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Abstrat

This paper presents a new formalism for irregular pyramids based on ombinatorial maps.

This tehnial report ontinues the work begun with the TR-54 and TR-57 reports (see

[15℄ and [6℄).We provide in this tehnial report algorithms allowing eÆient parallel or

sequential implementation of ombinatorial pyramids
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1 Introdution

Objets that are mapped into the image plane indue spatial relations among

eah other and between their parts. Geometrial measurements derived from

a digital image are very sensitive to errors due to noise, disrete sampling

and motion inauraies. However these strutural and topologial relations

are inherent to the objets and their arrangement in the image and mostly

do not depend on the partiular imaging situation. This is the bakground of

several reent ontributions desribing spatial/strutural representations and

transformations preserving existing topologial relations in the image plane.

Following list enumerates a few possibilities to preserve strutural relations

into a more abstrat representation:

1. The simplest one uses oordinates as vertex attributes of an attributed

relational graph. This immediate representation depends on the par-

tiular mapping geometry. For well ontrolled environments (e.g. geo-

graphi information systems) it is widely used due to its simpliity.

2. Another approah [17℄ onsiders loal deformations of digital urves

that preserve an impliitly given topology. The idea is that images

showing the same topologial arrangement of regions and urves an

be transformed into eah other. An interesting extension to higher

dimension is presented by Fourey and Malgouyres [7℄.

3. A pair of plane

1

dual graphs is the base of an irregular graph pyramid

built by repeated dual graph ontrations [12℄. It di�ers from the pre-

vious approah that the transformed data are redued at eah step by

a fator whih is the origin of its omputational eÆieny.

4. Topologial and ombinatorial maps have been investigated in [8℄ and

[14℄. There the embedding is determined by the loal orientation of

the strutural elements. These works have been the basis of our two

preeding tehnial reports [15, 6℄.

The rest of this report is struturate as follows: First we briey reall the

main results of our previous tehnial reports, in the setions 1.1, 1.2 and 1.3.

Then, we present in Setion 2 an impliit representation of ombinatorial map

1

A plane graph is an embedded planar graph. We purposely use the term 'plane'

beause two embeddings of the same planar graph need not be topologially isomorphi.
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(a) A plane graph (b) deomposed along dual edges () ombinatorial map

Figure 1: From a plane graph to a ombinatorial map

pyramids de�ned by a sequene of ontrations, or a sequene of removals.

An expliit representation of ombinatorial maps pyramid is also proposed.

In Setion 3 we extend this new enoding of a ombinatorial map pyramid by

allowing ontrations and removal operations during the onstrution of the

pyramid. Note that one step of the onstrution of the ombinatorial map

pyramid is enoded by kernels (see [6℄ and Setion 1.3) and thus enodes only

one type of operation.

1.1 Combinatorial Maps

A ombinatorial map may be seen as a planar graph enoding expliitly the

orientation of edges around a given vertex. Thus all graph de�nitions used

in irregular pyramids [13℄ suh as end verties, self loops, or degrees may be

retrieved easily.

Figure 1 demonstrates the derivation of a ombinatorial map from a plane

graph. First edges are split where their dual edges ross (see Figure 1-b).

That deomposes the graph into onneted parts of half-edges that surround

eah vertex. These half edges are alled darts and have their origin at the ver-

tex they are attahed to. The fat that two half-edges (darts) stem from the

same edge is reorded in the reverse permutation �. A seond permuta-

tion �, alled the suessor permutation, de�nes the (loal) arrangement

of darts around a vertex. Counterlokwise ordering is assumed here. Fig-

3



ure 2 gives a slightly enhaned example of ombinatorial map with 12 darts.

The symbols �

�

(d) and �

�

(d) stand, respetively, for the � and � orbits of

1 -1

2

-2

3

4

-4

5 -5

6

-6

-3

� = (1; 2;�4)(�2;�1; 3)(�3;�6;�5)(4; 5; 6)

Figure 2: The permutation �

the dart d. More generally, if d is a dart and � a permutation we will denote

the �-orbit of d by �

�

(d). The ardinal of this orbit will be denoted j�

�

(d)j.

A ombinatorial map G is the triplet G = (D; �; �), where D is the

set of darts and �, � are two permutations de�ned on D suh that � is an

involution, e.g. satisfying

8d 2 D �

2

(d) = d

If the darts are enoded by positive and negative integers, the permutation �

an be impliitly enoded by �(d) = �d (see Figure 2). In the following, we

will use alternatively both notations, the notation �(d) = �d will be often

use for pratial results linked to the implementation of our model. Indeed,

if the permutation � is impliitly enoded, the ombinatorial map may be

implemented by a basi array of integers enoding the permutation �, whih

looks as follows for Fig. 2:

d -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

�(d) -5 -3 1 -6 -1 3 2 -4 -2 5 6 4

Following onepts from graph theory that are needed later for struture

preserving operations an be expressed in terms of ombinatorial maps: self-

4



loop, duality, and bridge. An edge �

�

(d) is alled a self loop, i�: �d 2 �

�

(d).

Or, if the two endpoints of an edge are the same vertex.

A fae of a planar graph is de�ned by the set of edges whih surround

it. Using a ombinatorial map, one dart per edge is suÆient to enode

a fae, sine for eah dart the involution � allows us to retrieve the other

dart de�ning the edge. Moreover, the ordered sequene of darts around a

vertex enoded by permutation � indue an order in the sequene of faes

enountered when turning around a fae. This order is enoded thanks to

the permutation ' = � Æ �: Given a ombinatorial map G = (D; �; �), the

ombinatorial map G = (D; '; �) is alled dual ombinatorial map of

G. The orbits of ' enode the faes of G. Note that the funtion ' is a

permutation, sine it is the omposition of two permutations on the same

set. Using a lokwise orientation for permutation � all the faes of the

ombinatorial map exept one are ounter-lokwise oriented. The lokwise

oriented fae is alled the in�nite fae. The dual map of Fig. 2 is given as

follows:

d -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

'(d) 4 6 5 -2 -4 2 3 -1 -6 1 -3 -5

The onnetivity of a graph (or a subgraph representing an objet) is

an essential strutural property. Sine our goal is to suessively remove

unneessary parts the onnetivity an be lost by these operations. Before

disonneting a graph into two omponents these two omponents will be

onneted by a single edge whih is alled a bridge whih an be harater-

ized by

�(d) 2 '

�

(d)

1.2 Contration and Removal

In order to preserve the number of onneted omponents of the original

ombinatorial map bridges must be exluded from removal operations. Using

this restrition, the removal operation may be expressed as the de�nition of

a sub ombinatorial map without the removed edges. A formal de�nition of

the removal operation written in terms of modi�ations of permutation � is

given in [15℄.

Given a partition of an image, merging two regions may be onsidered in

two di�erent ways: First we an onsider that the two regions are merged

by removing one of their ommon boundaries. This operation is enoded

5



in our ombinatorial map formalism by the edge removal. Seondly, we an

also onsider that the two regions are merged by identifying the two regions

and removing one of their ommon boundaries. This dual point of view is

enoded in our formalism by the ontration operation.

Using the duality we de�ne the ontration of dart d of a given ombina-

torial map G = (D; �; �) whih is not a self loop. The result is the following

graph

G

0

= G=�

�

(d) = G n �

�

(d)

Note that this operation is well de�ned sine d is a self-loop in G i� it is a

bridge in G.

Note that, under the same hypothesis, we have:

G=�

�

(d) = G n �

�

(d)

Thus the two dual points of view on merging regions are performed by two

dual operations on the ombinatorial map and its dual. Thus many partiular

ases of one operation may be retrieved thanks to the partiular ases of the

other. For example, sine bridges are forbidden for removal operation the

dual of a bridge, i.e. a self-loop, is forbidden for ontration.

1.3 Equivalent Contration Kernels

The onept of a tree and of a forest are used to de�ne a ontration kernel

that ollets a set of darts that an be ontrated independently of eah other

without destroying the onnetivity struture of the graph. A sequene of

merging segments of a partition may be enoded by a sequene of ontra-

tions of the ombinatorial map enoding the partition. Sine the ontration

operation is forbidden for self-loops the set of darts involved in suh a se-

quene of ontrations must not ontain a iruit. Thus the set of edges

involved in suh a ontration may be enoded by a tree whih is a sub-map

of the ombinatorial map G = (D; �; �) with only one '

0

-orbit. The only

dual fae of a tree is the bakground fae.

More generally, if we ontrat a set of verties into a given set of surviving

verties, the set of darts involved in suh ontrations may be enoded by

a forest F = (D

1

; : : : ;D

n

) whih is a olletion of non-overlapping trees

spanning the given ombinatorial map G = (D; �; �).

6



The forest K = (D

1

; : : : ;D

n

) of G will be alled a ontration kernel

i�:

SD = D �

n

[

i=1

D

i

6= ;

The set SD is alled the set of surviving darts.

We an apply suessively two (and more) ontration kernels K

01

and

K

12

to a given ombinatorial map G

0

: G

1

= G

0

=K

01

and G

2

= G

1

=K

12

.

The same result an be ahieved by applying a bigger kernel only one:

G

2

= G

0

=K

02

. Conversely, a ontration kernel may be deomposed into two

smaller ones. The suessive appliation of the resulting ontration kernels

is equivalent to the appliation of the initial one. Di�erent ontration kernels

on the same ombinatorial map G

0

may be related by inlusion, suessive

kernels give rise to predeessor and suessor relations whih allow us to

formulate the above mentioned equivalenes:

Inlusion of Contration Kernels: Let us onsider two di�erent ontra-

tion kernels K

01

and K

02

de�ned on a ombinatorial map G

0

. We will

say that the ontration kernel K

02

inludes K

01

i� K

01

� K

02

. In this

ase eah onneted omponent, a tree T

1

of K

01

is inluded in exatly

one onneted omponent, a tree T

2

of K

02

:

8T

1

2 CC(K

01

)9! T

2

2 CC(K

02

) s.t. T

1

� T

2

:

Predeessor and Suessor Kernels Given a ombinatorial map G

0

=

(D; �; �), a ontration kernel K

01

of G

0

and the ontrated ombina-

torial map G

1

= G

0

=K

01

. If K

12

is a ontration kernel of G

1

then we

say that K

01

is the predeessor of K

12

, or that K

12

is the suessor of

K

01

. This relation will be denoted K

01

� K

12

.

The suessive appliation of K

01

and K

12

forms a new operator on G

0

denoted by K

12

ÆK

01

.

Based on these two de�nitions two theorems ould be formulated in TR-57 [6℄

that relate omposition and deomposition of ontration kernels:

Theorem 4 in [6℄ derives inlusion kernels from suessor kernels:

K

01

� K

12

=) K

01

� K

02

= K

01

[K

12

with (G

0

=K

01

) =K

12

= G

0

=K

02

:

7



The kernel K

02

ombines kernel K

01

with the subtrees of K

12

suh

that that the result of ontrating G

0

with K

02

is the same as if G

0

is

ontrated with K

01

and with K

02

in suession.

Theorem 6 in [6℄ derives suessor kernels from inlusion kernels:

K

01

� K

02

=) K

01

� K

12

= K

02

�K

01

with G

0

=K

02

= (G

0

=K

01

) =K

12

:

Given two ontration kernels K

01

; K

02

for G

0

, K

01

being inluded in

K

02

, the larger kernel K

02

an be deomposed into K

01

and the su-

essor kernel K

12

whih an be used after ontrating G

0

with K

01

to

yield the same result.

The de�nitions of onneting walk and the appliation follow from TR-

57 [6℄ are adapted here to learly identify the pyramid levels of both the

input and the output elements.

De�nition 1 Conneting walk

Given an initial onneted ombinatorial map G

0

= (D; �; �) and a on-

tration kernel K

ij

we assoiate to eah dart d of SD

j

a onneting walk

CW

ij

(d) de�ned on SD

i

by:

CW

ij

(d) = (d; '

i

(d); : : : ; '

n�1

i

(d)) with n =Minfp 2 IN

�

j '

p

i

(d) 2 SD

j

g

De�nition 2 Funtion follow Given an initial onneted ombinatorial

map G

0

= (D; �; �) and a ontration kernel K

ij

the appliation follow

ij

(d)

relates the dart d 2 SD

j

with its suessor in SD

j

through the onneting

walk CW

ij

(d) � SD

i

:

follow

ij

(d) = '

n

i

(d) with n =Minfp 2 IN

�

j '

p

i

(d) 2 SD

j

g

We have shown in TR-57 [6℄ that the set of onneting walks de�ned by an

initial ombinatorial map and a ontration kernel K

ij

may be strutured

into a ombinatorial map GC

ij

suh that GC

ij

is isomorph to G

j

= G

i

=K

ij

.

2 Coding All Contrations of a Pyramid

We will study in this setion an enoding of a sequene of ontrations de�ned

by a sequene of suessor or inlusion kernels. The basi idea of this enoding

is to store for eah dart the index of the ontration kernel whih enloses it.

We will show that this information is suÆient to retrieve all the ontration

kernels and all the ontrated ombinatorial maps.

8



2.1 Coding the life time of a dart

Given a sequene of suessive ontration kernels K

01

� K

12

� : : : � K

n�1;n

we an onsider the sequene of inlusion kernels K

01

� K

01

[ K

12

� : : : �

[

n

i=1

K

i�1;i

whih provides the same series of ontrated ombinatorial maps

(see Setion 1.3 and [6℄). We an thus, without loss of generality, restrit

our study to inlusion kernels. In this last ase, all the onneting walks are

de�ned on the same initial ombinatorial map.

Proposition 1 Given a ombinatorial map G

0

= (D; �; �), and two on-

tration kernels K

01

and K

02

, K

01

� K

02

. The onneting walks of K

02

inlude the onneting walks of K

01

(see Def. 1):

8d 2 SD

2

CW

01

(d) � CW

02

(d)

Proof:

Both onneting walks are de�ned by:

CW

01

(d) = (d; '

0

(d); : : : ; '

n�1

0

(d)) with n = Minfp 2 IN

�

j'

p

0

(d) 2 SD

1

g

CW

02

(d) = (d; '

0

(d); : : : ; '

m�1

0

(d)) with m = Minfp 2 IN

�

j'

p

0

(d) 2 SD

2

g

Sine SD

2

� SD

1

we have m � n and thus CW

01

(d) � CW

02

(d). 2

This result is illustrated in Figure 3.

Proposition 2 Given a ombinatorial map G

0

= (D; �; �), and two on-

tration kernels K

01

and K

02

, K

01

� K

02

. Eah onneting walk of K

01

is

inluded in exatly one onneting walk of K

02

:

8d 2 SD

1

9!d

0

2 SD

2

suh that CW

01

(d) � CW

02

(d

0

)

Proof:

We know that, given a ontration kernel, eah dart belongs to exatly

one onneting walk (see [6℄). Thus there exists a unique dart d

0

in SD

2

suh

that d 2 CW

02

(d

0

).

Let us onsider n suh that '

n

(d) = follow

01

(d) (see Def. 2). The se-

quene CW

01

(d) = (d; '(d); : : : ; '

n�1

(d)) is inluded in K

01

� K

02

by de�-

nition of a onneting walk. A sequene of '-onseutive darts inluded in

K

02

is inluded in exatly one onneting walk of K

02

:

CW

01

(d) � CW

02

(d

0

)

2

9
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9

4

11 12

10

3

8

2

7 8 9

3 4

10 11 12

5 6

1 2

K

01

= �

�

(1; 7)

G

1

= G

0

=K

01

K

12

= �

�

(8; 10)

G

2

= G

0

=K

02

= G

1

=(K

12

)

9

12

2

4

11

6

5

3

Figure 3: This �gure shows two inluded ontration kernels K

01

and K

02

. Eah

onneting walk of K

02

de�ned by one dart in SD

2

= �

�

(2; 3; 4; 5; 6; 9; 11; 12) in-

ludes the orresponding onneting walk of K

01

. We have for example, CW

01

(3) =

3, while CW

02

(3) = 3;�8

10



Proposition 3 Given a ombinatorial map G

0

= (D; �; �), and two on-

tration kernels K

01

and K

02

, K

01

� K

02

. Eah onneting walk of K

02

is

equal to a onatenation of onneting walks of K

01

:

8d 2 SD

2

CW

02

(d) = CW

01

(d

1

) � � �CW

01

(d

p

)

with CW

12

(d) = (d

1

; : : : ; d

p

)

Proof:

Given a dart d 2 SD

2

, let us onsider the ordered set

(d

1

; : : : ; d

n

) = CW

02

(d) \ SD

1

The order of the sequene (d

1

; : : : ; d

n

) is dedued from the order de�ned in

CW

02

(d). Note that we have d

1

= d, sine d 2 SD

2

� SD

1

and d is the �rst

dart of CW

02

(d).

Let us onsider two ases:

� If n = 1, then the walk CW

02

(d)� fdg does not ontain any surviving

dart of SD

1

. Therefore, '(d) 2 SD

2

and:

CW

02

(d) = CW

01

(d) = (d)

Moreover, we have in this ase, '

1

(d) = follow

01

(d) = '(d) 2 SD

2

.

Thus CW

12

(d) = (d).

� If n > 1, eah dart d

i

is enlosed in CW

02

(d), thus we have by propo-

sition 2:

8fd

1

; : : : ; d

n

g 2 SD

1

CW

01

(d

i

) � CW

02

(d)

Moreover, by de�nition of a onneting walk, all darts ontained in

CW

02

(d), and thus all (d

i

)

i2f1;:::;ng

belong to the same '-orbit. There-

fore, we have by onstrution of the ordered set (d

1

; : : : ; d

n

), follow

01

(d

i

) =

d

i+1

. Thus CW

01

(d

1

) � � �CW

01

(d

n

) is a walk of G

0

inluded in CW

02

(d)

starting from d.

If follow

01

(d

n

) belongs to SD

1

� SD

2

, we an �nd another dart d

n+1

in CW

02

(d) \ SD

1

whih ontradits the de�nition of n. Therefore,

follow

01

belongs to SD

2

and:

CW

02

(d) = CW

01

(d

1

) � � �CW

01

(d

n

)

Moreover, sine d

i+1

= follow

01

(d

i

) = '

1

(d

i

) 2 SD

1

�SD

2

, for eah i in

f1; : : : ; n� 1g, the sequene (d

1

; : : : ; d

n

) is inluded in CW

12

(d). Sine

11



we have by hypothesis follow

01

(d

n

) = '

1

(d

n

) 2 SD

2

, the onneting

walk CW

12

(d) must stop at d

n

and we have:

CW

12

(d) = (d

1

: : : d

n

)

2

Using the example given in Figure 3, we obtain for the dart -3: CW

12

(�3) =

(�3; 8), while CW

02

(�3) = (�3;�7; 1; 8) = CW

01

(�3) � CW

01

(8).

Proposition 4 Given a ombinatorial map G

0

= (D; �; �), and a sequene

of ontration kernels K

0;1

; : : : ; K

n�1;n

. For eah i in f1; : : : ; n � 1g, eah

onneting walk CW

j;i+1

(d) with j < i and d 2 SD

i+1

is equal to a onate-

nation of onneting walks de�ned by K

j;i

:

8i 2 f1; : : : ; n� 1g

8j 2 f0; : : : ; i� 1g

�

8d 2 SD

i

CW

j;i+1

(d) = CW

j;i

(b

1

) � � �CW

j;i

(b

p

)

with CW

i;i+1

(d) = (b

1

; : : : ; b

p

).

Proof:

Given two indexes j and i ful�lling the above onditions and a dart d in

SD

i+1

, let us onsider the two sequenes of darts:

CW

j;i+1

(d) = (d

1

; : : : ; d

n

) and

CW

j;i

(b

1

) � � �CW

j;i

(b

p

) = (d

0

1

; : : : ; d

0

q

)

with CW

i;i+1

(d) = (b

1

; : : : ; b

p

).

Sine the �rst dart of a onneting walk is equal to the dart whih de�nes

it we must have b

1

= d

0

1

= d

1

= d. Let us denote the onneting walks

CW

j;i

(b

k

) by:

CW

j;i

(b

k

) = b

k;1

: : : ; b

k;p

k

By de�nition of a onneting walk, '

i

(b

k

) = b

k+1

= '

j

(b

k;p

k

) for eah k in

f1; : : : ; p� 1g. Moreover, for eah dart b

k;j

in CW

j;i

(b

k

), b

k;j+1

= '

j

(b

k;j

).

Therefore, CW

j;i

(b

1

) � � �CW

j;i

(b

p

) is a sequene of '

j

-suessors. More-

over, by de�nition of onneting walks:

8k 2 f2; : : : ; pg b

k

2 K

i;i+1

8k 2 f1; : : : ; pg CW

j;i

(b

k

)� fb

k

g � K

j;i

12



Therefore:

(CW

j;i

(b

1

)� fb

1

g) � CW

j;i

(b

2

) � � �CW

j;i

(b

p

) � K

j;i

[K

i;i+1

= K

j;i+1

(1)

Sine CW

j;i+1

(d)�fdg is the maximal sequene of '

j

-suessors inluded in

K

j;i+1

and starting from '

j

(d = b

1

):

CW

j;i

(b

1

) � � �CW

j;i

(b

p

) � CW

j;i+1

(d)

Using our notations we have b

p;p

p

= d

0

q

. Moreover, by de�nition of the on-

neting walk CW

i;i+1

(d): '

i

(b

p

) = '

j

(d

0

q

) 2 SD

i+1

. Using equation 1, '

j

(d

0

q

)

is the �rst dart of the sequene of '

j

-suessors starting from d whih belongs

to SD

i+1

. Therefore, by de�nition of a onneting walk n = q and:

CW

j;i+1

(d) = CW

j;i

(b

1

) � � �CW

j;i

(b

p

)

2

De�nition 3 Pyramid Constrution Plan

Given a ombinatorial map G

0

= (D; �; �), and a sequene of inlu-

sion kernels K

01

� K

02

: : : � K

0n

, the pyramid onstrution plan LP =

(G

0

; level), assoiated to this sequene of ontrations of G

0

, is de�ned by

G

0

and a funtion level:

level

�

D ! f1; : : : ; n+ 1g

d 7! maxfi j d 2 SD

i�1

g

�

Note that sine eah set of surviving darts SD

i

; i 2 f1; : : : ; ng is symmetri

with respet to �, the funtion level must satisfy the following property:

8d 2 D level(�(d)) = level(d)

Therefore, if the pyramid onstrution plan is implemented with an impliit

enoding of the involution � by the sign, only the level of positive darts needs

to be stored.

Proposition 5 Given a ombinatorial map G

0

= (D; �; �), and a pyramid

onstrution plan LP = (G

0

; level) de�ned by n ontration kernels, eah

dart of level i � n belongs to K

i�1;i

:

K

i�1;i

= fd 2 D j level(d) = ig

13



Proof:

Let us onsider d in D suh that level(d) = i � n. By de�nition of the

funtion level, d belongs to SD

i�1

and d 62 SD

i

. Sine SD

i

= SD

i�1

�K

i�1;i

d must belong to K

i�1;i

.

Conversely, if d belongs to K

i�1;i

we have, d 2 SD

i�1

and d 62 SD

i

.

Moreover, sine SD

k

� SD

i

for eah k greater than i, d 62 SD

k

for k � i.

We thus obtain level(d) = i. 2

Corollary 1 Given a ombinatorial map G

0

= (D; �; �) and the pyramid

onstrution plan LP = (G

0

; level). Eah ontration kernel K

0i

is equal to

the darts having a level less than or equal to i:

8i 2 f1; : : : ; ng K

0i

= fd 2 D j level(d) � ig

Proof:

We have for eah level i in f1; : : : ; ng:

K

0i

=

i

[

j=1

K

j�1;j

Using proposition 5 we obtain:

K

0i

= fd 2 D j level(d) � ig

2

Corollary 2 Given a ombinatorial map G

0

= (D; �; �) and the pyramid

onstrution plan, LP = (G

0

; level) de�ned by n ontration kernels. The

surviving darts of the i

th

ontration kernel have a level stritly greater than

i:

8i 2 f1; : : : ; ng SD

i

= fd 2 D j level(d) > ig

Proof:

The surviving darts of level i are de�ned by:

SD

i

= D �K

0i

Sine K

0i

= fd 2 D j level(d) � ig (see orollary 1) we have:

SD

i

= fd 2 D j level(d) > ig

2

14



Remark 1 Given a pyramid onstrution plan LP = (G

0

; level) de�ned by

an initial ombinatorial map G

0

and n inlusion kernels, a dart d 2 D suh

that level(d) = n + 1 belongs to SD

n

. Therefore, this dart is not ontrated

during the sequene of ontrations generating the pyramid.

Proposition 5, Corollaries 1 and 2 show that the funtion level allows us to

retrieve the di�erent ontration kernels and their assoiated surviving darts.

The permutation � being the same for all ontrated ombinatorial maps,

a given ontrated map G

i

= (SD

i

; �

i

; �) will be ompletely determined

if we an de�ne the permutation �

i

from the funtion level. Propositions

below show that Algorithm 1 allows us to retrieve the di�erent permutations

�

i

thanks to the impliit enoding of the ontration kernels K

0i

by the

funtion level. It an be onsidered the 'life time' of a dart in the sequene

of ontrations generating the pyramid.

dart survive

C

(int i, dart d)

f

if ( level(d) > i )

return d;

return survive

C

(i,'(d))

g

Algorithm 1: The funtion survive

C

returns the �rst dart in SD

i

enountered

when turning around the fae '

�

(d)

De�nition 4 survive

C

Stak Given a ombinatorial map G

0

= (D; �; �),

and the pyramid onstrution plan, LP = (G

0

; level). The ordered set

Stak

C

(i; d) is the sequene of darts whih will be passed as seond argument

of the reursive funtion survive

C

during a all to survive

C

(i; d).

Remark 2 Using the same notations and hypothesis as de�nition 4, the last

dart of Stak

C

(i; d) is equal to survive

C

(i; d).

Proposition 6 Using the same notations and hypothesis as de�nition 4,

the ordered set Stak

C

(i; '(d)) is equal to CW

0i

(d)� fdg onatenated with

15
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Figure 4: An illustration of the algorithm survive

C

. A all to survive

C

(2;�7)

will indue the traversal of the darts �7; 1; 8 and �3 represented by empty arrows.

Note that we have CW

02

(�3) = �3;�7; 1; 8. and thus '

2

(�3) = '(8) = �3 (see

Figure 3)

follow

0i

(d) for eah i in f1; : : : ; ng and eah d in SD

i

:

8 i 2 f1; : : : ; ng

8 d 2 SD

i

�

d � Stak

C

(i; '(d)) = CW

0i

(d) � follow

0i

(d)

Proof:

� If CW

0i

(d) = (d), then '(d) belongs to SD

i

. In this ase level('(d)) is

stritly greater than i (see Corollary 2) and survive

C

(i; '(d)) is equal

to '(d). Therefore:

Stak

C

(i; '(d)) = ('(d))

with '(d) = follow

0i

(d).

� Let CW

0i

(d) = (d; d

1

; : : : ; d

p

) with p � 1. Suppose that the series

Stak

C

(i; '(d)) and CW

0i

(d)� fdg are equal until a given index j:

Stak

C

(i; '(d)) = (d

1

; : : : ; d

j

; : : :)

We have by de�nition of a onneting walk d

k

= '

k

(d) for eah k in

f1; : : : ; pg. Thus d

1

= '(d) belongs simultaneously to Stak

C

(i; '(d))

and CW

0i

(d) � fdg and the property is true for j = 1. If the prop-

erty is true until a given rank j < p, we have: d

j+1

= '(d

j

) and

d

j

2 K

i

. Therefore, the level of d

j

is less than i (see orollary 1) and

survive

C

(i; d

j

) = survive

C

(i; d

j+1

). Thus d

j+1

belongs to Stak

C

(i; '(d))
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and follows d

j

in this order. The property is thus true until the rank

j + 1.

The sequene (d

1

; : : : ; d

p

) is thus inluded in Stak

C

(i; '(d)). Moreover,

by de�nition of a onneting walk '(d

p

) = follow

0i

(d) 2 SD

i

. There-

fore, the level of '(d

p

) is stritly greater than i and survive

C

(i; d

p

) =

survive

C

(i; '(d

p

)) = '(d

p

) = follow

0i

(d). Thus the sequene of reur-

sive alls to the funtion survive

C

stops on '(d

p

) and Stak

C

(i; '(d))

is equal to:

Stak

C

(i; '(d)) = (d

1

; : : : ; d

p

; follow

0i

(d))

2

Corollary 3 Given a ombinatorial map G

0

= (D; �; �) and a pyramid on-

strution plan, LP = (G

0

; level) de�ned by n inlusion kernels. The applia-

tion follow

0i

de�ned by G

0

and the ontration kernel K

0i

may be retrieved

with the funtion survive

C

by using the following equation:

8 i 2 f1; : : : ; ng

8 d 2 SD

i

�

follow

0i

(d) = survive

C

(i; '(d))

Proof:

See proposition 6 and remark 2. 2

A ombinatorial map G = (D; �; �) is expliitly enoded by its set of

darts D and the two permutations � and �. Corollary 3 shows us that

the funtion follow

0i

, and thus �

i

may be retrieved thanks to the algorithm

survive

C

. However, the pyramid onstrution plan remains impliitly de�ned

by funtion level. One idea to obtain a more expliit form of the pyramid

onstrution plan is to store the results of the funtion survive

C

in a funtion

�

C

(see Table 1) whih then enodes expliitly the pyramid onstrution plan:

De�nition 5 Appliation �

C

Given a ombinatorial map G

0

= (D; �; �), and a pyramid onstrution

plan, LP = (G

0

; level) de�ned by n inlusion kernels. The appliation �

C

from f1; : : : ; ng �D to D is de�ned by:

�

C

�

f1; : : : ; ng �D ! D

(i; d) 7! survive(i; �(d))

17



De�nition 6 Restoration of the pyramid onstrution plan

Given a ombinatorial map G

0

= (D; �; �), and a pyramid onstru-

tion plan LP = (G

0

; level) de�ned by a sequene of n inlusion kernels, the

restoration p

i

is an appliation from SD

i

to f1; : : : ; ng�D whih assoiates

to eah dart d in SD

i

the ouple (i; d):

p

i

�

SD

i

! f1; : : : ; ng �D

d 7! (i; d)

Proposition 7 Given a ombinatorial map G

0

= (D; �; �), a pyramid on-

strution plan, LP = (G

0

; level) de�ned by n inlusion kernels and the

restoration (p

1

; : : : ; p

n

).

The permutation �

i

of G

i

= (SD

i

; �

i

; �) is equal to �

C

omposed with p

i

.

8i 2 f1; : : : ; ng �

C

Æ p

i

= �

i

Proof:

Given an index i in f1; : : : ; ng and a dart d in SD

i

, the appliation �

C

Æp

i

maps d into survive

C

(i; �(d)). Thus, using Corollary 3 we have:

�

C

Æ p

i

(d) = survive(i; �(d)) = survive(i; '(�(d))) = follow

0i

(�(d))

Using the isomorphism between the onneting walk map and the ontrated

one (see [6℄) we have: �

i

= follow

i

Æ �. Therefore:

8i 2 f1; : : : ; ng 8d 2 SD

i

�

C

Æ p

i

(d) = �

i

(d)

2

Thus, using the funtion level and the algorithm survive

C

we an retrieve,

all the ontration kernels and all the ontrated ombinatorial maps de�ned

by these kernels. If the result of the funtion survive

C

(i; �(d)) is stored in

�

C

for eah level i and for eah dart d in SD

i

, the impliit de�nition of

the pyramid onstrution plan beomes expliit and it an be denoted by:

LP = (G

0

; level) = (D;�

C

; level; �) (see Table 1).

If the sequene of ontrations is de�ned by suessive ontration ker-

nels, instead of inlusion kernels, the di�erent ontration kernels may be

retrieved from the funtion level by the proposition 5. This proposition may

be used as a onsequene of De�nition 3 if the pyramid is de�ned by inlusion

18



d max

i

+ 1 �

C

(i; d)

dart level 0 1 2

1 1 7

-1 1 8

2 3 -1 10 5

-2 3 9 9 9

3 3 -7 8 -3

-3 3 11 11 11

4 3 -8 -8 2

-4 3 12 12 12

5 3 -10 -10 3

-5 3 6 6 6

6 3 -11 -11 -11

-6 3 -12 -12 -12

7 1 1

-7 1 10

8 2 2 2

-8 2 -3 -3

9 3 -2 -2 -2

-9 3 -4 -4 -4

10 2 3 3

-10 2 5 5

11 3 4 4 4

-11 3 -5 -5 -5

12 3 -9 -9 -9

-12 3 -6 -6 -6

Table 1: This table represents a possible implementation of the funtion �

C

by a bi-dimensional array with lines of variable size. Note that in this ase the

funtion level enode simultaneously the level on whih a dart is ontrated

and the size of its assoiated line. The di�erent values of �

C

(i; d) given in

this table orrespond to the ontrations de�ned in Figure 3
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kernels or as a de�nition of the funtion level if the pyramid is de�ned by

suessive kernels. However, note that in this ase, the unontrated darts

whih belongs to D �K

0n

must be labeled with n+ 1.

The basi idea of a parallel implementation of the funtion survive

C

is

to run the algorithm survive

C

onurrently on jDj proessors. If we suppose

that we have an ideal CREW PRAM (Conurrent Read Exlusive Write

Parallel Random Aess Mahine, [10℄) the parallel algorithm onsists to

initialize a linear array survive of darts to the identity and to determine

for eah dart its next surviving dart within the fae (see algorithm 2). This

omputation being performed onurrently.

void set next survivor(int i)

f

For eah d in D do in parallel

survive[d℄ = d;

For eah d in D do in parallel

get survive(i,d);

g

Algorithm 2: The algorithm set next survivor omputes the next survivor of

eah dart. The funtion get survive is desribed in Algorithm 3

void get survive(int i, dart d)

f

while(level(survive[d℄) � i )

f

survive[d℄=survive['(d)℄;

g

g

Algorithm 3: The algorithm get survive is attahed to one dart and omputes

its next survivor

If we suppose that a fae is de�ned by '

�

(1) = (1; 2; 3; 4; 5; 6; 7; 8; 9), and

that the surviving darts of this faes are 2 and 5, the algorithm get survive

20



will produe the following steps:

survive :

0

B

B

B

B

B

B

�

1 2 3 4 5 6 7 8 9

2 2 4 5 5 7 8 9 1

2 2 5 5 5 8 9 1 2

2 2 5 5 5 9 1 2 2

2 2 5 5 5 1 2 2 2

2 2 5 5 5 2 2 2 2

Using a PRAMmodel, eah elementary operation is performed synhronously.

Therefore, the number of elementary steps of eah algorithm get survive(i; d)

is equal to the yli distane between d and its assoiated surviving dart .

If we denote by D the maximum of these distanes, the parallel algorithm

will terminate after D steps. Therefore, worst ase parallel omplexity of our

algorithm is linear in the yli max-distane between surviving darts. More-

over, using Brent's Lemma [2℄ our algorithm may be exeuted on a PRAM

mahine with p proessors in:

t(p) � D +

jDj+ jSD

i

j �D

p

steps.

2.2 Adaptations from removal kernels

Sine a single ontration of a ombinatorial map does not hange the number

of (dual) faes also a sequene of ontrations annot remove a fae. Thus

using ontration kernels solely, at least one dart must survive in eah fae

(see [6℄). Therefore, we annot ontrat a omplex ombinatorial map into

a self-loop by ontrations solely. Consequently also ontrations of the dual

ombinatorial map, i.e. removals, must be onsidered. The redution of the

initial ombinatorial map to a self-loop or to a ombinatorial map with less

faes than the original needs both ontrations and removals. In the following

we study some properties of the removal operation.

De�nition 7 Removal Kernel

Given a ombinatorial map G , a removal kernel is a ontration kernel

of G.

Note that a ontration operation on G is equivalent to a removal op-

eration on G and vie-versa [15℄. Moreover, a removal kernel is a forest of
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G. Therefore if K is a ontration kernel of G, its dual K is not neessarily

a ontration kernel of the dual map G. Thus, if we talk about a removal

kernel below, we mean an inlusion kernel de�ned in the dual ombinatorial

map G, and not the dual of an inlusion kernel of G.

Sine a dual inlusion kernel is de�ned in the dual ombinatorial map G,

the permutations � and ' have to hange their roles. Therefore, the de�nition

of a onneting walk has to be hanged aordingly(see De�nition 1):

De�nition 8 Dual onneting Walk

Given an initial onneted ombinatorial map G

0

= (D; �; �) and a re-

moval kernel K

ij

de�ned on G

0

, we assoiate to eah dart d of SD

j

a dual

onneting walk DCW

ij

(d) de�ned on SD

i

by:

DCW

ij

(d) = (d; �

i

(d); : : : ; �

n�1

i

(d)) with n = Minfp 2 IN

�

j �

p

i

(d) 2 SD

j

g

A removal kernel is simply a ontration kernel de�ned in the dual om-

binatorial map. Therefore, given a ombinatorial map G, all the properties

in G shown in TR-57 [6℄ for inlusion or suessor kernels remain valid in G

for inlusion or suessor removal kernels de�ned in G.

One suh property of a removal is the preservation of struture. We want

that any surviving part remains onneted or disonneted after removal.

It has been shown in [11℄ that parallel edges or self-loops an be removed

without destroying the struture if the enlosed fae has a degree less than

three. This riterion generates automatially removal kernels that 'lean' the

original map from redundant parallel edges and self-loops.

A pyramid onstrution plan may be de�ned by a sequene of ontrations

or by a sequene of removals. De�nition 3, Proposition 5 and Corollary 1

and 2, remain valid in both ases.

However, if we use a sequene of removals, the funtion survive

C

has to

be adapted in order to traverse the dual onneting walks (see Algorithm 4).

Moreover, it an be easily shown that the funtion survive

R

de�ned by Al-

gorithm 4 is a transription of the algorithm survive

C

in the dual graph.

Therefore, all the results given in the previous setion may be adapted and

are given here without demonstration.

De�nition 9 survive

R

Stak

Given a ombinatorial map G

0

= (D; �; �), a sequene of removal inlu-

sion kernels

2

K

01

� K

02

: : : � K

0n

and their assoiated pyramid onstrution

2

Note that K

0i

must be a spanning forest of G

0

= (D; '; �).
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dart survive

R

(int i, dart d)

f

if ( level(d) > i )

return d;

return survive

DC

(i,�(d))

g

Algorithm 4: The funtion survive for a removal kernel

plan, LP = (G

0

; level). The ordered set Stak

DC

(i; d) is the sequene of darts

whih will be passed as seond argument of the reursive funtion survive

R

during a all to survive

R

(i; d).

Remark 3 Using the same notations and hypothesis as de�nition 9, the last

dart of Stak

R

(i; d) is equal to survive

R

(i; d).

Proposition 8 Using the same notations and hypothesis as de�nition 9, the

ordered set Stak

R

(i; �(d)) is equal to DCW

0i

(d) � fdg onatenated with

follow

0i

(d) for eah i in f1; : : : ; ng and eah d in SD

i

.

8 i 2 f1; : : : ; ng

8 d 2 SD

i

�

d:Stak

R

(i; �(d)) = DCW

0i

(d) � follow

0i

(d))

Where DCW

0i

(d) is the onneting walk of d de�ned by K

0i

on G

0

. And

follow

0i

is the appliation follow

0i

de�ned on G

0

by the removal kernel K

0i

.

Corollary 4 Given a ombinatorial map G

0

= (D; �; �) and a pyramid on-

strution plan LP = (G

0

; level) de�ned by n removal kernels. The applia-

tion follow

0i

de�ned by G

0

and the removal kernel K

0i

is equal to:

8i 2 f1; : : : ; ng 8d 2 SD

i

follow

0i

(d) = survive

R

(i; �(d))

De�nition 10 Appliation �

R

Given a ombinatorial map G

0

= (D; �; �) and a pyramid onstrution

plan LP = (G

0

; level) de�ned by n dual inlusion kernels. The appliation

�

R

from f1; : : : ; ng �D to D is de�ned by:

�

R

�

f1; : : : ; ng �D ! D

(i; d) 7! survive

R

(i; �(d))
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Proposition 9 Given a ombinatorial map G

0

= (D; �; �) and a pyramid

onstrution plan LP = (G

0

; level) de�ned by n dual inlusion kernels. The

appliation �

R

Æ p

i

is equal to the permutation �

i

of the i

th

removed ombi-

natorial map.

8i 2 f1; : : : ; ng �

R

Æ p

i

= �

i

Proof:

Aording to the de�nitions of appliation �

R

and p

i

the omposition of

both appliations is equal to survive

R

(i; �(d)) for eah i in f1; : : : ; ng and

eah d in SD

i

:

8i 2 f1; : : : ; ng8d 2 SD

i

�

R

Æ p

i

(d) = survive

R

(i; �(d))

Using Corollary 4:

�

R

Æ p

i

(d) = survive

R

(i; �(d)) = follow

i

(d)

Using the isomorphism between the dual onneting walk map and the re-

moved one (see [6℄) we have: �

i

= follow

0i

, therefore:

8i 2 f1; : : : ; ng8d 2 SD

i

�

R

Æ p

i

(d) = �

i

(d)

2

3 Generalized Pyramid Constrution Plans

In this setion we onsider a sequene of n suessive kernels suh that eah

kernel performs either ontrations or removals of a set of darts of the urrent

ombinatorial map. Aording to the de�nition of a ontration kernel, the

set of darts ontrated or removed at level i, is a forest of G

i�1

if K

i�1;i

is a

ontration kernel and a forest ofG

i�1

ifK

i�1;i

is a removal kernel. Therefore,

the suessive appliation of two suessive kernels K

i�1;i

andK

i;i+1

is neither

a forest of G

i�1

nor of G

i�1

if K

i�1;i

and K

i;i+1

do not perform the same type

of ontration. Sine we no longer onsider ontration kernels K

i;j

with

j 6= i+ 1 we simplify the notations by denoting K

i�1;i

by K

i

.
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Proposition 10 Given a sequene of ontration or removal kernels (K

1

; : : : ; K

n

)

suessively applied on the initial ombinatorial map G

0

= (D; �; �), the two

following properties hold:

�

8i 2 f1; : : : ; ng SD

i

= D �

S

i

j=1

K

j

8(i; j) 2 f1; : : : ; ng

2

; i 6= j K

i

\K

j

= ;

Proof:

Let us demonstrate the �rst property by reurrene. We have, by de�ni-

tion of a ontration kernel SD

1

= D �K

1

. Note that, this property holds

also if K

1

is a removal kernel. Let us suppose the property is true until a

given rank i < n. Then we have by de�nition of a kernel:

SD

i

= SD

i�1

�K

i

= D �

i�1

[

j=1

K

j

�K

i

= D �

i

[

j=1

K

j

Let us now suppose that we an �nd a dart d belonging to two kernels K

i

and K

j

with i < j. In order to be ontrated by K

j

, d must belong to SD

j�1

with :

SD

j�1

= D �

j�1

[

k=1

K

k

Sine K

i

�

S

j�1

k=1

K

k

we obtain the desired ontradition. 2

3.1 Conneting dart sequenes

In the following we will have to distinguish two ases:

1. When two suessive kernels K

i

and K

i+1

are both ontration kernels

or both removal kernels.

2. When K

i

is a ontration kernel and K

i+1

a removal one or when K

i

is

a removal kernel and K

i+1

a ontration kernel.

In order to simplify the notations, we will say that two suessive kernels

K

i

and K

i+1

have the same type in the �rst ase and di�erent types in

the seond one. More generally the type of a ontration kernel refers to

the ombinatorial map on whih it is applied (the initial or the dual one).

Figure 5 shows a sequene of ombinatorial maps built by ontration and

removal kernels applied alternatively.
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K

2

1

= �

�

(�12;�6;�4)

K

1

1

= �

�

(1; 2; 7; 10)

K

1

K

2

K

3

K

4

RK K

1

2

= �

�

(9; 8) G

1

= (SD

1

; �

1

; �)

CK K

1

3

= �

�

(3)

RK K

1

4

= �

�

(5)

G

2

= (SD

2

; �

2

; �)

G

3

= (SD

3

; �

3

; �)

G

4

= (SD

4

; �

4

; �)

G

0

= (SD

0

= D; �

0

; �)

10

7

5

1

3

8

11

6

2

4

9

12

3

8

9

5

11

3

5

11

5

11

CK

Figure 5: The initial grid enoded by the initial ombinatorial map G

0

= (D; �; �)

is suessively ontrated by K

1

, K

2

, K

3

and K

4

. Kernels with even indies denote

ontration kernels (CK) while odd indies denote removal kernels(RK).
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De�nition 11 Conneting Dart Sequenes

Given a ombinatorial map G

0

= (D; �; �) and a sequene of ontration

or removal kernels K

1

; K

2

: : : ; K

n

. The onneting dart sequene is de�ned

by the following reursive onstrution:

8d 2 D CDS

0

(d) = d

For eah level i in f1; : : : ; ng and for eah dart d in SD

i

� If K

i

and K

i�1

have the same type:

CDS

i

(d) = CDS

i�1

(d

1

) � � �CDS

i�1

(d

p

)

� If K

i

and K

i�1

have di�erent types:

CDS

i

(d) = d

1

� CDS

�

i�1

(�(d

1

)) � � �d

p

� CDS

�

i�1

(�(d

p

))

Where (d

1

: : : d

p

) is equal to CW

i�1;i

(d) if K

i

is a ontration kernel and

DCW

i�1;i

(d) if K

i

is a removal kernel. The term CDS

�

i�1

(�(d

j

)) denotes the

onneting dart sequene CDS

i�1

(�(d

j

)) without its �rst dart. The kernels

K

0

= ; and K

1

have the same type by onvention.

The set of onneting dart sequenes assoiated to the kernels de�ned in

Figure 5 are given in Tables 2, 3, 4 and 5 (see setion A).

Proposition 11 Given a ombinatorial map G

0

= (D; �; �) and a sequene

of ontration kernels K

1

; K

2

: : : ; K

n

. We an de�ne a sequene of inlusion

kernels K

01

; : : : ; K

0n

with K

0i

= [

i

j=1

K

i

providing the same ontrated om-

binatorial maps. Moreover, in this ase the onneting dart sequenes are

equal to the onneting walks de�ned on the kernels K

01

; : : :K

0n

:

8i 2 f1; : : : ; ng 8d 2 SD

i

CDS

i

(d) = CW

0i

(d)

Where CW

0i

(d) is de�ned by K

0i

on G

0

.

Proof:

First note that, if all the ontration kernels have the same type, the

onneting dart sequenes are de�ned by:

8d 2 SD

i

CDS

i

(d) = CDS

i�1

(d

1

); � � � ; CDS

i�1

(d

p

)
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With CW

i

(d) = d

1

; : : : ; d

p

is the onneting walk of d de�ned on G

i�1

by K

i

.

The proposition is trivially true for i = 1. Indeed, in this ase:

8d 2 SD

1

�

CDS

1

(d) = CDS

0

(d

1

) � � �CDS(d

p

)

CDS

1

(d) = (d

1

: : : d

p

) = CW

01

(d)

Let us suppose that this proposition is true until a given rank i. Sine K

i

and K

i+1

have the same type, we have for eah dart d in SD

i+1

:

CDS

i+1

(d) = CDS

i

(d

0

1

) � � �CDS

i

(d

0

q

)

= CW

0i

(d

0

1

) � � �CW

0i

(d

0

q

) (by our reurrene hypothesis)

With CW

0

i+1

(d) = (d

0

1

: : : d

0

q

) denotes the onneting walk of d de�ned by

K

i+1

on G

i

.

Moreover, we have by proposition 4:

CW

0;i+1

(d) = CW

0;i

(d

0

1

) � � �CW

0;i

(d

0

q

)

Therefore, CDS

i+1

(d) = CW

0;i+1

(d) and the reurrene hypothesis holds

until i+ 1. 2

Remark 4 Note that the demonstration of proposition 11 remains valid if

all kernels are removal ones, therefore:

Given a ombinatorial map G

0

= (D; �; �) and a sequene of removal

kernelsK

1

; K

2

: : : ; K

n

. We an de�ne a sequene of removal inlusion kernels

K

01

; : : : ; K

0n

with K

0i

= [

i

j=1

K

i

providing the same ombinatorial maps. In

this ase the onneting dart sequenes are equal to the dual onneting walks

de�ned on the kernels K

01

; : : :K

0n

:

8i 2 f1; : : : ; ng 8d 2 SD

i

CDS

i

(d) = DCW

0i

(d)

Where DCW

0i

(d) is de�ned by K

0i

on G

0

.

In the following, we will have to onsider onneting walks or dual on-

neting walks aording to the type of the assoiated kernel. All the prop-

erties of onneting walks used below are ommon to onneting walks and

dual onneting walks. In order to not overload the demonstrations, we will

denote both onneting walks CW

i�1;i

and dual onneting walks DCW

i�1;i

by CW

i

. The type of the onneting walk is then impliitly de�ned by the

type of its assoiated kernel K

i

.
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Proposition 12 Given a ombinatorial map G

0

= (D; �; �) and a sequene

of ontration or removal kernelsK

1

; K

2

: : : ; K

n

. For any level i in f1; : : : ; ng,

the �rst dart of CDS

i

(d) with d in SD

i

is d:

8 i 2 f1; : : : ; ng

8 d 2 SD

i

�

CDS

i

(d) = (d; d

2

; : : : ; d

p

)

Proof:

The proposition is trivial for i = 0 (we have in this ase p = 0). Let us

suppose it is true until a given rank i � 1 < n and let us onsider a given

dart d in SD

i

with:

CW

i

(d) = (d

1

; : : : ; d

p

)

Note that aording to the de�nition of a onneting walk (see Def. 1) we

have d

1

= d.

Then, if K

i

and K

i�1

have the same type:

CDS

i

(d) = CDS

i�1

(d

1

) � � �CDS

i�1

(d

p

)

Sine d

1

is equal to d the proposition is true at rank i thanks to our reurrene

hypothesis.

If K

i

and K

i�1

have a di�erent type:

CDS

i

(d) = d

1

� CDS

�

i�1

(�(d

1

)) � � �d

p

� CDS

�

i�1

(�(d

p

))

Like previously, we have d

1

= d by de�nition of a onneting walk, and the

�rst dart of CDS

i

(d) is thus equal to d. 2

Proposition 13 Given a ombinatorial map G

0

= (D; �; �) and a sequene

of ontration or removal kernelsK

1

; K

2

; : : : ; K

n

. For any level i in f1; : : : ; ng

and for any onneting dart sequene CDS

i

(d) with d in SD

i�1

, the sequene

CDS

�

i

(d) is inluded in [

i

j=0

K

j

:

8i 2 f0; : : : ; ng 8d 2 SD

i

CDS

�

i

(d) �

i

[

j=0

K

j

Proof:

If i = 0, CDS

0

(d) = d therefore:

8d 2 D CDS

�

0

(d) = ; � K

0

= ;
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The proposition is thus trivial for i = 0. Let us suppose it is true until a

given rank i� 1.

Let us onsider a given d in SD

i

suh that:

CW

i

(d) = (d

1

; : : : ; d

p

)

with d

1

= d and (d

2

; : : : ; d

p

) � K

i

.

� If K

i

and K

i�1

have the same type:

CDS

i

(d) = CDS

i�1

(d

1

) � � �CDS

i�1

(d

p

)

Using our reurrene hypothesis,

8j 2 f1; : : : ; pg CDS

�

i�1

(d

j

) �

i�1

[

k=0

K

k

and the fat that all darts d

j

; 1 < j � p; of the onneting walk CW

i

(d)

belong to K

i

we have:

CDS

�

i�1

(d) �

S

i�1

k=0

K

k

8j 2 f2; : : : ; pg CDS

i�1

(d

j

) �

S

i

k=0

K

k

Therefore,

CDS

�

i

(d) = CDS

�

i�1

(d) � CDS

i�1

(d

2

) � � �CDS

i�1

(d

p

) �

i

[

k=0

K

k

� If K

i

and K

i�1

have not the same type:

CDS

i

(d) = d

1

� CDS

�

i�1

(�(d

1

)) � � �d

p

� CDS

�

i�1

(�(d

p

))

Like previously, using our reurrene hypothesis:

CDS

�

i�1

(�(d)) �

S

i�1

k=0

K

k

8j 2 f2; : : : ; pg d

j

� CDS

�

i�1

(�(d

j

)) �

S

i

k=0

K

k

Therefore,

CDS

�

i

(d) = CDS

�

i�1

(�(d

1

)) � � �d

p

� CDS

�

i�1

(�(d

p

)) �

i

[

k=0

K

k
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2

Proposition 14 Given a ombinatorial map G

0

= (D; �; �) and a sequene

of ontration or removal kernels K

1

; K

2

: : : ; K

n

. Any onneting dart se-

quene at level i, with i 2 f1; : : : ; ng is not shorter than the orresponding

onneting walk:

8i 2 f1; : : : ; ng 8d 2 SD

i

jCDS

i

(d)j � jCW

i

(d)j

Proof:

Given an index i in f1; : : : ; ng, and a dart d suh that:

CW

i

(d) = (d

1

; : : : ; d

p

)

If K

i

and K

i�1

have the same type,

CDS

i

(d) = CDS

i�1

(d

1

) � � �CDS

i�1

(d

p

)

Sine eah onneting dart sequene CDS

i�1

(d

j

) with j in f1; : : : ; pg on-

tains at least d

j

(see proposition 12), we have jCDS

i

(d)j � jCW

i

(d)j. If K

i

and K

i�1

have not the same type, we have:

CDS

i

(d) = d

1

� CDS

�

i�1

(�(d

1

)) : : : d

p

� CDS

�

i�1

(�(d

p

))

The proposition is then trivial. 2

Proposition 15 Given a ombinatorial map G

0

= (D; �; �) and a sequene

of ontration or removal kernels K

1

; K

2

: : : ; K

n

. If a onneting dart se-

quene CDS

i

(d) is redued to d then '

i

(d) = '(d) if K

i

is a ontration

kernel, and �

i

(d) = �(d) if K

i

is a removal kernel:

CDS

i

(d) = (d) =)

�

'

i

(d) = '(d) If K

i

is a ontration kernel

�

i

(d) = �(d) If K

i

is a removal kernel

Proof:

If i = 1, CDS

1

(d) = CW

1

(d) for any d in SD

1

. Then if the ardinal of

CDS

1

(d) is redued to 1, the ardinal of CW

1

(d) must also be equal to 1

(see proposition 14). We have thus in this ase CDS

1

(d) = CW

1

(d) = (d).

Therefore, using the de�nition of a onneting walk:
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� '

1

(d) = '(d) if K

1

is a ontration kernel.

� �

1

(d) = �(d) if K

1

is a removal kernel.

The property is thus true at rank 1 for any dart in SD

1

. Let us suppose the

property is true until rank i � 1 < n. Then, if CDS

i

(d) = (d), we have as

previously, CW

i

(d) = (d). Therefore:

'

i

(d) = '

i�1

(d) if K

i

is a ontration kernel

�

i

(d) = �

i�1

(d) if K

i

is a removal kernel

(2)

Moreover, if K

i

and K

i�1

have the same type:

CDS

i

(d) = CDS

i�1

(d) = (d)

using the reurrene hypothesis:

� '

i

(d) = '

i�1

(d) = '(d) if K

i

(and thus K

i�1

) is a ontration kernel.

� �

i

(d) = �

i�1

(d) = �(d) if K

i

and K

i�1

are removal kernels.

If K

i

and K

i�1

have not the same type,

CDS

i

(d) = d � CDS

�

i�1

(�(d)) = (d)

We have thus CDS

i�1

(�(d)) = �(d), and using our reurrene hypothesis

and equation (2):

� If K

i

is a ontration kernel and K

i�1

a removal one:

'

i

(d) = '

i�1

(d) = �

i�1

(�(d)) = �(�(d)) = '(d)

� If K

i

is a removal kernel and K

i�1

a ontration kernel.

�

i

(d) = �

i�1

(d) = '

i�1

(�(d)) = '(�(d)) = �(d)

2
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Proposition 16 Given a ombinatorial map G

0

= (D; �; �) and a sequene

of ontration or removal kernelsK

1

; K

2

: : : ; K

n

. For any level i in f1; : : : ; ng,

the seond dart of CDS

i

(d) with d in SD

i

is, when it exists, equal to '(d) if

K

i

is a ontration kernel and �(d) if K

i

is a removal kernel:

8i 2 f1; : : : ; ng 8d 2 SD

i

j CDS

i

(d) = (d; d

1

; : : : ; d

p

) with p > 0

d

1

=

�

'(d) If K

i

is a ontration kernel

�(d) If K

i

is a removal kernel

Proof:

This proposition annot be applied to i = 0, sine at this level all on-

neting dart sequenes are redued to a singleton. If i = 1 we have for eah

d in SD

1

:

CDS

1

(d) = CW

1

(d) = (d; d

1

: : : d

p

) with p � 0

If p > 0 for one d 2 SD

1

, we have by de�nition of a onneting walk:

d

1

=

�

'(d) If K

1

is a ontration kernel

�(d) If K

1

is a removal kernel

The proposition is thus true for i = 1, let us suppose it is true until a given

rank i� 1 < n.

Let us onsider a given dart d in SD

i

suh that:

CW

i

(d) = (d; d

0

1

; : : : ; d

0

q

)

Moreover, we suppose that jCDS

i

(d)j > 1 to ful�ll the requirements of the

proposition.

� If K

i

and K

i�1

have the same type

CDS

i

(d) = CDS

i�1

(d) � CDS

i�1

(d

0

1

) � � �CDS

i�1

(d

0

q

)

If jCDS

i�1

(d)j > 1 we an apply the reursive hypothesis. If not, we

have CDS

i�1

(d) = (d). In this ase we must have q > 0 sine q = 0

and CDS

i�1

(d) = (d) implies that CDS

i

(d) = d whih is refused by

hypothesis. Therefore, d

0

1

exists and d

1

= d

0

1

. Using proposition 15:

{ If K

i

is a ontration kernel,

d

1

= d

0

1

= '

i�1

(d) = '(d)
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{ If K

i

is a removal kernel,

d

1

= d

0

1

= �

i�1

(d) = �(d)

� If K

i

and K

i�1

have not the same type:

CDS

i

(d) = d �CDS

�

i�1

(�(d)) �d

0

1

�CDS

�

i�1

(�(d

0

1

)) � � �d

0

q

�CDS

�

i�1

(�(d

0

q

))

Let us denote:

CDS

i�1

(�(d)) = (�(d); b

1

; : : : ; b

r

)

{ If jrj � 1 the seond dart d

1

of CDS

i

(d) is equal to b

1

. Then using

our reurrene hypothesis:

� If K

i

is a ontration kernel, then K

i�1

is a removal kernel

and:

d

1

= b

1

= �(�(d)) = '(d)

� If K

i

is a removal kernel, K

i�1

is a ontration kernel and:

d

1

= b

1

= '(�(d)) = �(d)

{ If CDS

i�1

(�(d)) = (�(d)), then d

1

= d

0

1

, moreover:

� If K

i

is a ontration kernel, K

i�1

is a removal kernel. There-

fore, using proposition 15:

�

i�1

(�(d)) = �(�(d)) = '(d)

and:

d

1

= d

0

1

= '

i�1

(d) = �

i�1

(�(d)) = '(d)

� If K

i

is a removal kernel, K

i�1

is a ontration kernel. There-

fore '

i�1

(�(d)) = '(�(d)) = �(d) and:

d

1

= d

0

1

= �

i�1

(d) = '

i�1

(�(d)) = �(d)

2
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Proposition 17 Given a ombinatorial map G

0

= (D; �; �) and a sequene

of ontration or removal kernels K

1

; K

2

: : : ; K

n

. The onneting dart se-

quene of any dart d 2 SD

i

de�ned at level i 2 f1; : : : ; ng:

CDS

i

(d) = (d

1

; : : : ; d

p

); p > 1

satis�es the following property:

� If K

i

is a ontration kernel:

'

i

(d) =

�

'(d

p

) if d

p

is ontrated

�(d

p

) if d

p

is removed

� If K

i

is a removal kernel:

�

i

(d) =

�

'(d

p

) if d

p

is ontrated

�(d

p

) if d

p

is removed

Proof:

Let us show this proposition by reurrene.

1. If i = 1, the onneting dart sequenes are equal to the onneting

walks. Thus:

8d 2 SD

1

CDS

1

(d) = CW

1

(d) = (d

1

; : : : ; d

p

)

Using , the de�nition of onneting walks:

(a) If K

1

is a ontration kernel, d

p

is ontrated and: '

1

(d) = '(d

p

)

(b) If K

1

is a removal kernel, d

p

is removed and: �

1

(d) = �(d

p

)

The proposition is thus true for i = 1.

2. Let us suppose that it holds until a given rank i� 1.

(a) If K

i

and K

i�1

have the same type, then:

CDS

i

(d) = CDS

i�1

(d

0

1

) � � �CDS

i�1

(d

0

q

) = (d

1

; : : : ; d

p

)

with CW

i

(d) = (d

0

1

; : : : ; d

0

q

).

Then, the last dart of CDS

i

(d) is the last dart of CDS

i�1

(d

0

q

)

and we have, using the de�nition of onneting walks and the

reurrene hypothesis:

35



i. If K

i

is a ontration kernel,

'

i

(d) = '

i�1

(d

0

q

) =

�

'(d

p

) If d

p

is ontrated

�(d

p

) If d

p

is removed

ii. If K

i

is a removal kernel,

�

i

(d) = �

i�1

(d

0

q

) =

�

'(d

p

) If d

p

is ontrated

�(d

p

) If d

p

is removed

(b) If K

i

and K

i�1

have not the same type:

CDS

i

(d) = d

0

1

� CDS

�

i�1

(�(d

0

1

)) � � �d

0

q

� CDS

�

i�1

(�(d

0

q

))

= (d

1

; : : : ; d

p

)

with CW

i

(d) = (d

0

1

; : : : ; d

0

q

).

i. If CDS

i�1

(�(d

0

q

)) = (�(d

0

q

)), then the last dart of CDS

i

(d) is

d

0

q

whih is ontrated or removed at level i aording to K

i

.

A. If K

i

is a ontration kernel, then K

i�1

is a removal kernel

and d

0

q

is ontrated at level i. Then we have by de�nition

of onneting walks:

'

i

(d) = '

i�1

(d

0

q

) = �

i�1

(�(d

0

q

))

Moreover, using proposition 15, sine K

i�1

is a removal

kernel:

�

i�1

(�(d

0

q

)) = �(�(d

0

q

)) = '(d

0

q

)

therefore, '

i

(d) = '(d

0

q

)

B. IfK

i

is a removal kernel, thenK

i�1

is a ontration kernel,

and d

0

q

is removed at level i. Using proposition 15:

'

i�1

(�(d

0

q

)) = '(�(d

0

q

)) = �(d

0

q

)

Using the de�nition of onneting walks, we have: �

i

(d) =

�

i�1

(d

0

q

) = '

i�1

(�(d

0

q

)). Thus:

�

i

(d) = �(d

0

q

)

ii. If jCDS

i�1

(�(d

0

q

))j > 1, then the last dart of CDS

i

(d) is the

last dart of CDS

i�1

(�(d

0

q

)). Therefore, using our reurrene

hypothesis:
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A. If K

i

is a ontration kernel, then

'

i

(d) = '

i�1

(d

0

q

) = �

i�1

(�(d

0

q

)) =

�

'(d

p

) If d

p

is ontrated

�(d

p

) If d

p

is removed

B. If K

i

is a removal kernel, then

�

i

(d) = �

i�1

(d

0

q

) = '

i�1

(�(d

0

q

)) =

�

'(d

p

) If d

p

is ontrated

�(d

p

) If d

p

is removed

2

Proposition 18 Given a ombinatorial map G

0

= (D; �; �) and a sequene

of ontration or removal kernels K

1

; K

2

: : : ; K

n

. For eah i in f1; : : : ; ng,

eah dart d in D belongs to exatly one onneting dart sequene de�ned at

level i:

8i 2 f1; : : : ; ng 8d 2 D 9!d

0

2 SD

i

j d 2 CDS

i

(d

0

)

Proof:

Let us show this proposition by reurrene:

If i = 0, CDS

0

(d) is equal to d for eah d in D. The proposition is then

trivial. Let us suppose that the proposition is true until a given rank i� 1.

If d is neither ontrated nor removed until level i+ 1, it is the �rst dart

of its own onneting dart sequene until level i (see proposition 12) and

the demonstration of the existene of a onneting dart sequene at level

i ontaining d is then trivial. Moreover, in this ase, if d is ontained in

two onneting dart sequenes de�ned at level i, it must be the �rst dart

of both onneting dart sequenes (see proposition 13). The �rst dart of a

onneting dart sequene being the one whih de�nes it(see de�nition 11), the

demonstration of the uniqueness of the onneting dart sequene ontaining

d is trivial.

If d is ontrated or removed at level i, there exists a dart d

00

in SD

i

suh

that d 2 CW

i

(d

00

). Therefore, d must belong to CDS

i

(d

00

) (see de�nition 11).

Moreover, aording to the de�nition of a onneting dart sequene, the

darts ontrated at level i whih belong to a onneting dart sequene, must

belong to its assoiated onneting walk. Therefore, if d belongs to two

onneting dart sequenes CDS

i

(d

00

) and CDS

i

(b), it must also belong to

the onneting walks CW

i

(d

00

) and CW

i

(b). Sine the set of onneting walks
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de�ned at level i de�nes a partition of SD

i�1

[6℄, we have d

00

= b and therefore,

CDS

i

(d

00

) = CDS

i

(b).

Let us now suppose that d has been ontrated or removed before level i.

Then d annot be the �rst dart of any onneting walk de�ned at levels i or

i� 1. Let us now deompose the demonstration at rank i in two steps:

Existene: Aording to our reurrene hypothesis, there exists a unique

dart d

0

in SD

i�1

suh that: d 2 CDS

i�1

(d

0

).

� If K

i

and K

i�1

have the same type there exists a unique dart

d

00

2 SD

i

suh that d

0

2 CW

i

(d

00

), with:

CDS

i

(d

00

) = CDS

i�1

(d

1

) � � �CDS

i�1

(d

p

)

sine d

0

2 CW

i

(d

00

) = d

1

; : : : ; d

p

, we have:

d 2 CDS

i�1

(d

0

) � CDS

i

(d

00

)

� If K

i

and K

i�1

have not the same type, there exists a unique dart

d

00

in SD

i

suh that �(d

0

) 2 CW

i

(d

00

). Moreover, sine d is not

the �rst dart of CDS

i�1

(d

0

):

d 2 CDS

�

i�1

(d

0

) � CDS

i

(d

00

) with

CDS

i

(d

00

) = d

1

� CDS

�

i�1

(�(d

1

) � � �d

p

� CDS

�

i�1

(�(d

p

)

and �(d

0

) 2 CW

i

(d

00

) = (d

1

; : : : ; d

p

).

Uniqueness: Let us suppose that there exist at least two darts in SD

i

suh

that d 2 CDS

i

(d

0

) \ CDS

i

(d

00

)

� If K

i

and K

i�1

have the same type, then:

�

CDS

i

(d

0

) = CDS

i�1

(b

1

) � � �CDS

i�1

(b

p

)

CDS

i

(d

00

) = CDS

i�1

(b

0

1

) � � �CDS

i�1

(b

0

q

)

with

�

CW

i

(d

0

) = (b

1

; : : : ; b

p

)

CW

i

(d

00

) = (b

0

1

; : : : ; b

0

q

)

If d 2 CDS

i

(d

0

) \ CDS

i

(d

00

), then there must exist at least two

indies i 2 f1; : : : ; pg and j 2 f1; : : : ; qg respetively suh that

d 2 CDS

i�1

(b

i

) \ CDS

i�1

(b

0

j

). Using our reurrene hypothesis,
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d an belong to only one onneting dart sequene at level i� 1,

therefore, b

i

= b

0

j

. We have therefore one dart in SD

i

whih

belongs to two di�erent onneting walks CW

i

(d

0

) and CW

i

(d

00

)

whih is impossible sine the onneting walk at level i form a

partition of SD

i�1

(see [6℄ proposition 6).

� If K

i

and K

i�1

have the not same type, then:

�

CDS

i

(d

0

) = b

1

� CDS

�

i�1

(�(b

1

)) � � � b

p

� CDS

�

i�1

(�(b

p

))

CDS

i

(d

00

) = b

0

1

� CDS

�

i�1

(�(b

0

1

)) � � � b

0

q

� CDS

�

i�1

(�(b

0

q

))

with (b

1

; : : : ; b

p

) and (b

0

1

; : : : ; b

0

q

) de�ned as previously.

Sine d is ontrated or removed before level i, it does not belong

to fb

1

; : : : ; b

p

g [ fb

0

1

; : : : ; b

0

q

g whih are ontrated or removed at

level i.

Therefore, if d 2 CDS

i

(d

0

) \ CDS

i

(d

00

), there must exist two in-

dies, i 2 f1; : : : ; pg and j 2 f1; : : : ; qg suh that:

d 2 CDS

�

i�1

(�(b

i

)) \ CDS

�

i�1

(�(b

0

j

))

) d 2 CDS

i�1

(�(b

i

)) \ CDS

i�1

(�(b

0

j

))

Using our reurrene hypothesis we must have: �(b

i

) = �(b

0

j

) and

thus b

i

= b

0

j

. We obtain the same ontradition as previously.

2

Using onneting walks, eah onneting walk is inluded in one '-orbit,

or one �-orbit if the kernel is a removal one. Moreover, eah dart appears

only one in eah '-orbit and �-orbit. Thus eah dart appears also only one

in eah onneting walk. The onneting dart sequene are not inluded in

one '-orbit nor in one ��orbit. Therefore, we have to demonstrate that eah

dart appears at most one in eah onneting dart sequene:

Proposition 19 Given a ombinatorial map G

0

= (D; �; �), a sequene of

ontration kernels or removal kernels K

1

; K

2

: : : ; K

n

, eah dart d appears at

most one in eah onneting dart sequene.

Proof:

This property is trivial for i = 0. Let us suppose that it holds until a

given level i � 1 and let us suppose that we an �nd a dart d in D that

appears at least twie in a given onneting dart sequene CDS

i

(d

0

).
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� If K

i

and K

i�1

have the same type, then:

CDS

i

(d

0

) = CDS

i�1

(d

1

) � � �CDS

i�1

(d

p

)

with CW

i

(d

0

) = d

1

; : : : ; d

p

.

Using our reurrene hypothesis, d annot appear twie in the same

onneting dart sequene at level i� 1. Therefore, it must exists, two

di�erent indies i and j in f1; : : : ; pg suh that d 2 CDS

i�1

(d

i

) \

CDS

i�1

(d

j

). This last assertion ontradits the fat that eah dart

belongs to exatly one onneting dart sequene de�ned at level i� 1

(see proposition 18).

� If K

i

and K

i�1

have not the same type, then:

CDS

i

(d

0

) = d

1

� CDS

�

i�1

(�(d

1

)); : : : ; d

p

� CDS

�

i�1

(�(d

p

))

with CW

i

(d

0

) = d

1

; : : : ; d

p

.

The dart d annot appear twie in a onneting walk(see [6℄). There-

fore, d appears at most one in CW

i

(d

0

). Note that if d belongs to

CW

i

(d

0

) it must be ontrated or removed at level i.

Moreover, if d belongs to one CDS

�

i�1

(�(d

j

)) with j 2 f1; : : : ; pg then

it must belongs to one K

l

with l < i (see proposition 13). Therefore, d

annot belong simultaneously to CW

i

(d) and to one CDS

�

i�1

(�(d

j

)).

Therefore, d an appear twie in CDS

i

(d) only if there exist two dif-

ferent indies j and k suh that:

d 2 CDS

�

i�1

(�(d

j

)) \ CDS

�

i�1

(�(d

k

))

Therefore, d must belong to CDS

i�1

(�(d

j

)) \ CDS

i�1

(�(d

k

)) . This

last assertion ontradits proposition 18.

2

3.1.1 Traversing Conneting Dart Sequenes

Proposition 17 allows us to ompute the '

i

and �

i

suessors of a given dart

d at any level i by using its onneting dart sequene. Therefore, if we are

able to design an algorithm whih traverses the onneting dart sequenes
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of any darts at any level we should be able to build the di�erent ontrated

ombinatorial maps. However, the traversal of a onneting dart sequene

indues the determination of the relation whih links two suessive darts

within a onneting dart sequene. Using onneting walks, this relation is

given by the de�nition of a onneting walk. Using onneting dart sequenes

we have to build a onstrutive de�nition from the reursive one. The fol-

lowing proposition shows that the suessor of a dart in a given onneting

dart sequene remains the same for all levels one it is de�ned.

Proposition 20 Given a ombinatorial map G

0

= (D; �; �) and a sequene

of ontration or removal kernels K

1

; K

2

: : : ; K

n

. If a dart d belongs to a

onneting dart sequene CDS

i

(d

0

) and if d is neither the �rst nor the last

dart of CDS

i

(d

0

) then its suessor within the onneting dart sequene will

be the same in all onneting dart sequenes whih inlude d and whih are

de�ned at a level greater than i.

Proof:

Let us onsider the smallest index l of the ontration kernels suh that

there exists a onneting dart sequene CDS

l

(d

0

) inluding d and suh that

d is neither the �rst nor the last dart of the onneting dart sequene. Note

that using proposition 13, if d is not the �rst dart of CDS

l

(d) it must be

ontrated or removed before level l (see the paragraph below this proof).

Let us suppose that CDS

l

(d

0

) = (d

1

; : : : ; d

p

) and that d is one of the darts

fd

2

; : : : ; d

p�1

g. Let us show that the suessor of d remains the same in all

onneting dart sequenes ontaining d de�ned at a level greater than or equal

to l. The proposition is trivial at level l, let us suppose it is true until a level

k < n. We have thus a dart d

0

in SD

k

suh that CDS

k

(d

0

) = (d

1

; : : : ; d

p

),

d = d

m

, m 2 f2; : : : ; p� 1g and d

m+1

is the suessor of d from level l.

� If K

k

and K

k+1

have the same type, let us onsider d

00

in SD

k+1

suh

that d

0

2 CW

k+1

(d

00

). Then:

CDS

k+1

(d

00

) = CDS

k

(b

1

) � � �CDS

k

(b

q

)

with d

0

2 CW

k+1

(d

00

) = (b

1

; : : : ; b

q

). The suessor of d in CDS

k+1

(d

00

)

is then the same as in CDS

k

(d

0

). Moreover, d is neither the �rst nor

the last dart of CDS

k+1

(d

00

) by onstrution.
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� If K

k

and K

k+1

have not the same type, let us onsider the dart d

00

in

SD

k+1

suh that �(d

0

) 2 CW

k+1

(d

00

):

CDS

k+1

(d

00

) = b

1

� CDS

�

k

(�(b

1

)) � � � b

q

� CDS

�

k

(�(b

q

))

with �(d

0

) 2 CW

k+1

(d

00

) = (b

1

; : : : ; b

q

). Sine d is not the �rst nor the

last dart of CDS

k

(d

0

), its suessor remains the same in CDS

k+1

(d

00

).

Moreover, d is not the �rst nor the last dart of CDS

k+1

(d

00

).

In both ases, CDS

k+1

(d

00

) satisfy the reursive hypothesis. Moreover, using

proposition 18, CDS

k+1

(d

00

) is the unique onneting dart sequene de�ned

at level k + 1 ontaining d. Therefore, our reursive hypothesis holds until

level k + 1. 2

Proposition 16 shows us that the suessor of the �rst dart of a onneting

dart sequene de�ned at one level depends on the type of ontration applied

at this level. On the ontrary proposition 20 shows us that the suessors of

the other darts do not depend on the type of the applied ontration.

Therefore, the suessor of a dart d in the onneting dart sequene whih

ontains it hanges at eah level aording to the type of the assoiated kernel

until d is ontrated or removed. Then the suessor of d in the onneting

dart sequenes whih ontain it remains the same for all levels greater than

level(d).

In the following we will determine the relationships between two sues-

sive darts within a onneting dart sequene.

Proposition 21 Given a ombinatorial map G

0

= (D; �; �), a dart d in

D and a sequene of ontration or removal kernels K

1

; K

2

: : : ; K

n

. If d is

ontrated or removed at level l < n, the set of levels I

d

de�ned by:

I

d

= fi 2 fl; : : : ; ng j 9!d

0

2 SD

i

; CDS

i

(d

0

) = (d

1

; : : : ; d)g

is either empty or is a ontiguous interval of fl; : : : ; ng ontaining l.

Proof:

Let us suppose that I

d

is non empty and let us show that if k > l belongs

to I

d

then k � 1 does.

If k belongs to I

d

there exists one dart d

0

suh that d is the last dart of

CDS

k

(d

0

). Let us denote by d

1

; : : : ; d

p

the onneting walk of d

0

de�ned at

level k:

CW

k

(d

0

) = (d

1

; : : : ; d

p

)
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� If K

k

and K

k�1

have the same type, then:

CDS

k

(d

0

) = CDS

k�1

(d

1

) � � �CDS

k�1

(d

p

)

Therefore, CDS

k

(d

0

) and CDS

k�1

(d

p

) have the same last dart d and

the reursive hypothesis holds at level k � 1.

� If K

k

and K

k�1

have not the same type, then:

CDS

k

(d

0

) = d

1

� CDS

�

k�1

(�(d

1

)) � � �d

p

� CDS

�

k�1

(�(d

p

))

If jCDS

k�1

(�(d

p

))j > 1, the last dart of this onneting dart sequene

must be equal to d and the reursive hypothesis holds at level k � 1.

If jCDS

k�1

(�(d

p

))j = 1 then, sine the last dart of CDS

k

(d

0

) is equal

to d, we must have d

p

= d and d is ontrated or removed at level

k = l. We have thus nothing to demonstrate sine l is the smallest

index ontained in I

d

.

Note that in both ases, the uniqueness of the onneting dart sequene

ontaining d at level k� 1 is insured by proposition 18. Moreover, the above

veri�ation by indution stops only for k = l. Therefore, the lower bound of

I

d

, must be equal to l if I

d

is non empty. 2

Using proposition 21, if I

d

is non-empty it an be written as flevel(d); : : : ; mg

where m denotes the upper bound of I

d

. Moreover, using Proposition 17 we

an determine both '

i

(d

i

) and �

i

(d

i

) from '(d) and �(d) for eah dart d

i

in

SD

i

suh that the last dart CDS

i

(d

i

) is d.

Corollary 5 Using the same notations and hypothesis as proposition 21 if

I

d

is non empty, then it an be denoted by I

d

= fl; : : : ; mg, where m denotes

the upper bound of I

d

. If m < n, the suessor of d in CDS

m+1

(d

0

) is equal

to '(d) if d is ontrated and �(d) if d is removed where CDS

m+1

(d

0

) denotes

the onneting dart sequene whih ontains d at level m+ 1.

Proof:

� If K

m

and K

m+1

have the same type, let us denote by d

0

the dart whose

onneting walk at level m + 1 inludes d

m

:

d

m

2 CW

m+1

(d

0

) = (d

1

; : : : ; d

p

)
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Let us suppose that d

m

= d

i

with i in f1; : : : ; pg. Sine d is the last dart

of CDS

m

(d

m

), but not the last dart of CDS

m+1

(d

0

) (by de�nition of

m) the index i annot be equal to p. The suessor of d in CDS

m+1

(d

0

)

is then equal to d

i+1

. Using proposition 17:

{ If d is ontrated

d

i+1

= '(d) =

�

'

m

(d

m

) If K

m+1

is a ontration kernel

�

m

(d

m

) If K

m+1

is a removal kernel

{ If d is removed

d

i+1

= �(d) =

�

'

m

(d

m

) If K

m+1

is a ontration kernel

�

m

(d

m

) If K

m+1

is a removal kernel

� If K

m

and K

m+1

have not the same type, let us denote by d

0

the dart

whose onneting walk at level m+ 1 inlude �(d

m

):

�(d

m

) 2 CW

m+1

(d

0

) = (d

1

; : : : ; d

p

)

We have then:

CDS

m+1

(d

0

) = d

1

� CDS

�

m

(�(d

1

)) � � �d

p

� CDS

�

m

(�(d

p

))

Like previously we annot have �(d

m

) = d

p

sine in this ase d is also

the last dart ofCDS

m+1

(d

0

) whih is in ontradition with the de�nition

of m. Let us suppose that �(d

m

) = d

i

with i 2 f1; : : : ; p � 1g. Then

d is the last dart of CDS

�

m

(�(d

i

)) and its suessor in CDS

m+1

(d

0

)

is d

i+1

. We obtain thus the same onlusion as previously by using

proposition 17.

2

Remark 5 Note that, using the same notations as orollary 5, sine d is

ontrated or removed before level m, it an't be the �rst dart of CDS

m+1

(d

0

).

Moreover, it is not the last dart of this onneting walk by de�nition of m.

Therefore, using proposition 20, the suessor of d in CDS

m+1

(d

0

) remains

the same in all onneting dart sequenes whih are de�ned at a level greater

or equal to m+ 1 and whih ontain d.
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Proposition 22 Given a ombinatorial map G

0

= (D; �; �) and a sequene

of ontration or removal kernels K

1

; K

2

: : : ; K

n

. Given a dart d ontrated

or removed at level l, if I

d

is empty, and if CDS

l

(d

0

) denotes the onneting

dart sequene ontaining d at level l, the suessor of d in CDS

l

(d

0

) is equal

to '(d) if d is ontrated and �(d) if d is removed.

Proof:

Let us onsider d

0

in SD

l

suh that:

d 2 CW

l

(d

0

) = (d

1

; : : : ; d

p

)

� If K

l

have K

l�1

have he same type:

CDS

l

(d

0

) = CDS

l�1

(d

1

) � � �CDS

l�1

(d

p

)

{ If [CDS

l�1

(d)j > 1, the dart following d in CDS

l

(d

0

) is given by

proposition 16 and is equal to:

�

'(d) If K

l

and K

l�1

are ontration kernels

�(d) If K

l

and K

l�1

are removal kernels

Note that d is ontrated at level l, therefore, the dart following d

in CDS

l

(d

0

) is equal to '(d) if d is ontrated (K

l

is a ontration

kernel) and �(d) if d is removed (K

l

is a removal kernel)

{ If jCDS

l�1

(d)j = 1 the dart following d in CDS

l

(d

0

) is given by

proposition 15 and is equal to:

�

'

l�1

(d) = '(d) If K

l

and K

l�1

are ontration kernels

�

l�1

(d) = �(d) If K

l

and K

l�1

are removal kernels

� If K

l

and K

l�1

have not the same type:

CDS

l

(d

0

) = d

1

� CDS

�

l�1

(�(d

1

)) � � �d

p

� CDS

�

l�1

(�(d

p

))

{ If jCDS

l�1

(�(d))j > 1 then the dart following d in CDS

l

(d

0

) is the

seond dart of CDS

l�1

(�(d)) and is equal to(see proposition 16):

�

�(�(d)) = '(d) If K

l�1

is a removal kernel

'(�(d)) = �(d) If K

l�1

is a ontration kernel

Sine K

l

and K

l�1

have not the same type, the dart following d

in CDS

l

(d

0

) is equal to '(d) if d is ontrated (K

l

is a ontration

kernel) and �(d) if d is removed (K

l

is a removal kernel).
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{ If jCDS

l�1

(�(d))j = 1 then the suessor of d in CDS

l

(d

0

) is the

suessor of d in CW

l

(d

0

) and is equal to (see proposition 15):

� If K

l

is a ontration kernel and K

l�1

a removal one:

'

l�1

(d) = �

l�1

(�(d)) = �(�(d)) = '(d)

� If K

l

is a removal kernel and K

l�1

a ontration kernel:

�

l�1

(d) = '

l�1

(�(d)) = '(�(d)) = �(d)

Note that d annot be the last dart of CW

l

(d

0

) sine I

d

is empty

by hypothesis.

2

Corollary 6 Using the same notations as proposition 22, sine d is on-

trated at level l, it an't be the �rst dart of CDS

l

(d

0

). Moreover, sine I

d

is

empty, d is not the last dart of CDS

l

(d

0

). Therefore, using proposition 20,

the suessor of d in all onneting dart sequenes de�ned at a level greater

or equal to l and ontaining d is equal to '(d) if d is ontrated and �(d) if

d is removed.

Theorem 1 Given a ombinatorial map G

0

= (D; �; �), a sequene of on-

tration kernels or removal kernels K

1

; K

2

: : : ; K

n

, the relation between the

suessive darts of a onneting dart sequene CDS

i

(d) = (d

1

; : : : ; d

p

), with

i 2 f1; : : : ; ng and d 2 SD

i

is as follow:

d

2

=

�

'(d

1

) If K

i

is a ontration kernel

�(d

1

) If K

i

is a removal kernel

and

8j 2 f3; : : : ; pg d

j

=

�

'(d

j�1

) if d

j�1

is ontrated

�(d

j�1

) if d

j�1

is removed

Proof:

Given a onneting dart sequene CDS

i

(d) = (d

1

; : : : ; d

p

) de�ned at level

i, the suessor of d

1

is given by proposition 16. Let us onsider a dart d

j

with j 2 f2; : : : ; p� 1g. Sine d

j

is not the �rst dart of CDS

i

(d), it must be

ontrated at a level less than or equal to i (see proposition 13). Moreover,

sine d

j

has a suessor in CDS

i

(d) it annot belong to the set I

d

j

. Therefore,

one of the two following statements must hold:
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1. The set I

d

j

is empty. In this ase, the suessor of d

j

is given by propo-

sition 22 (see also orollary 6) and is equal to '(d

j

) if d

j

is ontrated

and to �(d

j

) if d

j

is removed.

2. I

d

j

is not empty and i is stritly greater than the maximal level on-

tained in I

d

j

. In this last ase, we an apply orollary 5 (see also re-

mark 5) and the suessor of d

j

, d

i+1

is equal to '(d

j

) if d

j

is ontrated

and �(d

j

) is d

j

is removed.

2

3.2 Coding Contrations and Removals

Sine two kinds of operations are allowed and neessary in the pyramid we

have to add some information in the pyramid onstrution plan in order to

enode in whih way a dart disappears at a given level:

De�nition 12 Generalized Pyramid Constrution Plan

Given an initial ombinatorial map G

0

and a sequene of suessive on-

tration or removal kernels K

1

; : : : ; K

n

, the generalized pyramid onstrution

plan GLP assoiated to this sequene is de�ned by the initial ombinatorial

map G

0

, a funtion level de�ned on D by:

8d 2 D level(d) =Maxfi 2 f1; : : : ; n+ 1g j d 2 SD

i�1

g

and a (binary) funtion state from f1; : : : ; ng to fContrated; Removedg,

whih maps eah level i into:

� Contrated, if K

i

is a ontration kernel,

� Removed, if K

i

is a removal kernel.

Proposition 23 Given a ombinatorial map G

0

= (D; �; �), and a general-

ized pyramid onstrution plan GLP = (G

0

; level; state) de�ned by n kernels,

eah kernel K

i

is equal to the set of darts mapped to i by the funtion level.

8i 2 f1; : : : ; ng K

i

= fd 2 D j level(d) = ig

Proof:

This demonstration is similar to the one of proposition 5. 2
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Proposition 24 Given a ombinatorial map G

0

= (D; �; �), and a general-

ized pyramid onstrution plan GLP = (G

0

; level; state) de�ned by n kernels,

the set of surviving darts of the i

th

ontrated map is equal to the set of darts

having a level stritly greater than i:

SD

i

= fd 2 D j level(d) > ig

Proof:

The surviving darts at level i are de�ned by (see proposition 10):

SD

i

= D �

i

[

j=1

K

j

Sine (see proposition 23) K

i

= fd 2 D j level(d) = ig, a surviving dart

of the i

th

ontration kernel must have a level stritly greater than i:

SD

i

= fd 2 D j level(d) > ig

2

Note that a dart d with level(d) = n+1 must survive: SD

n

= D�[

n

i=1

K

i

.

Hene funtion state is not de�ned for the top level n+1. Furthermore reall

that a dart d is removed from SD

i

if K

i

is a removal kernel. This is expressed

now by: state(level(d)) = Removed.

We will show in the following, that the generalized pyramid onstrution

plan and the funtion survive (see Algorithm 5) based on it allow us to

retrieve the di�erent ontration kernels and ontrated ombinatorial map

de�ned by a sequene of ontrations and/or removals.

Remark 6 Note that given a generalized pyramid onstrution plan and a

level i � n, three ases may our for eah dart d in D:

1. level(d) > i: the dart d remains at level i. This dart may disappear at

an upper level or remain until level n.

2. level(d) = i and state(i) = Contrated: The dart d is ontrated at

level i.

3. level(d) = i and state(i) = Removed: The dart d is removed at level i.
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Let us now onsider the Algorithm 5. Proposition 23 and 24 show that

the generalized pyramid onstrution plan allows us to retrieve the di�erent

kernels and surviving darts of our pyramid. We will show in the following that

Algorithm 5 together with a generalized pyramid onstrution plan allows us

also to retrieve the ontrated or removed ombinatorial maps de�ned at the

di�erent levels of the pyramid.

dart survive(int i, dart d)

f

if ( level(d) > i )

return d;

if(state(level(d)) == Contrated)

return survive(i,'(d))

return survive(i,�(d))

g

Algorithm 5: The general survive algorithm

De�nition 13 survive Stak

Given a ombinatorial map G

0

= (D; �; �) and the generalized pyramid

onstrution plan, GLP = (G

0

; level; state). The ordered set Stak(i; d) is

the sequene of darts whih will be passed as seond argument of the reursive

funtion survive during a all to survive(i; d).

Remark 7 Using the same notations and hypothesis as de�nition 13, the

last dart of Stak(i; d) is equal to survive(i; d).

Proposition 25 Using the same notations and hypothesis as de�nitions 13

and 11. For eah i in f1; : : : ; ng and for eah d in SD

i

, CDS

i

(d) may be

dedued from the stak of funtion survive thanks to the following relations:

� If state(i) = Contrated

d � Stak(i; '(d)) = CDS

i

(d) � '

i

(d)
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� If state(i) = Removed

d � Stak(i; �(d)) = CDS

i

(d) � �

i

(d)

Proof:

Aording to proposition 12, the �rst dart of CDS

i

(d) = (d

1

; : : : ; d

p

) is d,

moreover, using proposition 16 the seond dart of CDS

i

(d) is equal to '(d)

if K

i

is a ontration kernel and to �(d) if K

i

is a removal kernel.

Therefore, the �rst two darts of d �Stak(i; '(d)) (resp. d �Stak(i; �(d)))

and CDS

i

(d)�'

i

(d) (resp. CDS

i

(d)��

i

(d)) are equal ifK

i

is a ontration ker-

nel (resp. a removal kernel). Let us now suppose that state(i) = Contrated

(the demonstration may be adapted easily if state(i) = Removed) and let us

onsider the series (d

0

1

; : : : ; d

0

p+1

) suh that:

d � Stak(i; '(d)) = (d

0

1

; : : : ; d

0

p+1

) with d

0

1

= d

Let us suppose that both series d �Stak(i; '(d)) and CDS

i

(d) �'

i

(d) are

equal until a given rank j 2 f2; : : : ; p�1g. Then, sine d

j

= d

0

j

is not the �rst

dart of CDS

i

(d) it must have been ontrated before level i. We have thus

level(d

j

) � i. Moreover if d

j

is ontrated, its suessor in Stak(i; '(d))

is equal to '(d) while if d

j

is removed its suessor is equal to �(d

j

) (see

Algorithm 5). Using Theorem 1, the suessor of d

j

in CDS

i

(d) is equal to

'(d

j

) if d

j

is ontrated and �(d

j

) if d

j

is removed, therefore d

j+1

= d

0

j+1

.

We have thus:

8j 2 f1; : : : ; pg d

0

j

= d

j

Sine d

p

is not the �rst dart of CDS

i

(d), its level must be stritly less than

i. Therefore survive(i; d

p

) is equal to:

survive(i; '(d

p

)) if d

p

is ontrated

survive(i; �(d

p

)) if d

p

is removed

Thus, the suessor d

0

p+1

of d

p

in Stak(i; '(d)) is equal to '(d

p

) if d

p

is

ontrated and �(d

p

) if d

p

is removed. Using proposition 17, d

0

p+1

is equal to

'

i

(d). Therefore, d

0

p+1

2 SD

i

and, using proposition 24, its level is stritly

greater than i. Therefore, d

0

p+1

is the last dart of Stak(i; '(d)) and both

series d � Stak(i; '(d)) and CDS

i

(d) � '

i

(d) are equal. 2
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De�nition 14 Appliation �

Given a ombinatorial map G

0

= (D; �; �) and the generalized pyra-

mid onstrution plan, GLP = (G

0

; level; state). The appliation � from

f1; : : : ; ng �D to D is de�ned by:

�

�

f1; : : : ; ng �D ! D

(i; d) 7! survive(i; �(d))

Proposition 26 Given an initial ombinatorial map G

0

and the generalized

pyramid onstrution plan, GLP = (G

0

; level; state) the permutation �

i

of

the i

th

ontrated map is equal to � Æ p

i

:

8i 2 f1; : : : ; ng 8d 2 SD

i

� Æ p

i

(d) = �

i

(d)

Proof:

Let us onsider a level i in f1; : : : ; ng and a dart d in SD

i

. The appliation

� Æ p

i

maps d into survive(i; �(d)). Using proposition 25 and remark 7:

� If state(i) = Contrated, survive(i; �(d)) is the last dart of Stak(i; �(d) =

'(�(d))). Therefore, using proposition 25:

survive(i; �(d)) = '

i

(�(d)) = �

i

(d)

� If state(i) = Removed, survive(i; �(d)) is the last dart of Stak(i; �(d))

and is thus equal to �

i

(d).

Therefore, in all ases:

� Æ p

i

(d) = survive(i; �(d)) = �

i

(d)

2

Note that a diret enoding of the funtion � similar to the one illustrated

in Table 1 may be de�ned thanks to the funtion survive.

4 Conlusion

The two major ontributions of this tehnial report are:
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� The study of pyramids de�ned by both ontration kernels and removal

kernels.

� The de�nition of a pyramid onstrution plan and a generalized pyra-

mid onstrution plan.

The de�nition of a pyramid de�ned by both ontration kernels and removal

kernels allows us to remove the restritions indued by a sole kind of operation

(see setion 2.2). We thus gain further exibility whih allows us to ontrat

any initial ombinatorial map into a smaller one eventually redued to a self-

diret-loop. The de�nition of the funtion level, allows us to store the set of

kernels de�ning a given pyramid. An enoding of the pyramid based on the

funtion level is also proposed.

The funtion survive de�ned in setion 3.2 is designed to build a par-

tiular level of the pyramid. The onstrution of the funtion � or of all

permutations �

i

with i 2 f1; : : : ; ng requires to apply this funtion on eah

level i and on eah dart in SD

i

. This last operation may indue some unne-

essary alulations and a new funtion adapted to the diret onstrution of

several levels of the pyramid is under study.

Given a ombinatorial pyramid either de�ned by (D;�; level; �), or by

(D; (�

i

)

i2f1;:::;ng

; �) the modi�ation of the pyramid in order to improve a

previous result or to adapt it to new input data is often required. We plan to

study this operation named relinking [9℄ in the ombinatorial map framework.

Finally, an implementation of ombinatorial maps pyramids should allow to

study interesting appliations of our model suh as: segmentation [4, 1, 3, 5℄,

strutural mathing [16℄ or integration of moving objets.
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A Appendix

A.1 Reursive onstrution of onneting dart sequenes

The setion illustrates the reursive onstrution of the onneting dart se-

quenes. All tables given below show the di�erent onneting walks assoi-

ated to the pyramid de�ned in Figure 5. Note that these onneting dart

sequenes may also be onstruted diretly by using Theorem 1.
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The onneting dart sequenes of K

1

CDS

1

(9) = CW

1

(9) = 9;�4

CDS

1

(�9) = CW

1

(�9) = �9;�2;�1; 7; 10

CDS

1

(8) = CW

1

(8) = 8

CDS

1

(�8) = CW

1

(�8) = �8; 2

CDS

1

(3) = CW

1

(3) = 3

CDS

1

(�3) = CW

1

(�3) = �3;�7; 1

CDS

1

(5) = CW

1

(5) = 5; 6;�12

CDS

1

(�5) = CW

1

(�5) = �5;�10

CDS

1

(11) = CW

1

(11) = 11

CDS

1

(�11) = CW

1

(�11) = �11; 4; 12;�6

Table 2: The onneting dart sequenes of the �rst ontration kernel K

1

de�ned in Figure 5
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The onneting dart sequenes of K

2

CW

2

(3) = 3; 8; 9

CDS

2

(3) = 3:CDS

1

(�3)

�

:8:CDS

�

1

(�8):9:CDS

�

1

(�9)

= 3;�7; 1; 8; 2; 9;�2;�1; 7; 10

CW

2

(�3) = �3

CDS

2

(�3) = �3:CDS

�

1

(3)

= �3

CW

2

(5) = 5

CDS

2

(5) = 5:CDS

�

1

(�5)

= 5;�10

CW

2

(�5) = �5;�9;�8

CDS

2

(�5) = �5:CDS

�

1

(5):� 9:CDS

�

1

(9):� 8:CDS

�

1

(8)

= �5; 6;�12;�9;�4;�8

CW

2

(11) = 11

CDS

2

(11) = 11:CDS

�

1

(�11)

= 11; 4; 12;�6

CW

2

(�11) = �11

CDS

2

(�11) = �11:CDS

�

1

(11)

= �11

Table 3: The onneting dart sequenes of the removal kernel K

2

de�ned in

Figure 5
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The onneting dart sequenes of K

3

CW

3

(5) = 5;�3

CDS

3

(5) = 5:CDS

�

2

(�5):� 3:CDS

�

2

(3)

= 5; 6;�12;�9;�4;�8;�3;�7; 1; 8; 2; 9;�2;�1; 7; 10

CW

3

(�5) = �5; 3

CDS

3

(�5) = �5:CDS

�

2

(5):3:CDS

�

2

(�3)

= �5;�10; 3

CW

3

(11) = 11

CDS

3

(11) = 11:CDS

�

2

(�11)

= 11

CW

3

(�11) = �11

CDS

3

(�11) = �11:CDS

�

2

(11)

= �11; 4; 12;�6

Table 4: The onneting dart sequenes of the ontration kernel K

3

de�ned

in Figure 5

The onneting dart sequenes of K

4

CW

4

(11) = 11

CDS

4

(11) = 11:CDS

�

3

(�11)

= 11; 4; 12;�6

CW

4

(�11) = �11;�5; 5

CDS

4

(�11) = �11:CDS

�

3

(11)� 5:CDS

�

3

(5):5:CDS

�

3

(�5)

= �11;�5; 6;�12;�9;�4;�8;�3;�7; 1; 8; 2; 9;�2;�1; 7; 10; 5;�10; 3

Table 5: The onneting dart sequenes of the removal kernel K

4

de�ned in

Figure 5 (see also Figure 6)
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Figure 6: Illustration of the onneting dart sequenes given on Table 5.

A.2 Index of De�nitions

TR-54 refers to De�nitions in [15℄, TR-57 to De�nitions in [6℄ and TR-63

to De�nitions in this tehnial report.

Appliation �: TR-63, De�nition 14, page 51

Appliation �

C

: TR-63, De�nition 5, page 17

Appliation �

R

: TR-63, De�nition 10, page 23

Bridge: TR-54, De�nition 25, page 14

Ciruit: TR-54, De�nition 13, page 6

Combinatorial map: TR-54, De�nition 2, page 3

Conneted Combinatorial Map: TR-54, De�nition 14, page 7

Conneting Dart Sequenes: TR-63, De�nition 11, page 27

Conneting Path: TR-54, De�nition 31, page 25
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Conneting path map: TR-54, De�nition 35, page 28

Conneting series: TR-54, De�nition 40, page 32

Conneting series map: TR-54, De�nition 43, page 34

Conneting series set: TR-54, De�nition 41, page 33

Conneting walk: TR-57, De�nition 10, page 10; TR-63, De�nition 1,

page 8

Conneting walk map: TR-57, De�nition 13, page 19

Contration Kernel : TR-54, De�nition 39, page 31; TR-57, De�nition 9,

page 7

Contration operation: TR-54, De�nition 28, page 17

Cutset: TR-54, De�nition 22, page 11

Cyle: TR-57, De�nition 8, page 6

Dart identi�ation: TR-54, De�nition 27, page 17

Dart self diret loop: TR-54, De�nition 8, page 5

Deimation parameter: TR-54, De�nition 30, page 25

Degree: TR-54, De�nition 7, page 4

Disjoint Vertex Set : TR-57, De�nition 2, page 2

Dual Combinatorial Map: TR-54, De�nition 23, page 12

Dual onneting Walk: TR-63, De�nition 8, page 22

Edge self diret loop: TR-54, De�nition 9, page 5

End verties: TR-54, De�nition 5, page 4

Equivalent partition : TR-54, De�nition 18, page 8

Forest: TR-57, De�nition 4, page 4

Funtion follow: TR-63, De�nition 2, page 8
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Generalized Pyramid Constrution Plan: TR-63, De�nition 12, page 47

Group assoiated to a ombinatorial map: TR-54, De�nition 3, page 3

Inlusion of Contration Kernels: TR-57, De�nition 14, page 20

Independent vertex set: TR-54, De�nition 29, page 24

In�nite fae: TR-54, De�nition 24, page 12

Map tree : TR-54, De�nition 37, page 31; TR-57, De�nition 3, page 4

Map without pendant edges: TR-54, De�nition 32, page 26

Minimal partition : TR-54, De�nition 17, page 8

Morphism between ombinatorial maps: TR-54, De�nition 4, page 3

Partition : TR-54, De�nition 16, page 7

Partition into Conneted Components : TR-54, De�nition 21, page 11

Path: TR-54, De�nition 12, page 5; TR-57, De�nition 7, page 6

Pendant dart: TR-54, De�nition 10, page 5

Pendant edge: TR-54, De�nition 11, page 5

Predeessor and Suessor Kernels: TR-57, De�nition 15, page 21

Pyramid Constrution Plan: TR-63, De�nition 3, page 13

Removal Kernel: TR-63, De�nition 7, page 21

Removal Operation: TR-54, De�nition 26, page 15

Representative dart: TR-54, De�nition 34, page 27

Restoration of the pyramid onstrution plan: TR-63, De�nition 6,

page 18

Reversal of onneting paths: TR-54, De�nition 33, page 27

Reversal of Conneting series: TR-54, De�nition 42, page 34
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Reversal of Conneting walks: TR-57, De�nition 12, page 12

Self loop: TR-54, De�nition 6, page 4

Set of Conneting Walks: TR-57, De�nition 11, page 11

Spanning Forest: TR-54, De�nition 38, page 31

Struture Preserving Contration: TR-54, De�nition 36, page 29

Sub Combinatorial Map: TR-54, De�nition 19, page 9

survive Stak : TR-63, De�nition 13, page 49

survive

C

Stak: TR-63, De�nition 4, page 15

survive

R

Stak: TR-63, De�nition 9, page 22

Topologial map: TR-54, De�nition 1, page 2

Trail: TR-57, De�nition 6, page 6

Transitive group: TR-54, De�nition 15, page 7

Vertex Partition : TR-57, De�nition 1, page 2

Verties Indued Sub ombinatorial map: TR-54, De�nition 20, page 9

Walk: TR-57, De�nition 5, page 5
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