness as the amount of "signal variation" that an

be found at that loation. These interest points are also sometimes alled

"salient points".

Invariane to rotation and sale Most image similarity measures demand ro-

bustness to hanges of rotation and sale, whih also requires the interest

operator to have this property.

Robustness to JPEG and MPEG odation Images oded in the JPEG for-

mat or extrated from MPEG oded video streams su�er from artifats due

to information loss in the ompression step. Espeially at high ompres-

sion rates the quality of the images dereases fast. The JPEG algorithm

ompresses images in bloks of 8 � 8 pixels using the disrete osine trans-

formation (DCT). At high ompression rates, where less DCT oeÆients

are used for reonstrution, neighbouring bloks do not �t together, produ-

ing square shaped artifats. These squares do not only disturb the visual

impression of the image, they also pose problems to image proessing algo-

rithms, thus also orner and interest point detetors. However, sine already
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large quantities of available image and video material are stored in the JPEG

and MPEG formats an interest operator is required to be robust against the

types of artifats they produe.

3.2 The Harris Corner Detetor

The orner detetor desribed by Harris and Stephens [10℄ is also known as Plessey

orner detetor. The algorithm is based on the detetor of Morave [22℄, whih

uses a small window and the hanges in image intensity when shifting the window

in di�erent diretions. Morave desribes the hange E as:

E

x;y
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X

u;v

w

u;v

j I
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� I
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Depending on the grey-level distribution of the image under the window the fol-

lowing ases are possible:

1. If the image intensities are almost onstant, then the hanges after shifting

the windows will be small

2. If the window is rossing an edge, then a shift parallel to the edge will ause

small hanges, whereas a shift perpendiular to the edge will ause a large

hange

3. If the window is rossing a orner, then shifts in every diretion will ause a

signi�ant hange in image intensity

Harris and Stephens proposed some improvements to Moraves detetor. First a

Taylor expansion about the shift origin was performed:
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Furthermore they hanged the retangular window for a Gaussian window:
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The hange E an be rewritten as

E

x;y

= (x; y)M (x; y)

T
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�
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C B

�

On edge pixels one of the two eigenvalues � and � ofM will be large and the other

one stay small, whereas on orner pixels both eigenvalues will be large. Hene,

using � and � a rotationally invariant response funtion an be reated:

R = Det(M) � k (� + �)

2

The atual interest points are reated by a non loal maxima suppression of this

funtion.

The behaviour and the performane of the detetor thus depends on 5 parameters.

In this work we use two di�erent implementations of the Harris operator with

di�erent parameters. The �rst version (referred to as Harris 1 from now on) was

implemented by Niu Sebe

1

, the seond one (referred to as Harris 2 ) by Jean-

Mihel Jolion

2

. The parameters are the following:

� The parameter k of the response funtion. This parameter is the same for

both versions: k = 0:04.

� The variane � of the Gaussian funtion. Harris 1 uses a �lter kernel of [1 2

1℄, whereas Harris 2 uses a kernel of [ 1 3 3 1 ℄.

� The kernel of the derivative funtion. The kernel for Harris 1 is [-1 8 0 -8 1℄.

Harris 2 uses a reursive derivative funtion (Derihe).

� The size of the window of the algorithm to extrat the loal maxima. Harris

1 uses a window of 3� 3, Harris 2 uses 5� 5.

� A �nal threshold to get the desired number of points. This value an be

hosen by the user.

1

Leiden Imaging and Multimedia Group

2

Laboratoire Reonnaissane des Formes et Vision, INSA Lyon
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3.3 SUSAN

The SUSAN orner detetor is part of the low level image proessing approah

introdued by Smith and Brady [30℄ whih ombines edge detetion, orner dete-

tion and noise redution using the same basi priniple. The basi feature of the

SUSAN algorithms is a irular mask applied to eah pixel of the image. The pixel

in the enter of the mask is alled the nuleus. All other pixels an be lassi�ed

into two lasses: Pixels having the same (or similar) gray value as the nuleus and

pixels having a di�erent gray value. The area of pixels having the same gray value

as the nuleus is alled USAN ("Univalue Segment Assimilating Nuleus").

Figure 3.1: The priniple of the SUSAN orner detetor

Figure 3.1 shows 5 masks applied on di�erent loations to an image ontaining a

white retangle on a dark gray bakground. As an be seen in the �gure, the size

of the USAN relative to the size of the whole mask ontains information about

the struture of the image. If the mask is plaed on a homogeneous area then the

USAN takes all the area of the mask (Figure 3.1.e). Approahing edges the size

of the USAN dereases until it only overs 50% (Figure 3.1.b), whereas on orners

it dereases even further (Figure 3.1.a). The SUSAN orner detetion algorithm

takes advantage of this priniple. The following steps are neessary to ompute

the orner response of a pixel:

� Appliation of the irular mask and determination of the gray value of the

nuleus (= the pixel whose orner response shall be omputed).
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� Determination of the pixels having the same or similar gray values as the

nuleus. But instead of thresholding the gray value di�erene, the following

funtion is used:

(~r; ~r

0

) = e

�(

I(~r)�I( ~r

0

)

t

)

6

where I(~r) is the gray value of the nuleus and I(~r

0

) is the gray value of

the point to proess. The funtion evaluates to 1 for small di�erenes, i.e.

pixels whose gray values are similar to the nuleus, 0 for big di�erenes, and

is smoothly desending near the "threshold value" t. The size of the USAN

area on pixel r

0

, an be alulated by the sum for all pixels in the mask:

n(~r

0

) =

X

~r

(~r; ~r

0

)

� Threshold the size of USAN and subtrat the size from the threshold value

g to get the orner response:

R(~r

0

) =

(

g � n(~r

0

) if n(~r

0

) < g

0 otherwise

where R(~r

0

) is the orner response and g is the geometri threshold, whih

determines whih types of orners shall be deteted. The lower this value,

the sharper a orner has to be in order to be deteted by the algorithm.

� Detetion of false positives is neessary in ertain ases, e.g. when the nuleus

is set on stripes of thin lines. The size of the USAN will be small and

eventually below the threshold g beause of the small stripe of gray values

similar to nuleus. However, the orner response is not justi�ed in this ase.

To reognize situations like this the entroid of the USAN is omputed and

ompared with the position of the nuleus. In our example they will be

almost idential whereas in the ase of a real orner the positions will be

quite di�erent. An additional onstraint is added to the algorithm: Corner

responses are removed, if not all pixels on the line between the nuleus and

the entroid of the USAN belong to the USAN. This onstraint removes false

positives in images with lots of noise.

� A �nal step of non loal maxima suppression delivers the loal maxima as

orners.

The algorithm is ontrolled by two parameters: The "quality" parameter g, whih

ontrols the shape of the orners, and the "quantity" parameter t, whih a�ets

the number of orners the system delivers.
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3.4 Interest Point Extration Using Haar Wavelets

The interest point detetor of Loupias et al. [16℄ is based on the non standard

deomposition of Haar and Daubehie wavelet transforms. Primers to wavelets

an be found in [31℄, [8℄. Generally Wavelets are used to hierarhially deompose

funtions. Similar to the windowed Fourier transform, wavelets allow to analyse

funtions in the frequeny domain. The Fourier analysis transforms a periodi

funtion into its frequeny representation by representing it as sums of sine and

osine funtions. For eah frequeny a oeÆient is alulated, the \energy" of

this frequeny in the signal. However, the loation of this energy annot be found

easily. The windowed Fourier transform is used for non periodi funtions. The

signal is ut into windows of �xed size, and the Fourier transform applied to eah

window. This allows to loalise the frequeny oeÆients more or less preisely

aording to the window size.

One of the biggest disadvantages of the windowed Fourier transform is the �xed

size of its windows. The perfet windows size is dependent on the frequenies

whih shall be loalised. Low frequenies need bigger windows. If the window is

too small, the period of the signal is not overed by the windows. High frequenies

need smaller windows. If the window size is too big the loalisation of the signal is

not preise enough. Wavelets use windows of variable size. The basis funtions are

derived from a mother wavelet funtion. The basis funtions for high frequenies

are short ompressed versions of the mother funtion, whereas the basis funtions

for the low frequenies are long, strethed versions of the mother wavelet.

Applied to image proessing wavelets are used to represent images at di�erent

resolutions with di�erent levels of details. A speial type of wavelets are Gabor

wavelets, whih use Gabor funtions as mother wavelet funtion. In our work

we use a bank of �lters built from these wavelet funtions for texture feature

extration. In setion 4.2 we give further details on Gabor funtions and �lters.

The interest point detetor of Loupias uses the Haar and the Daubehie wavelet.

The perhaps most simple wavelet is the Haar Wavelet, whose funtionality will be

explained in the next setion.

3.4.1 The Haar Transform

As an example the gray values of an image are given in Figure 3.2.

1 7 6 2

9 7 1 3

4 5 6 2

3 4 9 3

Figure 3.2: Example image for a Haar wavelet
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We are alulating the seond level of a multi resolution representation by om-

puting the average values of the pixels, whih gives us an image half the size of

the original image (Figure 3.3).

6 3

4 5

Figure 3.3: Average values after �lter appliation

However, information is lost on this step. To be able to reonstrut the original

image, the di�erenes of the average values to the original values have to be al-

ulated and stored as well. This results in a matrix of the original size, with the

average values in the upper left quadrant and the detail oeÆients in the other

quadrants (Figure 3.4).

6 3 -4 2

4 5 -2 10

-8 4 -8 6

2 -4 0 -2

Figure 3.4: The Haar wavelet after omputation of the seond level

This proess an be applied reursively to the upper left quadrant ontaining the

average values. An example of this deomposition applied to the example image

ameraman (�gure 3.6a) an be seen in �gure 3.6b. Note, that the gray values in

the three other quadrants ontain di�erential values of di�erent �lters (Figure 3.5).

Hene the Haar transform is a multi resolution representation of the frequeny

oeÆients of an image. High oeÆients orrespond to high variations in the

image, thus salient points. These points an be extrated on di�erent levels of the

wavelet.

+ + + -

+ + + -

+ + + -

- - - +

Figure 3.5: The �lters applied on eah level

Many other wavelet funtions are suitable for this algorithm. The seond form

of the Loupias operator is based on the Daubehie wavelet[16℄, whih is basially

a more general version of the Haar wavelet. Loupias used for his interest point

detetor a �lter size of 4 � 4. The oeÆients of the �lter are derived from the
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Figure 3.6: The Haar wavelet based interest operator(a) Example piture "am-

eraman" (b) The oeÆients after Haar wavelet transform for example "amera-

man"() Example piture "square" (d) Traing an interest point trough the di�er-

ent levels for example "square"
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onstraint of orthogonality of the basis funtions. Like with the Haar wavelet the

size of a higher level is half the the size of the parent level. However, Sine the

mask size is 4� 4, the masks are overlapping.

3.4.2 Extration of the Interest Points

Eah point in the transformed image orresponds to a salieny on it's respetive

level. If we go down one level in the hierarhy this point orresponds to 4 points

in the lower level, i.e. these 4 hild points have been used to alulate the original

value. Of these 4 points the one with the highest oeÆient an be seen as the

one ontributing the most to the value of the upper level, i.e. we an onsider this

point as the "origin" of the salieny.

The basi idea is to trae the salieny from level to level until we reah the

lowest level. Eah level of the pyramid ontains the appliations of the 3 di�erential

�lters in quadrants 2, 3 and 4 (Figure 3.5). The proess starts at all levels of the

transformed image and for all 3 di�erent �lter diretions. For eah point in the

urrent level the maximum oeÆients are traed down until the lowest level is

reahed. To eah path the sum of it's oeÆients an be assigned, whih gives

the value of it's salieny. Figure 3.6d shows an example of suh a trae for the

simple image of a square. Paths are searhed starting on every level of the image.

However, paths started from lower levels an be parts of paths started from higher

levels. In this ase the longest route will be taken. Finally, the loations of all

traed points in the lowest level are returned to the user, inluding their assigned

values. A threshold an be applied to return the desired number of interest points.

The results obtained by these detetors are di�erent from the results of Harris

and Susan, whih assume that key points are orners. The points extrated by

the wavelets detetor are not orners, they are points were "something" happens

at various levels of the image. They orrespond to areas of high variations in the

image.

3.5 Interest Points based on Morlet Wavelets

Bhattaharjee desribes in [1℄ a solution for image retrieval based on struture using

interest points and loal texture features. His interest point detetor is based on

a ontinuous Morlet wavelet, whose mother wavelet funtion in frequeny domain

is de�ned by
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The algorithm to extrat the interest points works as follows:

1. Filter the image with the ES

1

wavelet at 18 di�erent orientations. Only one

resolution is used. The image is �ltered with a "suitable" saled version of
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the mother wavelet.

2. For eah pixel store the maximum of all �lter responses in a maxima image.

3. Searh loal maxima. The loal maxima are returned as feature points.

Aording to the author the interest points are usually plaed on the end points

of linear strutures, similar to the response of end-stopped ells found in the mam-

malian ortex.

3.6 Contrast Based Interest Points

Jolion and Bres introdued the multi resolution ontrast based detetion of interest

points in [2℄. Like the Haar wavelet approah of Loupias this detetor uses a multi

resolution representation of an image to alulate the key points on di�erent levels.

The method is based on a ontrast pyramid.

3.6.1 The Contrast Pyramid

The ontrast pyramid built from an image is de�ned by
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where G(P ) is an intensity pyramid and B(K) is a bakground pyramid. N is

the size of the pyramid given an image of the size 2
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Hene, the bakground is alulated using the luminane of the father pixels in the

upper level of the pyramid. A weight funtion W (M), whih takes into aount

the way the pyramid is built, is applied to the sum of the luminane of the father

pixels. The ratio of the ontrast is hanged slightly from

G
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to equation 3.1

in order to get a symmetrial ontrast measure whih is not dependent on low or

high intensity situations:
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An example for the ontrast pyramid de�ned above is depited in Figure 3.7b.
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3.6.2 Extration of the Interest Points

First on eah level the loal maxima are extrated and summed up, resulting in a

new pyramid:

C

�

k

(P ) =

(

C
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k

(P ) if P is a loal maximum

0 otherwise

This reates a pyramid with interest points extrated on every level. To ollapse

this pyramid into an image the following top down sheme is applied:
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The result is an energy map with higher values for key points with high ontrast.

An example for this energy map is shown in Figure 3.7. To extrat the desired

number of interest points a proess of non maxima suppression and thresholding

is neessary.

Like the Haar wavelet detetor, the multi resolution ontrast approah does

not return orners, sine it is not based on any a priori model. Aording to the

authors the deteted interest points are less sensitive to disretisation and to jpeg

oding noise than the Harris and the Susan detetors. Currently researh is done

using this interest operator for motion analysis in video indexing appliations [4℄.

3.7 Other operators

Zitova et al. propose in [35℄ an operator whih they all feature point detetor.

Feature points are points whih belong to rossings of two edges of a spei�

angle. This property is alulated by ounting the sign hanges traversing a irle

around eah point, where this irle holds the di�erenes of the gray value to a

loal mean. Aording to the authors the prinipal property of their operator is

rotation invariane and robustness to blurred images.

3.8 Comparison and Remarks

In our image indexation algorithm desribed in this doument we also use interest

point detetors to determine interest regions. However, the methods desribed

in this work do not rely on a spei� detetor. Instead we performed experi-

ments ombining our texture feature desriptions with 4 di�erent interest opera-

tors, whih from now on will be referred to as Harris (The Harris orner detetor),

Haar (The Haar-wavelet based operator of Loupias), Daubehie (The Daubehie-

wavelet based operator of Loupias), Contrast (The multi-resolution ontrast based
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interest points of Jolion). For the Harris orner detetor both implementations of

Sebe and Jolion (setion 3.2) have been ompared.

Figure 3.8 shows a omparison of these interest operators applied to two di�er-

ent test images. One is an arti�ial image, the other one the well known natural

image "Lenna". A di�erene whih is visible at the �rst sight is the performane

of the Harris operator ompared to the other detetors. Looking at the arti�ial

image it is immediately lear that the Harris operator detets orners. In Figure

3.8.a 300 points are deteted. This setting is too high for this image, i.e. the

algorithms have to detet more points than there are orners in the image. How-

ever, the Harris operator is designed to detet orners, not edges. Unlike the other

interest point detetors, whih also deliver points on edges (E.g. on the border

of the retangle), the Harris operator needs to have high gradients in at least two

diretions. Harris sometimes returns points on uniform areas. On the other hand

the salient point detetors (Harris, Daubehie and Jolion) almost never return

points on rather uniform areas. If the number of points required rises they tend

to detet points on edges instead.

A look at the results on the image "Lenna" on�rms these observations. The

points deteted by the Harris operator are on orners (windows, eyes, mouth, the

rossings of hair et.) and urves. The results of the wavelet based operators are

di�erent. The distribution of the points is more spread out, i.e. there are more

points on the bakground of the image.

We believe that a performane evaluation of these di�erent interest operators

an only be performed for a spei� appliation. For ontent based retrieval sys-

tems there is a strong interplay between interest operator, features and indexing

methods. For our indexing algorithm based on texture features we performed

experiments using all 4 operators. Details and results an be found in hapter 9.
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Figure 3.7: The multiresolution ontrast based interest points (a) input image (b)

The ontrast pyramide () The ollapsed energy map.
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Figure 3.8: Comparison of the interest point detetors applied to an arti�ial

image: Harris (upper left), Haar-wavelet (upper right), Daubehie-wavelet (lower

left) and multi resolution ontrast based points (lower right) (a) 300 points deteted

(b) 50 points deteted.
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Figure 3.9: Comparison of the interest point detetors applied to the Lenna test

image: Harris (upper left), Haar-wavelet (upper right), Daubehie-wavelet (lower

left) and multi resolution ontrast based points (lower right) (a) 300 points deteted

(b) 50 points deteted.
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Chapter 4

Texture Features

The similarity measure desribed in this work is based on texture features. Tex-

tures are espeially important for natural images, let's think about images of wood,

grass, trees, sand, marbles, but also of metalli objets. Unlike olour, texture is

not a property whih an be extrated from a point, but of areas instead. A

single pixel does not have a texture. A ommon de�nition is the repetition of

basi texture elements, where the type of this repetition di�ers from ase to ase.

Real periodi textures an be found in arti�ial images only, whereas natural tex-

tures are quasi periodi or random in nature. Figure 4.1 shows some examples for

textures.

Figure 4.1: Examples for texture

To be able to desribe or to lassify textures we need to de�ne their properties.

Commonly used properties are frequeny, diretion, phase et. However, these

properties are dependent on the sale the image analysed. A nearly onstant area

ould be textured with a big onstant texture or a very �ne (in�nite) texture. A

pullover ould show textures on two sales: The printed pattern of squares at a

higher sale and the struture of the wool at a lower sale.

Several tehniques have been used during the past time for texture desription

and lassi�ation. Statistial methods like autoorrelation funtions, o-ourrene

matries, gray level run length statistis have been presented as well as methods of
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the signal proessing domain, e.g. �ltering tehniques. Our work is onentrated

on the �ltering tehniques. A survey of the statistial methods an be found in

[34℄, a omparative study of the �ltering tehniques has been done by Randen and

Husoy in [24℄.

4.1 Filtering for Texture Feature Extration

A ommon harateristis of signal proessing approahes to texture analysis is the

�ltering step. This step is justi�ed by the periodi nature of texture information.

Randen and Husoy give an introdution into �ltering for texture lassi�ation

and an overview of the di�erent �lter types used [24℄. As we stated before, a

main harateristi of textures is the frequeny and the diretional information.

A ommon method to determine the frequeny of a signal is to �lter it with band

pass �lters whih pass di�erent frequeny bands, a so-alled �lter bank, and to

measure the energy of the �lter responses. For a signal of high frequeny the �lter

passing high frequenies will have high energy output, whereas the other �lters

will show signi�ant lower responses. These responses need to be measured using

an estimation funtion. We an summarize the neessary pratial steps to �lter

an image as follows:

� Transformation of the image or the region into the frequeny domain. This

is done beause most �lters are faster and easier to apply in the Fourier

domain.

� Appliation of the �lter bank.

� Estimation of the energy of the responses.

Di�erent types of �lters have been used for texture analysis. Laws [15℄ was one

of the �rst to introdue �lters. He proposed 25 separable two-dimensional �lters

whih were onstruted from 5 one-dimensional ones. The one-dimensional �lters

onsisted of one low pass, one high pass and 3 band pass �lters responding to

di�erent frequeny bands.

Coggins and Jain introdued a �lter bank designed to extrat frequeny and

diretional information [3℄. They used Gaussian ring and wedge shaped �lters.

The ring �lters extrated frequeny information and the wedge �lters extrated

diretional information.

For the work desribed in this doument we hose a �ltering approah based

on Gabor �lters, whih are already widely used for texture analysis [12℄.

4.2 Gabor Funtions and Gabor Filters

A Gabor �lter bank is based on �lters derived from Gabor funtions, whih have

been introdued by Denise Gabor in his "Theory of ommuniations" [7℄. He pro-
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posed a family of funtions whih an be used to deompose arbitrary funtions -

similar to the sinus and osinus waves for the Fourier transform. The aim he had

in mind was to send oeÆients of this deomposition in ommuniation appli-

ations. Only reently these Gabor funtions have been re-disovered and a new

researh domain alled Gabor Analysis has been formed [5℄.

One of the main driving fores was the searh for a signal representation whih

should be situated between the time (spatial) representation and the frequeny

(Fourier) representation. Both representations have advantages and disadvantages:

Using the time series of a signal we are able to follow the order of the amplitudes

through a temporal sequene. But we do not know whih frequenies are used in

the signal. Analysing the Fourier transform of the signal we an immediately see

the spetrum of the frequenies whih are part of the signal. However, loalising

one of the signals is diÆult, sine this information is hidden in the phase infor-

mation of the representation. Gabor proposed to ompose a signal not into sinus

and osinus waves but into a series of funtions whih are derived from one single

�xed funtion as follows:

f(t) =

X

n;m



m;n

gm; n(t):

g

m;n

(t) = g(t� na)e

2�imbt

m;n 2 Z
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are reated by shifting the funtion g(t) in time and frequeny, where

a and b are the shift parameters. For the funtion g(t) Gabor proposed the Gaus-

sian funtion. The image representation desribed above is alled Gabor wavelet.

More general wavelets hierarhially deompose funtions into sums of elemen-

tary funtions. The elementary funtions are ompressed or strethed version of a

"mother wavelet" funtion. In setion 3.4 we desribed an interest point operator

introdued by Loupias [16℄ whih uses Haar and Daubehie wavelets to represent

images.

A Gabor �lter bank onsists of several �lters based on the family of Gabor

funtions desribed above: Several Gaussian �lters whih are obtained by dilating

and rotating the mother funtion. The two-dimensional funtions used for image

proessing and their Fourier transform an be written as follows:

h

�;�

(x; y) = h

0

exp

(

�

1

2

x

02

+ y

02

�

2

�

2

)

exp

2�Ix

0

=�

x

0

= x os�� y sin�

y

0

= x sin� + y os�
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�
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2

�

2

�

exp

�

�

1

2

�

2

v

2

�
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�

where

� � is the orientation of the �lter.

� � is the size of the �lter (the variane of the Gaussian funtion).

� � is the spatial period of the sinusoid plane wave (the "frequeny band" of

the �lter).

� h

0

=

�

2�

��

�

2

is a normalisation parameter.

In this work we adapted the parameter settings used by Megret in [20℄, whih were

justi�ed by Farrokhina and Jain in [12℄. The sigma is �xed to � = 2�. The main

parameters are the orientation � and the sale �. To obtain all �lters of the bank

these two parameters are hanged suessive in the following way:

� The orientations � of the �lters are yled through the interval [0; �℄: � =

a�

K

;

where a = f0; � � � ; K � 1g and K is the number of orientations of the �lter

bank.

� The frequeny band � is shifted: � =

p

2

k

�

0

where �

0

=

2

�

and k = f0; 1; � � �g.

k is limited to

2�

�

0

.

Figures 4.3 and 4.3 show the spatial domain and the real part of the Fourier

transform of the Gabor �lter bank used in this work. The �lters of one olumn

pass frequenies of the same band, whereas the �lters of one row pass waves with

the same orientations. Note, that the �lters passing high frequeny ontents show

strong values in the entre of the Fourier spetrum, where the oeÆients of the

high frequenies are situated, whereas the �lters passing low frequenies show

strong values at the borders of the Fourier image. The orientations passed by

the �lters an be seen by the angle of the Gaussian distribution to the entre of

spetrum (see �gure 5.2).

The Gabor �lter bank desribed above is used in this work to extrat loal

texture features from images. The next hapters desribe the appliation of the

�lters and how di�erent image representations are built from the �lter responses.

38



Figure 4.2: The �lters of the Gabor �lter bank represented in the spatial domain
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Figure 4.3: The real part of the Fourier transform of the Gabor �lter bank
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Chapter 5

Texture Features on Interest

Points

The last two hapters desribed methods to ollet texture features on images and

to extrat key points. This setion explains methods of ombining both texture

features on interest points.

The basi idea in this work is to extrat a �xed number of interest points N

from the image and to selet regions of �xed size R around eah point, referred to

as interest regions. To eah interest region we apply a (Gabor) �lter bank of S�K

�lters, K being the number of orientations and S the number of sales. Figure 5.1

shows the basi sheme.

From eah of the resulting S �K �lter responses per point the following har-

ateristis an be extrated (see Figure 5.2):

Sale The sale is a property of the �lter and determines the frequeny interval

that is passed by the �lter.

Orientation Like the sale the orientation is a property of the �lter. It denotes

the orientation of the frequeny that is passed by the �lter. All other orien-

tations are suppressed.

Amplitude The most important desription of the �lter response is the maxi-

mum amplitude of the response, from now on referred to as amplitude only.

It tells how strong this interest region responds to the �lter applied to it.

Literally spoken, we ould say that it spei�es how muh struture of the

given orientation in the given sale an be found in the interest region.

Phase Although the phase information is important to loalise the regular stru-

ture and to reonstrut an image from the responses of a �lter bank, it is not

used very often in indexing tehniques, it will therefore not be onsidered

further.

u0, v0 The oordinates of the maximum response in frequeny spae.
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Figure 5.1: Proess sheme of olleting texture features on interest points
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Interest region Gabor filter

�

Figure 5.2: Feature information available from a �lter response

Angle The angle of the maximum amplitude regarding the entre frequeny of

the �lter. This value is orrelated to the orientation of the �lter. However,

if the main orientations of a �lter response are alulated, it an be useful

to get a �ner range of values.

What kind of information do we get after the extration proess? There are di�er-

ent possible interpretations of this data, whih makes di�erent models and om-

parison algorithms possible. Figure 5.3 shows the result of the feature extration

proess. Let's assume, that for eah �lter response only one feature is extrated:

The maximum amplitude. Then the output will onsist of the outputs of the �lter

bank for eah of the N interest regions. For eah region S �K responses, thus S �K

amplitudes (F

1

; F

2

; : : : F

S

_

K

) are extrated.

....

.... ....

Image
IP

N

IP

1

F

SK

F

1

F

SK

F

1

Figure 5.3: The output of the feature extration proess
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Di�erent ombinations of these features are possible. One interpretation is a set

of feature points, eah assoiated with a vetor of amplitudes (Figure 5.4.a). Eah

vetor holds the amplitudes of the set of S sales and K orientations. The vetors

desribe the responses of the regions around the points to �lters of di�erent ori-

entations and sales, giving a rough desription of \what is happening" around a

point. Hene, the desription of an image is a set of these features extrated on

interest regions. We desribe a method of modelling and omparing these sets in

hapter 6.

(a)
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(b)
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); : : : F

1
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N

)

Figure 5.4: Interpretations of the available feature data ordered by interest point

index (a) and by �lter index (b)

A di�erent and more statistial interpretation ould be to order the data aording

to the sales and orientations of the �lter bank (Figure 5.4.b). So for eah of the

S�K �lters we get a set ofN features | one for eah interest point (e.g. amplitude

and point loation). What we get here would be distribution of the amplitude

responses for eah �lter, literally speaking how muh the image is responding to

the �lter passing this frequeny and orientation.

Please note, that by simply re-ordering the data we an get a di�erent view

of the image, provided that it is supported by the alulation of the distane al-

gorithm. The representation ordered by interest point index is entered on the

interest regions of the image. Every region has an assigned feature vetor desrib-

ing it's texture ontents, thus the distane algorithms ompare regions. On the

other hand the representation ordered by �lter index provides a view entered on

the responses for one �lter. A way to desribe them is a histogram for eah �lter

desribing the amplitude distribution for the whole image responding to this �l-

ter. Distane funtions for this representation work di�erent, they ompare �lter

responses. Di�erent approahes to the seond representation based on histograms

are treated in hapter 7.
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Chapter 6

Feature vetors on interest points

The last hapters presented our method to extrat texture features from digital

images using interest point operators and a Gabor �lter bank. We explained the

di�erent interpretations for the feature data gathered from the images, making

it is possible to develop di�erent feature representations. This hapter desribes

an indexation method based on an image representation, whih orders the feature

data by interest point index. This an be interpreted as a set of desriptions for

interest points.

6.1 Motivation

Methods using feature vetors gathered on interest points have already been used in

image indexation and espeially objet reognition. The goals of objet reognition

systems are similar to the ones of image databases: Pre-seleted objets have to

be found and loated in one or more digital images. Some of the problems arising

are aused by the olusion of parts of the objet by other objets or due to its

position to the amera. One way to solve this are feature vetors on interest points

(See the method of Lowe [17℄ in Setion 2.2.2). The basis an be desribed as

follows: Some points are deteted in the objet whih needs to be loated in the

images. Together with the point loations features are gathered (based on olour,

texture et.). In the detetion step these points are searhed in the images. If a

spei� number of points an be found, then it an be assumed that the image

ontains the objet. Even if parts of the objet are oluded then still other points

of the objet an be found.

The requirements for image indexation systems are similar, so also in this

domain algorithms based on feature vetors have been published. Shmidt and

Mohr introdued an image retrieval method based on invariant features in [28℄

(See setion 2.2.2). To ompare two images, they detet interest points in both

images using the Harris orner detetor (See setion 3.2) and ollet invariant

features from a loal environment around these points. Then a feature vetor is
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reated from the features of eah interest point. This way an image is represented

by a set of feature vetors.

6.2 Representation

Our image representation presented in this hapter is based on a similar priniple.

Like already desribed in hapter 5, we use an interest point operator to extrat a

�xed number of regions of the image and a Gabor �lter bank to extrat features

from these interest regions. The result of this �ltering step are N � K � S �lter

responses, where N is the number of interest points, K the number of orientations

and S the number of sales of the Gabor �lter bank. From eah �lter response

we keep only one value: The maximum amplitude extrated from the frequeny

representation. Reordering this data aording to interest point index we an

assign to eah point K � S amplitude values, whih we put into a vetor. Thus,

an image is represented by a set of N feature vetors similar to the solution of

Shmid and Mohr.

m
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Figure 6.1: Feature vetor storing amplitude for eah orientation

We reated two di�erent types of features vetors. A simple version is shown in

Figure 6.1. It onsists of K entries, where eah entry orresponds to one of K

orientations of the Gabor �lter bank. To alulate the value for one entry the

maximum of all S amplitudes for this orientation is taken, i.e. the maximum for

all sales of this orientation, and it's logarithm is stored in the entry. All possible

vetors span a K-dimensional feature spae, where eah vetor an be seen as a

point.

The �nal, sale sensitive version of our feature vetor keeps the sale informa-

tion (Figure 6.2). The vetor is split into 3 parts, one for eah sale, where eah

part ontains the amplitudes for eah orientation like the �rst vetor type. Our

experiments have been onduted using the sale sensitive version of the feature

vetor. The simple �rst version does not represent the multisale information,

nevertheless it is a nie "vehile" for the demonstration of distanes.
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Figure 6.2: The sale sensitive version of the feature vetor storing amplitude for

eah sale and orientation

6.3 Comparing feature vetors

Above we introdued a representation for images. To be able to retrieve images

we need a distane funtion. Our methods to alulate the distane of two images,

i.e. two sets of feature vetors, are based on the distanes of feature vetors.

So we need to de�ne a distane between two single feature vetors �rst. This

distane is di�erent for the two types of vetors. Like we already stated, the simple

version of the feature vetors an be interpreted as points in aK-dimensional vetor

spae. We have to �nd a distane measure whih reets the distribution of the

points in this vetor spae. Let's onsider the loud of points (feature vetors)

gathered from the images of our image database. Eah dimension represents one

of the K orientations in the image. Provided that the orientations in the images

of the database are distributed equally, we an assume that these points in the

vetor spae are distributed equally aross all omponents as well. Thus, given

two feature vetors � and �, the Eulidean distane d

E

an be used as distane

measure between the two vetors:

d

E

(�; �) =

s

X

i

(�

i

� �

i

)

2

where �

i

is the amplitude for diretion i of the vetor �. Figure 6.3 shows in 3

histogram plots the distribution of the elements of our feature vetors for one of the

test image databases used in this work (See Setion 8.2). One urve orresponds

to a histogram plot for one element (i.e. one orientation) of the vetor. As we an

see, our assumption that the di�erent orientations are distributed almost equally

an be on�rmed in this ase.

The Eulidean distane d

E

applied to two feature vetors provides in this ase

an eÆient manner to ompare the frequeny harateristis of two regions. How-

ever, the feature vetors are not rotation invariant, so the omparison of two regions

is not invariant to rotation as well. That means, that two regions ontaining the

same textures have a higher distane if one of the regions is rotated towards the

other one. A human on the other hand would pereive the two textures as similar
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Figure 6.3: Histogram plots of the distribution of the di�erent orientations for all

features of a test database, separated by sales.
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regardless if they are rotated or not. Classi image indexation appliations like

image or video indexing, are not interested in a omplete rotational invariane

but must take into aount small variations of orientations. For this reason we

introdued some shifting into the distane measure to ompensate for rotation.

We not only alulate the Eulidean distanes between the two original vetors �

and � but also the distanes between � and two di�erent yli permutations of �.

These yli permutations of feature vetors are equivalent to rotations of the or-

responding interest regions. Given a vetor �, the permutated vetor � = perm(�)

is de�ned by

� = perm(�); �

i

=

(

�

i�1

for i = 2 : : :K

�

K

for i = 1

(6.1)

The K orientations of our Gabor �lter bank are spread aross an angle of �, there-

fore the yli permutation desribed above is equivalent to a geometri rotation

of

�

K

. Given a Gabor �lter bank of e.g. K = 8 orientations the features are ro-

tated by

�

8

= 22:5

o

. Hene, to make the distane measurement (We all it D

F

1

- distane for the �rst version of our feature vetors) less "rotational sensitive"

we add permutated vetors to the omparison proess: The distane between two

feature vetors � and � is atually the minimum of 3 distanes: The Eulidean

distane between � and �, the Eulidean distane between perm(�) and �, and

the Eulidean distane between � and perm(�).

d

F

1

(�; �) = min

(

d

E

(�; �)

d

E

(perm(�); �)

d

E

(�; perm(�))

)

(6.2)

A similar distane is used for the sale sensitive version of the feature vetor

(Figure 6.2), whih keeps 3K elements | K for eah sale. But the permutation

of the vetor elements is done aording to the struture of the vetor, whih

resembles the struture of the �lter Bank. Hene, the K elements for one sale are

permutated separately, i.e. the distane d

F

2

of two vetors � and � is alulated by

omputing the distanes separately for the 3 sub vetors averaging these distanes.

Denoting the sub vetor of �, whih ontains the feature elements for sale x, as

�(x), we get the distane d

F

2

:

d

F

2

(�; �) =

1

S

X

i=1:::S

d

F

1

(�(i); �(i)) (6.3)

Please note, that during the distane alulation we handle the Gabor orientations

di�erent than the sales. We shift the orientations of the vetor and alulate in-

termediate distanes. These distanes are ombined using the minium funtion.

It is not possible that a texture is present at more than one orientation, so only

one of the distanes is taken. On the other hand, we alulate these intermediate
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distanes on eah sale, and these distanes are ombined using the average fun-

tion. The reason is the hierarhial nature of textures, whih need to be examined

at di�erent sales. The distane measurement de�ned above omputes a distane

measure between two interest regions, where small hanges in the orientation are

tolerated.

6.4 Querying the database

To query the database a distane funtion for images is needed, whih ompares

two sets of feature vetors. Our distane measurements are based on the distanes

of vetors. However, there are di�erent ways to ombine the distanes of single

vetors to a distane of sets.

6.4.1 Voting

Shmidt and Mohr proposed in [28℄ (See Setion 2.2.2) a voting algorithm to query

a database of images represented by sets of feature vetors. They pre-ompute the

vetors V

j

of all database imagesM

k

o�ine and store them in the database together

with a link to their soure images. Given the query image I, it's set of feature

vetors V

i

is omputed, and eah vetor is ompared to eah vetor V

j

in the

database. If the distane between V

i

and V

j

is below a threshold t, the respetive

image M

k

gets a vote. The maximum votes are returned to the user. The ost

of omparing two images is the ost of omparing all feature vetors of the query

image with all feature vetors of the image to ompare, thus O(N

2

), where N is

the number of vetors per image, i.e. the number of interest points.

We adopted this algorithm to our image representation. This ould be done

easily, sine the representations are very similar. We used our distane measure

d

F

2

desribed above for the distanes between two feature vetors. The algorithm

searhes for images in the database, whih have a high number of interest regions

whih are similar to the interest regions found in the query image. One region in the

query image an be similar to one or more regions in one of the database images

and vie-versa. I.e. it is irrelevant if ten regions orrespond to ten equivalent

regions, or if one region an be found ten times in a database image, the result

will be same. Results of our experiments are shown in setion 9.

6.4.2 Searhing Corresponding Interest Points

We developed a di�erent algorithm, whih ompares image by image and tries to

searh pairs of orresponding interest points in both images. The searh is done in

a greedy manner: The means to qualify two points as being a pair is the minimum

distane in feature spae. To do this we build a matrix whih stores the distanes

of all possible feature pairs (�gure 6.4), the lines i denoting the interest points of
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the query image, the olumns j the interest points of the ompared image, and

the elements E

i;j

the distane between point i of the query image and point j of

the ompared image.

Image 1

Feature vectors
Image 2

Feature vectors

V

A

1

V

B

1

V

A

2

V
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3

V
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2
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P

2

x

2

y

2

Figure 6.4: The algorithm for searhing orresponding interest points

Then we searh the minimum element of the matrix. The olumn and line number

of this element denote the �rst pair of orresponding interest points. Both olumn

and line are deleted from the matrix, sine these two points are not available for

other pairs anymore. Then we again searh the minimum element of the remaining

matrix. This algorithm is ontinued until the matrix vanishes (The points of at

least one image are exhausted) or the minimum distane does not exeed a given

threshold t (There are no more points having a orresponding partner). The

distane d(A;B) between the two images A and B is alulated using the number

of orresponding points found:

d(A;B) =

2 � Number of orresponding points

N(A) +N(B)

(6.4)

where N(A) denotes the number of interest points of the image A.

The performane of the algorithm depends on the threshold t. If the threshold is

too high, then too many ouples of orresponding interest points are found and the

system will retrieve false positives. If the threshold is too low, then no or too few

ouples will be found | false negatives or non deterministi ordering of the result

set (in the ase of t = 0) will be the onsequene. We performed experiments with

di�erent threshold values for di�erent image olletions, whose results we present

in hapter 9.

The distane measure presented above has one shortoming, whih will beome

visible for queries against large databases only. The reason is the granularity of
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the distane funtion. Looking at equation 6.4 we an see, that we an get at most

2N di�erent distane values, where N is the number of olleted interest points

per image. Imagine that there are more than 2N images in a database, whih

are relevant for the query image, i.e. whih have a high number of orresponding

interest points. Although all these images have small distanes and will be in the

�rst positions of the result set, the ordering of these images in the result set among

themselves will not be deterministi in some ases due to lak of suÆient di�erent

distane values.

Motivated by this drawbak we developed another distane measurement, whih

uses not only the number of orresponding interest points for the distane alu-

lation, but also the distanes of the feature vetors involved. We give the new

measure as

d(A;B) =

2 �

X

�2C

s(�)

N(A) +N(B)

(6.5)

where C is the set of pairs of orresponding feature vetors and s(�) is the similarity

of the orresponding vetors � = (�; �) 2 C. We alulate this similarity on the

basis of the distane in feature spae d

F

2

(�; �). However, we sale the distane,

so that the similarity is equal to 1 if the distane in feature spae is minimal, i.e.

equal 0, and the similarity is 0 if the distane is maximal. Sine the searh for

orresponding feature vetors is stopped at a threshold t, this threshold is equal to

the maximum distane of two feature vetors. Hene we an write the similarity

of two orresponding feature vetors as

s(�) = 1�

d

F

2

(�; �)

t

; � = (�; �) 2 C

Please note, that this distane measure orresponds to the �rst measure de�ned in

equation 6.4 if all vetor similarities s(�) are set onstant to 1. Literally spoken, if

we onsider images represented as sets of sub images (regions), then our measure

de�ned above allows a �ner granularity of the distane values sine not only the

number of "similar" regions ontributes to the distane, but also the similarity

itself.

We performed experiments using both distane measures as well as the voting

algorithm introdued by Shmid and Mohr. Results of these experiments an be

found in hapter 9.

The ost for alulating the distane matrix is O(N

2

) . The searh of the

orresponding pairs is dependent on the similarity of the two images. The higher

the similarity the higher the ost, sine the searh for the minimum distane in

the matrix has to be done more often. The �rst searh takes O(N

2

), the next

one O((N � 1)

2

) et. So, if for all interest points orrespondenes an be found,

the overall ost of the algorithm is O(N

3

), where the ost of one step is small

(omparing the value of the matrix with the urrent maximum). However, in
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Figure 6.5: Two images and their map of orresponding interest points
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reality the maximum number of point pairs is almost never found. The overall

ost of the algorithm is

O(N

2

) +O(N

3

)

Figure 6.5 shows two test images and their map of interest points. Corresponding

points are onneted by a line or by a single big retangle, if their spatial distane

is smaller than 5 pixels.
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Chapter 7

Histograms

In the last hapters we desribed our method to extrat texture features from

digital images using interest point operators and a Gabor �lter bank. We also

introdued one of the di�erent possible interpretations for the feature data, whih

uses feature vetors sets to represent images. This hapter desribes an indexation

method based on an image representation, whih orders the feature data by �lter

index and uses histograms for the representation. Histograms have already been

used for image indexing extensively, espeially olour based histograms [33℄ and

struture based methods [11℄. They provide an e�etive and eÆient means to

ompare image ontents. However, they rely on raw image data like olour or gray

values, whih are not available for textures without pre-proessing. In this hapter

we desribe a method based on histograms �lled with the data gathered from our

feature extration method desribed in hapter 4.

There are several reasons to use histograms to desribe image ontents:

Well known distane measures Unlike other image representations the dis-

tane measures for histograms are not as dependent on the type of features

and the ontents of the histogram, so the standard distane measures an be

taken. Histograms are standard tools of statistis and also image proessing,

so powerful distane measures to ompare them have already been developed

(See setion 7.3).

Speed One of the main strong points of histograms is the availability of fast om-

parison algorithms. Using interest points one advantage is the independene

of the number of interest points, whereas our previously developed methods

su�er from high omputational omplexity (O(N

2

)).

View Histogram representations provide a di�erent view on the data. The algo-

rithms we presented in the last hapters desribed images as a set of feature

vetors olleted around points of interest. Comparison was done by searh-

ing orresponding interest points, the main \dimension" of our image key
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being the set of interest points. Histograms are more exible. Their desrip-

tive power depends on the way how they are "�lled", i.e. their power depends

on the way how the feature data is translated into the raw data neessary to

reate them.

For the development of image retrieval systems the emphasis is not laid on the

distane measure but on the design of the image representation, i.e. the ontents

of the histogram. It is neessary to design the ontents in a way, that the his-

tograms are representative. Di�erent images should have di�erent histograms, i.e.

their distanes should be large. We already mentioned this general requirement

for image features in setion 2.1. However, even if the image features, whih need

to be olleted before building the histograms, ful�ll this requirement of desrip-

tiveness, it is still possible to generate badly saled histograms by hoosing wrong

parameters.

The parameters need to be designed aording to the feature data. Firstly, it

is neessary to �nd a way to transform the feature data into a raw format suitable

to "�ll" it into the histograms. Moreover, size and format of the histograms must

be well hosen. The main parameters, whih need to be �xed for a histogram

based representation, are the borders, and the bin ount. The borders speify the

interval whih is represented by the histogram. Values, whih do not �t into this

interval are plaed into the lowest or highest bin respetively. If this interval does

not �t the distribution of the data, then the possibility of similar histograms for

di�erent features arises, beause the di�erenes of the feature data are hidden in

single histogram bins.

In the following setions of this hapter we will present two di�erent represen-

tations based on histograms. We lose the hapter with a survey and desription

of histogram distanes in setion 7.3.

7.1 Amplitude representation using sets of His-

tograms

Considering the output of our Gabor �lter bank the main information we gathered

is the amplitude information for di�erent orientations and sales of the Gabor

�lters per interest region. If we re-order the data we get a distribution of responses

(i.e. amplitudes) per sale and orientation. The �lter responses for one �lter an

be �lled into a histogram, whih therefore models the response of the image to this

�lter with the given orientation and the given sale. Images responding muh to

this �lter have high bins with high bin indies and low bins with low bin indies

and vie versa. Thus, the feature data of the whole image, i.e. of all �lters of the

�lter bank, an be stored in an ordered set of K � S histograms, where S is the

number of sales and K is the number of orientations.
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Filling the histograms this way we ignore the spatial oherene of the di�er-

ent interest regions, i.e. the loations of the regions are not represented in the

histogram. It does not matter where an interest region is found, sine only the

ontents (translated into �lter responses) is used to reate the histograms. In

order to add the spatial oherene to our representation we use two-dimensional

histograms instead of one-dimensional ones. We need ouples of data instead of

single values to inrease the histogram bins. These ouples are reated by per-

forming a n-nearest neighbour searh for every interest point.

(a,b)

Figure 7.1: Nearest neighbour searh

The entries, whih inrease the histograms, are pairs of interest points. All points

of the image are traversed and taken as �rst points of these pairs. The seond

points are the neighbours found by a n-nearest neighbour searh performed for eah

interest point found during the traversal. (Figure 7.1). Hene, for eah interest

point traversed we reate n pairs of points. The amplitudes of the ouples are

entered into the histogram: The amplitude of the �rst point is used to alulate the

x-index of the bin, the amplitude of the seond point (the neighbour) to alulate

the y-index.

Figure 7.2: Image representation using ordered sets of histograms ontaining am-

plitudes: Example piture (a) and two histograms of the ordered set: orientation

0 = 0

o

(b) and orientation 2 = 45

o

() for sale index 0

Figure 7.2 shows an example image and two histograms of the set. We hose an

image whih ontains frequenies mainly in the horizontal orientation (orientation
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0). Therefore, the histogram for orientation 0 shows a distribution of strong re-

sponses, i.e. strong bins from indies 4 to 6. The histogram for orientation index

2, whih orresponds to strutures in orientations around 45 degrees, shows only

one strong bin at index (0; 0), i.e. almost no response.

The distane funtion neessary to ompare this image representation needs to

ompare two sets of histograms. Our distane measure is based on the histogram

distane measures disussed in setion 7.3. A simple possible distane measure

ompares orresponding histograms of both sets and averages the distanes:

D

set

(A;B) =

1

S �K

S

X

u=1

K

X

v=1

D(H

Auv

; H

Buv

)

where D

set

(A;B) is the distane of the two images A and B, i.e. the distane

of the two ordered sets, and H

Auv

is the histogram for sale u and orientation

v of image A. However, similar to the distane of feature vetors we inluded

some ompensation for rotation by omparing eah histogram not only with its

orresponding histogram but as well with the immediate neighbours of the same

sale. In our feature vetor approah (hapter 6) we used rotations of the feature

vetors to ompensate image rotations (equation 6.1). Similar we an partition

our ordered set of S � K histograms into a set of S vetors, eah ontaining

K histograms. For eah vetor, whih orresponds to one sale of the Gabor

�lter bank, we alulate intermediate distanes. Furthermore we perform yli

permutation to derease the sensitiveness to rotations of the interest regions.

c)b)

a)

Figure 7.3: Comparison of ordered histogram sets: to ompensate for rotation

not only the orresponding histograms are ompared (a), but also the immediate

neighbours by rotating one in both diretions (b), () and using the minimum.

Figure 7.3 depits this rotation proess. We not only alulate the distanes be-

tween the two histogram vetors � and � but also the distanes between � and
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two di�erent yli permutations of �. These yli permutations of histogram

vetors are equivalent to rotations of the orresponding interest regions. Given a

vetor �, the permutated vetor � = perm(�) is de�ned by equation 6.1, similar

to the rotation of vetor vetors in hapter 6. The �nal distane between the two

histogram vetors � and � (whih do not represent a whole image but one sale

only) is the minimum of the 3 distanes:

d(�; �) = min

(

d

E

(�; �)

d

E

(perm(�); �)

d

E

(�; perm(�))

)

(7.1)

The �nal distane d(A;B) of two images A and B, i.e. of two histogram sets

ontaining histogram vetors for eah sale, is the average of the intermediate

distanes alulated for eah sale.

d(A;B) =

1

S

X

i=1:::S

d(�(i); �(i))

where the �(i) are the histogram vetors for sale i of image A and �(i) are the

histogram vetors for sale i of image B. Please note, that the distane alulation

for the histogram sets orresponds to the distane alulation of vetor vetors in

hapter 6. The histogram vetors desribed above orrespond to subvetors of a

feature vetor, and the omplete histogram set orresponds to a omplete feature

vetor for one interest point.

7.2 Di�erenes of Amplitude and Neighbourhood

Ranking

The histograms desribed in the last setion were built on raw image data, like

amplitudes. The data was fed pairwise, but still there was no relation whatsoever

between the points. Huet and Hanok used pairwise geometri histograms to

index large databases of line patterns [11℄. They took pairwise geometri attributes

like di�erenes of angles and di�erenes of length of pairs of line segments to build

histograms. The idea was later adopted to strutural image retrieval based on

interest points by Popesu in [23℄. The idea was to use the loations of the interest

points to determine geometri attributes. Instead of pairs triples of interest points

are taken, and the angle of the points is used to reate the histograms (See setion

2.2.4).

The main idea of these algorithms is the storage of relative feature data. Huet

and Hanok �ll histograms with di�erenes of angles, i.e. a relative measure

between two geometri elements. The images are desribed by the information

how geometri attributes of line segments hange in a loal neighbourhood.
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We use a similar approah based on the output of the Gabor �lter bank. Like in

the last setion an image is haraterised by an ordered set of S �K histograms.

But instead of the absolute amplitude values we store di�erenes of amplitudes

for ouples of interest points. For eah �lter response we traverse all points and

searh the n nearest neighbours. To alulate the bin index of the �rst dimension

of the two dimensional histogram, we use the di�erene of amplitudes for eah pair

interest point and neighbour. The bin index of the seond dimension is de�ned by

the ranking of the neighbourhood.

Figure 7.4: Image representation using ordered sets of histograms ontaining dif-

ferenes of amplitudes and neighbourhood ranking: Two example pitures and

their histograms for sale index 0 and orientation 0 = 0

o

.

The information we store in this representation an be desribed in the following

way: Like in our �rst histogram representation the data is separated by �lter

index, i.e. one histogram for eah orientation and sale of the �lter bank. Eah

histogram holds the information how the amplitudes for this �lter hange between

the interest points to their neighbours. The y dimension of the histogram stores
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the neighbourhood ranking of the n-nearest neighbourhood searh, thus the bins

with higher y indies store the di�erenes of amplitudes between interest points

whih are further away than ouples of interest points stored in the bins with lower

y indies.

Figure 7.4 shows two example images of one of our test databases and their

histograms for sale index 0 and orientation index 0, whih orresponds to an

orientation of 0

o

. The histogram of the texture example (Figure 7.4.a) shows an

almost uniform distribution along the y oordinate of the histogram. This an

be explained by the periodi nature of the texture example, where the di�erenes

in the amplitudes are almost onstant aross the di�erent distanes between two

interest points. Considering the histogram of the natural image on the other

hand (7.4.b), we remark the di�erene in the bin sizes along the y oordinate

of the histogram. The reason is the di�erent type of the image, whih ontains

sharp hanges in struture. In this image the distane between two interest points

determines the di�erene in their responses to a spei� �lter, hene the di�erene

in amplitudes.

The omparison of the histogram sets is done the same way as for the represen-

tation using the absolute amplitude values desribed in setion 7.1. The distanes

between the orresponding histograms are ombined in a way to tolerate small

rotational hanges in the images.

7.3 Histogram Distanes

Our query methods based on histogram set representations use standard histogram

distane measures whih are already well known. Surveys of di�erent measures

an be found in [26℄. Huet and Hanok also used di�erent histogram distane

measures to index artographi material [11℄ (Setion 2.2.4).

Histograms an be seen from di�erent viewpoints. Depending on the point of

view various distane measurements are possible:

The Minkowski form distanes

One dimensional histograms with n bins an be seen as vetors in an n-dimensional

vetor spae. Therefore, the distane measures known from vetor spaes an be

used. One example is the family of the Minkowski distanes, whose general form

is given by

D(H

A

; H

B

) =

X

i

jH

A

(i)�H

B

(i)j

r

Well known examples are the L

1

and the L

2

distanes for r = 1 and r = 2

respetively. The L

2

distane of two histograms is equivalent to the Eulidean

distane of the orresponding vetors.
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The Bhattaharyya distane

The Bhattaharyya distane is a measure of orrelation between to disrete distri-

butions. Bins with zero ontents do not ontribute to the distane value, so the

distane measure works best with histograms that are "well �lled". The Bhat-

taharyya distane measure is given by

D

Batt

(H

A

; H

B

) = �ln

X

i

q

H

A

(i) �H

B

(i)

The earth mover's distane

To understand the earth mover's distane, the two histograms whih have to be

ompared must be understand as a set of piles of earth and a set of holes. The

distane of two histograms is the minimal ost of transporting the �lling the holes

(the seond histogram) with the earth from the piles (the �rst histogram). Thus,

alulating the distane orresponds to solving a linear transportation problem.

A big advantage of the earth mover's distane is its harateristi as ross bin

histogram distane measure. I.e., that not only the sizes of orresponding bins

are ompared but also neighbouring bins. This way the distane is less sensitive

to shifts in the feature data and it allows for partial mathes. Aording to Rub-

ner et al. the distane better mathes pereptual similarity than other distanes

[26℄. A disadvantage of this distane measure is its high omputational omplexity

ompared to other measures.

We performed experiments using the measures L

1

, L

2

and Bhattaharyya. In our

query methods we store the feature data in two dimensional histograms. However,

the distane measures are applied in a similar way. Results of these experiments

are given in hapter 9.
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Chapter 8

The Test Environment

This hapter explains the environment used to realise and test the proposed meth-

ods. The following setions desribe the di�erent test images databases we used

in our experiments. We speify the size of the test databases by two values: The

symbol B denotes the number of images in the database and F denotes the number

of images used as query images in the experiments. This number depends on the

ontents of the database, sine only images whih have enough empirial similar

images, an be used as query images.

8.1 The �rst test database

Our �rst test database ontains B = 609 images grabbed from a single Frenh

television hannel. The images are all of the same format (384x288 pixels) and

oded in JPEG with 75% quality. The ontents di�ers from outdoor ativities

(reports of sport ativities) to talk shows, full sope shots of people, weather

foreasts, logos and advertisement.

To be able to measure query performane (see hapter9.2) a lustering of the

image set was neessary. The lustering was done manually using empiri riteria

in a way that all images in a luster are pereived as similar by us. In fat, the

pitures of one group mostly are taken from the same teleast and sometimes

even from the same sene. Figure 8.2 shows examples of these groups. However,

although all images of the database are queried not all of them are grouped into

lusters. The reason was to avoid too small groups, whih would degrade the query

performane urves without justi�ation. Eliminating all lusters with less than

10 images, we get 568 (referred to as F in this doument) images grouped into 11

lusters (Table 8.1). Figure 8.1 shows the representants of eah luster.
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nr. 1 2 3 4 5 6 7 8 9 10 11

images 10 11 14 15 15 19 32 36 86 156 174

Table 8.1: The luster sizes of test database 1

Figure 8.1: The representants of the 11 image lusters used in the �rst test database

8.2 The seond test database

The seond test database ontains B = 179 images from various soures olleted

by Jean-Mihel Jolion

1

. The ontents di�ers from portraits, textures, landsape

senes to drawings et. Figure 8.3 shows examples of this database. Again the

images of one olumn belong to the same luster of images pereived as similar.

Table 8.2 shows the lustering of this database. Again we eliminated all lusters

with less than 10 images, whih left F = 105 images for this database to use as

query images, grouped into 6 lusters with the following sizes.

nr. 1 2 3 4 5 6

images 10 12 14 15 26 28

Table 8.2: The luster sizes of test database 2

8.3 The third test database

To evaluate the dependenies of our algorithms on some parameters we use an ad-

ditional third image database. This ommerial database ontains various natural

images (arhiteture, landsapes, animals et.). Figure 8.4 shows examples of this

database. Again the images of one olumn belong to the same luster of images

pereived as similar. Table 8.3 shows the lustering of this database. F = 105 im-

1

Laboratoire Reonnaissane de Formes et Vision, INSA de Lyon
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ages are used as query images whih are grouped into 9 lusters with the following

sizes:

nr. 1 2 3 4 5 6 7 8 9

images 12 17 18 19 35 83 99 131 163

Table 8.3: The luster sizes of test database 3
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Figure 8.2: Examples of the �rst image database used (609 images total). All

images in one olumn belong to the same luster of images pereived as similar.
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Figure 8.3: Examples of the seond image database used (179 images total). All

images in one olumn belong to the same luster of images pereived as similar.
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Figure 8.4: Examples of the third image database used (1505 images total). All

images in one olumn belong to the same luster of images pereived as similar.
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Chapter 9

Experimental Results

This hapter presents a detailed experimental evaluation of the proposed methods.

Before we an do that we have to disuss how to measure query performane in

image retrieval. Considering a single query from a given image whih returns a

result set of d images, there are two relevant riteria to take are of: query speed

and quality (the relevant-ness) of the result set. The former is easy to measure,

we will disuss it in setion 9.1. The latter is not as easy to ompare, never the

less there are well de�ned methods. We will disuss it in setion 9.2

9.1 Speed

Speed is a performane riteria easy to measure. Two proesses are relevant: The

reation of the index of an image and the omparison of the query image with the

database images. The time to index an image is independent of the number of

the images in the database. It is needed when uploading a new image and when

querying the database. It onsist of several steps: Eventually onverting the image

to the desired format and to gray sale, applying the interest operator, reating the

interest regions, applying the �lter bank to eah region, and reating and writing

the key struture. Table 9.1 gives an overview of the di�erent parts of the index

reation algorithm and their speed/time issues.

Applying the �lter bank is the part whih takes most of the time and heavily

depends on the number of interest points and the size of the interest regions used.

If histograms are produed then the time to �ll them e�ets indexing speed as well.

Espeially with growing numbers of interest points histogram reation beomes an

issue as well (The algorithm is O(N

2

)).

Table 9.2 gives an overview of indexing performane dependent on di�erent

values of region sizes and numbers of olleted interest points. The values are

measured indexing a single image exluding the time to ollet the interest points,

whih is dependent of the detetor. The hardware platform was a standard indus-

trial PC equipped with a Pentium I proessor at 300 MHz. The query system has
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Task Time depends of

Detetion of interest points Size of the image

Appliation of the �lter bank Number of interest points, size of the interest region,

size of the �lter bank

Creation of histograms Number of interest points, number of neighbours

searhed for eah point, size of the �lter bank if his-

togram sets are used

Table 9.1: The di�erent steps during the reation of an index

been implemented in C++.

points / region size 64 32 16

100 n.s. 5s n.s.

200 22s 8s 3s

300 n.s. 12s n.s.

Table 9.2: Query speed for di�erent interest point ounts

The time to query the database depends on the method and the number of images

ompared. Table 9.3 gives an overview of the speed of the di�erent query algo-

rithms applied to the B = 609 images of our test database 1. To obtain preise

results for eah method we used every image of the referene set of F images as

query image and queried against the whole database of B images. The response

time divided by F gives us the average time it takes to query one image against the

database of B images. If not stated otherwise the methods used N = 200 interest

points and a region size of 32� 32 pixels. The time spei�ed does not inlude the

time to reate the indies.

Algorithm Time to query one image

against F images

Searhing orresponding interest points 37s/9s/5s/2.9s

(100/70/50/30 points)

Histogram set: amplitude � amplitude 2.6s

(24 histograms of 8 � 8 bins)

Histogram set: di�erene of amplitudes � ranking 5.1s

(24 histograms of 8 � 16 bins)

Table 9.3: Query speed for di�erent algorithms

The query time using the method of searhing orresponding interest points de-

pends on the number of interest points olleted (O(N

2

)). However, although the
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query performane is depending on the point ount as well the di�erenes between

the performane urves are not that big (Figure 9.14).

9.2 How to measure Query Performane

The more important riteria of an indexation method is the quality of the result set,

referred to as query performane from now on. Sine there is no exat de�nition

for similarity between images, measuring retrieval performane is a diÆult task.

As an example see �gure 9.1. These two images have been split up into 2

di�erent lusters of the test database, i.e. from the users point of view they are

not similar. Nevertheless some query methods return image (9.1.b) when querying

for image (9.1.a). Can we blame any statistial proess, whih does not atually

understand the ontents of an image, to judge the images to be similar? From a

texture point of view the images are similar. They both ontain mainly strutures

in vertial diretions in similar frequeny bands. Thus to be able to ompare two

query methods we need to know the struture of the test database, the type of

images used, the lustering into similar images et.

Figure 9.1: How do we measure query performane - are these images similar?

User annotation is neessary to observe the query proess and hek the quality of

the query methods. We solved this problem by reating a set of referene images

for eah image used as query image. The referene images have been lassi�ed

as "similar" to the image by us aording to what we think is visual similarity.

For our test databases (See hapter 8) we used the images of the same luster

as referene images of a given image. Thus, the query performane measurement

depends on the user and it's judgement of similarity. All experimental results

depend on the judgement of the user, who himself piks similar referene images

for all query images.

In hapter 8 we explained the struture of our test image databases and their

lustering into lusters of images regarded as visual similar. A single query searhes

visual similar images for a single query image taken from these databases. The
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query image is a member of a luster C, whih ontains d images. These d images

are alled "relevant" images. The system answers with  images of whih r are

from the original luster C. For a single query two measures are widely used for

indexation systems: Preision and reall. Their de�nition is given by:

P =

r



; R =

r

d

where the following symbols where used:

P Preision

R Reall

r Number of relevant images (i.e. from the same luster) in the return

set

 Total number of images in the return set

d Total number of relevant images (i.e. from the same luster) in the

database

9.2.1 Performane urves

As the name suggests the preision of the result of a single query denotes how

preise the result set responds to the desires of the user. The higher the preision

the higher the perentage of relevant images in the result set. By hanging the

number  of returned images by the system we get a urve of preision:

P () =

r



For most querying methods the set of result images is ordered, returning the most

similar images �rst. The images having higher indies in the result set are less

likely to be relevant to the query image. Hene, the urve will generally show a

dereasing value of preision for an inreasing .

Reall of a single query denotes how many of the relevant images in the database

have been returned. The higher the reall the more the set of relevant images in

the database has been \overed" by the query.

R() =

r

d

Sine the denominator d is independent of the size of the result set and r will grow

with inreasing , the urve of reall will inrease with inreasing .

Both of the measures are dependent of the size and the struture of the database,

espeially the number and size of the groups of similar images (see hapter 8). How-

ever, generally it is preision whih is regarded as the more important measure to

ompare di�erent methods. To reate the performane urve for a method we use

every image of the referene set of F images as query image and query against the

whole database of B images. For eah query we reate a urve hanging the size
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 of the results set. The �nal urve is the average value of all urves for the single

queries:

P () =

1

F

F

X

i=1

r

i



; R() =

1

F

F

X

i=1

r

i

d

i

(9.1)

where r

i

is the number of relevant images in the result set of query image i and d

i

is the total number of relevant images for query image i in the database.

The �gures in this hapter display the query performane we ahieve using our

test databases and di�erent query methods. The x-axis of all urves orresponds

to the number of images in the return set , with a range from 1 to 30. If not stated

otherwise the y-axis displays the average preision for all query images (equation

9.1). Other possible measures are the variane of preision or the average reall.

For onveniene the legends of the di�erent query urves are sorted by perfor-

mane in eah �gure. The legend of the best method is displayed at the top of the

list. Exeptions are urves, whih ross other urves. However, this ase does not

our very often.

9.2.2 The limits of query performane

As we already noted the urves are dependent on the lustering of the database. A

theoretial best urve of onstant 100% preision an be reahed only if the sizes of

all lusters are equal or greater than the maximum number of returned images .

A query using a query image within a luster having n <  images annot return

more than n relevant images (= r). But that means that the preision p =

r



is less

than 100%. Our results display urves between 1 and 50 returned images. Sine

our test image databases ontain groups with less than 50 images (see setions 8.1

and 8.2) we need to know the theoretial query limit, i.e. the optimal urve whih

an never be beaten by any method. A query produing the optimal result always

returns the maximum number of relevant images, i.e. either the whole return set

is relevant if the luster is big enough, or at least the whole luster:

r

max

= min(; d)

Hene the urve of the optimal method is de�ned by

P

max

() =

1

F

F

X

i=1

min(; d)



In a similar way the lower limit of query performane an be alulated. The lower

limit would be a query that returns as many false images as possible. Atually it

is not this limit whih is interesting but the urve of a random query. A random

query performs better than the worst query possible. However, a good method

should perform better than a random query. A single query hoosing random

images will return r

random

images:
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r

random

= 

d

B

Hene the urve of a method hoosing random images an be written as

P

random

() =

1

F

F

X

i=1



d

i

B



=

1

F

F

X

i=1

d

i

B

(9.2)

The upper and lower limits depend only on the lustering of the test database. The

urves reated for our test databases are displayed in �gures 9.2, 9.3, 9.4 and 9.5.

The urves for a random query are reated with two di�erent methods: Calulated

using equation 9.2 and experimentally using a random number generator.

9.3 The Experiments

In this setion we present our experiments and the results measured using the

methods desribed above. We explain in detail the parameters used for the exper-

iments and their inuenes on the query performane. We ompare the results for

the di�erent query methods we implemented inluding the parameters we used and

we show the di�erenes of the performane of our system applied to our di�erent

test databases.

In the previous hapters we introdued query methods based on two types of

image representations, whih we want to ompare in this setion:

� The feature vetor set representation using Shmid and Mohr's voting dis-

tane and the distane funtion searhing orresponding interest points.

� The representations using sets of histograms whih store amplitudes or dif-

ferenes of amplitudes and neighbourhood ranking respetively.

We onduted experiments to evaluate and to optimize the performane of our

proposed methods. Setion 9.3.1 gives an overview of the parameters of our system

and their signi�ane. Setions 9.3.2 and 9.3.3 explain the experiments for the two

respetive methods and their optimal parameters. Setion 9.3.5 ompares the two

methods and gives onlusions on the experimental evaluation.

9.3.1 Parameters and Dependenies

Our query methods are dependent on a number of parameters, like the number

of interest points olleted, the sizes of the interest regions, thresholds et. We

performed experiments with di�erent values for eah parameter and ompared the

results. However, for reasons of omputational omplexity we did not perform

experiments on all di�erent ombinations of di�erent values for the parameters.

Instead we only tested di�erent values for one parameter at a time. I.e. we assigned
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Figure 9.2: DB 1 - The best algorithm: The 2D histogram set method storing

amplitudes in omparison with the limits of query performane (see hapter 9.2.2).
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Figure 9.3: DB 1 - The 2D histogram set method in omparison with the limits of

query performane (see hapter 9.2.2). Reall is displayed.
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Figure 9.4: DB 2 - Di�erent algorithms and the limits of performane - preision
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Figure 9.5: DB 3 - The feature vetors set based algorithm with the limits of

performane - preision
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�xed values to all other parameters, and performed experiments with a range of

values for the tested parameter.

Table 9.4 shows the standard values we used for our parameters for all di�erent

methods if not spei�ed otherwise. There are two di�erent values for the number

of interest points, beause we used 100 interest points for experiments with feature

vetors set representations and 200 interest points for experiments with histogram

based representations. The two histogram dimensions orrespond to the two dif-

ferent representations (Amplitudes � amplitudes and di�erenes of amplitudes �

neighbourhood ranking).

Parameter Desription Standard value

N Number of interest points 100/200

- Interest region size 32� 32 pixels

S Number of sales of the Gabor �lter bank 3

K Number of orientations of the Gabor �lter

bank

8

n Number of neighbours for the n-nearest

neighbour searh

48

t Threshold for the voting algorithm 1:0

- Histogram dimensions 8� 8/8� 16

Table 9.4: Standard parameter values used during the experiments

The following parameters are present in all of our image representations and query

methods:

The number of interest points The number of interest points is an essential

parameter of the indexation system. It determines how many interest regions

are taken from the images and therefore also how muh area of the image

is overed by the desription. Indexation speed and for some methods also

query speed strongly depend on this parameter, so we are interested to keep

it as low as possible (See setion 9.1).

The region size The region size determines how muh area is overed by the

features olleted on an interest point. The larger we set the area, the less

sensitive the algorithm is to shifts of the interest point loations. On the other

hand, the larger we set the size of the area, the less desriptive the features

will be. The frequeny spetrum of a whole image does not neessarily give

lots of information about the texture ontents of images, sine most images

ontain more than one texture.

The number of sales of the Gabor �lter bank This parameter determines

how sensitive the Gabor �lter bank is to hanges of frequeny.
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The number of orientations of the Gabor �lter bank This parameter deter-

mines how sensitive the Gabor �lter bank is to hanges of orientation.

9.3.2 Representation by Feature Vetor Sets

In this setion we explain the results of our experiments using the query methods

based on the image representation by sets of feature vetors desribed in hapter

6. We desribe the experiments we onduted to optimize the algorithms. The

values of the following parameters have to be optimised:

� The distane formula

� The threshold value

� The number of interest points

� The interest region size

The distane formula

We performed experiments with three di�erent distane formulas: The voting

algorithm introdued by Shmid and Mohr (See Setion 6.4.1) and the two distane

measures for our method searhing orresponding interest points using equations

6.4 and 6.5. The urves for the voting algorithm ompared to the unweighted

distane measure (Equations 6.4) are presented in Figures 9.6 and 9.4 for the

image databases 1 and 2 respetively.

The �gures show, that the performane of the algorithm searhing orrespond-

ing interest points is superior to the voting algorithm. However, more striking

is the fat, that for both databases the urve of the voting algorithm does not

only show a di�erent performane. It is also shaped di�erently than the other

performane urves. If we ompare the urves of the di�erent algorithms in Figure

9.6, then we see that most of them are more or less parallel. Even the urves

for the histogram based methods are almost parallel to the feature vetors urves

using orresponding interest points. On the other hand the urves for the voting

distane show a di�erent progression. The performane drops quikly at the be-

ginning, but with growing sizes of the result set the algorithm onverges to the

same performane as the algorithm searhing orresponding points.

The explanation of the poorer performane of the voting distane an be ex-

plained with di�erent fats. Firstly, in our test database for most similar image

pairs one interest point of the query image orresponds to only one point in the

database image. The seond and probably more important explanation is the be-

haviour of feature vetors on at or almost at interest regions taken from the

bakground of the images. A feature vetor orresponding to one of these regions

has a small distane ompared with any other feature vetor of this group of at
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Figure 9.6: DB 1 - Comparison of the di�erent retrieval algorithms for this work.

For all methods the Haar transform interest point detetor has been used. (a)

Feature vetors on interest points. Comparison using the method of searhing or-

responding interest points (Equation 6.4). (b) Feature vetors on interest points.

Comparison using voting. () The ordered set of two dimensional histograms

storing the amplitude � amplitude distribution. (d) The ordered set of two di-

mensional histograms storing di�erenes of amplitude � neighbourhood ranking.
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Figure 9.7: DB 1 - The results of the di�erent methods - the variane of preision

is plotted instead of the average preision.
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regions. During the algorithm searhing orresponding interest points these fea-

ture vetors are eliminated one by one and do not "harm" the distane funtion

very muh. Considering the voting algorithm on the other hand, one of these

bakground feature vetors will math against possibly all other bakground fea-

ture vetors, whih produes an enormous amount of votes. If we examine e.g.

the omparison of two images, where eah of them has 10 interest points taken

from the bakground among all their 100 points eah, then the omparison step

produes approximately 100 votes, whereas the other votes will be in the range of

50 votes in the average ase. I.e. that in this ase

2

3

of the votes orrespond to

the homogeneous bakground. This low relation between representative votes and

unrepresentative bakground votes auses a worse query performane.

We performed experiments for the two di�erent distane equations of the

method searhing orresponding interest points. From now on we will refer to

the method de�ned by equation 6.4 as unweighted distane and to the method

de�ned by equation 6.5 as weighted distane. Figures 9.8 and 9.9 show the perfor-

mane urves for the two di�erent distane measures for two of our test databases.

The performane is almost equal for both distanes within the order of statistial

unertainty. Nevertheless we believe, that the weighted distane measure works

better than the unweighted measure on bigger test databases (See setion 6.4.2).

This fat has not yet been on�rmed by experiments, sine we did not perform

any experiments with databases of suÆient sizes yet.

The threshold value

Unlike the histogram based algorithms the query methods for the feature vetor

set representations are equipped with a threshold value t whih needs to be set.

We onduted experiments with di�erent values for this threshold: t = 0:7; 1:0; 1:6

and 2:0. The �gures 9.11, 9.12 and 9.13 display result urves for the three test

image databases using di�erent threshold values applied to the method of searhing

orresponding interest points (Equation 6.4). As we an see, the query performane

seems to be dependent on this value. One of the reason is the distane formula

of the algorithm (equation 6.4). The disretisation of the distane values depends

of the number of olleted interest points, whih was set to N = 100 in our

experiments. Hene, there are at most 2N di�erent values for the distane between

two images. If the threshold values are too low or too high, then the distribution

of distane values will shift to the respetive end of the range of possible values,

where the values annot be distinguished.

A priori this fat is not very onvenient. If a method depends on the orret

settings of a parameter, then we need to �nd a solution how to �nd this parameter

and under whih irumstanes it hanges. However, a loser look to the results

for all 3 image databases relativates this judgement. The optimal threshold value

seems to be equal for all 3 databases, we set it to 1:0. We onlude, that the

parameter is not strongly dependent on the input images, i.e. it is possible to
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Figure 9.8: DB 2 - Feature vetors on interest points. Comparison using the

method of searhing orresponding interest points and two di�erent distane for-

mulas: (a) The distane alulation is based on the numbers of orresponding

interest points found (Equation 6.4). (b) For the distane alulation not only the

number of orresponding interest points is used, but also the distanes between the

orresponding feature vetors (Equation 6.5). Region size is 32� 32, 100 interest

points were olleted.
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Figure 9.9: DB 3 - Feature vetors on interest points. Comparison using the

method of searhing orresponding interest points and two di�erent distane for-

mulas: (a) The distane alulation is based on the numbers of orresponding

interest points found (Equation 6.4). (b) For the distane alulation not only the

number of orresponding interest points is used, but also the distanes between the

orresponding feature vetors (Equation 6.5). Region size is 32� 32, 100 interest

points were olleted.

82



assign it a �xed value before hand.

Another surprising result onerning the optimal threshold value is it's atual

value, or the position of this value in the range of the possible distanes between

vetors in feature spae. Figure 9.10 shows this distribution of the vetor dis-

tanes in a normalised histogram plot, whih has been reated by alulating and

subsampling all possible distanes of vetors in the �rst test image database and

plaing them into a one dimensional histogram. The x axis spei�es the distane

between two vetors (Equation 6.3), the y axis spei�es the ount of vetor pairs

having this distane. The histogram has been normalised, so that the sum of all

bins is equal to 1.
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Figure 9.10: The distribution of the feature vetor distanes as normalised his-

togram plot

We used the threshold values t = 0:7; 1:0; 1:6 and 2:0 in our experiments, they

are displayed in Figure 9.10 as thin vertial lines. We note, that the optimal

threshold of t = 1:0 is situated near the lower end of the range of found distanes.

This low threshold has the e�et, that the number of orresponding interest points

is low. This fat an be seen e.g. in Figure 6.5, where in two rather similar images

only few of the 100 selet interest points are atually found as orresponding.

Number of interest points

Figure 9.14 depits query performane urves for the feature vetor set method

with di�erent ounts of olleted interest points. We used ounts of 30; 50; 70 and

100 points. The reason for the limitation of the number of points is the strong
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Figure 9.11: DB 1 - Di�erent thresholds applied to the method using feature

vetors on interest points, version 2. Comparison using the method of searhing

orresponding interest points (Equation 6.4). Region size is 32 � 32, 100 interest

points olleted.
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Figure 9.12: DB 2 - Di�erent thresholds applied to the method using feature

vetors on interest points, version 2. Comparison using the method of searhing

orresponding interest points (Equation 6.4). Region size is 32 � 32, 100 interest

points olleted.
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dependeny of the method on the number of points. It is omputationally too

expensive to perform the algorithm with 200 interest points olleted on eah

image.

The query performane of the feature vetor set based method does depend

on the number of interest points. This an be explained by the nature of the

distane algorithm. Sine the distane of two images is based on the omparison

of points, the importane of a single point is very high. Hene, inreasing the query

performane of the feature vetor set based method by inreasing the number of

interest points N is possible but limited due to the omputational omplexity of

the algorithm (O(N

3

)).

Interest region size

We performed experiments using interest region sizes of 64 � 64 pixels, 32 � 32

pixels and 16� 16 pixels to hek if they inuene query performane. From the

omputational point of view the size of the interest regions strongly determines

indexation speed, but it has almost no e�et on the query speed. Nevertheless we

want to keep it as low as possible. Figure 9.15 shows query performane urves

using the feature vetor set based method and the three di�erent region sizes. As

we an see the query performane is not signi�antly a�eted by the hange of the

region sizes.

The interest point operator

For our experiments we used di�erent interest operators, whih we desribed in

hapter 3: Two di�erent implementations of the Harris orner detetor, two dif-

ferent versions of the Loupias wavelet based interest point detetor based on the

Haar and the Daubehie wavelet respetively, and the Jolion multiresolution on-

trast based interest point detetor. To evaluate the dependeny of our algorithms

on the hoie of the interest point operator, we additionally implemented an "in-

terest point operator" seleting a �xed number of random points in an image.

The results of our experiments are displayed in Figure 9.16 for our �rst test

database. As we an see, the di�erenes in performane between the various de-

tetors are not big. The performane of the algorithms in experiments where the

random interest point detetor is used is not as good as the performane of the

other interest operators, but still surprisingly good. The di�erenes are in the order

of the statistial unertainty of the measurement of the algorithms. We onlude,

that the performane of our algorithms only weakly depends on the loations of

the interest points, i.e. on the hoie of the interest point detetor. This fat an

be explained by the rihness of our image features. The feature data olleted on

the interest points has enough desriptive power.
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Figure 9.13: DB 3 - Di�erent thresholds applied to the method using feature

vetors on interest points, version 2. Comparison using the method of searhing

orresponding interest points (Equation 6.4). Region size is 32 � 32, 100 interest

points olleted.
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Figure 9.14: DB 1 - Di�erent ounts of olleted interest points applied to the

method searhing orresponding interest points (Equation 6.4). Region size is

32� 32, Haar transform detetor.
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Figure 9.15: DB 1 - Di�erent interest region sizes applied to the method searhing

orresponding interest points (Equation 6.4). Region size is 32�32, multiresolution

ontrast based IP detetor.
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Figure 9.16: DB 1 - The results for the method searhing orresponding feature

vetors), using di�erent interest point detetors. Region size is 32�32, 100 interest

points were olleted.
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9.3.3 Representation by Histogram Sets

This setion desribes the experiments that have been onduted using the two

histogram set representations desribed in hapter 7. As for the feature vetor

methods, we optimised the parameters of the algorithms to obtain the optimal

query performane.

The histogram dimensions

An important parameter of the image representation is the dimensions of the

histograms, i.e. the number of bins, and the borders, i.e. the interval of the

raw data whih is represented by the histograms. We designed the histogram

borders aording to the distribution of the feature data. Table 9.5 shows the

histogram borders and dimensions for the two di�erent representations used during

our experiments.

Parameter Amplitude � Amplitude Amplitude � Ranking

x-bin ount 8 8

y-bin ount 8 16

x-min value 7 -6

y-max value 12 6

x-min value 7 1

y-max value 12 n = number of neighbours

Table 9.5: The histogram dimensions used during the experiments

In the ase of the amplitude-amplitude histogram the values on the x and on the y

axis are logarithmi amplitude values. The given borders have been alulated by

dereasing step by step the borders of an aumulated histogram, whih has been

omputed by summing up all histograms of our �rst test image database, until the

amplitude data is best overed by the interval of the histogram. The same has

been done for the x axis of the seond histogram type, whih stores di�erenes of

amplitudes in it's x axis. The y axis of the seond histogram type, whih stores

the neighbourhood ranking of the n-nearest neighbour searh, has trivial borders,

whih we did not need to alulate.

The histogram dimensions have been found by experiments. Like we already

experiened with other parameters, the histogram dimensions inuene the query

speed, so we want to keep them as small as possible. However, too small histograms

are not representative anymore, whereas too large histograms ontain too many

empty bins, whih is not a good harateristi if we want to apply histogram

distanes.
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The number of neighbours

The number of neighbours n for the n-nearest neighbour searh determines how

muh inuene of the spatial oherene of the feature data is represented in the

histogram. However, the number has to be adjusted to the data. If the algorithm

does not searh enough neighbours, then the spatial oherene is under represented

in the histogram. If the algorithm searhes too many neighbours on the other

hand, then the information about the spatial oherene is lost, sine the found

neighbours tend to be the same for points near to eah other. We onduted

experiments using 3, 6, 12, 24 and 48 neighbours. Surprisingly there is almost no

di�erene in the query performane (Figure 9.17), although ounts of n = 12 or

even n = 48 are far too high to store any spatial information in the histograms,

onsidering that N = 200 interest points are olleted on eah image. We onlude,

that the additional information about the spatial oherene does not hange the

desriptiveness of the histograms.

The histogram distane measure

We also onduted experiments with the histogram distane measurements de-

sribed in setion 7.3. As an be seen in Figure 9.18 the best results are obtained

with the Battaharyya distane. This has been on�rmed by Huet and Hanok

in their work as well [11℄.

The histogram representation

We introdued two di�erent histogram based image representations. Represen-

tation 1 onsists of a set of histograms storing amplitudes and representation 2

onsists of a set of histograms storing di�erenes of amplitudes and the ranking of

the neighbours of the n-nearest neighbour searh. We performed experiments using

both of the two representations. Comparing the query performane of the methods

applied to test image database 1 (Figure 9.6) and test image database 2 (Figure

9.4). We remark that the �rst method based on the amplitude distribution only

performs better than the seond one. We onlude, that the absolute amplitude

information is more desriptive than the relative information. I.e. the information,

whih orientations and sales are present in the image is more desriptive than the

information how muh the amplitudes hange in the spatial neighbourhood of the

interest points.

The number of interest points

As for the feature vetor approah we onduted experiments with di�erent ounts

of olleted interest points to optimise the algorithm for this parameter. Figure

9.19 depits the experiments with numbers of 50; 100; 200 and 300 points. For this

algorithm it was possible use higher numbers of interest points, beause unlike the
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Figure 9.17: DB 1 - The method using ordered set of histograms (storing amplitude

� amplitude), di�erent ounts of neighbours for the n-nearest neighbour searh.

Region size is 32� 32, Haar transform detetor.
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Figure 9.18: DB 2 - The results for the ordered set of histograms (storing amplitude

� amplitude), using di�erent histogram distanes. Region size is 32 � 32, 200

interest points were olleted.
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feature vetor set method the query speed does not depend on this parameter. As

we an see the performane of the histogram based algorithm is weakly dependent

on the number of interest points. The di�erenes in the query performane are

within the statistial unertainty of the measurement algorithms.

For the histogram based methods the ount of interest points is not as im-

portant. If enough area of the image is overed by interest regions, and if the

histograms are �lled enough | i.e. the number of non-zero bins of the normalised

histogram is suÆiently high | then inreasing the number of interest points does

not inrease query performane.

The interest region size

Similar to the feature vetor set method we performed experiments with di�erent

interest region sizes. We used sizes of 64 � 64 pixels, 32 � 32 pixels and 16 � 16

pixels. Figure 9.20 shows query performane urves using the histogram set based

query method (histograms sets storing the amplitude distribution) and the three

di�erent region sizes. As for the feature vetor set method, the query performane

is not signi�antly a�eted by the hange of the region sizes.

The interest point operator

In our experiments we used the same interest point operators we already applied

in the feature vetor set methods. The results are displayed in Figure 9.21 for

test database 1 and in Figure 9.22 for test database 2. The results are similar to

the results of the experiments for the feature vetor set methods: The di�erenes

in performane between the various detetors are not big. However, surprising is

the good performane of the algorithms in experiments where the random interest

point detetor is used. The performane of the random points operator is equal to

the performane of the other operators.

We already explained the weak dependeny of our algorithms to the hoie of

the interest operator with the rihness of our image features. However, the his-

togram based approah is even less sensitive to the hoie of the interest operator

than the feature vetor set approah. This an be explained by the fat, that we

do not ompare single feature vetors, i.e. single interest points, but distributions

of interest points. The feature data olleted on the interest points has enough de-

sriptive power, whih is not improved by a stable interest point detetor hoosing

points "appropriate" for our type of features.

9.3.4 Comparison of the Methods per Query Image

The query urves show the performane of the di�erent query methods as the

preision averaged for all query images. We don't get any information whih query

method works well with whih type of image. To produe this kind of information
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Figure 9.19: DB 1 - Di�erent ounts of olleted interest points applied to the

method using ordered set of histograms (storing amplitude � amplitude). Region

size is 32� 32, Haar transform detetor.
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Figure 9.20: DB 1 - The results for the ordered set of histograms (storing amplitude

� amplitude), using di�erent interest region sizes. Haar transform detetor, 200

interest points olleted.
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Figure 9.21: DB 1 - The results for the ordered set of histograms (storing amplitude

� amplitude), using di�erent interest point detetors. Region size is 32� 32, 200

interest points were olleted.
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Figure 9.22: DB 2 - The results for the ordered set of histograms (storing amplitude

� amplitude), using di�erent interest point detetors. Region size is 32� 32, 200

interest points were olleted.
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we reated statistis at a lower level of detail, i.e. the level of single query images.

For eah query image and eah query method we alulated the query preision

for a return set of 10, 20, 30 and 40 images, and the average preision for all

return sets with sizes between 1 and 50 images. Then we ompared the preision

values for all methods for eah query image. The query method whih is best for

this query image gets a vote. Continuing this proess for all query images we get

several statistis for eah size of the return set how many queries work best for

eah method.

Algorithm / Images in the return set 10 20 30 40 avg. 1-50

Histogram set amplitude �amplitude 347 248 235 220 201

Histogram set di�. amplitudes � ranking 93 122 126 142 126

Feature vetors version 2 129 199 208 207 242

Table 9.6: Results for di�erent sizes of the result set

It an be seen, that with growing size of the return set the histogram set method

storing amplitudes looses performane against the growing performane of the

feature vetor method. However, more important is the information, whih query

method is preferable for whih type of image. So we lassi�ed the same information

aording to the image lusters in the following two tables. The rows represent

the di�erent query methods, the olumns the di�erent image lusters. An entry

in the table spei�es how many images of this luster had the best results for this

query method. The following tables were produed for 10 images in the return set

and the average value of 1 to 50 images in the return set respetively.

Algorithm / luster 1 2 3 4 5 6 7 8 9 10 11 total

Histogram set 3 11 1 12 14 3 26 25 79 81 92 347

amplitude �amplitude

Histogram set 5 0 0 3 0 5 3 8 0 49 20 93

di�. amplitudes � ranking

Feature vetors 2 0 13 0 1 11 3 3 7 26 63 129

version 2

Table 9.7: Results: 10 images in the return set

The di�erene of the two tables is not small, whih means that the ordering of the

\good" results in the return set is di�erent for the di�erent methods.

9.3.5 Comparison and Conlusion

In our experiments we evaluated two query methods applied to the three di�er-

ent test databases desribed in hapter 8. As we an see, the algorithmi distane
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Algorithm / luster 1 2 3 4 5 6 7 8 9 10 11 total

Histogram set 0 10 1 7 14 1 0 25 43 49 51 201

amplitude �amplitude

Histogram set 5 0 0 6 0 6 0 6 14 67 22 126

di�. amplitudes � ranking

Feature vetors 5 1 13 2 1 12 32 5 29 40 102 242

version 2

Table 9.8: Results: Average value of 1 - 50 images in the return set

methods using the feature vetor set representation perform slightly better then the

statistial distane methods based on the histogram set representations. Consider-

ing, that the di�erene in query performane between the feature vetor methods

and the histograms is almost insigni�ant, then the relation between ost (query

speed) and bene�t (query performane) is signi�antly better for the histogram

based methods.

The performane of our algorithms is only weakly dependent on parameters.

Both algorithms are invariant to hanges of the interest region size. The threshold

t of the feature vetor set algorithm an be �xed aording to our experiments.

The performane of the histogram based method does not depend on the number

of the interest points olleted.

As we already noted, the query performane of the feature vetor set based

method an be improved by inreasing the number of interest points, but the

amelioration is limited due to the omputational omplexity of the algorithm.

Future work ould be done to ombine the feature vetor set representation with

hierarhial representations and methods [14℄ in order to redue the omplexity of

the distane algorithm.
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Chapter 10

Conlusion and Outlook

The main ontribution of this thesis has been the desription of several possibili-

ties to realise a ontent based image retrieval system whih uses texture similarity

to alulate distanes between images. We showed how to ombine interest point

detetors and the appliation of a Gabor �lter bank to reate desriptive image

representations. We introdued two di�erent query methods whih used di�erent

image representations. We desribed an algorithmi method based on frequeny

desriptions of image regions and a statistial method based on histogram repre-

sentations of the images. Both query algorithms give good results aording to our

test image databases. For indexation purposes we reommend the histogram based

statistial method, beause it needs muh less omputational e�orts, whereas the

performane derease is statistially not signi�ant.

Figure 10.1: Example Query
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Our algorithms do not use any a priori model of the image ontents. They have

been evaluated and tested in various experiments using di�erent databases of test

images of various soures. Beause we did not restrit the set of images supported

to a spei� group, the question arises, whih type of queries an be handled by

our methods.

The image representation introdued in this thesis holds a rough texture de-

sription of images. The similarity measure is able to distinguish groups of images

of the same type, i.e. images having similar ontent without onsidering many

details. Typial appliations ould be e.g. databases of television broadast sta-

tions, whih need to �nd sreenshots of similar senes or shots of the same teleast

in a large set of television sreenshots. Experiments with one of our test image

databases whih ontains television sreenshots, prove the good performane for

this task.

Figure 10.1 shows a typial result set of a query against one of our test databases

ontaining images of various types (portraits, drawings, sreenshots of video se-

quenes, textures et.). The query image | a portrait | is displayed in the left

upper position, the result image are ordered from left to right and from top to

bottom. Our query algorithms are apable to retrieve the other portraits of the

database. However, they are unable to reognise details of the images, i.e. in this

ase they do not retrieve the images showing the person on the query image on the

�rst positions of the result set. Tasks like this need to be done by speialised reog-

nition systems, whih use spei� image data to reate image similarities designed

for the appliation domain.

Other possible appliations of our methods ould be to use them as pre-

proessing steps to speialised image databases. Beause our query methods are

apable of retrieving images of the same type from a database ontaining images

of various types they an be used to narrow the set of images to searh for other

methods whih perform searh algorithms speialised for a spei� task. Consider-

ing the example desribed above, one possibility would be to searh all portraits of

a general database using our texture based method, and to apply a fae reognition

algorithm afterwards on the result set of our method.

The following future tasks are planned to deepen the experienes we made

during this work:

� The integration of a strutural omponent by ombining our feature ve-

tor set based query method with attributed graph pyramids [13℄ [14℄. The

aim is redue the omplexity of the feature omparison step and to add a

hierarhial omponent to the image similarity.

� Another task urrently pursued is to join this texture based approah with

methods based on olour, struture and shape into one weighted indexation

system, whih uses feedbak of the user to determine the preferenes and to

realulate the weights of the system (See Setion 2.3).
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Appendix A

Table of symbols

The following symbols have been used through out this work:

Symbol Desription

Database

B Number of images in the database

F Number of images used as query images

N Number of interest points olleted on an image

Filters

S Number of sales of the Gabor �lter bank

K Number of orientations of the Gabor �lter bank

u0 The x-oordinate in frequeny spae of the max. ampli-

tude of a �lter response

v0 The y-oordinate in frequeny spae of the max. ampli-

tude of a �lter response

Algorithms

t The threshold for the distane of feature vetor sets.

n The number of neighbours for the n-nearest neighbour.

searh

�; � Feature vetors or histogram vetors

Measures

P () Preision of a query returning a result set of  images

R() Reall of a query returning a result set of  images

Table A.1: Symbols used in this doument
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Appendix B

Sreenshots

For demonstration purposes and to make tests of our algorithms easier we devel-

oped a query system with graphial interfaes. Sreenshots of these tools for the

X-window system and the web are displayed in Figures B.1 and B.2. The system

is aessible via the world wide web at the following address:

http://www.prip.tuwien.a.at/Researh/ImageDatabases/Query
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Figure B.1: The graphial Frontend for the X-window System
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Figure B.2: The Main Page of the Web Frontend
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