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Abstract

Content based image retrieval is the task of searching images from a database, which are
visually similar to a given example image. Since there is no general definition for visual
similarity, there are different possible ways to query for visual content. In this work we
present methods for content based image retrieval based on texture similarity using interest
points and Gabor features. Interest point detectors are used in computer vision to detect
image points with special properties, which can be geometric (corners) or non-geometric
(contrast etc.). Gabor functions and Gabor filters are regarded as excellent tools for texture
feature extraction and texture segmentation. We present methods how to combine these
methods for content based image retrieval and to generate a texture description of images.
Special emphasis is devoted to distance measures for the texture descriptions. Experimental
results of the query system on different test image databases are given.

IThis work was supported by the Austrian Science Foundation under S7002-MAT
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Chapter 1

Introduction

1.1 Motivation

Since its invention photography has rapidly conquered the world. No wonder, it
was photography which made it possible to transfer and store visual impressions
and experiences. People began to collect photographs and soon companies like
newspaper publishers had large archives. However, finding specific pictures in
these vast quantities of information was time consuming manual work.

The invention of the computer changed a lot about the ways information can be
stored, but did not solve all problems. The equivalents of photographs — digital
images — found their way into the information society as soon as the computers
became powerful enough to process, display and transfer them. At the time this
document is written the average desktop PC (already called ”Multimedia PC”) has
enough memory and processing power to store large image and video databases.
The hardware necessary to create and capture images is available, cheap and easy
to use. Scanners, digital cameras and even digital video cameras able to connect
to computers are flooding the markets and found their way into the average home.
The latest technology discovered by the public is the Internet and the world wide
web — an almost unlimited source of information.

The problem of finding specific pieces of information in this large archives
remains unresolved. Solutions for text information have been found. Databases
based on keywords or full text search are used successfully all over the world. The
principle of keyword based search techniques has been applied to image databases
as well. However, it is not possible to describe images with words to the same
extent as contents in text form, since the information visible on images can be
seen from different viewpoints or aspects.

Figure 1.1 shows two examples. How do we describe the contents of these
images? People looking at Figure 1.1.a could be interested in the people or the
fashion in the foreground, the architecture in the background or any other part of
the image. The scene displayed in Figure 1.1.b is equally difficult to describe.



Figure 1.1: How do we describe visual information?

The equivalent of a full text search for an image database is a content based image
retrieval system using query by example as ”query language”. The user specifies a
query image or parts of it. The system answers with images similar to this query
image. The key question of this approach is, how do we define similarity between
images? We distinguish two different approaches[27]:

e Systems based on attentive scan use conscious processes and high level rea-
soning to compare information. Similarity is derived from the knowledge
about the semantic contents of the images. Humans use this concept to
search for specific documents (or images) in archives.

e Systems based on pre-attentive scan use unconscious processes to compare
information. Applying image processing algorithms they extract features of
different nature: Colour, texture, structure and contour features have been
used in former approaches for image descriptions.

An ideal content based query system should be based on attentive scan. Only by
understanding the contents of archives and the desires of the user it is possible to
deliver exactly the required information. However, the general image understand-
ing problem has not yet been solved, i.e. computers and their software are not yet
sophisticated enough to actually understand the semantic meaning of the contents
of documents, and it is subject to scientific discussion until now if artificial pro-
cesses will ever reach this degree of intelligence. Up to now all methods have been
pre-attentive and the work described in this document is based on this approach
as well.

The way and method how an image retrieval system is choosing and delivering
its results depends on the purpose of the application. There is no general measure
for visual similarity so there are no general purpose image retrieval systems for all
kind of images, which always deliver correct results according to the user’s wishes.
The known approaches can be classified into systems more or less specialised to



specific tasks and systems trying to implement a general purpose retrieval system
working for all kinds of images. Examples for the former are medical systems like
databases of X-ray images, applications specialised to facial images etc.

An application for a general purpose retrieval software can be found on the
web: The Internet search engine Altavista ! allows to search for text, images,
video and audio contents of the web by keywords. Once an image is found the
user is able to search what is called a wvisual similar. Obviously a system like
this designed for general purposes will not work in all cases, since there is no
feedback from the user which kind of information she desires. However, for the non
business critical usage of the average user they can be useful enough. The demand
of powerful image retrieval systems is not yet satisfied by existing applications.
Not only the vast quantities of information available on the Internet need to be
handled by search engines. Industries like TV broadcasting stations, magazines,
newspapers, advertisement agencies, hospitals and even governments store huge
amounts of visual information. Without being able to search for specific documents
this knowledge cannot be used to the full extent.

The work described in this document introduces a new image retrieval system
based on pre-attentive scan. The aim was to develop an approach based on texture
similarity without performing a full texture segmentation of the images. Instead
we are using local texture features gathered from a representative set of image
pixels to describe images. The system can be outlined as follows:

e We select a fixed number of image pixels (called interest points) using interest
point operators. The criteria for the selection of the points is how well they
represent the contents of the image.

e Around each interest point we extract windows of fixed sizes from the image.
From these windows, which we call interest regions, we extract texture fea-
tures by applying a Gabor filter bank. The output of the Gabor filter bank
is used to create different image representations.

e Finally we developed different distance measures applicable to our image
representations.

The system itself has been tested on different test image databases and proved to
perform well. Future work will integrate it into a bigger application (Section 2.3)

using different types of similarity (colour, texture, structure and contour) and user
feedback.

1.2 Structure of this Document

Chapter 2 gives an overview of the principal components of a content based image
query system based on pre-attentive scan. We give a short overview of the former

Thttp://www.altavista.com



approaches and the state of the art of image retrieval including different types of
features.

Chapter 3 describes different interest point detectors — We used some of these
detectors in our system.

Chapter 4 explains how texture information can be gathered from digital images
and how Gabor functions and a Gabor filter bank — the heart of our indexation
algorithm — can be used for this purpose.

Chapter 5 gives an overview about the process of collecting Gabor features on
interest points and the ways to interpret the results of this process.

Chapter 6 introduces an image description and methods based on the results of
the Gabor filters for indexation purposes: Collections of feature vectors where one
vector corresponds to an interest point.

Chapter 7 describes histogram based indexation methods. The histograms are
built from the same Gabor filter outputs explained in section 5. Different image
descriptions and different distance measures are compared.

Chapter 8 describes the environment used to develop and test the system. Two
different databases with different types of images have been used. A short overview
of the applications of the system is given.

Chapter 9 shows the performance results of the query algorithms introduced in
this document on our test environment. We explain in great detail the methods
used to measure query performance.

Chapter 10 draws conclusions and gives some outlook on future research and im-
provements of the methods introduced.



Chapter 2

State of the Art of Content Based
Image Retrieval

The requirements for a content based image retrieval system depend on its appli-
cation and the wishes of the user. Let’s imagine a user who wishes to search an
image which resembles her query image. This picture contains a beach of white
sand, light blue sea, dark blue sky and a red car in the foreground. She provides
her query image to an image indexation system which in our case responds to
this query by different pictures showing beaches and skies with the same colours.
But actually our user wanted some more photographs of the car model shown in
the foreground. What went wrong? The user did not specify which type of sim-
ilarity she desired for her response images. The first image indexing approaches
used global colour information to calculate the similarity of images [33]. Since the
dominant colour information in our fictitious example is the background — beach,
sea and sky — and these areas have been the same at the results, the system re-
turned these entries. A system responding with the desired results would need to
know which parts of the image are relevant and which kind of similarity is desired.
Colour based similarity would not return blue cars if the car in the query image is
red. On the other hand for some applications colours are a good choice to use.

Since research on image indexation began, lots of different algorithms have been
developed to satisfy these different types of queries. These algorithms are based
on various kinds of image descriptions and methods to compare them. However,
there are some parts which stay the same. We will describe the components of
indexation systems and the associated terms in this chapter as well as the different
approaches.

2.1 Components of an indexation system

Figure 2.1 shows schematically of the principal components of a content based
image retrieval system. Two different processes need to be supported by these sys-
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tems: Indexing (uploading) images and querying the database. The main function
for the user is to query the database providing an example image, which means
that this image has to be compared with the images in the database. Since image
processing algorithms tend to be computational expensive the comparison is not
done using the images themselves but pre-computed image descriptions. The step
to create these descriptions is called indexation. For the contents of the database
it can be performed off-line and if necessary parallel for different images on dif-
ferent machines, so the performance demands are not as high as for the query
step. However, the index for the query image needs to be created on-line during
the query process unless the query image is taken from the database itself. The
process can be described by three steps:

Pre-processing The first step before creating the image description is to prepare
the image data. The operation being performed depends on the type of
features taken in the next step. Usual pre-processing steps are applications of
filters (e.g. Gaussian, median filter), segmentation of the image into regions
of homogeneous colour or texture, or selection of special regions in the image.

Feature extraction The feature extraction step is gathering the actual informa-
tion needed to describe the image. What kind of information needs to be
extracted depends on the type of queries that shall be performed. We will
describe different feature types (colour, texture, shape and structure) in this
section.

Encoding The encoding step takes the extracted feature information and pro-
duces compact coded byte sequences which can be stored in the database.



The result of the indexation process is an image key, i.e. a byte sequence, for
each image in the database together with a link to its source image. During the
query process the systems uses a distance function to compare these keys with the
query image. The distance function (or similarity function) compares two images
and returns the distance of the two images in feature space. The database images
whose features have minimum distance to the features of the query image are
returned to the user as result of the query. It follows from this algorithm, that
the image features and the distance function are depending on each other. The
following properties of features and distance function are desirable:

Distinction This property means, that descriptions for images with different con-
tents should be different, i.e. their distance should be big, while descriptions
of images with similar contents should have a small distance. To satisfy
these conditions the features should reflect the user requirements. E.g. if
the desired result images should resemble the query image in colour, then
the features should also be distinctive in colour. The property of distinction
is hard to measure, since there is no general measure of visual similarity.

Compact size The obvious advantage of compact keys are the small space re-
quirements for the database. The difference in disk space for an image
database which stores millions of images is considerable, even if the sizes
of the single keys can be decreased by small values.

Fast distance calculation During the query process the distance function is
called often. Hence a fast calculation of this distance value is essential and
determines the query speed. Before comparing two image descriptions they
are read from the database and decoded by the query process. Then a data
structure is built. The requirements for fast decoding of the stored image
descriptions often conflicts with the desire of small key sizes.

2.2 Previous Work

This section describes previous work done in the field of image indexation. Al-
though the algorithms developed in this work are based on texture similarity we
will give here an overall overview about indexing algorithms including brief descrip-
tions of other similarity types like colour and structure. More specific information
about texture and texture features will be given in chapter 4.

2.2.1 Colour Based Image Retrieval

Research in the development of image features usable for indexation purposes
began with the usage of global features. Global features are influenced by the
whole image whereas local features are calculated by parts of the image or even
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a few pixels of it. An early indexing system on colour basis had been introduced
by Swain and Ballard [33]. They filled global histograms with the RGB colour
values of the input images and used the L; and the L, histogram distances to
compare the histograms (See Section 7.3 on histogram distances). The algorithms
were simple but performed surprisingly well. Improvements can be found in [19].

The main disadvantage of this method were the missing spatial constraints.
The colour distribution stored in the histograms was calculated from the whole
image area. Stricker et al. [32] developed an improvement by including limited
spatial coherence. They introduced five partly overlapping, regions - one in the
centre and one at each corner of the image, as additional criteria for the matching
process. The contribution of each of the regions to the matching process can
be adjusted by the user via weighting parameters, so the user himself can stress
specific regions of the query image as being important and exclude other regions.
Furthermore they filled 3-dimensional histograms with colour distributions with
the first three moments (mean colour values, weighted variance and skewness)
instead of the raw RGB values.

One step further towards of local features is the solution of Matas et. al [18]
— a colour based approach as well. Their image descriptions consists of a color
adjacency graph which to build after fully segmenting the image into regions of
homogeneous colour. Nodes in this graph represent clusters of chromatic com-
ponents which are connected by edges if they are spatial neighbours. Searching
parts of an image in the database can be implemented by sub graph matching.
However, the power of this method — the segmentation — is also a disadvantage.
The performance of the query depends on the correct segmentation of the images.
If this first process is not robust enough the quality of the response decreases.

2.2.2 Local invariant features

A different approach of feature extraction can be followed by using local features.
Unlike global features they are not calculated from the whole image, but from
small spatial areas or even single pixels instead. But calculating local features on
every pixel of the images creates too much data, so not all pixels usually result
in feature information. Instead the features are extracted from previously chosen
regions of interest. One of the basic questions is how these regions of interest are
selected, and what kind of special properties do they have. One idea is to select
special points in the image, called interest points, and to extract features on areas
around these points. Since we followed this idea in our work as well there is a
chapter on interest points (Chapter 3), where different types and implementations
of interest operators are discussed.

In [28] Schmidt and Mohr present an image retrieval method based on local
features extracted on interest points. They choose the Harris corner detector (see
section 3.2) to select key points of the image. For each key point they compute
a vector with values invariant to similarity transformations, like the average lu-



minance, the square of the gradient magnitude, the Laplacian etc. These feature
vectors characterise the neighborhood of the key points they were collected on.
The similarity function necessary to compute the distance values for two feature
vectors is the Mahalanobis distance. This distance takes into account the differ-
ent magnitudes as well as the different second-order statistical distributions of the
elements of the feature vectors. Distances between two images are based on the
distances of their feature vectors, since images are represented as sets of feature
vectors. A voting algorithm decides about the image of the database most simi-
lar to the query image (See Section 6.4.1). Performing a query the set of feature
vectors is created for the query image, and every vector is compared with the pre-
computed features of the database images. If the distance is below a threshold ¢,
then the involved database image gets a vote. The images having maximum votes
are returned to the user.

The authors refine the indexing algorithm by adding multi scale representation.
The pre-computed feature vectors of the database images are calculated at several
scales. This can be achieved by different quantities of smoothing of the Gaussian
derivatives which are basis for the computation of the invariants. The feature vec-
tors of the query image are still computed at one scale only, but they are compared
to the feature vectors of the database, which are extracted at several scales. This
adds invariance to scale to the retrieval algorithm at the cost of a higher possibility
of wrong matches. To compensate for that, semi local constraints are introduced.
The constraints increase the requirements for a match by demanding not only a
match of the two feature vectors but also of 50% of their neighbor vectors. An
additional geometric constraint further decreases the possibility of wrong matches.
Angles between key points have to remain consistent (e.g. the angles oy and a in
Figure 2.2).
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Figure 2.2: Semilocal constraints for the matching conditions of feature vectors

Siggelkow and Burkhard also use local invariant features [29] gathered on what they
call key points, which ”are distinguished and differ from the other points by some
very structured neighbourhood”. Basically they use rotation invariant histograms,
whose features are built by taking integrals over all possible rotation functions



applied to the key point. Remarkable is their method to built the histograms from
the features. One feature does not correspond to a single histogram bin, but to
a circular area of bins which is centred at the destination bin. Fach bin receives
a weighted input of this features, where the weights are smaller at the borders of
the area. This approach makes histogram comparisons less sensible to small shifts
in the pixel values.

For his object recognition algorithm Lowe [17] uses features on interest points as
well, applying a method which he calls SIFT (Scaled Invariant Feature Transform).
The basic idea is similar to the methods for image retrieval based on interest
points: An object is recognised in an image if sufficient number of SIFT keys of a
region, i.e. the features extracted on these interest points, match the objects keys.
The locations are determined by searching maxima and minima of a difference of
Gaussian function in an image pyramid. According to the author the operator
detects points at regions and scales of high variations.

To each interest point a feature vector (called SIFT key vector) is created.
To make the feature data invariant to changes of rotation and scale, canonical
orientation and scale values are assigned to each vector. The feature data is stored
relative to these values. The canonical scale can be determined by the pyramid
level at which the key was detected. The canonical orientation R;; for a pixel A;;
is computed by pixel differences R;; = atan(A;; — A;y14, Aijr1 — Aij). To make
the orientation more robust it is computed by using the peak values of a histogram
of local orientations.

A STFT key vector contains gradient values separated into different orientation
planes, where each plane contains only gradients which correspond to its orien-
tation. The orientations of the planes are computed relative to the canonical
orientation of the vector. The regarded pixels are locations that fall in a circle
around the key location. These orientation planes are computed for two levels:
The level at which the interest point location was detected and the neighbouring
level one octave higher.

According to the author these SIFT keys give enough measurements for high
specifity, whereas they are invariant to scale, orientation and small variations in
illumination.

2.2.3 Texture Based Algorithms

Rubner and Tomasi present in [25] an image retrieval algorithm based on texture
features. By applying a dictionary of Gabor filters to each image they get a cloud
of points in a multi dimensional space, where each point belongs to an image
location. They post process this distribution using a clustering algorithm. The
results are cluster centres plus their corresponding weights, which are inserted into
a texture signature. The Earth Mover’s distance is used to compare the signatures
representing an image. This distance has been chosen for its interesting properties
like robustness to small shifts in the histogram /signature distribution.
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Similar to our approach Bhattacharjee uses in [1] a method based on interest
points and texture features collected on regions around these feature points. See
section 3.5 for a description of this interest point detector based on Morlet wavelets.
An interest region is created around each interest point and a filter bank applied to
it. Bhattacharjee uses three different filter types: the first-, second- and third-order
derivatives of Gaussians. Each filter type is applied in different directions to the
interest region. The maximum response of each filter is picked. This results in an
n-dimensional vector for a filter bank of n filters. In analogy to text based retrieval
systems he calls these vectors tokens. However, instead of comparing these token
sets directly, an indexing vocabulary consisting of indexing terms is built. The
vector space created by the n-dimensional tokens creates an n dimensional hyper
cube. In this hyper cube an n-dimensional grid is created by partitioning the axis
into intervals. The set of indexing terms consists of all grid points in this cube.

Each image is represented as a vector of weights based on these indexing terms.
The weighting is either binary (1 - the term has been influenced by at least one
token of the image, 0 - else) or more sophisticated using the significance of the
indexing terms. The significance of an indexing term is controlled by two measures:

e The distance of the tokens to the indexing term. The bigger the distance the
more likely the indexing term is a noisy version of the token

e The number of times the term appears in the whole database. A term that
appears in many images is not very useful for retrieval

The similarity measure between two images is defined by the inner product of their
weights vectors.

2.2.4 Methods Based on Structure

Image databases based on structural similarity take into account geometric descrip-
tions of images, thus are aimed to index primarily drawings or other images showing
strong geometric properties. For this reason Huet and Hancock implemented struc-
ture features to index databases of cartographic material in [11]. They developed
their image descriptions to fit the contents of their database — aerial images of
cities. The features were based on line segments. Hence the pre-processing phase
includes an edge detection step and a segmentation process to divide the edges
of the image into straight line segments. A following step computes attributes
from pairs of line segments (Figure 2.3). They use features invariant to scale and
rotation by extracting relative measures:

The relative orientation between the lines:

d)ab,cd — min[(gab - ecd)a (ecd - eab)]

The ratio of line-segment length:
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Figure 2.3: Attributes computed from line segments

min[lab, lcd]

Tab,cd - max[lab, lcd]

The line-segment projection cross-ratio:

min[lad, lbc]
ITab,cd =
b.cd max|laq, lpe]

where [y, is the length of the line-segment and 6, is its orientation. These at-
tributes are used to increase the respective histograms, i.e. different tests using
angle histograms, length ratio histograms and cross ratio histograms have been
performed. However, experiments using the angle histograms delivered the best
results, the line-segment projection cross-ratio was not as discriminative, and the
length ratio was not discriminative at all. Huet and Hancock also applied different
histogram distances (L, Ly, Bhattacharyya, Matusita, Divergence — see section
7.3 on histogram distances) and recommended the Bhattacharyya distance as the
most suitable for this kind of indexation.

The main disadvantage of this solution is its specialisation to aerial images
by segmenting them into straight lines segments, which makes it less usable for
other scenes. Popescu adopts in [23] the pairwise histograms of Huet and Hancock
to hold interest point locations, thus extending the domain of usage to natural
images. Instead of edge detection and segmentation an interest point detection
step is applied to pre-process the images. He uses the multi resolution contrast
based interest operator of Jolion (See section 3.6 for details on this operator). To
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create the pairwise histograms only the location of the points is used, no more
information is taken from the image. The following steps are performed:

e Application of the interest operator to get the point locations.

e For each interest point calculate the spatially n-nearest neighbouring interest
points.

e For each interest point calculate the set T of all possible triples of points,
where the first point is the interest point itself, and the remaining two points
are neighbors, which are immediately following each other in distance rank-
ing:

T ={(P,N;,N;y1) € N|i€ [l,n]}

where N is the set of the spatially n-nearest neighbouring points and the
index ¢ of the N; denotes the ranking of the neighbouring points regarding
the original point P, i.e. the nearest neighbour is specified by Ny, the second-
nearest by N, etc.

e For each triple of T increase a histogram bin of the two dimensional fea-
ture histogram. The bin is determined by the neighborhood ranking of the
neighbor points (first coordinate) and the angle between lines connecting the
interest point with the neighbors.

Figure 2.4 shows a configuration of points which leads to an increment of the
feature histogram. The nearest neighbor search for the interest point P finds the
locations of the neighbors N;, Ny and N3. The set of tripels can be given with
T = {(P, Ny, N3), (P, N3, N3)}. In our example the triple (P, N5, N3) is examined:
The properties to determine the histogram bin which needs to be increased are the
neighborhood ranking of the neighbor N, = 2 and the angle a between the two
lines connecting the point P with its neighbors N, and Nj.

—I— +N3

N1

)
P I

Na

Figure 2.4: Indexing interest point locations

The two dimensional histograms created in the indexation step are compared
by calculating the Bhattacharya distance during the query phase. Results on a
database of images of various kinds proved, that the algorithms gives good results
on drawings as well as on natural images.
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2.2.5 Shape based methods

Mokhtarian et al. present in [21] an algorithm retrieving images through shape
features. The basic principle of their method is the representation of images as
curves. For this reason the images in their test database contain only one object
per image. The representation is based on the curvature scale space theory: A
closed planar curve can be given as

I'={(z(u),y(u))|u € [0,1]}

where u is the normalised arc length parameter and x(u) and y(u) are the coordi-
nate functions. The starting point of the curve is chosen randomly. By applying a
one-dimensional Gaussian smoothing filter to the coordinate functions, the number
curvature zero crossings decreases with increasing width o of the Gaussian kernel,
until the curve becomes convex and there are no more curvature zero crossings.
This process can be modelled in a curvature scale space image (CSS image) as
shown in Figure 2.5. The x-axes shows the arc length parameter v and the y-axis
shows the width o of the Gaussian kernel. The curves in the CSS image show
the progress of concavities and convexities in the image. The original curve is
represented by the maximas of the curves in the CSS image.

0 30 100 150 200

Figure 2.5: The CSS image of an example curve

The distance function compares the maxima locations of the two CSS images.
Since the starting point of the curves has been chosen randomly, the curves have
to be matched first. This can be done by choosing one point of each CSS image
and shifting one image so that these two points match. This is done with several
times and the best match is taken. The final distance is the sum of the straight line
distances of the matched maxima pairs plus the y coordinates of the unmatched
maximas.

The performance of the system has been evaluated on database of marine ani-
mals. The results sets of the query algorithm have been compared with the results
sets created by different humans evaluators.
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2.2.6 Commercial Systems

Content based image retrieval is a young domain, but there are already some
successful commercial systems. One of the first presented is the system QBIC
developed by the company IBM [6]. This query application includes a graphical
query tool which not only allows to use example images to query the system, but
also to create a query specification by drawing, sketching and selecting colours etc.

The query methods support colour, texture and shape features. The user may
choose the type of query or the weights for the similarity measures. The features
are global. For colour queries 3-dimensional colour histograms are taken. Tex-
ture oriented queries compare coarseness, contrast and directionally features and
queries measuring shape similarity compare measures of area, circularity, eccen-
tricity, major-axis direction etc.

In order to decrease query time several indexation techniques are applied. Fast
filtering techniques eliminate a large number of candidates. For low dimensional
features as 3D-histograms the database images are indexed using conventional
index technologies known from database theory. Higher dimensional features are
reduced to lower dimensions using the principal component transform.

A similar application has been developed by the company Virage, Inc.[9]: The
system VIR (Visual Information Retrieval) also powers the content based image
retrieval search function of the web search engine altavistal. Like QBIC, VIR
supports different feature types like colour, texture, structure and shape. The
features are either calculated globally or locally for smaller regions of the image.

The Virage core image indexing engine includes a programmers interface which
makes it possible to invoke the functionality from different applications. The engine
operates stateless and performs operations like the creation of feature vectors for
images and the comparison. The applications are responsible for the storage of
the images and the feature data. The system also supports query refinement by
re-calculating the weights for the query methods according to the desires of the
user (See section 2.3).

2.2.7 Summary

A summary of the methods for content based image query classified by feature
type can be found in Table 2.1.

2.3 Environment of this work
The algorithms and methods described in this work have been developed at the

Laboratoire Reconnaissance de Formes et Vision (RFV') of the Institute National
de Science Appliquee de Lyon and the Pattern Recognition and Image Processing

Thttp://www.altavista.com
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Author(s) Feature Description
Type

Swain and Ballard | Colour Colour histograms

[33]

Stricker et al. [32] | Colour Colour histograms for fixed regions

Matas et. al [18] | Colour Color adjacency graph

Schmidt and | Invariant Sets of feature vectors with invariant fea-

Mohr [28] features tures. A voting algorithm calculates the
distance

Siggelkow and | Invariant Histograms with invariant features

Burkhard [29] features

Lowe [17] Invariant Object recognition using feature vectors

features with invariant features.

Rubner and | Texture Gabor filters and Histograms

Tomasi [25]

Bhattacharjee [1] | Texture Texture features on interest regions. The
features are distances of texture tokens to
indexing terms

Huet and Hancock | Structure Pairwise histograms filled with geometric

[11] attributes of line segments

Popescu [23] Structure Pairwise histograms filled with geometric
attributes taken from the locations of in-
terest points

Mokhtarian et al. | Shape Features taken from the curvature scale

[21]

space

IBM

Virage

Colour, tex-
ture, shape

Colour, tex-
ture, shape

The system uses global colour histograms,
global texture features and global shape
features.

Feature are the dominant colour and the
colour variation, variations in colour and
global shape features.

Table 2.1: A summary of the methods described in this chapter
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Group (PRIP) at Vienna University of Technology. The aim was to create a
content based image retrieval system based on texture similarity, which should —
after further development — be part of an indexation algorithm based on user
feedback, which is under development at RFV. Figure 2.6 shows the scheme of
a query system including user feedback. The process starts with the first query,
which presents its results to the user, who chooses the images corresponding the
most to her wishes as well as the ones having the least (subjective) similarity.
Based on this subset of the results the system adjusts its parameters and re-runs
the query, thus achieving a refinement of the original query results. The essential
requirement to ensure the increasing quality of the query results is to translate the
user’s digest of the results into the right adjustments of the system parameters.

Manual Selection
— —
Query results of images

L parameter adjustment J

Figure 2.6: Image retrieval system with user feedback and parameter adjustment

A variant of this user feedback method is the multi feature retrieval system de-
veloped at RFV, where the adjustable parameters are weights for different query
engines. Figure 2.7 shows a schematic overview of this system. The basic compo-
nents are query engines based on colour, texture, structure and shape similarity.
Starting a query each of these engines retrieves a result set of images out of the
common database, which includes images of maximum similarity to the query im-
ages according to its respective similarity measure. All result sets are combined
to one final result set using individual weights for each query method. These ini-
tial weights could be set to default values gathered from empiric studies of visual
perception or they could simply be historic values preferred by the users.

The combined results of this first stage are presented to the user, who chooses
her preferred images. According to this subset of the results the weights for the
query engines are adjusted. This is done by checking which similarity types have
been favoured by the user. Query engines whose images have been chosen prefer-
ably are rewarded by increased weights, whereas engines whose images did not
manage to get in the users digest are punished by decreased weights. This way the
image database adopts to the users wishes and delivers images according to the
similarity desired by the user. One drawback of this method is that these weights
differ from image to image. In one query texture is important, in another colour
etc.
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Chapter 3

Interest Points

Image processing is a domain which depends on high computational power. Com-
puters are getting more powerful, but still the task of storing and comparing large
amounts of image and especially video data needs high capacities of both memory
and CPU. Today a typical image contains 512 x 512 pixels, i.e. an indexation algo-
rithm has to describe features for 260,000 pixels per image. Performance problems
are not the only issue resulting from this large quantities of information. Most
of this information is redundant. Pixels of homogeneous regions contain similar
information, so adding them to an image description will not increase its quality
considerably. In the area of image indexation much research was done to decrease
redundancy and the amount of information necessary to describe images. Different
attempts have been made:

Global features Global image features like colour histograms [33] describe the
whole image only. However, the costs are rather high. Global features are
sensible to outliers and matching only parts of images is not possible.

Segmentation Some algorithms perform a segmentation step in a pre-processing
phase [18] to segment the image into regions which are homogeneous in the
desired property (e.g. colour or texture). Features are extracted on each
component.

Detection of interest points Instead of performing a full segmentation an in-
terest operator detects points with specific properties. Features are extracted
on these points or on regions around these points.

In our approach we decided to use an interest operator to locate key points in the
input images. These points of special interest should hold the main information of
an image both using their location and texture information gathered on their local
surrounding region. This chapter will describe requirements for interest detectors,
their historical development, and will explain some types of operators putting the
emphasis on those we used in this work.
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3.1 Overview

The first interest point detectors have been developed for 3D vision and robotics
[22],]10] to extract corners. They have been used — and are still used — for motion
detection or tracking systems, where it is necessary to have stabil features which
remain unchanged in a sequence of video frames. The definition which points in
an image are corners differs. Moravec and Harris defined corners as points, where
a shift of rectangular window in all 4 directions changes the intensities of this
window significantly (See section 3.2). Smith and Brady detect corners by applying
a circular mask to each pixel and evaluating the differnces of the grayvalues in this
mask (See section 3.3). But in all cases corner detectors rely on information of
geometric nature whereas not all image features used for image indexation are
geometric. Because the requirements for interest operators are not the same as
those for corner detectors, more recently operators have been developed explicitly
for indexation purposes. We will try to state the most common requirements for
interest operators:

Stability An interest operator determines the locations in the image where fea-
tures are extracted to create the image descriptions. Therefore it is important
that for two similar images the interest points are detected at similar loca-
tions. Especially for algorithms using weak features where the location itself
is used for indexation this property is of uttermost importance.

Descriptiveness The interest points need to be located at areas where the gath-
ered features are most descriptive, i.e. the descriptiveness of a point location
is dependent on the type of features used. However, most interest point oper-
ators define this descriptiveness as the amount of “signal variation” that can
be found at that location. These interest points are also sometimes called
“salient points”.

Invariance to rotation and scale Most image similarity measures demand ro-
bustness to changes of rotation and scale, which also requires the interest
operator to have this property.

Robustness to JPEG and MPEG codation Images coded in the JPEG for-
mat or extracted from MPEG coded video streams suffer from artifacts due
to information loss in the compression step. Especially at high compres-
sion rates the quality of the images decreases fast. The JPEG algorithm
compresses images in blocks of 8 x 8 pixels using the discrete cosine trans-
formation (DCT). At high compression rates, where less DCT coefficients
are used for reconstruction, neighbouring blocks do not fit together, produc-
ing square shaped artifacts. These squares do not only disturb the visual
impression of the image, they also pose problems to image processing algo-
rithms, thus also corner and interest point detectors. However, since already
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large quantities of available image and video material are stored in the JPEG
and MPEG formats an interest operator is required to be robust against the
types of artifacts they produce.

3.2 The Harris Corner Detector

The corner detector described by Harris and Stephens [10] is also known as Plessey
corner detector. The algorithm is based on the detector of Moravec [22], which
uses a small window and the changes in image intensity when shifting the window
in different directions. Moravec describes the change E as:

Ex,y = Zwu,v | Ix+u,y+v - Iu,v | 2

U,V

Depending on the grey-level distribution of the image under the window the fol-
lowing cases are possible:

1. If the image intensities are almost constant, then the changes after shifting
the windows will be small

2. If the window is crossing an edge, then a shift parallel to the edge will cause
small changes, whereas a shift perpendicular to the edge will cause a large
change

3. If the window is crossing a corner, then shifts in every direction will cause a
significant change in image intensity

Harris and Stephens proposed some improvements to Moravecs detector. First a
Taylor expansion about the shift origin was performed:

oI oI

Ery=)) wy,, | o— 4+ y— +O(z%,9?) | 2
Y % R dy

E,, = Az* + 2Cry + By?

where

Furthermore they changed the rectangular window for a Gaussian window:
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The change E can be rewritten as

Effay = (xay) M (xay)T

u[2 5]

¢ B

On edge pixels one of the two eigenvalues a and 3 of M will be large and the other
one stay small, whereas on corner pixels both eigenvalues will be large. Hence,
using o and (3 a rotationally invariant response function can be created:

R = Det(M) — k(o + j3)?

The actual interest points are created by a non local maxima suppression of this
function.

The behaviour and the performance of the detector thus depends on 5 parameters.
In this work we use two different implementations of the Harris operator with
different parameters. The first version (referred to as Harris 1 from now on) was
implemented by Nicu Sebe !, the second one (referred to as Harris 2) by Jean-
Michel Jolion 2. The parameters are the following:

e The parameter k£ of the response function. This parameter is the same for
both versions: k& = 0.04.

e The variance o of the Gaussian function. Harris 1 uses a filter kernel of [1 2
1], whereas Harris 2 uses a kernel of [ 13 3 1 ].

e The kernel of the derivative function. The kernel for Harris 1 is [-1 8 0 -8 1].
Harris 2 uses a recursive derivative function (Deriche).

e The size of the window of the algorithm to extract the local maxima. Harris
1 uses a window of 3 x 3, Harris 2 uses 5 x 5.

e A final threshold to get the desired number of points. This value can be
chosen by the user.

!Leiden Imaging and Multimedia Group
2Laboratoire Reconnaissance des Formes et Vision, INSA Lyon
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3.3 SUSAN

The SUSAN corner detector is part of the low level image processing approach
introduced by Smith and Brady [30] which combines edge detection, corner detec-
tion and noise reduction using the same basic principle. The basic feature of the
SUSAN algorithms is a circular mask applied to each pixel of the image. The pixel
in the center of the mask is called the nucleus. All other pixels can be classified
into two classes: Pixels having the same (or similar) gray value as the nucleus and
pixels having a different gray value. The area of pixels having the same gray value
as the nucleus is called USAN (”Univalue Segment Assimilating Nucleus”).

Section of the mask, where pixels have a different brightness as the nucleus

Section of the mask, where pixels have the same brightness as the nucleus (USAN)

Figure 3.1: The principle of the SUSAN corner detector

Figure 3.1 shows 5 masks applied on different locations to an image containing a
white rectangle on a dark gray background. As can be seen in the figure, the size
of the USAN relative to the size of the whole mask contains information about
the structure of the image. If the mask is placed on a homogeneous area then the
USAN takes all the area of the mask (Figure 3.1.e). Approaching edges the size
of the USAN decreases until it only covers 50% (Figure 3.1.b), whereas on corners
it decreases even further (Figure 3.1.a). The SUSAN corner detection algorithm
takes advantage of this principle. The following steps are necessary to compute
the corner response of a pixel:

e Application of the circular mask and determination of the gray value of the
nucleus (= the pixel whose corner response shall be computed).
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e Determination of the pixels having the same or similar gray values as the
nucleus. But instead of thresholding the gray value difference, the following
function is used:

- _(LM-T1CB) ye
o(Frg) =e 5o )

where I(7) is the gray value of the nucleus and I(rg) is the gray value of
the point to process. The function evaluates to 1 for small differences, i.e.
pixels whose gray values are similar to the nucleus, 0 for big differences, and
is smoothly descending near the ”threshold value” ¢. The size of the USAN
area on pixel 7y, can be calculated by the sum for all pixels in the mask:

n(rg) = Z (T, 1)

r

e Threshold the size of USAN and subtract the size from the threshold value
g to get the corner response:

- | g—n(r) ifn(r) <y
R(ro) = { 0 otherwise
where R(rg) is the corner response and g is the geometric threshold, which
determines which types of corners shall be detected. The lower this value,
the sharper a corner has to be in order to be detected by the algorithm.

e Detection of false positives is necessary in certain cases, e.g. when the nucleus
is set on stripes of thin lines. The size of the USAN will be small and
eventually below the threshold g because of the small stripe of gray values
similar to nucleus. However, the corner response is not justified in this case.
To recognize situations like this the centroid of the USAN is computed and
compared with the position of the nucleus. In our example they will be
almost identical whereas in the case of a real corner the positions will be
quite different. An additional constraint is added to the algorithm: Corner
responses are removed, if not all pixels on the line between the nucleus and
the centroid of the USAN belong to the USAN. This constraint removes false
positives in images with lots of noise.

e A final step of non local maxima suppression delivers the local maxima as
corners.

The algorithm is controlled by two parameters: The ”quality” parameter g, which

controls the shape of the corners, and the ”quantity” parameter ¢, which affects
the number of corners the system delivers.
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3.4 Interest Point Extraction Using Haar Wavelets

The interest point detector of Loupias et al. [16] is based on the non standard
decomposition of Haar and Daubechie wavelet transforms. Primers to wavelets
can be found in [31], [8]. Generally Wavelets are used to hierarchically decompose
functions. Similar to the windowed Fourier transform, wavelets allow to analyse
functions in the frequency domain. The Fourier analysis transforms a periodic
function into its frequency representation by representing it as sums of sine and
cosine functions. For each frequency a coefficient is calculated, the “energy” of
this frequency in the signal. However, the location of this energy cannot be found
easily. The windowed Fourier transform is used for non periodic functions. The
signal is cut into windows of fixed size, and the Fourier transform applied to each
window. This allows to localise the frequency coefficients more or less precisely
according to the window size.

One of the biggest disadvantages of the windowed Fourier transform is the fixed
size of its windows. The perfect windows size is dependent on the frequencies
which shall be localised. Low frequencies need bigger windows. If the window is
too small, the period of the signal is not covered by the windows. High frequencies
need smaller windows. If the window size is too big the localisation of the signal is
not precise enough. Wavelets use windows of variable size. The basis functions are
derived from a mother wavelet function. The basis functions for high frequencies
are short compressed versions of the mother function, whereas the basis functions
for the low frequencies are long, stretched versions of the mother wavelet.

Applied to image processing wavelets are used to represent images at different
resolutions with different levels of details. A special type of wavelets are Gabor
wavelets, which use Gabor functions as mother wavelet function. In our work
we use a bank of filters built from these wavelet functions for texture feature
extraction. In section 4.2 we give further details on Gabor functions and filters.

The interest point detector of Loupias uses the Haar and the Daubechie wavelet.
The perhaps most simple wavelet is the Haar Wavelet, whose functionality will be
explained in the next section.

3.4.1 The Haar Transform

As an example the gray values of an image are given in Figure 3.2.

DO QO DN

| ot =1 ~1

O S|~ D

W =~ ©O| —

Figure 3.2: Example image for a Haar wavelet
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We are calculating the second level of a multi resolution representation by com-
puting the average values of the pixels, which gives us an image half the size of
the original image (Figure 3.3).

6|3
415

Figure 3.3: Average values after filter application

However, information is lost on this step. To be able to reconstruct the original
image, the differences of the average values to the original values have to be cal-
culated and stored as well. This results in a matrix of the original size, with the
average values in the upper left quadrant and the detail coefficients in the other
quadrants (Figure 3.4).

6 |3 -4 2
4 15 -2110
814 1|-8|6
2 1410 |-2

Figure 3.4: The Haar wavelet after computation of the second level

This process can be applied recursively to the upper left quadrant containing the
average values. An example of this decomposition applied to the example image
cameraman (figure 3.6a) can be seen in figure 3.6b. Note, that the gray values in
the three other quadrants contain differential values of different filters (Figure 3.5).
Hence the Haar transform is a multi resolution representation of the frequency
coefficients of an image. High coefficients correspond to high variations in the
image, thus salient points. These points can be extracted on different levels of the
wavelet.

+ o+ |+ -
+ + |+ -
+ -

Figure 3.5: The filters applied on each level

Many other wavelet functions are suitable for this algorithm. The second form
of the Loupias operator is based on the Daubechie wavelet[16], which is basically
a more general version of the Haar wavelet. Loupias used for his interest point
detector a filter size of 4 x 4. The coefficients of the filter are derived from the
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Figure 3.6: The Haar wavelet based interest operator(a) Example picture ”cam-
eraman” (b) The coefficients after Haar wavelet transform for example ”camera-
man” (c) Example picture "square” (d) Tracing an interest point trough the differ-
ent levels for example ”square”
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constraint of orthogonality of the basis functions. Like with the Haar wavelet the
size of a higher level is half the the size of the parent level. However, Since the
mask size is 4 X 4, the masks are overlapping.

3.4.2 Extraction of the Interest Points

Each point in the transformed image corresponds to a saliency on it’s respective
level. If we go down one level in the hierarchy this point corresponds to 4 points
in the lower level, i.e. these 4 child points have been used to calculate the original
value. Of these 4 points the one with the highest coefficient can be seen as the
one contributing the most to the value of the upper level, i.e. we can consider this
point as the ”origin” of the saliency.

The basic idea is to trace the saliency from level to level until we reach the
lowest level. Each level of the pyramid contains the applications of the 3 differential
filters in quadrants 2, 3 and 4 (Figure 3.5). The process starts at all levels of the
transformed image and for all 3 different filter directions. For each point in the
current level the maximum coefficients are traced down until the lowest level is
reached. To each path the sum of it’s coefficients can be assigned, which gives
the value of it’s saliency. Figure 3.6d shows an example of such a trace for the
simple image of a square. Paths are searched starting on every level of the image.
However, paths started from lower levels can be parts of paths started from higher
levels. In this case the longest route will be taken. Finally, the locations of all
traced points in the lowest level are returned to the user, including their assigned
values. A threshold can be applied to return the desired number of interest points.

The results obtained by these detectors are different from the results of Harris
and Susan, which assume that key points are corners. The points extracted by
the wavelets detector are not corners, they are points were ”something” happens
at various levels of the image. They correspond to areas of high variations in the
image.

3.5 Interest Points based on Morlet Wavelets

Bhattacharjee describes in [1] a solution for image retrieval based on structure using
interest points and local texture features. His interest point detector is based on
a continuous Morlet wavelet, whose mother wavelet function in frequency domain

is defined by

— L a2y P (o—yy)?
ESy(u,v) = miue= "= e (=)

The algorithm to extract the interest points works as follows:

1. Filter the image with the F'S; wavelet at 18 different orientations. Only one
resolution is used. The image is filtered with a ”suitable” scaled version of
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the mother wavelet.
2. For each pixel store the maximum of all filter responses in a mazima image.
3. Search local maxima. The local maxima are returned as feature points.

According to the author the interest points are usually placed on the end points
of linear structures, similar to the response of end-stopped cells found in the mam-
malian cortex.

3.6 Contrast Based Interest Points

Jolion and Bres introduced the multi resolution contrast based detection of interest
points in [2]. Like the Haar wavelet approach of Loupias this detector uses a multi
resolution representation of an image to calculate the key points on different levels.
The method is based on a contrast pyramid.

3.6.1 The Contrast Pyramid

The contrast pyramid built from an image is defined by

Gi(P)
By (P)
where G(P) is an intensity pyramid and B(K) is a background pyramid. N is
the size of the pyramid given an image of the size 2V x 2V pixels. The intensity
pyramid is modelled by

for 0<k<N-1 and Cy(P)=1

Ge(P)= Y w(M)-Gyi(M)

Mesons(P)

The background pyramid is defined by

BP)= Y W) Gen(Q) = Erpand(Gin)(P)
Q€ fathers(P)

Hence, the background is calculated using the luminance of the father pixels in the
upper level of the pyramid. A weight function W (M), which takes into account
the way the pyramid is built, is applied to the sum of the luminance of the father
pixels. The ratio of the contrast is changed slightly from g’;gg to equation 3.1
in order to get a symmetrical contrast measure which is not dependent on low or
high intensity situations:

CH(P) = mm<|Gk(P) — By(P)| |Gr(P) — Bk(P)|>

By (P) " 255 — By(P)
An example for the contrast pyramid defined above is depicted in Figure 3.7b.

(3.1)
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3.6.2 Extraction of the Interest Points

First on each level the local maxima are extracted and summed up, resulting in a
new pyramid:

wion | Cr(P) if P is a local maximum
Cr(P) = { 0 otherwise

This creates a pyramid with interest points extracted on every level. To collapse
this pyramid into an image the following top down scheme is applied:

Ep (P) = C];’“T(P;) + Expand[E; |(P) for k=N-1,...,0 and Ey=0
The result is an energy map with higher values for key points with high contrast.
An example for this energy map is shown in Figure 3.7c. To extract the desired
number of interest points a process of non maxima suppression and thresholding
is necessary.

Like the Haar wavelet detector, the multi resolution contrast approach does
not return corners, since it is not based on any a priori model. According to the
authors the detected interest points are less sensitive to discretisation and to jpeg
coding noise than the Harris and the Susan detectors. Currently research is done
using this interest operator for motion analysis in video indexing applications [4].

3.7 Other operators

Zitova et al. propose in [35] an operator which they call feature point detector.
Feature points are points which belong to crossings of two edges of a specific
angle. This property is calculated by counting the sign changes traversing a circle
around each point, where this circle holds the differences of the gray value to a
local mean. According to the authors the principal property of their operator is
rotation invariance and robustness to blurred images.

3.8 Comparison and Remarks

In our image indexation algorithm described in this document we also use interest
point detectors to determine interest regions. However, the methods described
in this work do not rely on a specific detector. Instead we performed experi-
ments combining our texture feature descriptions with 4 different interest opera-
tors, which from now on will be referred to as Harris (The Harris corner detector),
Haar (The Haar-wavelet based operator of Loupias), Daubechie (The Daubechie-
wavelet based operator of Loupias), Contrast (The multi-resolution contrast based
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interest points of Jolion). For the Harris corner detector both implementations of
Sebe and Jolion (section 3.2) have been compared.

Figure 3.8 shows a comparison of these interest operators applied to two differ-
ent test images. One is an artificial image, the other one the well known natural
image "Lenna”. A difference which is visible at the first sight is the performance
of the Harris operator compared to the other detectors. Looking at the artificial
image it is immediately clear that the Harris operator detects corners. In Figure
3.8.a 300 points are detected. This setting is too high for this image, i.e. the
algorithms have to detect more points than there are corners in the image. How-
ever, the Harris operator is designed to detect corners, not edges. Unlike the other
interest point detectors, which also deliver points on edges (E.g. on the border
of the rectangle), the Harris operator needs to have high gradients in at least two
directions. Harris sometimes returns points on uniform areas. On the other hand
the salient point detectors (Harris, Daubechie and Jolion) almost never return
points on rather uniform areas. If the number of points required rises they tend
to detect points on edges instead.

A look at the results on the image ”Lenna” confirms these observations. The
points detected by the Harris operator are on corners (windows, eyes, mouth, the
crossings of hair etc.) and curves. The results of the wavelet based operators are
different. The distribution of the points is more spread out, i.e. there are more
points on the background of the image.

We believe that a performance evaluation of these different interest operators
can only be performed for a specific application. For content based retrieval sys-
tems there is a strong interplay between interest operator, features and indexing
methods. For our indexing algorithm based on texture features we performed
experiments using all 4 operators. Details and results can be found in chapter 9.
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(b)

{c)

Figure 3.7: The multiresolution contrast based interest points (a) input image (b)
The contrast pyramide (c) The collapsed energy map.
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Figure 3.8: Comparison of the interest point detectors applied to an artificial
image: Harris (upper left), Haar-wavelet (upper right), Daubechie-wavelet (lower
left) and multi resolution contrast based points (lower right) (a) 300 points detected
(b) 50 points detected.
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Figure 3.9: Comparison of the interest point detectors applied to the Lenna test
image: Harris (upper left), Haar—wavele%) upper right), Daubechie-wavelet (lower
left) and multi resolution contrast based points (lower right) (a) 300 points detected
(b) 50 points detected.



Chapter 4

Texture Features

The similarity measure described in this work is based on texture features. Tex-
tures are especially important for natural images, let’s think about images of wood,
grass, trees, sand, marbles, but also of metallic objects. Unlike colour, texture is
not a property which can be extracted from a point, but of areas instead. A
single pixel does not have a texture. A common definition is the repetition of
basic texture elements, where the type of this repetition differs from case to case.
Real periodic textures can be found in artificial images only, whereas natural tex-
tures are quasi periodic or random in nature. Figure 4.1 shows some examples for
textures.

Figure 4.1: Examples for texture

To be able to describe or to classify textures we need to define their properties.
Commonly used properties are frequency, direction, phase etc. However, these
properties are dependent on the scale the image analysed. A nearly constant area
could be textured with a big constant texture or a very fine (infinite) texture. A
pullover could show textures on two scales: The printed pattern of squares at a
higher scale and the structure of the wool at a lower scale.

Several techniques have been used during the past time for texture description
and classification. Statistical methods like autocorrelation functions, co-occurrence
matrices, gray level run length statistics have been presented as well as methods of
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the signal processing domain, e.g. filtering techniques. Our work is concentrated
on the filtering techniques. A survey of the statistical methods can be found in
[34], a comparative study of the filtering techniques has been done by Randen and
Husoy in [24].

4.1 Filtering for Texture Feature Extraction

A common characteristics of signal processing approaches to texture analysis is the
filtering step. This step is justified by the periodic nature of texture information.
Randen and Husoy give an introduction into filtering for texture classification
and an overview of the different filter types used [24]. As we stated before, a
main characteristic of textures is the frequency and the directional information.
A common method to determine the frequency of a signal is to filter it with band
pass filters which pass different frequency bands, a so-called filter bank, and to
measure the energy of the filter responses. For a signal of high frequency the filter
passing high frequencies will have high energy output, whereas the other filters
will show significant lower responses. These responses need to be measured using
an estimation function. We can summarize the necessary practical steps to filter
an image as follows:

e Transformation of the image or the region into the frequency domain. This
is done because most filters are faster and easier to apply in the Fourier
domain.

e Application of the filter bank.

e Estimation of the energy of the responses.

Different types of filters have been used for texture analysis. Laws [15] was one
of the first to introduce filters. He proposed 25 separable two-dimensional filters
which were constructed from 5 one-dimensional ones. The one-dimensional filters
consisted of one low pass, one high pass and 3 band pass filters responding to
different frequency bands.

Coggins and Jain introduced a filter bank designed to extract frequency and
directional information [3]. They used Gaussian ring and wedge shaped filters.
The ring filters extracted frequency information and the wedge filters extracted
directional information.

For the work described in this document we chose a filtering approach based
on Gabor filters, which are already widely used for texture analysis [12].

4.2 Gabor Functions and Gabor Filters

A Gabor filter bank is based on filters derived from Gabor functions, which have
been introduced by Denise Gabor in his ”Theory of communications” [7]. He pro-
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posed a family of functions which can be used to decompose arbitrary functions -
similar to the sinus and cosinus waves for the Fourier transform. The aim he had
in mind was to send coefficients of this decomposition in communication appli-
cations. Only recently these Gabor functions have been re-discovered and a new
research domain called Gabor Analysis has been formed [5].

One of the main driving forces was the search for a signal representation which
should be situated between the time (spatial) representation and the frequency
(Fourier) representation. Both representations have advantages and disadvantages:
Using the time series of a signal we are able to follow the order of the amplitudes
through a temporal sequence. But we do not know which frequencies are used in
the signal. Analysing the Fourier transform of the signal we can immediately see
the spectrum of the frequencies which are part of the signal. However, localising
one of the signals is difficult, since this information is hidden in the phase infor-
mation of the representation. Gabor proposed to compose a signal not into sinus
and cosinus waves but into a series of functions which are derived from one single
fixed function as follows:

f(t) = Z Cmn g, 1(t).

n,m
G (t) — g(t o na)e%rimbt
m,n € 4

where the function f(t) is represented as a series of the functions gy, ,. The func-
tions g, are created by shifting the function ¢(¢) in time and frequency, where
a and b are the shift parameters. For the function g(¢) Gabor proposed the Gaus-
sian function. The image representation described above is called Gabor wavelet.
More general wavelets hierarchically decompose functions into sums of elemen-
tary functions. The elementary functions are compressed or stretched version of a
"mother wavelet” function. In section 3.4 we described an interest point operator
introduced by Loupias [16] which uses Haar and Daubechie wavelets to represent
images.

A Gabor filter bank consists of several filters based on the family of Gabor
functions described above: Several Gaussian filters which are obtained by dilating
and rotating the mother function. The two-dimensional functions used for image
processing and their Fourier transform can be written as follows:

1 :I/J2 + y/2

haa(,y) = ho exp {—5 22

} eXp27rIx’//\

' = xcosa — ysin

Yy = xsina + ycos o
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1 1
hya(u,v) = exp {_5()\“ - 2#)202} exp {—5)\20202}
where

e « is the orientation of the filter.
e o is the size of the filter (the variance of the Gaussian function).

e )\ is the spatial period of the sinusoid plane wave (the "frequency band” of
the filter).

21\ 2 . .
o hg= (5) is a normalisation parameter.
In this work we adapted the parameter settings used by Megret in [20], which were
justified by Farrokhina and Jain in [12]. The sigma is fixed to o = 27. The main
parameters are the orientation o and the scale A. To obtain all filters of the bank
these two parameters are changed successive in the following way:

e The orientations a of the filters are cycled through the interval [0, 7]: oo = 47,
where a = {0,---, K — 1} and K is the number of orientations of the filter

bank.

e The frequency band ) is shifted: A\ = \/§k)\0 where \g = % and £ ={0,1,---}.
k is limited to ?\—Z

Figures 4.3 and 4.3 show the spatial domain and the real part of the Fourier
transform of the Gabor filter bank used in this work. The filters of one column
pass frequencies of the same band, whereas the filters of one row pass waves with
the same orientations. Note, that the filters passing high frequency contents show
strong values in the centre of the Fourier spectrum, where the coefficients of the
high frequencies are situated, whereas the filters passing low frequencies show
strong values at the borders of the Fourier image. The orientations passed by
the filters can be seen by the angle of the Gaussian distribution to the centre of
spectrum (see figure 5.2).

The Gabor filter bank described above is used in this work to extract local
texture features from images. The next chapters describe the application of the
filters and how different image representations are built from the filter responses.
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Figure 4.2: The filters of the Gabor filter bank represented in the spatial domain




Figure 4.3: The real part of the Fouii(()er transform of the Gabor filter bank



Chapter 5

Texture Features on Interest
Points

The last two chapters described methods to collect texture features on images and
to extract key points. This section explains methods of combining both texture
features on interest points.

The basic idea in this work is to extract a fixed number of interest points N
from the image and to select regions of fixed size R around each point, referred to
as interest regions. To each interest region we apply a (Gabor) filter bank of S x K
filters, K being the number of orientations and S the number of scales. Figure 5.1
shows the basic scheme.

From each of the resulting S x K filter responses per point the following char-
acteristics can be extracted (see Figure 5.2):

Scale The scale is a property of the filter and determines the frequency interval
that is passed by the filter.

Orientation Like the scale the orientation is a property of the filter. It denotes
the orientation of the frequency that is passed by the filter. All other orien-
tations are suppressed.

Amplitude The most important description of the filter response is the maxi-
mum amplitude of the response, from now on referred to as amplitude only.
It tells how strong this interest region responds to the filter applied to it.
Literally spoken, we could say that it specifies how much structure of the
given orientation in the given scale can be found in the interest region.

Phase Although the phase information is important to localise the regular struc-
ture and to reconstruct an image from the responses of a filter bank, it is not
used very often in indexing techniques, it will therefore not be considered
further.

u0, vO The coordinates of the maximum response in frequency space.
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Figure 5.1: Process scheme of collecting texture features on interest points
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Figure 5.2: Feature information available from a filter response

Angle The angle of the maximum amplitude regarding the centre frequency of
the filter. This value is correlated to the orientation of the filter. However,
if the main orientations of a filter response are calculated, it can be useful
to get a finer range of values.

What kind of information do we get after the extraction process? There are differ-
ent possible interpretations of this data, which makes different models and com-
parison algorithms possible. Figure 5.3 shows the result of the feature extraction
process. Let’s assume, that for each filter response only one feature is extracted:
The maximum amplitude. Then the output will consist of the outputs of the filter
bank for each of the N interest regions. For each region S- K responses, thus S- K
amplitudes (Fy, Fy, ... Fgj) are extracted.

Image IP IPy

294

F, .. Fgg Fy .. Fgg

Figure 5.3: The output of the feature extraction process
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Different combinations of these features are possible. One interpretation is a set
of feature points, each associated with a vector of amplitudes (Figure 5.4.a). Each
vector holds the amplitudes of the set of S scales and K orientations. The vectors
describe the responses of the regions around the points to filters of different ori-
entations and scales, giving a rough description of “what is happening” around a
point. Hence, the description of an image is a set of these features extracted on
interest regions. We describe a method of modelling and comparing these sets in
chapter 6.

e FS€t1 Fl(Ipl),Fl(IPN)
IP1 _—— Fl...FSK

Ty FSet, | B(IP),... F>(IPy) |

= B Fsk CICIC] ]
DDD:D
IPy| —= 1 Fi...Fsk BB _ FSetsk| Fsg(IP,),...Fsk(IPy)

@) (b)

Figure 5.4: Interpretations of the available feature data ordered by interest point
index (a) and by filter index (b)

A different and more statistical interpretation could be to order the data according
to the scales and orientations of the filter bank (Figure 5.4.b). So for each of the
Sx K filters we get a set of N features — one for each interest point (e.g. amplitude
and point location). What we get here would be distribution of the amplitude
responses for each filter, literally speaking how much the image is responding to
the filter passing this frequency and orientation.

Please note, that by simply re-ordering the data we can get a different view
of the image, provided that it is supported by the calculation of the distance al-
gorithm. The representation ordered by interest point index is centered on the
interest regions of the image. Every region has an assigned feature vector describ-
ing it’s texture contents, thus the distance algorithms compare regions. On the
other hand the representation ordered by filter index provides a view centered on
the responses for one filter. A way to describe them is a histogram for each filter
describing the amplitude distribution for the whole image responding to this fil-
ter. Distance functions for this representation work different, they compare filter
responses. Different approaches to the second representation based on histograms
are treated in chapter 7.
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Chapter 6

Feature vectors on interest points

The last chapters presented our method to extract texture features from digital
images using interest point operators and a Gabor filter bank. We explained the
different interpretations for the feature data gathered from the images, making
it is possible to develop different feature representations. This chapter describes
an indexation method based on an image representation, which orders the feature
data by interest point index. This can be interpreted as a set of descriptions for
interest points.

6.1 Motivation

Methods using feature vectors gathered on interest points have already been used in
image indexation and especially object recognition. The goals of object recognition
systems are similar to the ones of image databases: Pre-selected objects have to
be found and located in one or more digital images. Some of the problems arising
are caused by the occlusion of parts of the object by other objects or due to its
position to the camera. One way to solve this are feature vectors on interest points
(See the method of Lowe [17] in Section 2.2.2). The basics can be described as
follows: Some points are detected in the object which needs to be located in the
images. Together with the point locations features are gathered (based on colour,
texture etc.). In the detection step these points are searched in the images. If a
specific number of points can be found, then it can be assumed that the image
contains the object. Even if parts of the object are occluded then still other points
of the object can be found.

The requirements for image indexation systems are similar, so also in this
domain algorithms based on feature vectors have been published. Schmidt and
Mohr introduced an image retrieval method based on invariant features in [28]
(See section 2.2.2). To compare two images, they detect interest points in both
images using the Harris corner detector (See section 3.2) and collect invariant
features from a local environment around these points. Then a feature vector is
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created from the features of each interest point. This way an image is represented
by a set of feature vectors.

6.2 Representation

Our image representation presented in this chapter is based on a similar principle.
Like already described in chapter 5, we use an interest point operator to extract a
fixed number of regions of the image and a Gabor filter bank to extract features
from these interest regions. The result of this filtering step are N x K x S filter
responses, where N is the number of interest points, K the number of orientations
and S the number of scales of the Gabor filter bank. From each filter response
we keep only one value: The maximum amplitude extracted from the frequency
representation. Reordering this data according to interest point index we can
assign to each point K x S amplitude values, which we put into a vector. Thus,
an image is represented by a set of N feature vectors similar to the solution of
Schmid and Mohr.

0:Odegrees
AR A A
1S 1S = 2| | legrees , A

3
L IEE L] i .

7
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| ” || || | 7:157,25degrees

Figure 6.1: Feature vector storing amplitude for each orientation

We created two different types of features vectors. A simple version is shown in
Figure 6.1. Tt consists of K entries, where each entry corresponds to one of K
orientations of the Gabor filter bank. To calculate the value for one entry the
maximum of all S amplitudes for this orientation is taken, i.e. the maximum for
all scales of this orientation, and it’s logarithm is stored in the entry. All possible
vectors span a K-dimensional feature space, where each vector can be seen as a
point.

The final, scale sensitive version of our feature vector keeps the scale informa-
tion (Figure 6.2). The vector is split into 3 parts, one for each scale, where each
part contains the amplitudes for each orientation like the first vector type. Our
experiments have been conducted using the scale sensitive version of the feature
vector. The simple first version does not represent the multiscale information,
nevertheless it is a nice ”vehicle” for the demonstration of distances.
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Figure 6.2: The scale sensitive version of the feature vector storing amplitude for
each scale and orientation

6.3 Comparing feature vectors

Above we introduced a representation for images. To be able to retrieve images
we need a distance function. Our methods to calculate the distance of two images,
i.e. two sets of feature vectors, are based on the distances of feature vectors.
So we need to define a distance between two single feature vectors first. This
distance is different for the two types of vectors. Like we already stated, the simple
version of the feature vectors can be interpreted as points in a K -dimensional vector
space. We have to find a distance measure which reflects the distribution of the
points in this vector space. Let’s consider the cloud of points (feature vectors)
gathered from the images of our image database. Each dimension represents one
of the K orientations in the image. Provided that the orientations in the images
of the database are distributed equally, we can assume that these points in the
vector space are distributed equally across all components as well. Thus, given
two feature vectors pu and v, the Euclidean distance dg can be used as distance
measure between the two vectors:

de(p,v) = [ (i — v;)?
13
where p; is the amplitude for direction i of the vector u. Figure 6.3 shows in 3
histogram plots the distribution of the elements of our feature vectors for one of the
test image databases used in this work (See Section 8.2). One curve corresponds
to a histogram plot for one element (i.e. one orientation) of the vector. As we can
see, our assumption that the different orientations are distributed almost equally
can be confirmed in this case.

The Euclidean distance dg applied to two feature vectors provides in this case
an efficient manner to compare the frequency characteristics of two regions. How-
ever, the feature vectors are not rotation invariant, so the comparison of two regions
is not invariant to rotation as well. That means, that two regions containing the
same textures have a higher distance if one of the regions is rotated towards the
other one. A human on the other hand would perceive the two textures as similar
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Figure 6.3: Histogram plots of the distribution of the different orientations for all
features of a test database, separated by scales.
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regardless if they are rotated or not. Classic image indexation applications like
image or video indexing, are not interested in a complete rotational invariance
but must take into account small variations of orientations. For this reason we
introduced some shifting into the distance measure to compensate for rotation.
We not only calculate the Euclidean distances between the two original vectors p
and v but also the distances between p and two different cyclic permutations of v.
These cyclic permutations of feature vectors are equivalent to rotations of the cor-
responding interest regions. Given a vector p, the permutated vector p = perm(pu)
is defined by

Mi—1 fori=2... K

pg fori=1 (6.1)

p = perm(u), pi= {
The K orientations of our Gabor filter bank are spread across an angle of 7, there-
fore the cyclic permutation described above is equivalent to a geometric rotation
of %. Given a Gabor filter bank of e.g. K = 8 orientations the features are ro-
tated by § = 22.5°. Hence, to make the distance measurement (We call it Dp,
- distance for the first version of our feature vectors) less ”rotational sensitive”
we add permutated vectors to the comparison process: The distance between two
feature vectors p and v is actually the minimum of 3 distances: The Euclidean
distance between p and v, the Euclidean distance between perm(p) and v, and
the Euclidean distance between p and perm(v).
dp (Ma V)
dp, (u,v) = min{ dg(perm(p),v) } (6.2)
di (1, perm(v))

A similar distance is used for the scale sensitive version of the feature vector
(Figure 6.2), which keeps 3K elements — K for each scale. But the permutation
of the vector elements is done according to the structure of the vector, which
resembles the structure of the filter Bank. Hence, the K elements for one scale are
permutated separately, i.e. the distance dp, of two vectors p and v is calculated by
computing the distances separately for the 3 sub vectors averaging these distances.
Denoting the sub vector of p, which contains the feature elements for scale x, as
p(x), we get the distance dp,:

() = 5 5 dr (i), v10) 63)

Please note, that during the distance calculation we handle the Gabor orientations
different than the scales. We shift the orientations of the vector and calculate in-
termediate distances. These distances are combined using the minium function.
It is not possible that a texture is present at more than one orientation, so only
one of the distances is taken. On the other hand, we calculate these intermediate
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distances on each scale, and these distances are combined using the average func-
tion. The reason is the hierarchical nature of textures, which need to be examined
at different scales. The distance measurement defined above computes a distance
measure between two interest regions, where small changes in the orientation are
tolerated.

6.4 Querying the database

To query the database a distance function for images is needed, which compares
two sets of feature vectors. Our distance measurements are based on the distances
of vectors. However, there are different ways to combine the distances of single
vectors to a distance of sets.

6.4.1 Voting

Schmidt and Mohr proposed in [28] (See Section 2.2.2) a voting algorithm to query
a database of images represented by sets of feature vectors. They pre-compute the
vectors V; of all database images M}, offline and store them in the database together
with a link to their source images. Given the query image I, it’s set of feature
vectors V; is computed, and each vector is compared to each vector Vj in the
database. If the distance between V; and V; is below a threshold ¢, the respective
image M), gets a vote. The maximum votes are returned to the user. The cost
of comparing two images is the cost of comparing all feature vectors of the query
image with all feature vectors of the image to compare, thus O(N?), where N is
the number of vectors per image, i.e. the number of interest points.

We adopted this algorithm to our image representation. This could be done
easily, since the representations are very similar. We used our distance measure
dp, described above for the distances between two feature vectors. The algorithm
searches for images in the database, which have a high number of interest regions
which are similar to the interest regions found in the query image. One region in the
query image can be similar to one or more regions in one of the database images
and vice-versa. l.e. it is irrelevant if ten regions correspond to ten equivalent
regions, or if one region can be found ten times in a database image, the result
will be same. Results of our experiments are shown in section 9.

6.4.2 Searching Corresponding Interest Points

We developed a different algorithm, which compares image by image and tries to
search pairs of corresponding interest points in both images. The search is done in
a greedy manner: The means to qualify two points as being a pair is the minimum
distance in feature space. To do this we build a matrix which stores the distances
of all possible feature pairs (figure 6.4), the lines i denoting the interest points of
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the query image, the columns j the interest points of the compared image, and
the elements F; ; the distance between point ¢ of the query image and point j of
the compared image.
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Figure 6.4: The algorithm for searching corresponding interest points

Then we search the minimum element of the matrix. The column and line number
of this element denote the first pair of corresponding interest points. Both column
and line are deleted from the matrix, since these two points are not available for
other pairs anymore. Then we again search the minimum element of the remaining
matrix. This algorithm is continued until the matrix vanishes (The points of at
least one image are exhausted) or the minimum distance does not exceed a given
threshold ¢ (There are no more points having a corresponding partner). The
distance d(A, B) between the two images A and B is calculated using the number
of corresponding points found:

2 x Number of corresponding points
N(A) + N(B)
where N(A) denotes the number of interest points of the image A.

The performance of the algorithm depends on the threshold t. If the threshold is
too high, then too many couples of corresponding interest points are found and the
system will retrieve false positives. If the threshold is too low, then no or too few
couples will be found — false negatives or non deterministic ordering of the result
set (in the case of ¢t = 0) will be the consequence. We performed experiments with
different threshold values for different image collections, whose results we present
in chapter 9.

The distance measure presented above has one shortcoming, which will become
visible for queries against large databases only. The reason is the granularity of

d(A, B) = (6.4)
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the distance function. Looking at equation 6.4 we can see, that we can get at most
2N different distance values, where N is the number of collected interest points
per image. Imagine that there are more than 2N images in a database, which
are relevant for the query image, i.e. which have a high number of corresponding
interest points. Although all these images have small distances and will be in the
first positions of the result set, the ordering of these images in the result set among
themselves will not be deterministic in some cases due to lack of sufficient different
distance values.

Motivated by this drawback we developed another distance measurement, which
uses not only the number of corresponding interest points for the distance calcu-
lation, but also the distances of the feature vectors involved. We give the new
measure as

2%y s(8)
¢eC

d(A, B) = N(A) + N (B) (6.5)
where C'is the set of pairs of corresponding feature vectors and s(§) is the similarity
of the corresponding vectors £ = (u,v) € C. We calculate this similarity on the
basis of the distance in feature space dp,(u, ). However, we scale the distance,
so that the similarity is equal to 1 if the distance in feature space is minimal, i.e.
equal 0, and the similarity is 0 if the distance is maximal. Since the search for
corresponding feature vectors is stopped at a threshold ¢, this threshold is equal to
the maximum distance of two feature vectors. Hence we can write the similarity
of two corresponding feature vectors as

(9 =1-TUD e ec

Please note, that this distance measure corresponds to the first measure defined in
equation 6.4 if all vector similarities s(§) are set constant to 1. Literally spoken, if
we consider images represented as sets of sub images (regions), then our measure
defined above allows a finer granularity of the distance values since not only the
number of "similar” regions contributes to the distance, but also the similarity
itself.

We performed experiments using both distance measures as well as the voting
algorithm introduced by Schmid and Mohr. Results of these experiments can be
found in chapter 9.

The cost for calculating the distance matrix is O(N?) . The search of the
corresponding pairs is dependent on the similarity of the two images. The higher
the similarity the higher the cost, since the search for the minimum distance in
the matrix has to be done more often. The first search takes O(N?), the next
one O((N — 1)?) etc. So, if for all interest points correspondences can be found,
the overall cost of the algorithm is O(N?), where the cost of one step is small
(comparing the value of the matrix with the current maximum). However, in
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Figure 6.5: Two images and their map of corresponding interest points
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reality the maximum number of point pairs is almost never found. The overall
cost of the algorithm is

O(N?) 4+ O(N?)

Figure 6.5 shows two test images and their map of interest points. Corresponding
points are connected by a line or by a single big rectangle, if their spatial distance
is smaller than 5 pixels.
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Chapter 7

Histograms

In the last chapters we described our method to extract texture features from
digital images using interest point operators and a Gabor filter bank. We also
introduced one of the different possible interpretations for the feature data, which
uses feature vectors sets to represent images. This chapter describes an indexation
method based on an image representation, which orders the feature data by filter
index and uses histograms for the representation. Histograms have already been
used for image indexing extensively, especially colour based histograms [33] and
structure based methods [11]. They provide an effective and efficient means to
compare image contents. However, they rely on raw image data like colour or gray
values, which are not available for textures without pre-processing. In this chapter
we describe a method based on histograms filled with the data gathered from our
feature extraction method described in chapter 4.
There are several reasons to use histograms to describe image contents:

Well known distance measures Unlike other image representations the dis-
tance measures for histograms are not as dependent on the type of features
and the contents of the histogram, so the standard distance measures can be
taken. Histograms are standard tools of statistics and also image processing,
so powerful distance measures to compare them have already been developed
(See section 7.3).

Speed One of the main strong points of histograms is the availability of fast com-
parison algorithms. Using interest points one advantage is the independence
of the number of interest points, whereas our previously developed methods
suffer from high computational complexity (O(N?)).

View Histogram representations provide a different view on the data. The algo-
rithms we presented in the last chapters described images as a set of feature
vectors collected around points of interest. Comparison was done by search-
ing corresponding interest points, the main “dimension” of our image key
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being the set of interest points. Histograms are more flexible. Their descrip-
tive power depends on the way how they are “filled”, i.e. their power depends
on the way how the feature data is translated into the raw data necessary to
create them.

For the development of image retrieval systems the emphasis is not laid on the
distance measure but on the design of the image representation, i.e. the contents
of the histogram. Tt is necessary to design the contents in a way, that the his-
tograms are representative. Different images should have different histograms, i.e.
their distances should be large. We already mentioned this general requirement
for image features in section 2.1. However, even if the image features, which need
to be collected before building the histograms, fulfill this requirement of descrip-
tiveness, it is still possible to generate badly scaled histograms by choosing wrong
parameters.

The parameters need to be designed according to the feature data. Firstly, it
is necessary to find a way to transform the feature data into a raw format suitable
to "fill” it into the histograms. Moreover, size and format of the histograms must
be well chosen. The main parameters, which need to be fixed for a histogram
based representation, are the borders, and the bin count. The borders specify the
interval which is represented by the histogram. Values, which do not fit into this
interval are placed into the lowest or highest bin respectively. If this interval does
not fit the distribution of the data, then the possibility of similar histograms for
different features arises, because the differences of the feature data are hidden in
single histogram bins.

In the following sections of this chapter we will present two different represen-
tations based on histograms. We close the chapter with a survey and description
of histogram distances in section 7.3.

7.1 Amplitude representation using sets of His-
tograms

Considering the output of our Gabor filter bank the main information we gathered
is the amplitude information for different orientations and scales of the Gabor
filters per interest region. If we re-order the data we get a distribution of responses
(i.e. amplitudes) per scale and orientation. The filter responses for one filter can
be filled into a histogram, which therefore models the response of the image to this
filter with the given orientation and the given scale. Images responding much to
this filter have high bins with high bin indices and low bins with low bin indices
and vice versa. Thus, the feature data of the whole image, i.e. of all filters of the
filter bank, can be stored in an ordered set of K x S histograms, where S is the
number of scales and K is the number of orientations.
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Filling the histograms this way we ignore the spatial coherence of the differ-
ent interest regions, i.e. the locations of the regions are not represented in the
histogram. It does not matter where an interest region is found, since only the
contents (translated into filter responses) is used to create the histograms. In
order to add the spatial coherence to our representation we use two-dimensional
histograms instead of one-dimensional ones. We need couples of data instead of
single values to increase the histogram bins. These couples are created by per-
forming a n-nearest neighbour search for every interest point.

Figure 7.1: Nearest neighbour search

The entries, which increase the histograms, are pairs of interest points. All points
of the image are traversed and taken as first points of these pairs. The second
points are the neighbours found by a n-nearest neighbour search performed for each
interest point found during the traversal. (Figure 7.1). Hence, for each interest
point traversed we create n pairs of points. The amplitudes of the couples are
entered into the histogram: The amplitude of the first point is used to calculate the
z-index of the bin, the amplitude of the second point (the neighbour) to calculate
the y-index.

{a) (b) {c)

Figure 7.2: Image representation using ordered sets of histograms containing am-
plitudes: Example picture (a) and two histograms of the ordered set: orientation
0 = 0° (b) and orientation 2 = 45° (c¢) for scale index 0

Figure 7.2 shows an example image and two histograms of the set. We chose an
image which contains frequencies mainly in the horizontal orientation (orientation
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0). Therefore, the histogram for orientation 0 shows a distribution of strong re-
sponses, i.e. strong bins from indices 4 to 6. The histogram for orientation index
2, which corresponds to structures in orientations around 45 degrees, shows only
one strong bin at index (0, 0), i.e. almost no response.

The distance function necessary to compare this image representation needs to
compare two sets of histograms. Our distance measure is based on the histogram
distance measures discussed in section 7.3. A simple possible distance measure
compares corresponding histograms of both sets and averages the distances:

S K
Dset(Aa B) = SLK Z Z D(HAuv; HBuv)
u=1v=1

where D (A, B) is the distance of the two images A and B, i.e. the distance
of the two ordered sets, and H4,, is the histogram for scale v and orientation
v of image A. However, similar to the distance of feature vectors we included
some compensation for rotation by comparing each histogram not only with its
corresponding histogram but as well with the immediate neighbours of the same
scale. In our feature vector approach (chapter 6) we used rotations of the feature
vectors to compensate image rotations (equation 6.1). Similar we can partition
our ordered set of S x K histograms into a set of S vectors, each containing
K histograms. For each vector, which corresponds to one scale of the Gabor
filter bank, we calculate intermediate distances. Furthermore we perform cyclic
permutation to decrease the sensitiveness to rotations of the interest regions.
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a)
| 0 o {
0 { o o o L
e 0 { o { o o
0 { o o o |
b) c)

Figure 7.3: Comparison of ordered histogram sets: to compensate for rotation
not only the corresponding histograms are compared (a), but also the immediate
neighbours by rotating once in both directions (b), (c¢) and using the minimum.

Figure 7.3 depicts this rotation process. We not only calculate the distances be-
tween the two histogram vectors g and v but also the distances between p and
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two different cyclic permutations of v. These cyclic permutations of histogram
vectors are equivalent to rotations of the corresponding interest regions. Given a
vector p, the permutated vector p = perm(pu) is defined by equation 6.1, similar
to the rotation of vector vectors in chapter 6. The final distance between the two
histogram vectors p and v (which do not represent a whole image but one scale
only) is the minimum of the 3 distances:

dp (Ma V)

d(p,v) = min{ di(perm(p), v) } (7.1)
dp(p, perm(v))

The final distance d(A, B) of two images A and B, i.e. of two histogram sets
containing histogram vectors for each scale, is the average of the intermediate
distances calculated for each scale.

AAB) =g 3 d(u(i),v(i)

1=1...5

where the p(i) are the histogram vectors for scale i of image A and v(i) are the
histogram vectors for scale ¢ of image B. Please note, that the distance calculation
for the histogram sets corresponds to the distance calculation of vector vectors in
chapter 6. The histogram vectors described above correspond to subvectors of a
feature vector, and the complete histogram set corresponds to a complete feature
vector for one interest point.

7.2 Differences of Amplitude and Neighbourhood
Ranking

The histograms described in the last section were built on raw image data, like
amplitudes. The data was fed pairwise, but still there was no relation whatsoever
between the points. Huet and Hancock used pairwise geometric histograms to
index large databases of line patterns [11]. They took pairwise geometric attributes
like differences of angles and differences of length of pairs of line segments to build
histograms. The idea was later adopted to structural image retrieval based on
interest points by Popescu in [23]. The idea was to use the locations of the interest
points to determine geometric attributes. Instead of pairs triples of interest points
are taken, and the angle of the points is used to create the histograms (See section
2.2.4).

The main idea of these algorithms is the storage of relative feature data. Huet
and Hancock fill histograms with differences of angles, i.e. a relative measure
between two geometric elements. The images are described by the information
how geometric attributes of line segments change in a local neighbourhood.
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We use a similar approach based on the output of the Gabor filter bank. Like in
the last section an image is characterised by an ordered set of S x K histograms.
But instead of the absolute amplitude values we store differences of amplitudes
for couples of interest points. For each filter response we traverse all points and
search the n nearest neighbours. To calculate the bin index of the first dimension
of the two dimensional histogram, we use the difference of amplitudes for each pair
interest point and neighbour. The bin index of the second dimension is defined by
the ranking of the neighbourhood.

(b)

Figure 7.4: Image representation using ordered sets of histograms containing dif-
ferences of amplitudes and neighbourhood ranking: Two example pictures and
their histograms for scale index 0 and orientation 0 = 0° .

The information we store in this representation can be described in the following
way: Like in our first histogram representation the data is separated by filter
index, i.e. one histogram for each orientation and scale of the filter bank. Each
histogram holds the information how the amplitudes for this filter change between
the interest points to their neighbours. The y dimension of the histogram stores
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the neighbourhood ranking of the n-nearest neighbourhood search, thus the bins
with higher y indices store the differences of amplitudes between interest points
which are further away than couples of interest points stored in the bins with lower
y indices.

Figure 7.4 shows two example images of one of our test databases and their
histograms for scale index 0 and orientation index 0, which corresponds to an
orientation of 0°. The histogram of the texture example (Figure 7.4.a) shows an
almost uniform distribution along the y coordinate of the histogram. This can
be explained by the periodic nature of the texture example, where the differences
in the amplitudes are almost constant across the different distances between two
interest points. Considering the histogram of the natural image on the other
hand (7.4.b), we remark the difference in the bin sizes along the y coordinate
of the histogram. The reason is the different type of the image, which contains
sharp changes in structure. In this image the distance between two interest points
determines the difference in their responses to a specific filter, hence the difference
in amplitudes.

The comparison of the histogram sets is done the same way as for the represen-
tation using the absolute amplitude values described in section 7.1. The distances
between the corresponding histograms are combined in a way to tolerate small
rotational changes in the images.

7.3 Histogram Distances

Our query methods based on histogram set representations use standard histogram
distance measures which are already well known. Surveys of different measures
can be found in [26]. Huet and Hancock also used different histogram distance
measures to index cartographic material [11] (Section 2.2.4).

Histograms can be seen from different viewpoints. Depending on the point of
view various distance measurements are possible:

The Minkowski form distances

One dimensional histograms with n bins can be seen as vectors in an n-dimensional
vector space. Therefore, the distance measures known from vector spaces can be
used. One example is the family of the Minkowski distances, whose general form
is given by

D(Ha, Hp) = |Ha(i) — Hp(i)|"
Well known examples are the L; and the L, distances for r = 1 and r = 2

respectively. The L, distance of two histograms is equivalent to the Euclidean
distance of the corresponding vectors.
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Dy, (Ha, Hp) = Z|HA Hp (i)

Dy, (Ha, Hp) = \/Z(HA(z') ~ Hp(i)?

The Bhattacharyya distance

The Bhattacharyya distance is a measure of correlation between to discrete distri-
butions. Bins with zero contents do not contribute to the distance value, so the
distance measure works best with histograms that are "well filled”. The Bhat-
tacharyya distance measure is given by

DBatt(HAaHB = _an\/HA HB

The earth mover’s distance

To understand the earth mover’s distance, the two histograms which have to be
compared must be understand as a set of piles of earth and a set of holes. The
distance of two histograms is the minimal cost of transporting the filling the holes
(the second histogram) with the earth from the piles (the first histogram). Thus,
calculating the distance corresponds to solving a linear transportation problem.

A big advantage of the earth mover’s distance is its characteristic as cross bin
histogram distance measure. I.e., that not only the sizes of corresponding bins
are compared but also neighbouring bins. This way the distance is less sensitive
to shifts in the feature data and it allows for partial matches. According to Rub-
ner et al. the distance better matches perceptual similarity than other distances
[26]. A disadvantage of this distance measure is its high computational complexity
compared to other measures.

We performed experiments using the measures L, L, and Bhattacharyya. In our
query methods we store the feature data in two dimensional histograms. However,
the distance measures are applied in a similar way. Results of these experiments
are given in chapter 9.
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Chapter 8

The Test Environment

This chapter explains the environment used to realise and test the proposed meth-
ods. The following sections describe the different test images databases we used
in our experiments. We specify the size of the test databases by two values: The
symbol B denotes the number of images in the database and F' denotes the number
of images used as query images in the experiments. This number depends on the
contents of the database, since only images which have enough empirical similar
images, can be used as query images.

8.1 The first test database

Our first test database contains B = 609 images grabbed from a single French
television channel. The images are all of the same format (384x288 pixels) and
coded in JPEG with 75% quality. The contents differs from outdoor activities
(reports of sport activities) to talk shows, full scope shots of people, weather
forecasts, logos and advertisement.

To be able to measure query performance (see chapter9.2) a clustering of the
image set was necessary. The clustering was done manually using empiric criteria
in a way that all images in a cluster are perceived as similar by us. In fact, the
pictures of one group mostly are taken from the same telecast and sometimes
even from the same scene. Figure 8.2 shows examples of these groups. However,
although all images of the database are queried not all of them are grouped into
clusters. The reason was to avoid too small groups, which would degrade the query
performance curves without justification. Eliminating all clusters with less than
10 images, we get 568 (referred to as F' in this document) images grouped into 11
clusters (Table 8.1). Figure 8.1 shows the representants of each cluster.
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nr. 11231456 7891011
images || 10 | 11 | 14 | 15 |15 [ 19| 32 | 36 | 86 | 156 | 174

Table 8.1: The cluster sizes of test database 1

(] France 2 présente

Figure 8.1: The representants of the 11 image clusters used in the first test database

8.2 The second test database

The second test database contains B = 179 images from various sources collected
by Jean-Michel Jolion '. The contents differs from portraits, textures, landscape
scenes to drawings etc. Figure 8.3 shows examples of this database. Again the
images of one column belong to the same cluster of images perceived as similar.
Table 8.2 shows the clustering of this database. Again we eliminated all clusters
with less than 10 images, which left F' = 105 images for this database to use as
query images, grouped into 6 clusters with the following sizes.

nr. 112131456
images || 10 | 12 | 14 | 15| 26 | 28

Table 8.2: The cluster sizes of test database 2

8.3 The third test database

To evaluate the dependencies of our algorithms on some parameters we use an ad-
ditional third image database. This commercial database contains various natural
images (architecture, landscapes, animals etc.). Figure 8.4 shows examples of this
database. Again the images of one column belong to the same cluster of images
perceived as similar. Table 8.3 shows the clustering of this database. F' = 105 im-

!Laboratoire Reconnaissance de Formes et Vision, INSA de Lyon
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ages are used as query images which are grouped into 9 clusters with the following
sizes:

nr. 11213145678 9
images | 12 | 17 | 18 | 19 | 35 [ 83 | 99 | 131 | 163

Table 8.3: The cluster sizes of test database 3
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Figure 8.2: Examples of the first image database used (609 images total). All
images in one column belong to the same cluster of images perceived as similar.
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Figure 8.3: Examples of the second image database used (179 images total). All
images in one column belong to the same cluster of images perceived as similar.
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Figure 8.4: Examples of the third image database used (1505 images total). All
images in one column belong to the same cluster of images perceived as similar.
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Chapter 9

Experimental Results

This chapter presents a detailed experimental evaluation of the proposed methods.
Before we can do that we have to discuss how to measure query performance in
image retrieval. Considering a single query from a given image which returns a
result set of d images, there are two relevant criteria to take care of: query speed
and quality (the relevant-ness) of the result set. The former is easy to measure,
we will discuss it in section 9.1. The latter is not as easy to compare, never the
less there are well defined methods. We will discuss it in section 9.2

9.1 Speed

Speed is a performance criteria easy to measure. Two processes are relevant: The
creation of the index of an image and the comparison of the query image with the
database images. The time to index an image is independent of the number of
the images in the database. It is needed when uploading a new image and when
querying the database. It consist of several steps: Eventually converting the image
to the desired format and to gray scale, applying the interest operator, creating the
interest regions, applying the filter bank to each region, and creating and writing
the key structure. Table 9.1 gives an overview of the different parts of the index
creation algorithm and their speed/time issues.

Applying the filter bank is the part which takes most of the time and heavily
depends on the number of interest points and the size of the interest regions used.
If histograms are produced then the time to fill them effects indexing speed as well.
Especially with growing numbers of interest points histogram creation becomes an
issue as well (The algorithm is O(N?)).

Table 9.2 gives an overview of indexing performance dependent on different
values of region sizes and numbers of collected interest points. The values are
measured indexing a single image excluding the time to collect the interest points,
which is dependent of the detector. The hardware platform was a standard indus-
trial PC equipped with a Pentium I processor at 300 MHz. The query system has
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‘ Task

Time depends of

Detection of interest points Size of the image

size of the filter bank

togram sets are used

Application of the filter bank | Number of interest points, size of the interest region,

Creation of histograms Number of interest points, number of neighbours
searched for each point, size of the filter bank if his-

Table 9.1: The different steps during the creation of an index

been implemented in C++.

points / region size | 64 32 16
100 n.s. Hs n.s.
200 228 8  3s
300 n.s. 12s n.s.

Table 9.2: Query speed for different interest point counts

The time to query the database depends on the method and the number of images
compared. Table 9.3 gives an overview of the speed of the different query algo-
rithms applied to the B = 609 images of our test database 1. To obtain precise
results for each method we used every image of the reference set of F' images as
query image and queried against the whole database of B images. The response
time divided by F' gives us the average time it takes to query one image against the
database of B images. If not stated otherwise the methods used N = 200 interest
points and a region size of 32 x 32 pixels. The time specified does not include the
time to create the indices.

Algorithm Time to query one image
against F' images

Searching corresponding interest points 37s/9s/5s/2.9s

(100/70/50/30 points)

Histogram set: amplitude x amplitude 2.6s

(24 histograms of 8 x 8 bins)

Histogram set: difference of amplitudes x ranking 5.1s

(24 histograms of 8 x 16 bins)

Table 9.3: Query speed for different algorithms

The query time using the method of searching corresponding interest points de-
pends on the number of interest points collected (O(N?)). However, although the
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query performance is depending on the point count as well the differences between
the performance curves are not that big (Figure 9.14).

9.2 How to measure Query Performance

The more important criteria of an indexation method is the quality of the result set,
referred to as query performance from now on. Since there is no exact definition
for similarity between images, measuring retrieval performance is a difficult task.

As an example see figure 9.1. These two images have been split up into 2
different clusters of the test database, i.e. from the users point of view they are
not similar. Nevertheless some query methods return image (9.1.b) when querying
for image (9.1.a). Can we blame any statistical process, which does not actually
understand the contents of an image, to judge the images to be similar? From a
texture point of view the images are similar. They both contain mainly structures
in vertical directions in similar frequency bands. Thus to be able to compare two
query methods we need to know the structure of the test database, the type of
images used, the clustering into similar images etc.

{a) {b)

Figure 9.1: How do we measure query performance - are these images similar?

User annotation is necessary to observe the query process and check the quality of
the query methods. We solved this problem by creating a set of reference images
for each image used as query image. The reference images have been classified
as "similar” to the image by us according to what we think is visual similarity.
For our test databases (See chapter 8) we used the images of the same cluster
as reference images of a given image. Thus, the query performance measurement
depends on the user and it’s judgement of similarity. All experimental results
depend on the judgement of the user, who himself picks similar reference images
for all query images.

In chapter 8 we explained the structure of our test image databases and their
clustering into clusters of images regarded as visual similar. A single query searches
visual similar images for a single query image taken from these databases. The
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query image is a member of a cluster C, which contains d images. These d images
are called "relevant” images. The system answers with ¢ images of which r are
from the original cluster C. For a single query two measures are widely used for
indexation systems: Precision and recall. Their definition is given by:

r r
p=", r="
c’ d

where the following symbols where used:

P Precision

R Recall
r  Number of relevant images (i.e. from the same cluster) in the return
set

¢ Total number of images in the return set
d Total number of relevant images (i.e. from the same cluster) in the
database

9.2.1 Performance curves

As the name suggests the precision of the result of a single query denotes how
precise the result set responds to the desires of the user. The higher the precision
the higher the percentage of relevant images in the result set. By changing the
number ¢ of returned images by the system we get a curve of precision:

For most querying methods the set of result images is ordered, returning the most
similar images first. The images having higher indices in the result set are less
likely to be relevant to the query image. Hence, the curve will generally show a
decreasing value of precision for an increasing c.

Recall of a single query denotes how many of the relevant images in the database
have been returned. The higher the recall the more the set of relevant images in
the database has been “covered” by the query.

r

R(c) = p

Since the denominator d is independent of the size of the result set and r will grow
with increasing ¢, the curve of recall will increase with increasing c.

Both of the measures are dependent of the size and the structure of the database,
especially the number and size of the groups of similar images (see chapter 8). How-
ever, generally it is precision which is regarded as the more important measure to
compare different methods. To create the performance curve for a method we use
every image of the reference set of F' images as query image and query against the
whole database of B images. For each query we create a curve changing the size
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c of the results set. The final curve is the average value of all curves for the single
queries:

1 Ll Tr; 1 F T

P(c) = Flc R(c) = Foq

where r; is the number of relevant images in the result set of query image ¢ and d;
is the total number of relevant images for query image ¢ in the database.

The figures in this chapter display the query performance we achieve using our
test databases and different query methods. The x-axis of all curves corresponds
to the number of images in the return set ¢, with a range from 1 to 30. If not stated
otherwise the y-axis displays the average precision for all query images (equation
9.1). Other possible measures are the variance of precision or the average recall.

For convenience the legends of the different query curves are sorted by perfor-
mance in each figure. The legend of the best method is displayed at the top of the
list. Exceptions are curves, which cross other curves. However, this case does not
occur very often.

(9.1)

=1

9.2.2 The limits of query performance

As we already noted the curves are dependent on the clustering of the database. A
theoretical best curve of constant 100% precision can be reached only if the sizes of
all clusters are equal or greater than the maximum number of returned images c.
A query using a query image within a cluster having n < ¢ images cannot return
more than n relevant images (= r). But that means that the precision p =  is less
than 100%. Our results display curves between 1 and 50 returned images. Since
our test image databases contain groups with less than 50 images (see sections 8.1
and 8.2) we need to know the theoretical query limit, i.e. the optimal curve which
can never be beaten by any method. A query producing the optimal result always
returns the maximum number of relevant images, i.e. either the whole return set
is relevant if the cluster is big enough, or at least the whole cluster:

Tmaz = Min(c, d)

Hence the curve of the optimal method is defined by

Pmax(c):F. f

1 & min(c, d)
=1
In a similar way the lower limit of query performance can be calculated. The lower
limit would be a query that returns as many false images as possible. Actually it
is not this limit which is interesting but the curve of a random query. A random
query performs better than the worst query possible. However, a good method
should perform better than a random query. A single query choosing random

images will return 7,.4,40m iMages:
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Trandom = C B

Hence the curve of a method choosing random images can be written as
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The upper and lower limits depend only on the clustering of the test database. The
curves created for our test databases are displayed in figures 9.2, 9.3, 9.4 and 9.5.
The curves for a random query are created with two different methods: Calculated
using equation 9.2 and experimentally using a random number generator.

9.3 The Experiments

In this section we present our experiments and the results measured using the
methods described above. We explain in detail the parameters used for the exper-
iments and their influences on the query performance. We compare the results for
the different query methods we implemented including the parameters we used and
we show the differences of the performance of our system applied to our different
test databases.

In the previous chapters we introduced query methods based on two types of
image representations, which we want to compare in this section:

e The feature vector set representation using Schmid and Mohr’s voting dis-
tance and the distance function searching corresponding interest points.

e The representations using sets of histograms which store amplitudes or dif-
ferences of amplitudes and neighbourhood ranking respectively.

We conducted experiments to evaluate and to optimize the performance of our
proposed methods. Section 9.3.1 gives an overview of the parameters of our system
and their significance. Sections 9.3.2 and 9.3.3 explain the experiments for the two
respective methods and their optimal parameters. Section 9.3.5 compares the two
methods and gives conclusions on the experimental evaluation.

9.3.1 Parameters and Dependencies

Our query methods are dependent on a number of parameters, like the number
of interest points collected, the sizes of the interest regions, thresholds etc. We
performed experiments with different values for each parameter and compared the
results. However, for reasons of computational complexity we did not perform
experiments on all different combinations of different values for the parameters.
Instead we only tested different values for one parameter at a time. I.e. we assigned
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fixed values to all other parameters, and performed experiments with a range of
values for the tested parameter.

Table 9.4 shows the standard values we used for our parameters for all different
methods if not specified otherwise. There are two different values for the number
of interest points, because we used 100 interest points for experiments with feature
vectors set representations and 200 interest points for experiments with histogram
based representations. The two histogram dimensions correspond to the two dif-
ferent representations (Amplitudes x amplitudes and differences of amplitudes x
neighbourhood ranking).

Parameter | Description Standard value
N Number of interest points 100/200
- Interest region size 32 x 32 pixels
S Number of scales of the Gabor filter bank 3
K Number of orientations of the Gabor filter 8
bank
n Number of neighbours for the n-nearest 48
neighbour search
t Threshold for the voting algorithm 1.0
- Histogram dimensions 8 x 8/8 x 16

Table 9.4: Standard parameter values used during the experiments

The following parameters are present in all of our image representations and query
methods:

The number of interest points The number of interest points is an essential
parameter of the indexation system. It determines how many interest regions
are taken from the images and therefore also how much area of the image
is covered by the description. Indexation speed and for some methods also
query speed strongly depend on this parameter, so we are interested to keep
it as low as possible (See section 9.1).

The region size The region size determines how much area is covered by the
features collected on an interest point. The larger we set the area, the less
sensitive the algorithm is to shifts of the interest point locations. On the other
hand, the larger we set the size of the area, the less descriptive the features
will be. The frequency spectrum of a whole image does not necessarily give
lots of information about the texture contents of images, since most images
contain more than one texture.

The number of scales of the Gabor filter bank This parameter determines
how sensitive the Gabor filter bank is to changes of frequency.
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The number of orientations of the Gabor filter bank This parameter deter-
mines how sensitive the Gabor filter bank is to changes of orientation.

9.3.2 Representation by Feature Vector Sets

In this section we explain the results of our experiments using the query methods
based on the image representation by sets of feature vectors described in chapter
6. We describe the experiments we conducted to optimize the algorithms. The
values of the following parameters have to be optimised:

e The distance formula
e The threshold value
e The number of interest points

e The interest region size

The distance formula

We performed experiments with three different distance formulas: The voting
algorithm introduced by Schmid and Mohr (See Section 6.4.1) and the two distance
measures for our method searching corresponding interest points using equations
6.4 and 6.5. The curves for the voting algorithm compared to the unweighted
distance measure (Equations 6.4) are presented in Figures 9.6 and 9.4 for the
image databases 1 and 2 respectively.

The figures show, that the performance of the algorithm searching correspond-
ing interest points is superior to the voting algorithm. However, more striking
is the fact, that for both databases the curve of the voting algorithm does not
only show a different performance. It is also shaped differently than the other
performance curves. If we compare the curves of the different algorithms in Figure
9.6, then we see that most of them are more or less parallel. Even the curves
for the histogram based methods are almost parallel to the feature vectors curves
using corresponding interest points. On the other hand the curves for the voting
distance show a different progression. The performance drops quickly at the be-
ginning, but with growing sizes of the result set the algorithm converges to the
same performance as the algorithm searching corresponding points.

The explanation of the poorer performance of the voting distance can be ex-
plained with different facts. Firstly, in our test database for most similar image
pairs one interest point of the query image corresponds to only one point in the
database image. The second and probably more important explanation is the be-
haviour of feature vectors on flat or almost flat interest regions taken from the
background of the images. A feature vector corresponding to one of these regions
has a small distance compared with any other feature vector of this group of flat
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regions. During the algorithm searching corresponding interest points these fea-
ture vectors are eliminated one by one and do not "harm” the distance function
very much. Considering the voting algorithm on the other hand, one of these
background feature vectors will match against possibly all other background fea-
ture vectors, which produces an enormous amount of votes. If we examine e.g.
the comparison of two images, where each of them has 10 interest points taken
from the background among all their 100 points each, then the comparison step
produces approximately 100 votes, whereas the other votes will be in the range of
50 votes in the average case. I.e. that in this case % of the votes correspond to
the homogeneous background. This low relation between representative votes and
unrepresentative background votes causes a worse query performance.

We performed experiments for the two different distance equations of the
method searching corresponding interest points. From now on we will refer to
the method defined by equation 6.4 as unweighted distance and to the method
defined by equation 6.5 as weighted distance. Figures 9.8 and 9.9 show the perfor-
mance curves for the two different distance measures for two of our test databases.
The performance is almost equal for both distances within the order of statistical
uncertainty. Nevertheless we believe, that the weighted distance measure works
better than the unweighted measure on bigger test databases (See section 6.4.2).
This fact has not yet been confirmed by experiments, since we did not perform

any experiments with databases of sufficient sizes yet.

The threshold value

Unlike the histogram based algorithms the query methods for the feature vector
set representations are equipped with a threshold value ¢ which needs to be set.
We conducted experiments with different values for this threshold: ¢t = 0.7,1.0,1.6
and 2.0. The figures 9.11, 9.12 and 9.13 display result curves for the three test
image databases using different threshold values applied to the method of searching
corresponding interest points (Equation 6.4). As we can see, the query performance
seems to be dependent on this value. One of the reason is the distance formula
of the algorithm (equation 6.4). The discretisation of the distance values depends
of the number of collected interest points, which was set to N = 100 in our
experiments. Hence, there are at most 2N different values for the distance between
two images. If the threshold values are too low or too high, then the distribution
of distance values will shift to the respective end of the range of possible values,
where the values cannot be distinguished.

A priori this fact is not very convenient. If a method depends on the correct
settings of a parameter, then we need to find a solution how to find this parameter
and under which circumstances it changes. However, a closer look to the results
for all 3 image databases relativates this judgement. The optimal threshold value
seems to be equal for all 3 databases, we set it to 1.0. We conclude, that the
parameter is not strongly dependent on the input images, i.e. it is possible to
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Figure 9.9: DB 3 - Feature vectors on interest points. Comparison using the
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corresponding feature vectors (Equation 6.5). Region size is 32 x 32, 100 interest
points were collected.
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assign it a fixed value before hand.

Another surprising result concerning the optimal threshold value is it’s actual
value, or the position of this value in the range of the possible distances between
vectors in feature space. Figure 9.10 shows this distribution of the vector dis-
tances in a normalised histogram plot, which has been created by calculating and
subsampling all possible distances of vectors in the first test image database and
placing them into a one dimensional histogram. The x axis specifies the distance
between two vectors (Equation 6.3), the y axis specifies the count of vector pairs
having this distance. The histogram has been normalised, so that the sum of all
bins is equal to 1.
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Figure 9.10: The distribution of the feature vector distances as normalised his-
togram plot

We used the threshold values ¢ = 0.7,1.0,1.6 and 2.0 in our experiments, they
are displayed in Figure 9.10 as thin vertical lines. We note, that the optimal
threshold of t = 1.0 is situated near the lower end of the range of found distances.
This low threshold has the effect, that the number of corresponding interest points
is low. This fact can be seen e.g. in Figure 6.5, where in two rather similar images
only few of the 100 select interest points are actually found as corresponding.

Number of interest points

Figure 9.14 depicts query performance curves for the feature vector set method
with different counts of collected interest points. We used counts of 30,50, 70 and
100 points. The reason for the limitation of the number of points is the strong
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Figure 9.11: DB 1 - Different thresholds applied to the method using feature
vectors on interest points, version 2. Comparison using the method of searching
corresponding interest points (Equation 6.4). Region size is 32 x 32, 100 interest

points collected.
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Figure 9.12: DB 2 - Different thresholds applied to the method using feature
vectors on interest points, version 2. Comparison using the method of searching
corresponding interest points (Equation 6.4). Region size is 32 x 32, 100 interest

points collected.
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dependency of the method on the number of points. It is computationally too
expensive to perform the algorithm with 200 interest points collected on each
image.

The query performance of the feature vector set based method does depend
on the number of interest points. This can be explained by the nature of the
distance algorithm. Since the distance of two images is based on the comparison
of points, the importance of a single point is very high. Hence, increasing the query
performance of the feature vector set based method by increasing the number of
interest points N is possible but limited due to the computational complexity of
the algorithm (O(N?)).

Interest region size

We performed experiments using interest region sizes of 64 x 64 pixels, 32 x 32
pixels and 16 x 16 pixels to check if they influence query performance. From the
computational point of view the size of the interest regions strongly determines
indexation speed, but it has almost no effect on the query speed. Nevertheless we
want to keep it as low as possible. Figure 9.15 shows query performance curves
using the feature vector set based method and the three different region sizes. As
we can see the query performance is not significantly affected by the change of the
region sizes.

The interest point operator

For our experiments we used different interest operators, which we described in
chapter 3: Two different implementations of the Harris corner detector, two dif-
ferent versions of the Loupias wavelet based interest point detector based on the
Haar and the Daubechie wavelet respectively, and the Jolion multiresolution con-
trast based interest point detector. To evaluate the dependency of our algorithms
on the choice of the interest point operator, we additionally implemented an ”in-
terest point operator” selecting a fixed number of random points in an image.

The results of our experiments are displayed in Figure 9.16 for our first test
database. As we can see, the differences in performance between the various de-
tectors are not big. The performance of the algorithms in experiments where the
random interest point detector is used is not as good as the performance of the
other interest operators, but still surprisingly good. The differences are in the order
of the statistical uncertainty of the measurement of the algorithms. We conclude,
that the performance of our algorithms only weakly depends on the locations of
the interest points, i.e. on the choice of the interest point detector. This fact can
be explained by the richness of our image features. The feature data collected on
the interest points has enough descriptive power.
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points were collected.
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9.3.3 Representation by Histogram Sets

This section describes the experiments that have been conducted using the two
histogram set representations described in chapter 7. As for the feature vector
methods, we optimised the parameters of the algorithms to obtain the optimal
query performance.

The histogram dimensions

An important parameter of the image representation is the dimensions of the
histograms, i.e. the number of bins, and the borders, i.e. the interval of the
raw data which is represented by the histograms. We designed the histogram
borders according to the distribution of the feature data. Table 9.5 shows the
histogram borders and dimensions for the two different representations used during
our experiments.

Parameter | Amplitude x Amplitude Amplitude x Ranking
x-bin count 8 8
y-bin count 8 16
x-min value 7 -6
y-max value 12 6
x-min value 7 1
y-max value 12 n = number of neighbours

Table 9.5: The histogram dimensions used during the experiments

In the case of the amplitude-amplitude histogram the values on the x and on the y
axis are logarithmic amplitude values. The given borders have been calculated by
decreasing step by step the borders of an accumulated histogram, which has been
computed by summing up all histograms of our first test image database, until the
amplitude data is best covered by the interval of the histogram. The same has
been done for the z axis of the second histogram type, which stores differences of
amplitudes in it’s x axis. The y axis of the second histogram type, which stores
the neighbourhood ranking of the n-nearest neighbour search, has trivial borders,
which we did not need to calculate.

The histogram dimensions have been found by experiments. Like we already
experienced with other parameters, the histogram dimensions influence the query
speed, so we want to keep them as small as possible. However, too small histograms
are not representative anymore, whereas too large histograms contain too many
empty bins, which is not a good characteristic if we want to apply histogram
distances.
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The number of neighbours

The number of neighbours n for the n-nearest neighbour search determines how
much influence of the spatial coherence of the feature data is represented in the
histogram. However, the number has to be adjusted to the data. If the algorithm
does not search enough neighbours, then the spatial coherence is under represented
in the histogram. If the algorithm searches too many neighbours on the other
hand, then the information about the spatial coherence is lost, since the found
neighbours tend to be the same for points near to each other. We conducted
experiments using 3, 6, 12, 24 and 48 neighbours. Surprisingly there is almost no
difference in the query performance (Figure 9.17), although counts of n = 12 or
even n = 48 are far too high to store any spatial information in the histograms,
considering that NV = 200 interest points are collected on each image. We conclude,
that the additional information about the spatial coherence does not change the
descriptiveness of the histograms.

The histogram distance measure

We also conducted experiments with the histogram distance measurements de-
scribed in section 7.3. As can be seen in Figure 9.18 the best results are obtained
with the Battacharyya distance. This has been confirmed by Huet and Hancock
in their work as well [11].

The histogram representation

We introduced two different histogram based image representations. Represen-
tation 1 consists of a set of histograms storing amplitudes and representation 2
consists of a set of histograms storing differences of amplitudes and the ranking of
the neighbours of the n-nearest neighbour search. We performed experiments using
both of the two representations. Comparing the query performance of the methods
applied to test image database 1 (Figure 9.6) and test image database 2 (Figure
9.4). We remark that the first method based on the amplitude distribution only
performs better than the second one. We conclude, that the absolute amplitude
information is more descriptive than the relative information. I.e. the information,
which orientations and scales are present in the image is more descriptive than the
information how much the amplitudes change in the spatial neighbourhood of the
interest points.

The number of interest points

As for the feature vector approach we conducted experiments with different counts
of collected interest points to optimise the algorithm for this parameter. Figure
9.19 depicts the experiments with numbers of 50, 100, 200 and 300 points. For this
algorithm it was possible use higher numbers of interest points, because unlike the
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feature vector set method the query speed does not depend on this parameter. As
we can see the performance of the histogram based algorithm is weakly dependent
on the number of interest points. The differences in the query performance are
within the statistical uncertainty of the measurement algorithms.

For the histogram based methods the count of interest points is not as im-
portant. If enough area of the image is covered by interest regions, and if the
histograms are filled enough — i.e. the number of non-zero bins of the normalised
histogram is sufficiently high — then increasing the number of interest points does
not increase query performance.

The interest region size

Similar to the feature vector set method we performed experiments with different
interest region sizes. We used sizes of 64 x 64 pixels, 32 x 32 pixels and 16 x 16
pixels. Figure 9.20 shows query performance curves using the histogram set based
query method (histograms sets storing the amplitude distribution) and the three
different region sizes. As for the feature vector set method, the query performance
is not significantly affected by the change of the region sizes.

The interest point operator

In our experiments we used the same interest point operators we already applied
in the feature vector set methods. The results are displayed in Figure 9.21 for
test database 1 and in Figure 9.22 for test database 2. The results are similar to
the results of the experiments for the feature vector set methods: The differences
in performance between the various detectors are not big. However, surprising is
the good performance of the algorithms in experiments where the random interest
point detector is used. The performance of the random points operator is equal to
the performance of the other operators.

We already explained the weak dependency of our algorithms to the choice of
the interest operator with the richness of our image features. However, the his-
togram based approach is even less sensitive to the choice of the interest operator
than the feature vector set approach. This can be explained by the fact, that we
do not compare single feature vectors, i.e. single interest points, but distributions
of interest points. The feature data collected on the interest points has enough de-
scriptive power, which is not improved by a stable interest point detector choosing
points ”appropriate” for our type of features.

9.3.4 Comparison of the Methods per Query Image

The query curves show the performance of the different query methods as the
precision averaged for all query images. We don’t get any information which query
method works well with which type of image. To produce this kind of information
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Figure 9.19: DB 1 - Different counts of collected interest points applied to the
method using ordered set of histograms (storing amplitude x amplitude). Region
size is 32 x 32, Haar transform detector.
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Figure 9.20: DB 1 - The results for the ordered set of histograms (storing amplitude

x amplitude), using different interest region sizes. Haar transform detector, 200
interest points collected.
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Figure 9.21: DB 1 - The results for the ordered set of histograms (storing amplitude

x amplitude), using different interest point detectors. Region size is 32 x 32, 200
interest points were collected.
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Figure 9.22: DB 2 - The results for the ordered set of histograms (storing amplitude
x amplitude), using different interest point detectors. Region size is 32 x 32, 200
interest points were collected.
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we created statistics at a lower level of detail, i.e. the level of single query images.
For each query image and each query method we calculated the query precision
for a return set of 10, 20, 30 and 40 images, and the average precision for all
return sets with sizes between 1 and 50 images. Then we compared the precision
values for all methods for each query image. The query method which is best for
this query image gets a vote. Continuing this process for all query images we get
several statistics for each size of the return set how many queries work best for
each method.

Algorithm / Tmages in the return set | 10 | 20 | 30 | 40 | avg. 1-50
Histogram set amplitude xamplitude 347 | 248 | 235 | 220 201
Histogram set diff. amplitudes x ranking | 93 | 122 | 126 | 142 126
Feature vectors version 2 129 | 199 | 208 | 207 242

Table 9.6: Results for different sizes of the result set

It can be seen, that with growing size of the return set the histogram set method
storing amplitudes looses performance against the growing performance of the
feature vector method. However, more important is the information, which query
method is preferable for which type of image. So we classified the same information
according to the image clusters in the following two tables. The rows represent
the different query methods, the columns the different image clusters. An entry
in the table specifies how many images of this cluster had the best results for this
query method. The following tables were produced for 10 images in the return set
and the average value of 1 to 50 images in the return set respectively.

Algorithm / cluster 1] 2]3]4|5]6]|7]8]9]10]11] total

Histogram set 31111 (1214 3 | 26|25 79|81 |92 347

amplitude xamplitude

Histogram set 500101310153 8]01]49120| 93
diff. amplitudes x ranking
Feature vectors 20011310 1 (11|33 |7 26|63 129

version 2

Table 9.7: Results: 10 images in the return set

The difference of the two tables is not small, which means that the ordering of the
“good” results in the return set is different for the different methods.

9.3.5 Comparison and Conclusion

In our experiments we evaluated two query methods applied to the three differ-
ent test databases described in chapter 8. As we can see, the algorithmic distance
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Algorithm / cluster 1] 23456 7]8]9][10] 11 |total

Histogram set 0110 1 | 7|14 1 |0 |25|43]49 | 51 201
amplitude xamplitude

Histogram set 51010160606 |14]67| 22 126
diff. amplitudes x ranking

Feature vectors 501 (13121 (12325 2940|102 || 242
version 2

Table 9.8: Results: Average value of 1 - 50 images in the return set

methods using the feature vector set representation perform slightly better then the
statistical distance methods based on the histogram set representations. Consider-
ing, that the difference in query performance between the feature vector methods
and the histograms is almost insignificant, then the relation between cost (query
speed) and benefit (query performance) is significantly better for the histogram
based methods.

The performance of our algorithms is only weakly dependent on parameters.
Both algorithms are invariant to changes of the interest region size. The threshold
t of the feature vector set algorithm can be fixed according to our experiments.
The performance of the histogram based method does not depend on the number
of the interest points collected.

As we already noted, the query performance of the feature vector set based
method can be improved by increasing the number of interest points, but the
amelioration is limited due to the computational complexity of the algorithm.
Future work could be done to combine the feature vector set representation with
hierarchical representations and methods [14] in order to reduce the complexity of
the distance algorithm.
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Chapter 10

Conclusion and Outlook

The main contribution of this thesis has been the description of several possibili-
ties to realise a content based image retrieval system which uses texture similarity
to calculate distances between images. We showed how to combine interest point
detectors and the application of a Gabor filter bank to create descriptive image
representations. We introduced two different query methods which used different
image representations. We described an algorithmic method based on frequency
descriptions of image regions and a statistical method based on histogram repre-
sentations of the images. Both query algorithms give good results according to our
test image databases. For indexation purposes we recommend the histogram based
statistical method, because it needs much less computational efforts, whereas the
performance decrease is statistically not significant.

Figure 10.1: Example Query
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Our algorithms do not use any a priori model of the image contents. They have
been evaluated and tested in various experiments using different databases of test
images of various sources. Because we did not restrict the set of images supported
to a specific group, the question arises, which type of queries can be handled by
our methods.

The image representation introduced in this thesis holds a rough texture de-
scription of images. The similarity measure is able to distinguish groups of images
of the same type, i.e. images having similar content without considering many
details. Typical applications could be e.g. databases of television broadcast sta-
tions, which need to find screenshots of similar scenes or shots of the same telecast
in a large set of television screenshots. Experiments with one of our test image
databases which contains television screenshots, prove the good performance for
this task.

Figure 10.1 shows a typical result set of a query against one of our test databases
containing images of various types (portraits, drawings, screenshots of video se-
quences, textures etc.). The query image — a portrait — is displayed in the left
upper position, the result image are ordered from left to right and from top to
bottom. Our query algorithms are capable to retrieve the other portraits of the
database. However, they are unable to recognise details of the images, i.e. in this
case they do not retrieve the images showing the person on the query image on the
first positions of the result set. Tasks like this need to be done by specialised recog-
nition systems, which use specific image data to create image similarities designed
for the application domain.

Other possible applications of our methods could be to use them as pre-
processing steps to specialised image databases. Because our query methods are
capable of retrieving images of the same type from a database containing images
of various types they can be used to narrow the set of images to search for other
methods which perform search algorithms specialised for a specific task. Consider-
ing the example described above, one possibility would be to search all portraits of
a general database using our texture based method, and to apply a face recognition
algorithm afterwards on the result set of our method.

The following future tasks are planned to deepen the experiences we made
during this work:

e The integration of a structural component by combining our feature vec-
tor set based query method with attributed graph pyramids [13] [14]. The
aim is reduce the complexity of the feature comparison step and to add a
hierarchical component to the image similarity.

e Another task currently pursued is to join this texture based approach with
methods based on colour, structure and shape into one weighted indexation
system, which uses feedback of the user to determine the preferences and to
recalculate the weights of the system (See Section 2.3).

97



Appendix A

Table of symbols

The following symbols have been used through out this work:

Symbol Description

Database

B Number of images in the database

F Number of images used as query images

N Number of interest points collected on an image

Filters

S Number of scales of the Gabor filter bank

K Number of orientations of the Gabor filter bank

u0 The x-coordinate in frequency space of the max. ampli-
tude of a filter response

v0 The y-coordinate in frequency space of the max. ampli-
tude of a filter response

Algorithms

t The threshold for the distance of feature vector sets.

n The number of neighbours for the n-nearest neighbour.
search

by V Feature vectors or histogram vectors

Measures

P(c) Precision of a query returning a result set of ¢ images

R(c) Recall of a query returning a result set of ¢ images

Table A.1: Symbols used in this document
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Appendix B

Screenshots

For demonstration purposes and to make tests of our algorithms easier we devel-
oped a query system with graphical interfaces. Screenshots of these tools for the
X-window system and the web are displayed in Figures B.1 and B.2. The system
is accessible via the world wide web at the following address:

http://www.prip.tuwien.ac.at/Research/ImageDatabases/Query
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Figure B.1: The graphical Frontend for the X-window System
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Figure B.2: The Main Page of the Web Frontend
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