Technical Report Pattern Recognition and Image Processing Group

Institute of Computer Aided Automation

Vienna University of Technology

Favoritenstr. 9/1832

A-1040 Vienna AUSTRIA

Phone: +43 (1) 58801-18351

Fax: +43 (1) 58801-18392

E-mail: brun@leri.univ-reims.fr,
krw@prip.tuwien.ac.at

URL: http://www.prip.tuwien.ac.at/

PRIP-TR-63 June 9, 2000

The Construction of Pyramids with Combinatorial Maps

Luc Brun and Walter Kropatsch!

Abstract

This paper presents a new formalism for irregular pyramids based on combinatorial maps.
This technical report continues the work begun with the TR-54 and TR-57 reports (see
[15] and [6]).We provide in this technical report algorithms allowing efficient parallel or
sequential implementation of combinatorial pyramids

IThis Work was supported by the Austrian Science Foundation under S7002-
MAT.

Contents

1 Introduction
1.1 Combinatorial Maps
1.2 Contraction and Removal
1.3 Equivalent Contraction Kernels

2 Coding All Contractions of a Pyramid
2.1 Coding the life timeof adart
2.2 Adaptations from removal kernels

3 Generalized Pyramid Construction Plans
3.1 Connecting dart sequences
3.1.1 Traversing Connecting Dart Sequences
3.2 Coding Contractions and Removals

4 Conclusion

A Appendix
A.1 Recursive construction of connecting dart sequences
A.2 Index of Definitions

1 Introduction

Objects that are mapped into the image plane induce spatial relations among
each other and between their parts. Geometrical measurements derived from
a digital image are very sensitive to errors due to noise, discrete sampling
and motion inaccuracies. However these structural and topological relations
are inherent to the objects and their arrangement in the image and mostly
do not depend on the particular imaging situation. This is the background of
several recent contributions describing spatial /structural representations and
transformations preserving existing topological relations in the image plane.
Following list enumerates a few possibilities to preserve structural relations
into a more abstract representation:

1. The simplest one uses coordinates as vertex attributes of an attributed
relational graph. This immediate representation depends on the par-
ticular mapping geometry. For well controlled environments (e.g. geo-
graphic information systems) it is widely used due to its simplicity.

2. Another approach [17] considers local deformations of digital curves
that preserve an implicitly given topology. The idea is that images
showing the same topological arrangement of regions and curves can
be transformed into each other. An interesting extension to higher
dimension is presented by Fourey and Malgouyres [7].

3. A pair of plane! dual graphs is the base of an irregular graph pyramid
built by repeated dual graph contractions [12]. It differs from the pre-
vious approach that the transformed data are reduced at each step by
a factor which is the origin of its computational efficiency.

4. Topological and combinatorial maps have been investigated in [8] and
[14]. There the embedding is determined by the local orientation of
the structural elements. These works have been the basis of our two
preceding technical reports [15, 6].

The rest of this report is structurate as follows: First we briefly recall the
main results of our previous technical reports, in the sections 1.1, 1.2 and 1.3.
Then, we present in Section 2 an implicit representation of combinatorial map

'A plane graph is an embedded planar graph. We purposely use the term ’plane’
because two embeddings of the same planar graph need not be topologically isomorphic.

»

o e

L — | —eo o—— o —e
[\ J

(a) A plane graph (b) decomposed along dual edges (c¢) combinatorial map

Figure 1: From a plane graph to a combinatorial map

pyramids defined by a sequence of contractions, or a sequence of removals.
An explicit representation of combinatorial maps pyramid is also proposed.
In Section 3 we extend this new encoding of a combinatorial map pyramid by
allowing contractions and removal operations during the construction of the
pyramid. Note that one step of the construction of the combinatorial map
pyramid is encoded by kernels (see [6] and Section 1.3) and thus encodes only
one type of operation.

1.1 Combinatorial Maps

A combinatorial map may be seen as a planar graph encoding explicitly the
orientation of edges around a given vertex. Thus all graph definitions used
in irregular pyramids [13] such as end vertices, self loops, or degrees may be
retrieved easily.

Figure 1 demonstrates the derivation of a combinatorial map from a plane
graph. First edges are split where their dual edges cross (see Figure 1-b).
That decomposes the graph into connected parts of half-edges that surround
each vertex. These half edges are called darts and have their origin at the ver-
tex they are attached to. The fact that two half-edges (darts) stem from the
same edge is recorded in the reverse permutation a. A second permuta-
tion o, called the successor permutation, defines the (local) arrangement
of darts around a vertex. Counterclockwise ordering is assumed here. Fig-

ure 2 gives a slightly enhanced example of combinatorial map with 12 darts.
The symbols a*(d) and o*(d) stand, respectively, for the o and o orbits of

o=(1,2,-4)(-2,-1,3)(-3,-6,—5)(4,5,6)

Figure 2: The permutation o

the dart d. More generally, if d is a dart and 7 a permutation we will denote
the m-orbit of d by 7*(d). The cardinal of this orbit will be denoted |7*(d)]|.

A combinatorial map G is the triplet G = (D, 0, «), where D is the
set of darts and o, a are two permutations defined on D such that « is an
involution, e.g. satisfying

VdeD o?(d)=d

If the darts are encoded by positive and negative integers, the permutation «
can be implicitly encoded by a(d) = —d (see Figure 2). In the following, we
will use alternatively both notations, the notation a(d) = —d will be often
use for practical results linked to the implementation of our model. Indeed,
if the permutation « is implicitly encoded, the combinatorial map may be
implemented by a basic array of integers encoding the permutation o, which
looks as follows for Fig. 2:

d
o(d)

6

-9 0
5 -3

-4 -2 34
1 -1 -2 5

-3 -101 2 5> 6
-6 3 24 6 4

Following concepts from graph theory that are needed later for structure
preserving operations can be expressed in terms of combinatorial maps: self-

4

loop, duality, and bridge. An edge a*(d) is called a self loop, iff: —d € o*(d).
Or, if the two endpoints of an edge are the same vertex.

A face of a planar graph is defined by the set of edges which surround
it. Using a combinatorial map, one dart per edge is sufficient to encode
a face, since for each dart the involution a allows us to retrieve the other
dart defining the edge. Moreover, the ordered sequence of darts around a
vertex encoded by permutation ¢ induce an order in the sequence of faces
encountered when turning around a face. This order is encoded thanks to
the permutation ¢ = o o a: Given a combinatorial map G = (D, o, @), the
combinatorial map G = (D, p,) is called dual combinatorial map of
GG. The orbits of ¢ encode the faces of G. Note that the function ¢ is a
permutation, since it is the composition of two permutations on the same
set. Using a clockwise orientation for permutation o all the faces of the
combinatorial map except one are counter-clockwise oriented. The clockwise
oriented face is called the infinite face. The dual map of Fig. 2 is given as
follows:

0

d |-6 -5 -4 -3
o(d)| 4 6 5 -2

The connectivity of a graph (or a subgraph representing an object) is
an essential structural property. Since our goal is to successively remove
unnecessary parts the connectivity can be lost by these operations. Before
disconnecting a graph into two components these two components will be

connected by a single edge which is called a bridge which can be character-
ized by

-2-101 2 34 5 6
-4 2 3-1-61-3-5

a(d) € ¢*(d)

1.2 Contraction and Removal

In order to preserve the number of connected components of the original
combinatorial map bridges must be excluded from removal operations. Using
this restriction, the removal operation may be expressed as the definition of
a sub combinatorial map without the removed edges. A formal definition of
the removal operation written in terms of modifications of permutation o is
given in [15].

Given a partition of an image, merging two regions may be considered in
two different ways: First we can consider that the two regions are merged
by removing one of their common boundaries. This operation is encoded

in our combinatorial map formalism by the edge removal. Secondly, we can
also consider that the two regions are merged by identifying the two regions
and removing one of their common boundaries. This dual point of view is
encoded in our formalism by the contraction operation.

Using the duality we define the contraction of dart d of a given combina-
torial map G = (D, 0,) which is not a self loop. The result is the following
graph

G'=G/a*(d) =G\ a*(d)

Note that this operation is well defined since d is a self-loop in G iff it is a
bridge in G.
Note that, under the same hypothesis, we have:

G/a(d) = G\ a*(d)

Thus the two dual points of view on merging regions are performed by two
dual operations on the combinatorial map and its dual. Thus many particular
cases of one operation may be retrieved thanks to the particular cases of the
other. For example, since bridges are forbidden for removal operation the
dual of a bridge, i.e. a self-loop, is forbidden for contraction.

1.3 Equivalent Contraction Kernels

The concept of a tree and of a forest are used to define a contraction kernel
that collects a set of darts that can be contracted independently of each other
without destroying the connectivity structure of the graph. A sequence of
merging segments of a partition may be encoded by a sequence of contrac-
tions of the combinatorial map encoding the partition. Since the contraction
operation is forbidden for self-loops the set of darts involved in such a se-
quence of contractions must not contain a circuit. Thus the set of edges
involved in such a contraction may be encoded by a tree which is a sub-map
of the combinatorial map G = (D, o, «) with only one ¢'-orbit. The only
dual face of a tree is the background face.

More generally, if we contract a set of vertices into a given set of surviving
vertices, the set of darts involved in such contractions may be encoded by
a forest ' = (Dy,...,D,) which is a collection of non-overlapping trees
spanning the given combinatorial map G = (D, o, a).

The forest K = (Dy,...,D,) of G will be called a contraction kernel
iff:

n
SD=D—|JD;#0
=1
The set 8D is called the set of surviving darts.

We can apply successively two (and more) contraction kernels Ky and
Ki5 to a given combinatorial map Gy: G = Go/Kyp and Gy = G1/Kjs.
The same result can be achieved by applying a bigger kernel only once:
Gy = Gy/Kope. Conversely, a contraction kernel may be decomposed into two
smaller ones. The successive application of the resulting contraction kernels
is equivalent to the application of the initial one. Different contraction kernels
on the same combinatorial map Gy may be related by inclusion, successive
kernels give rise to predecessor and successor relations which allow us to
formulate the above mentioned equivalences:

Inclusion of Contraction Kernels: Let us consider two different contrac-
tion kernels Ky, and Ky, defined on a combinatorial map G. We will
say that the contraction kernel Ky, includes Ky iff Ky C Kgys. In this
case each connected component, a tree T of Ky; is included in exactly
one connected component, a tree 7o of Kys:

VT, € CC(K(H)E“ Tsy € CC(KOQ) s.t. Ty C To.

Predecessor and Successor Kernels Given a combinatorial map Go =
(D, 0,), a contraction kernel Ky of Gy and the contracted combina-
torial map G = G/ Kp;. If Ki5 is a contraction kernel of Gy then we
say that Ky is the predecessor of Ko, or that K, is the successor of
K. This relation will be denoted Ky < Kis.

The successive application of Ky and K, forms a new operator on G
denoted by K5 0 Ky;.

Based on these two definitions two theorems could be formulated in TR-57 [6]
that relate composition and decomposition of contraction kernels:

Theorem 4 in [6] derives inclusion kernels from successor kernels:
Ko < K12 = K1 C Koz = Ko1 U Ky

with (GU/KUI) /K12 = GU/KOZ-

7

The kernel Ky combines kernel K, with the subtrees of K5 such
that that the result of contracting GGy with Ky, is the same as if GG is
contracted with Ky and with Ky, in succession.

Theorem 6 in [6] derives successor kernels from inclusion kernels:
Ko C Koo = Ko1 < Ko = Koo — K
with GO/KOQ = (GO/K01) /Klg.

Given two contraction kernels Ky, Kos for Gy, Ko being included in
Ky, the larger kernel Ky can be decomposed into Ky; and the suc-
cessor kernel K5 which can be used after contracting G, with Ky to
yield the same result.

The definitions of connecting walk and the application follow from TR-
57 [6] are adapted here to clearly identify the pyramid levels of both the
input and the output elements.

Definition 1 Connecting walk
Given an initial connected combinatorial map Go = (D, 0, «) and a con-
traction kernel K;; we associate to each dart d of SD; a connecting walk

CWi;(d) defined on SD; by:

CWij(d) = (d, pi(d),- .., ¢}~ (d)) with n = Min{p € N* | ¢}(d) € SD;}
Definition 2 Function follow Given an initial connected combinatorial
map Gy = (D, 0,a) and a contraction kernel K;; the application follow;;(d)
relates the dart d € SD; with its successor in SD; through the connecting

follow;;(d) = ¢} (d) with n = Min{p € N* | ¢!(d) € SD;}
We have shown in TR-57 [6] that the set of connecting walks defined by an

initial combinatorial map and a contraction kernel K;; may be structured
into a combinatorial map GCj; such that GCj; is isomorph to G; = G,/ Kj;.

2 Coding All Contractions of a Pyramid

We will study in this section an encoding of a sequence of contractions defined
by a sequence of successor or inclusion kernels. The basic idea of this encoding
is to store for each dart the index of the contraction kernel which encloses it.
We will show that this information is sufficient to retrieve all the contraction
kernels and all the contracted combinatorial maps.

8

2.1 Coding the life time of a dart

Given a sequence of successive contraction kernels Ko; < Ko < ... < K1
we can consider the sequence of inclusion kernels Ky C Koy UKo C ... C
Ui_, Ki_1; which provides the same series of contracted combinatorial maps
(see Section 1.3 and [6]). We can thus, without loss of generality, restrict
our study to inclusion kernels. In this last case, all the connecting walks are
defined on the same initial combinatorial map.

Proposition 1 Given a combinatorial map Gy = (D, o, «), and two con-
traction kernels Ko and Ky, Ko C Kgya. The connecting walks of Ky
include the connecting walks of Ko (see Def. 1):

Vd e SDy CWyy (d) C CWoya (d)

Proof:
Both connecting walks are defined by:

CWo(d) = (d,@o(d),...,0 1(d)) with n= Min{p € N* |ph(d) € SD,}
CWnld) = (dspold),. .. o0) with m = Min{pe N* [(d) € SD;}

Since 8Dy C 8Dy we have m > n and thus CWy;(d) C CWyy(d). O

This result is illustrated in Figure 3.

Proposition 2 Given a combinatorial map Gy = (D, o, «), and two con-
traction kernels Koy and Ko, Ko C Koo. Fach connecting walk of Koy is
included in exactly one connecting walk of Koo:

Vd € 8D, Ad' e SD, such that C'Wy, (d) C CWOQ(d,)

Proof:

We know that, given a contraction kernel, each dart belongs to exactly
one connecting walk (see [6]). Thus there exists a unique dart d’ in SD, such
that d € CWOQ(dl).

Let us consider n such that ¢"(d) = followy;(d) (see Def. 2). The se-
quence CWyi(d) = (d,p(d), ..., " 1(d)) is included in Ky C Koy by defi-
nition of a connecting walk. A sequence of p-consecutive darts included in
Kys is included in exactly one connecting walk of Ks:

CWy (d) C CWoa (dl)

G1 = Go/Ko:

G2 = Go/Koz2 = G1/(K12)

Figure 3: This figure shows two included contraction kernels Ko1 and Kyz. Each
connecting walk of Koo defined by one dart in SDy = «*(2,3,4,5,6,9,11,12) in-
cludes the corresponding connecting walk of Ko1. We have for example, CWoy1(3) =
3, while CWOQ(?)) = 3, -8

10

Proposition 3 Given a combinatorial map Gy = (D, o, «), and two con-
traction kernels Koy and Ko, Ko C Koo. Fach connecting walk of Koy is
equal to a concatenation of connecting walks of Ky :

Vd € 8Dy CWoy(d) = CWoyi(dy) - - - CWey (d,)
with CW12 (d) = (dl, Cay dp)

Proof:
Given a dart d € 8D, let us consider the ordered set

(dl, ey dn) - CWOQ(d) N SDl

The order of the sequence (di,...,d,) is deduced from the order defined in
CWos(d). Note that we have dy = d, since d € SDy C SD; and d is the first
dart of CWyy(d).

Let us consider two cases:

e If n =1, then the walk CWy(d) — {d} does not contain any surviving
dart of 8D;. Therefore, ¢(d) € SDy and:

CW02(d) = CW01(d) = (d)

Moreover, we have in this case, p;(d) = followyi(d) = p(d) € SD;.
Thus Cng(d) = (d)

e If n > 1, each dart d; is enclosed in CWpy(d), thus we have by propo-
sition 2:
V{di,...,d,} € SD; CWy(d;) C CWoa(d)

Moreover, by definition of a connecting walk, all darts contained in
CWoa(d), and thus all (d;)icq1,...ny belong to the same @-orbit. There-
fore, we have by construction of the ordered set (dy, .. ., d,), followg (d;) =
di+1- Thus Cng (dl) fee CW01 (dn) is a walk of Gg included in CWOQ(d)
starting from d.

If followy (d,) belongs to SD; — 8D, we can find another dart d,, 4,
in CWya(d) N SD; which contradicts the definition of n. Therefore,
followg, belongs to SD, and:

CWOQ(d) - CW01 (dl) e CWUl (dn)

Moreover, since d; 1 = followy (d;) = ¢1(d;) € SD1—8Ds, for each i in
{1,...,n— 1}, the sequence (d,...,d,) is included in CWi5(d). Since

11

we have by hypothesis followy (d,) = p1(d,) € SDs, the connecting
walk C'Wi,(d) must stop at d,, and we have:

CWis(d) = (d; .. .dy)

Using the example given in Figure 3, we obtain for the dart -3: CWi5(—3) =
(—3, 8), while CWOQ(_S) = (—3, —7, 1, 8) = CWOl(—S) : CWOl(S)

Proposition 4 Given a combinatorial map Gy = (D, 0,«), and a sequence
of contraction kernels Ko, ..., Kn_1,. For each i in {1,...,n — 1}, each
connecting walk CW; ;1 (d) with j < i and d € 8D,y 1is equal to a concate-
nation of connecting walks defined by K ;:

Vi € {l,...,n—1}

with CWi’i+1 (d) = (bl, ceey bp)

Proof:
Given two indexes j and ¢ fulfilling the above conditions and a dart d in
8D, 1, let us consider the two sequences of darts:

CWj,i-Irl(d) = (dy,...,d,) and
CW],l(bl) PR CW],z(bp) (dll, ey d;)

with CI/VZ',H_l(d) = (bl, ceey bp)

Since the first dart of a connecting walk is equal to the dart which defines
it we must have by = d] = d; = d. Let us denote the connecting walks
CWj’i(bk) by:

CWJ,l(bk) = bk,l Cee bk,pk
By definition of a connecting walk, ¢;(bx) = bgr1 = ¢;(brp,) for each k in
{1, e, P — 1} MOI‘QOVGI‘, for each dart bk,j in CWj’i(bk), bk,j+1 = @j (bk,j)-

Therefore, CW, ;(by) ---CW, ;(b,) is a sequence of y;-successors. More-

over, by definition of connecting walks:

Vk € {2, N ,p} bk € K,mqu
Vk € {1, e ,p} CWj’i(bk) — {bk} C Kj,i

12

Therefore:
(CW;i(by) = {b1}) - CWji(bg) - - - CW;;(by) C Kji UKjjp1 = Kjin (1)

Since CW;;11(d) — {d} is the maximal sequence of ¢;-successors included in
K ;1 and starting from ¢;(d = b;):

CWiji(b1) - - - CWii(by) € CWiira(d)

Using our notations we have b,, = d;. Moreover, by definition of the con-
necting walk CW;;,1(d): ©;i(b,) = ¢;(d;) € SD;y1. Using equation 1, p;(d)
is the first dart of the sequence of p;-successors starting from d which belongs
to 8D;,1. Therefore, by definition of a connecting walk n = ¢ and:

CWiigi(d) = CWji(by) -+ - CWji(by)

Definition 3 Pyramid Construction Plan

Given a combinatorial map Gy = (D,o,«), and a sequence of inclu-
sion kernels Kyy C Kgo... C Kop, the pyramid construction plan LP =
(Go, level), associated to this sequence of contractions of Gg, is defined by
Gy and a function level:

level D — {l,....,n+1}
cve d — max{i|deSD; .}

Note that since each set of surviving darts SD;,i € {1,...,n} is symmetric
with respect to «, the function level must satisfy the following property:

Vd € D level(a(d)) = level(d)

Therefore, if the pyramid construction plan is implemented with an implicit
encoding of the involution « by the sign, only the level of positive darts needs
to be stored.

Proposition 5 Given a combinatorial map Gy = (D, 0,), and a pyramid
construction plan LP = (G, level) defined by n contraction kernels, each
dart of level © <n belongs to K;_y;:

K, 1;={deD | level(d) =i}

13

Proof:

Let us consider d in D such that level(d) = i < n. By definition of the
function level, d belongs to SD,;_; and d ¢ SD;. Since SD; = SD;_1 — K;_1
d must belong to K;_; ;.

Conversely, if d belongs to K;_;; we have, d € SD;_; and d ¢ SD;.
Moreover, since SD; C S8D; for each k greater than i, d ¢ SDy for k > i.
We thus obtain level(d) = i. O

Corollary 1 Given a combinatorial map Gy = (D, o0,a) and the pyramid
construction plan LP = (G, level). Fach contraction kernel Ky; is equal to
the darts having a level less than or equal to i:

Vie{l,....,.n} Ky={deD | level(d) <i}

Proof:
We have for each level i in {1,...,n}:

i
Ko = |J Kj1,
j=1

Using proposition 5 we obtain:
Koy ={deD | level(d) <i}
Ol

Corollary 2 Given a combinatorial map Gy = (D, o0,a) and the pyramid
construction plan, LP = (G, level) defined by n contraction kernels. The
surviving darts of the i contraction kernel have a level strictly greater than

Vie{l,....,n} SD;,={deD | level(d) > i}

Proof:
The surviving darts of level 7 are defined by:

Since Ko; ={d € D | level(d) < i} (see corollary 1) we have:
SD,={deD | level(d) > i}

14

Remark 1 Given a pyramid construction plan LP = (G, level) defined by
an nitial combinatorial map Gy and n inclusion kernels, a dart d € D such
that level(d) = n+ 1 belongs to SD,,. Therefore, this dart is not contracted
during the sequence of contractions generating the pyramid.

Proposition 5, Corollaries 1 and 2 show that the function level allows us to
retrieve the different contraction kernels and their associated surviving darts.
The permutation a being the same for all contracted combinatorial maps,
a given contracted map G; = (8D;,0;,) will be completely determined
if we can define the permutation ¢; from the function level. Propositions
below show that Algorithm 1 allows us to retrieve the different permutations
o; thanks to the implicit encoding of the contraction kernels Ky by the
function level. It can be considered the ’life time’ of a dart in the sequence
of contractions generating the pyramid.

dart survivec(int i, dart d)

{
if (level(d) > i)
return d;
return survivec (i,¢(d))
}

Algorithm 1: The function survivec returns the first dart in SD; encountered
when turning around the face ¢*(d)

Definition 4 survives Stack Given a combinatorial map Gy = (D, 0,),
and the pyramid construction plan, LP = (Gq,level). The ordered set
Stacke (i, d) is the sequence of darts which will be passed as second argument
of the recursive function survivec during a call to survivec(i, d).

Remark 2 Using the same notations and hypothesis as definition 4, the last
dart of Stackc(i,d) is equal to survivec(i,d).

Proposition 6 Using the same notations and hypothesis as definition 4,
the ordered set Stacke (i, p(d)) is equal to CWo;(d) — {d} concatenated with

15

Figure 4: An illustration of the algorithm survivec. A call to survivec(2,—7)
will induce the traversal of the darts —7,1,8 and —3 represented by empty arrows.
Note that we have CWye(—3) = —3,—7,1,8. and thus p2(—3) = p(8) = —3 (see
Figure 3)

followy;(d) for each i in {1,...,n} and each d in SD;:

vV i € {1,...,n}

V d € SD; } d - Stacke(i, p(d)) = CWo;(d) - followg;(d)

Proof:

o If CWy;(d) = (d), then (d) belongs to SD;. In this case level(p(d)) is
strictly greater than i (see Corollary 2) and survivec (i, ¢(d)) is equal
to ¢(d). Therefore:

Stacke (i, o(d)) = (¢(d))
with o(d) = followg;(d).

o Let CWy(d) = (d,dy,...,d,) with p > 1. Suppose that the series
Stacke (i, p(d)) and CWo;(d) — {d} are equal until a given index j:

Stacke (i, o(d)) = (dv,...,d;,...)

We have by definition of a connecting walk dj, = *(d) for each k in
{1,...,p}. Thus di = (d) belongs simultaneously to Stacke (i, p(d))
and CWy;(d) — {d} and the property is true for j = 1. If the prop-
erty is true until a given rank j < p, we have: d;;; = ¢(d;) and
d; € K;. Therefore, the level of d; is less than i (see corollary 1) and
survivec (i, d;) = survivec (i, dj11). Thus dj4q belongs to Stacke (i, p(d))

16

and follows d; in this order. The property is thus true until the rank
Jj+ L

The sequence (dy, . .., d,) is thus included in Stackq (i, ¢(d)). Moreover,
by definition of a connecting walk p(d,) = followy;(d) € SD;. There-
fore, the level of (d,) is strictly greater than i and survivec(i,d,) =
survivec (i, o(d,)) = ¢(d,) = followy;(d). Thus the sequence of recur-
sive calls to the function survivec stops on ¢(d,) and Stacke (i, p(d))
is equal to:

Stacke (i, ¢(d)) = (dy, . .., d,, followy,(d))

Corollary 3 Given a combinatorial map Gy = (D, 0, &) and a pyramid con-
struction plan, LP = (G, level) defined by n inclusion kernels. The applica-
tion followy; defined by Gy and the contraction kernel Ko may be retrieved
with the function survivec by using the following equation:

Vi € {1,...,n} o : :
v d e SD, } followg;(d) = survivec(i, p(d))

Proof:
See proposition 6 and remark 2. O

A combinatorial map G = (D, 0, «) is explicitly encoded by its set of
darts D and the two permutations ¢ and «. Corollary 3 shows us that
the function followy;, and thus o; may be retrieved thanks to the algorithm
survivec. However, the pyramid construction plan remains implicitly defined
by function level. One idea to obtain a more explicit form of the pyramid
construction plan is to store the results of the function survives in a function
Y.¢ (see Table 1) which then encodes explicitly the pyramid construction plan:

Definition 5 Application X~

Given a combinatorial map Gy = (D, o,«), and a pyramid construction
plan, LP = (Gy,level) defined by n inclusion kernels. The application ¢
from {1,...,n} x D to D is defined by:

{1,...,n} xD — D
Yo < (Z,d) — SUTUiUe(i,U(d))

17

Definition 6 Restoration of the pyramid construction plan

Given a combinatorial map Gy = (D,o,«a), and a pyramid construc-
tion plan LP = (Gy, level) defined by a sequence of n inclusion kernels, the
restoration p; is an application from SD; to {1,...,n} x D which associates
to each dart d in SD; the couple (i,d):

‘ SD; — {1,...,n}><’D
’ d = (i,d)

Proposition 7 Given a combinatorial map Gy = (D, 0,«), a pyramid con-
struction plan, LP = (Gy,level) defined by n inclusion kernels and the
restoration (pi,...,Pn)-

The permutation o; of G; = (SD;, 04, «) is equal to Yo composed with p;.

ViE{l,...,TL} Ecopizai

Proof:
Given an index 7 in {1,...,n} and a dart d in SD;, the application X op;
maps d into survivec(i,o(d)). Thus, using Corollary 3 we have:

Yo o pi(d) = survive(i,o(d)) = survive(i, p(a(d))) = followy;(a(d))

Using the isomorphism between the connecting walk map and the contracted
one (see [6]) we have: o; = follow; o a. Therefore:

Vi € {1,,n} VdGSDZ ZC Opl(d):O'Z(d)

Thus, using the function level and the algorithm survives we can retrieve,
all the contraction kernels and all the contracted combinatorial maps defined
by these kernels. If the result of the function survivec(i,o(d)) is stored in
¢ for each level i and for each dart d in 8D;, the implicit definition of
the pyramid construction plan becomes explicit and it can be denoted by:
LP = (Gy,level) = (D, ¢, level, o) (see Table 1).

If the sequence of contractions is defined by successive contraction ker-
nels, instead of inclusion kernels, the different contraction kernels may be
retrieved from the function level by the proposition 5. This proposition may
be used as a consequence of Definition 3 if the pyramid is defined by inclusion

18

d|maz; + 1| 3c(i,d)
dart| level 01 ‘ 2
1 1 7
-1 1 8
2 3 -1]10] 5
-2 3 91919
3 3 718 1-3
-3 3 111111
4 3 81-8] 2
-4 3 1211212
5 3 -10(-10| 3
-5 3 6|66
6 3 -11-111-11
-6 3 -12(-121-12
7 1 1
-7 1 10
8 2 212
-8 2 -31-3
9 3 -21-21-2
-9 3 41-41-4
10 2 313
-10 2 515
11 3 41414
-11 3 -51-51-5
12 3 91-91]-9
-12 3 -6|-61-6

Table 1: This table represents a possible implementation of the function ¥
by a bi-dimensional array with lines of variable size. Note that in this case the
function level encode simultaneously the level on which a dart is contracted
and the size of its associated line. The different values of X (7, d) given in
this table correspond to the contractions defined in Figure 3

19

kernels or as a definition of the function level if the pyramid is defined by
successive kernels. However, note that in this case, the uncontracted darts
which belongs to D — Kj,, must be labeled with n + 1.

The basic idea of a parallel implementation of the function survivec is
to run the algorithm survives concurrently on |D| processors. If we suppose
that we have an ideal CREW PRAM (Concurrent Read Exclusive Write
Parallel Random Access Machine, [10]) the parallel algorithm consists to
initialize a linear array surwvive of darts to the identity and to determine
for each dart its next surviving dart within the face (see algorithm 2). This
computation being performed concurrently.

void set_next_survivor(int i)
{
For each d in D do in parallel
survive[d] = d;
For each d in D do in parallel
get_survive(i,d);

Algorithm 2: The algorithm set_next_survivor computes the next survivor of
each dart. The function get_survive is described in Algorithm 8

void get_survive(int i, dart d)

{

while(level(survive[d]) < i)

{

survive [d]=survive [p(d)];

Algorithm 3: The algorithm get_survive is attached to one dart and computes
its next survivor

If we suppose that a face is defined by ¢*(1) = (1,2, 3,4,5,6,7,8,9), and
that the surviving darts of this faces are 2 and 5, the algorithm get_survive

20

will produce the following steps:

SUTrvIVE :

DN DN
Ot Ot Ot Ot = W
Ot Ot Ot Ot O =
N — © 00~ O
NN~ © 00~
NN DN = O 0o
N DN~ O

‘l\Dl\Dl\Dl\Dl\Dl\D‘

‘CﬂCﬂCﬂCﬂO‘(O‘(‘

Using a PRAM model, each elementary operation is performed synchronously.
Therefore, the number of elementary steps of each algorithm get_survive(i, d)
is equal to the cyclic distance between d and its associated surviving dart .
If we denote by D the maximum of these distances, the parallel algorithm
will terminate after D steps. Therefore, worst case parallel complexity of our
algorithm is linear in the cyclic max-distance between surviving darts. More-
over, using Brent’s Lemma [2] our algorithm may be executed on a PRAM
machine with p processors in:
|D| + |SD;| — D

t(p) <D+ steps.
p

2.2 Adaptations from removal kernels

Since a single contraction of a combinatorial map does not change the number
of (dual) faces also a sequence of contractions cannot remove a face. Thus
using contraction kernels solely, at least one dart must survive in each face
(see [6]). Therefore, we cannot contract a complex combinatorial map into
a self-loop by contractions solely. Consequently also contractions of the dual
combinatorial map, i.e. removals, must be considered. The reduction of the
initial combinatorial map to a self-loop or to a combinatorial map with less
faces than the original needs both contractions and removals. In the following
we study some properties of the removal operation.

Definition 7 Removal Kernel
Given a combinatorial map G , a removal kernel is a contraction kernel

of G.

Note that a contraction operation on G is equivalent to a removal op-
eration on G and vice-versa [15]. Moreover, a removal kernel is a forest of

21

G. Therefore if K is a contraction kernel of G, its dual K is not necessarily
a contraction kernel of the dual map G. Thus, if we talk about a removal
kernel below, we mean an inclusion kernel defined in the dual combinatorial
map G, and not the dual of an inclusion kernel of G.

Since a dual inclusion kernel is defined in the dual combinatorial map G,
the permutations o and ¢ have to change their roles. Therefore, the definition
of a connecting walk has to be changed accordingly(see Definition 1):

Definition 8 Dual connecting Walk
Given an initial connected combinatorial map Gy = (D,o0,«) and a re-

moval kernel K;; defined on Gy, we associate to each dart d of SD; a dual
connecting walk DCW,;(d) defined on SD; by:

DOCWii(d) = (d,0:(d), . .., 0" (d)) with n = Min{p € N* | o?(d) € SD;}

)

A removal kernel is simply a contraction kernel defined in the dual com-
binatorial map. Therefore, given a combinatorial map G, all the properties
in G shown in TR-57 [6] for inclusion or successor kernels remain valid in G
for inclusion or successor removal kernels defined in G.

One such property of a removal is the preservation of structure. We want
that any surviving part remains connected or disconnected after removal.
It has been shown in [11] that parallel edges or self-loops can be removed
without destroying the structure if the enclosed face has a degree less than
three. This criterion generates automatically removal kernels that 'clean’ the
original map from redundant parallel edges and self-loops.

A pyramid construction plan may be defined by a sequence of contractions
or by a sequence of removals. Definition 3, Proposition 5 and Corollary 1
and 2, remain valid in both cases.

However, if we use a sequence of removals, the function survives has to
be adapted in order to traverse the dual connecting walks (see Algorithm 4).
Moreover, it can be easily shown that the function surviver defined by Al-
gorithm 4 is a transcription of the algorithm surwvives in the dual graph.
Therefore, all the results given in the previous section may be adapted and
are given here without demonstration.

Definition 9 survivep Stack
Given a combinatorial map Gy = (D, 0,), a sequence of removal inclu-
sion kernels® Koy C Koy ... C Ky, and their associated pyramid construction

2Note that Ko; must be a spanning forest of Gy = (D, p,).

22

dart survivegr(int i, dart d)

{
if (level(d) > i)
return d;
return survivepc (i,o(d))
}

Algorithm 4: The function survive for a removal kernel

plan, LP = (G, level). The ordered set Stackpc (i, d) is the sequence of darts
which will be passed as second argument of the recursive function surviveg
during a call to surviveg(i,d).

Remark 3 Using the same notations and hypothesis as definition 9, the last
dart of Stackg(i,d) is equal to surviveg(i,d).

Proposition 8 Using the same notations and hypothesis as definition 9, the
ordered set Stackr(i,o(d)) is equal to DCW y;(d) — {d} concatenated with
followy;(d) for each i in {1,...,n} and each d in SD;.

vV i e {1,...,n}

V d € 8D, } d.Stackg(i,o(d)) = DCWi(d) - followo;(d))

Where DCWy;(d) is the connecting walk of d defined by Ko; on Go. And
followy; is the application followy; defined on Gy by the removal kernel K.

Corollary 4 Given a combinatorial map Gy = (D, 0, &) and a pyramid con-
struction plan LP = (Gﬂevel) defined by n removal kernels. The applica-
tion followy; defined by Gy and the removal kernel Ky; is equal to:

Vie{l,...,n} VYdeS8D; followy(d) = surviveg(i,o(d))

Definition 10 Application Xy

Given a combinatorial map Gy = (D, o, «) and a pyramid construction
plan LP = (G, level) defined by n dual inclusion kernels. The application
Yg from {1,...,n} x D to D is defined by:

{,...,n} xD — D
YR < (i, d) — surviveg(i,o(d))

23

Proposition 9 Given a combinatorial map Gy = (D,o0,) and a pyramid
construction plan LP = (G, level) defined by n dual inclusion kernels. The
application Y o p; is equal to the permutation o; of the i*" removed combi-
natorial map.

Vie{l,....n} Xrop;,=o0;

Proof:
According to the definitions of application ¥z and p; the composition of
both applications is equal to surviveg(i,o(d)) for each i in {1,...,n} and

each d in 8D;:
Vi e {l,...,n}Vd € SD; Xpop;(d) = surviver(i,o(d))
Using Corollary 4:
Yr o pi(d) = surviver(i,a(d)) = follow;(d)

Using the isomorphism between the dual connecting walk map and the re-
moved one (see [6]) we have: o; = followy;, therefore:

VZE{]_,,’I’L}VdGSDZ EROpl(d):O'Z(d)

3 Generalized Pyramid Construction Plans

In this section we consider a sequence of n successive kernels such that each
kernel performs either contractions or removals of a set of darts of the current
combinatorial map. According to the definition of a contraction kernel, the
set of darts contracted or removed at level 4, is a forest of G;_; if K; ;; is a
contraction kernel and a forest of G,_ if K i—1,; is aremoval kernel. Therefore,
the successive application of two successive kernels K;_; ; and K; ;; is neither
a forest of G;_; nor of G;_; if K;_;and Kj; ;1 do not perform the same type
of contraction. Since we no longer consider contraction kernels K, ; with
J # ©+ 1 we simplify the notations by denoting K; ;; by K.

24

Proposition 10 Given a sequence of contraction or removal kernels (K7, . ..
successively applied on the initial combinatorial map Gy = (D, 0, «), the two
following properties hold:

Vie{l,...,n} SD; =D - U,_, K;
V(Z,]) S {]_,,TL}Q,Z#'] KZijzw

Proof:

Let us demonstrate the first property by recurrence. We have, by defini-
tion of a contraction kernel SD; = D — K;. Note that, this property holds
also if K is a removal kernel. Let us suppose the property is true until a
given rank ¢ < n. Then we have by definition of a kernel:

i1 i
8D;=8D; —K;=D-|JK;-K;=D- | JK;

Let us now suppose that we can find a dart d belonging to two kernels Kj;
and K; with ¢ < j. In order to be contracted by K, d must belong to SD;_;

with :
j—1

8D; 1 =D- | J K,

k=1
Since K; C Ufc;ll K, we obtain the desired contradiction. O

3.1 Connecting dart sequences
In the following we will have to distinguish two cases:

1. When two successive kernels K; and K;; are both contraction kernels
or both removal kernels.

2. When K; is a contraction kernel and K;, a removal one or when Kj is
a removal kernel and K;,; a contraction kernel.

In order to simplify the notations, we will say that two successive kernels
K; and K;,; have the same type in the first case and different types in
the second one. More generally the type of a contraction kernel refers to
the combinatorial map on which it is applied (the initial or the dual one).
Figure 5 shows a sequence of combinatorial maps built by contraction and
removal kernels applied alternatively.

25

1 *
=a*(1,2,7,10
_.I CK ! () GO = (SDO = D,U’g,a)
M ? = a*(-12, -6, —4)
i
1
8 J
Ky
RK K} = a*(9,8) G1=(8D1,01,)
K>

CK K} = a*(3) G2 = (8D2, 02,)

K3

RK K} = a*(5) G3 = (8D3, 03, a)

Ky

Gy = (S8Dy4,04,)
11

Figure 5: The initial grid encoded by the initial combinatorial map Gy = (D, 0, @)
18 successively contracted by K1, Ko, K3 and K4. Kernels with even indices denote
contraction kernels (CK) while odd indices denote removal kernels(RK).

26

Definition 11 Connecting Dart Sequences

Given a combinatorial map Gy = (D, 0,) and a sequence of contraction
or removal kernels K1, K5 ..., K,. The connecting dart sequence is defined
by the following recursive construction:

VdeD CDSy(d)=d
For each level i in {1,...,n} and for each dart d in SD;

e If K; and K;_1 have the same type:

o If K; and K;_1 have different types:

CDS;(d) = d, - CDS; (a(dy))---d, - CDS; | (a(dp))

Where (dy ...dy) is equal to CW;_y,;(d) if K; is a contraction kernel and
DCW,_,(d) if K; is a removal kernel. The term CDS}_,(a(d;)) denotes the
connecting dart sequence CDS;_(a(d;)) without its first dart. The kernels
Ky =0 and K, have the same type by convention.

The set of connecting dart sequences associated to the kernels defined in
Figure 5 are given in Tables 2, 3, 4 and 5 (see section A).

Proposition 11 Given a combinatorial map Gy = (D, 0, «) and a sequence
of contraction kernels K1, K5 ..., K,. We can define a sequence of inclusion
kernels Koy, ..., Ky, with Ko, = U§:1Kz' providing the same contracted com-
binatorial maps. Moreover, in this case the connecting dart sequences are
equal to the connecting walks defined on the kernels Koy, ... Ky,:

Vie{l,...,n} VdeSD: CDSi(d)=CWy(d)
Where CWy;(d) is defined by Ko; on Gy.

Proof:
First note that, if all the contraction kernels have the same type, the
connecting dart sequences are defined by:

Vd € SD; CDSZ(d) = CDSi,I(dl), SN CDSZ,I(dp)

27

With CW;(d) = d, . ..,d, is the connecting walk of d defined on G;_; by K;.
The proposition is trivially true for ¢ = 1. Indeed, in this case:

ODS\(d) = CDSy(dy)---CDS(d,)

Vd € 8§D, {C’DSl(d) = (dy...d,) = CWy(d)

Let us suppose that this proposition is true until a given rank 7. Since K;
and K;,; have the same type, we have for each dart d in §D;:

CDS;i1(d) = CDS(dy)-- 'CDSi(d;)
= CWoi(dy)---CWy(d;) (by our recurrence hypothesis)

With CW/,,(d) = (d}...d;) denotes the connecting walk of d defined by
Ki+1 on Gl
Moreover, we have by proposition 4:

CWU’Z'+1 (d) — CWU’l(dll) e CWU’l(d;)

Therefore, CDS;;i(d) = CWy,;1(d) and the recurrence hypothesis holds
until ¢ + 1. O

Remark 4 Note that the demonstration of proposition 11 remains valid if
all kernels are removal ones, therefore:

Given a combinatorial map Gy = (D,o,a) and a sequence of removal
kernels K1, K5 ..., K,. We can define a sequence of removal inclusion kernels
Ko, ..., Ky, with Ko, = U§:1Kz' providing the same combinatorial maps. In
this case the connecting dart sequences are equal to the dual connecting walks
defined on the kernels Koy, ... Koy,:

Where DCW ;(d) is defined by Ko; on Gy.

In the following, we will have to consider connecting walks or dual con-
necting walks according to the type of the associated kernel. All the prop-
erties of connecting walks used below are common to connecting walks and
dual connecting walks. In order to not overload the demonstrations, we will
denote both connecting walks CW,_; ; and dual connecting walks DCW,;_; ;
by C'W;. The type of the connecting walk is then implicitly defined by the
type of its associated kernel K.

28

Proposition 12 Given a combinatorial map Gy = (D, o, «) and a sequence
of contraction or removal kernels K1, Ky ..., K,. For anyleveliin {1,...,n},
the first dart of CDS;(d) with d in 8D; is d:

Vi e {1,...,n}

V d € SD; } CDSi(d) = (d,ds, ..., dp)

Proof:

The proposition is trivial for i = 0 (we have in this case p = 0). Let us
suppose it is true until a given rank ¢ — 1 < n and let us consider a given
dart d in 8D; with:

CWi(d) = (dy,...,dp)
Note that according to the definition of a connecting walk (see Def. 1) we
have d; = d.
Then, if K; and K; ; have the same type:

Since d; is equal to d the proposition is true at rank ¢ thanks to our recurrence
hypothesis.
If K; and K;_; have a different type:

CDS;j(d) = d, - CDS;_ (a(dy)) - ~dp - CDS:—1(a(dp))

Like previously, we have d; = d by definition of a connecting walk, and the
first dart of C'DS;(d) is thus equal to d. O

Proposition 13 Given a combinatorial map Gy = (D, 0, «) and a sequence
of contraction or removal kernels Ky, K, ..., K,. For any leveliin {1,...,n}
and for any connecting dart sequence C DS;(d) with d in SD; 1, the sequence
CDS;(d) is included in Uj_K;:

Vi€ {0,...,n} VdeSD; CDS;(d)c|]JK;

Jj=0

Proof:
If i =0, CDSy(d) = d therefore:

Vie D CDS:(d)=0c Ky=10

29

The proposition is thus trivial for 7 = 0. Let us suppose it is true until a
given rank ¢ — 1.

Let us consider a given d in SD; such that:

CWi(d) = (du, ..., d,)

with d1 =d and (dg, .. .,dp) C Kz

e If K; and K;_; have the same type:

Using our recurrence hypothesis,

i—1
Vje{l,....p} CODS;(d;) C|JKs
k=0

and the fact that all darts d;, 1 < j < p, of the connecting walk C'W;(d)
belong to K; we have:

CDSE,(d) C Uy Ki

Vj e {2, . ,p} CDSZ,I(d]) C U;g:O K;

Therefore,

CDS;(d) = CDS;_(d) - CDS;_y(dy) - --CDS;_1(d,) C | J Ky
k=0

e If K; and K;_; have not the same type:

CDS;i(d) = dy - CDS;_ (a(dy)) - ~dp - CDS:—1(a(dp))

Like previously, using our recurrence hypothesis:

CDSE (a(d)) C Upzo K

Vi€{2...,p} d;j-CDSL,(ald;)) C U Ki

Therefore,
CDS;(d) = CDS; (a(dr)) -~ dy - ODS; (aldy)) | Ky
k=0

30

Proposition 14 Given a combinatorial map Gy = (D, 0, «) and a sequence
of contraction or removal kernels K1, Ky ..., K,. Any connecting dart se-
quence at level i, with i € {1,...,n} is not shorter than the corresponding
connecting walk:

Vie{l,...,n} VdeSD;, |CDSi(d)|> |CW,(d)]

Proof:
Given an index 7 in {1,...,n}, and a dart d such that:

CWi(d) = (dy,...,d,)
If K; and K;_; have the same type,

Since each connecting dart sequence C'DS,_;(d;) with jin {1,...,p} con-
tains at least d; (see proposition 12), we have |CDS;(d)| > |CW;(d)|. If K;
and K;_; have not the same type, we have:

CDS;(d) = dy - CDS; | (a(dy)) ...d, - CDS? ,(a(d,))

The proposition is then trivial. O

Proposition 15 Given a combinatorial map Gy = (D, 0, «) and a sequence
of contraction or removal kernels K, K,y...,K,. If a connecting dart se-
quence CDS;(d) is reduced to d then ¢;(d) = p(d) if K; is a contraction
kernel, and o;(d) = o(d) if K; is a removal kernel:

B vi(d) = @(d) If K; is a contraction kernel
CDSi{d) = (d) = { oi(d) = o(d) If K; is a removal kernel
Proof:

If i =1, CDSy(d) = CWi(d) for any d in SD;. Then if the cardinal of
CDS,(d) is reduced to 1, the cardinal of CW;(d) must also be equal to 1
(see proposition 14). We have thus in this case CDS,(d) = CW,(d) = (d).
Therefore, using the definition of a connecting walk:

31

e ¢,(d) = ¢(d) if K, is a contraction kernel.
e 01(d) = o(d) if K is a removal kernel.

The property is thus true at rank 1 for any dart in SD;. Let us suppose the
property is true until rank i — 1 < n. Then, if CDS;(d) = (d), we have as
previously, CW;(d) = (d). Therefore:

vi(d) = ¢;_1(d) if K; is a contraction kernel
oi(d) = o;.1(d) if K; is a removal kernel

(2)
Moreover, if K; and K;_; have the same type:
CDS;(d) =CDS; 1(d) = (d)

using the recurrence hypothesis:

e ;(d) =p; 1(d) = ¢(d) if K; (and thus K; ;) is a contraction kernel.

e 0;(d) =0;_1(d) = o(d) if K; and K;_; are removal kernels.

If K; and K,_; have not the same type,

CDS;(d) =d-CDS; |(a(d)) = (d)

We have thus CDS; ;(a(d)) = a(d), and using our recurrence hypothesis
and equation (2):

o If K; is a contraction kernel and K,;_; a removal one:
pi(d) = pi-1(d) = oi-1(a(d)) = o(a(d)) = ¢(d)
o If K; is a removal kernel and K;_; a contraction kernel.

0i(d) = 0i1(d) = pi-1(a(d)) = p(a(d)) = o(d)

32

Proposition 16 Given a combinatorial map Gy = (D, o, «) and a sequence
of contraction or removal kernels K1, Ky ..., K,. For anyleveliin {1,...,n},
the second dart of CDS;(d) with d in SD; is, when it exists, equal to o(d) if
K; is a contraction kernel and o(d) if K; is a removal kernel:

Vie{l,...,n} VdeSD; | CDS;(d)=(d,d,...,d,) withp>0

g o(d) If K; is a contraction kernel
"7\ o(d) If K; is a removal kernel

Proof:
This proposition cannot be applied to ¢ = 0, since at this level all con-

necting dart sequences are reduced to a singleton. If ¢ = 1 we have for each
din SDy:
CDS,(d) = CW;(d) = (d,d, ...d,) with p >0

If p > 0 for one d € 8§D, we have by definition of a connecting walk:

g o(d) If K is a contraction kernel
"7\ o(d) If K is a removal kernel

The proposition is thus true for 7+ = 1, let us suppose it is true until a given
rank 2 — 1 < n.
Let us consider a given dart d in SD; such that:

CWi(d) = (d,dy, . ..,d,)

Moreover, we suppose that |C'DS;(d)| > 1 to fulfill the requirements of the
proposition.

e If K; and K;_; have the same type
CDSi(d) = CDS;-1(d) - CDS;y(d;) ---CDS; 4 (d)

If |CDS;_1(d)] > 1 we can apply the recursive hypothesis. If not, we
have CDS; 1(d) = (d). In this case we must have ¢ > 0 since ¢ = 0
and CDS; 1(d) = (d) implies that C'DS;(d) = d which is refused by
hypothesis. Therefore, d) exists and d; = d}. Using proposition 15:

— If K; is a contraction kernel,

dy = d'1 = pi—1(d) = ¢(d)

33

— If K, is a removal kernel,
dy =dy = 0i_1(d) = o(d)
e If K; and K;_; have not the same type:
CDS;(d) = d-CDS; ((a(d))-dy-CDS; | (a(d))---d,-CDS; (a(d,))
Let us denote:
CDS;_1(a(d)) = (a(d), by, ..., b)

— If |r] > 1 the second dart d; of C'DS;(d) is equal to b;. Then using
our recurrence hypothesis:

x If K; is a contraction kernel, then K;_; is a removal kernel
and:

di = by = o(a(d)) = ¢(d)
x If K; is a removal kernel, K;_; is a contraction kernel and:
di = by = p(a(d)) = o(d)

— If CDS; 1(a(d)) = (a(d)), then d; = d), moreover:

x If K; is a contraction kernel, K;_; is a removal kernel. There-
fore, using proposition 15:

oi1(a(d)) = o(a(d)) = ¢(d)

and:
dy = dll = @i—1(d) = 0i—1(a(d)) = ¢(d)

x If K; is a removal kernel, K;_; is a contraction kernel. There-
fore ¢;_1(a(d)) = p(a(d)) = o(d) and:

dy = dy = 0i1(d) = pi—1(a(d)) = o(d)

34

Proposition 17 Given a combinatorial map Gy = (D, 0, «) and a sequence
of contraction or removal kernels K1, Ks...,K,. The connecting dart se-
quence of any dart d € 8D; defined at level i € {1,...,n}:

CDS;(d) = (dy,...,dy), p>1
satisfies the following property:

e If K; is a contraction kernel:

gpi(d) — { %O(dp) if dp 18 contracted

o(dy) if d, is removed
o If K; is a remowal kernel:

(d) = o(d,) if d, is contracted
i = o(dy,) if d, is removed

Proof:
Let us show this proposition by recurrence.

1. If + = 1, the connecting dart sequences are equal to the connecting
walks. Thus:

Vd € SDl CDSl(d) = CWl(d) = (dl, ey dp)
Using , the definition of connecting walks:

(a) If K, is a contraction kernel, d, is contracted and: ¢ (d) = ¢(d))

(b) If K is a removal kernel, d, is removed and: oy(d) = o(d,)
The proposition is thus true for i = 1.
2. Let us suppose that it holds until a given rank 7 — 1.
(a) If K; and K;_; have the same type, then:
CDS;i(d) = CDS;_y(dy)---CDS;_1(d) = (dy, ..., dp)
with CW;(d) = (di, ..., d;).
Then, the last dart of CDS;(d) is the last dart of C'DS;_(d!)

q
and we have, using the definition of connecting walks and the

recurrence hypothesis:

35

i. If K; is a contraction kernel,

N | e(d,) If d, is contracted
#ild) = inaldy) = { o(d,) 1If d, is removed

ii. If K; is a removal kernel,

N ooy oeldy) TIf dy is contracted
O'z(d) = Uz—l(dq) - { O'(dp) If dp is removed

(b) If K; and K; ; have not the same type:

CDSi(d) = dy-CDS; (aldy))---dy - CDS; (a(dy))
— (dla ceey dp)

with CW;(d) = (di, ..., d;).
i. If CDS; 1(a(d])) = (a(d,)), then the last dart of C'DS;(d) is
d;, which is contracted or removed at level i according to K.

A. If K; is a contraction kernel, then K;_; is a removal kernel
and dy, is contracted at level 7. Then we have by definition
of connecting walks:

wi(d) = pi_i(dy) = oi_i (a(d}))

Moreover, using proposition 15, since K; ; is a removal
kernel:
i1 (e(dy)) = o(aldy)) = o(dy)
therefore, ¢;(d) = ¢(d})
B. If K; is a removal kernel, then K;_; is a contraction kernel,
and d:] is removed at level 7. Using proposition 15:

pi-1(aldy)) = pla(dy)) = o(d,)

Using the definition of connecting walks, we have: o;(d) =
oi—1(dy) = pi—i(a(dy)). Thus:

oi(d) = o(d,)

ii. If |CDS;_1(a(d))| > 1, then the last dart of CDS;(d) is the
last dart of C'DS; (a(d;)). Therefore, using our recurrence
hypothesis:

36

A. If K, is a contraction kernel, then

N ey i _ | w(d,) If d, is contracted
pild) = gimi(dy) = 05 (aldy)) = { o(d,) 1If d, is removed
B. If K; is a removal kernel, then

If d,, is contracted

oi(d) = Ji—l(d;) - goi_1(04(d;)) - { Z((Z:j If d,, is removed

Proposition 18 Given a combinatorial map Gy = (D, 0, «) and a sequence
of contraction or removal kernels K1, K5 ..., K,. For each i in {1,...,n},
each dart d in D belongs to exactly one connecting dart sequence defined at
level i:

Vie{l,...,n} YdeD 3d e8D; | deCDSid)

Proof:

Let us show this proposition by recurrence:

If i =0, CDSy(d) is equal to d for each d in D. The proposition is then
trivial. Let us suppose that the proposition is true until a given rank 7 — 1.

If d is neither contracted nor removed until level ¢ + 1, it is the first dart
of its own connecting dart sequence until level i (see proposition 12) and
the demonstration of the existence of a connecting dart sequence at level
¢ containing d is then trivial. Moreover, in this case, if d is contained in
two connecting dart sequences defined at level 4, it must be the first dart
of both connecting dart sequences (see proposition 13). The first dart of a
connecting dart sequence being the one which defines it(see definition 11), the
demonstration of the uniqueness of the connecting dart sequence containing
d is trivial.

If d is contracted or removed at level 7, there exists a dart d” in SD; such
that d € CW;(d"). Therefore, d must belong to C'DS;(d") (see definition 11).
Moreover, according to the definition of a connecting dart sequence, the
darts contracted at level ¢+ which belong to a connecting dart sequence, must
belong to its associated connecting walk. Therefore, if d belongs to two
connecting dart sequences C'DS;(d") and C'DS;(b), it must also belong to
the connecting walks CW;(d") and CW;(b). Since the set of connecting walks

37

defined at level i defines a partition of SD; ; [6], we have d” = b and therefore,
CDS;(d") = CDS;(b).

Let us now suppose that d has been contracted or removed before level i.
Then d cannot be the first dart of any connecting walk defined at levels 7 or
1 — 1. Let us now decompose the demonstration at rank 7 in two steps:

Existence: According to our recurrence hypothesis, there exists a unique
dart d' in SDi—l such that: d € CDSz_l(d,)

e If K; and K;_; have the same type there exists a unique dart
d" € 8D; such that d' € CW;(d"), with:

CDSl(d”) = CDSZ_l(dl) v CDSl_l(dp)
since d' € CW;(d") = d,, ..., d,, we have:
de CDS, 1(d) c CDS;(d")

e If K; and K,_; have not the same type, there exists a unique dart
d" in 8D; such that «(d") € CW;(d"). Moreover, since d is not
the first dart of CDS;_;(d'):

d € CDS; (d') C CDS(d") with
CDSi(d") = dy - CDS* ((a(dy) -+ d, - CDS? | (a(dy)

and a(d') € CW;(d") = (dy, ..., d,).

Uniqueness: Let us suppose that there exist at least two darts in SD; such
that d € CDSZ(d,) N CDSZ(d”)

e If K; and K;_; have the same type, then:

CDSZ(d,) - CDSlfl(bl) e CDSlfl(bp)
CDS;(d") = CDS; 1(V,)---CDS; (1)

q
with
CWi(d) = (b,...,b,)
CWi(d") = (b,...,b)
If d € CDS;(d') N CDS;(d"), then there must exist at least two
indices i € {1,...,p} and j € {1,...,q} respectively such that
de CDS; (b)) N CDSi,l(b;.). Using our recurrence hypothesis,

38

d can belong to only one connecting dart sequence at level ¢ — 1,
therefore, b; = 0. We have therefore one dart in SD; which
belongs to two different connecting walks C'W;(d') and CW;(d")
which is impossible since the connecting walk at level ¢ form a
partition of SD;_;(see [6] proposition 6).

e If K; and K;_; have the not same type, then:

{ CDS(d) = bi-CDSE (alby))---b, - CDSL, (a(b,))
CDS;(d") = b -CDS; (a(by))---b;-CDS; (a(by))

with (bi,...,b,) and (b},...,b;) defined as previously.
Since d is contracted or removed before level 7, it does not belong

to {b1,..., b} U{b},..., b} which are contracted or removed at
level s.

Therefore, if d € CDS;(d') N CDS;(d"), there must exist two in-
dices, i € {1,...,p} and j € {1,..., ¢} such that:

d € CDS; ((a(b;))NCDS; (afb}))
=d € CDSZ_l(Oé(bZ)) N CDSZ_l(Oé(b,))

J

Using our recurrence hypothesis we must have: a(b;) = a(b}) and
thus b; = b;. We obtain the same contradiction as previously.

Using connecting walks, each connecting walk is included in one ¢-orbit,
or one o-orbit if the kernel is a removal one. Moreover, each dart appears
only once in each p-orbit and o-orbit. Thus each dart appears also only once
in each connecting walk. The connecting dart sequence are not included in
one @-orbit nor in one o—orbit. Therefore, we have to demonstrate that each
dart appears at most once in each connecting dart sequence:

Proposition 19 Given a combinatorial map Gy = (D, 0, «), a sequence of
contraction kernels or removal kernels K1, K5 ..., K,, each dart d appears at
most once in each connecting dart sequence.

Proof:

This property is trivial for ¢ = 0. Let us suppose that it holds until a
given level i — 1 and let us suppose that we can find a dart d in D that
appears at least twice in a given connecting dart sequence C'DS;(d').

39

o If K; and K;_; have the same type, then:
CDS;(d') = CDS;_i(dy)-+-CDS;_1(d,)

with CWi(d') = dy,. .., d,.

Using our recurrence hypothesis, d cannot appear twice in the same
connecting dart sequence at level i — 1. Therefore, it must exists, two
different indices 7 and j in {1,...,p} such that d € CDS;_(d;) N
CDS;_1(d;). This last assertion contradicts the fact that each dart
belongs to exactly one connecting dart sequence defined at level 7 — 1
(see proposition 18).

e If K; and K;_; have not the same type, then:
CDS;(d') =d,-CDS; | (a(dy)),...,d,- CDS} | (a(dy))

with CWi(d') = dy,. .., d,.

The dart d cannot appear twice in a connecting walk(see [6]). There-
fore, d appears at most once in CW;(d'). Note that if d belongs to
CW;(d') it must be contracted or removed at level i.

Moreover, if d belongs to one CDS;_,(a(d;)) with j € {1,...,p} then
it must belongs to one K; with [< i (see proposition 13). Therefore, d
cannot belong simultaneously to CW;(d) and to one C DS (a(d;)).

Therefore, d can appear twice in C'DS;(d) only if there exist two dif-
ferent indices 7 and k such that:

d € CDS;(a(d;)) N CDS; (afdy))

Therefore, d must belong to C'DS;_1(a(d;)) N CDS;_1(a(dg)) . This
last assertion contradicts proposition 18.

3.1.1 Traversing Connecting Dart Sequences

Proposition 17 allows us to compute the ¢; and o; successors of a given dart
d at any level ¢ by using its connecting dart sequence. Therefore, if we are
able to design an algorithm which traverses the connecting dart sequences

40

of any darts at any level we should be able to build the different contracted
combinatorial maps. However, the traversal of a connecting dart sequence
induces the determination of the relation which links two successive darts
within a connecting dart sequence. Using connecting walks, this relation is
given by the definition of a connecting walk. Using connecting dart sequences
we have to build a constructive definition from the recursive one. The fol-
lowing proposition shows that the successor of a dart in a given connecting
dart sequence remains the same for all levels once it is defined.

Proposition 20 Given a combinatorial map Gy = (D, 0, «) and a sequence
of contraction or removal kernels Ky, Ky ..., K,. If a dart d belongs to a
connecting dart sequence CDS;(d') and if d is neither the first nor the last
dart of CDS;(d') then its successor within the connecting dart sequence will
be the same in all connecting dart sequences which include d and which are
defined at a level greater than i.

Proof:

Let us consider the smallest index [of the contraction kernels such that
there exists a connecting dart sequence C'DS;(d') including d and such that
d is neither the first nor the last dart of the connecting dart sequence. Note
that using proposition 13, if d is not the first dart of CDS;(d) it must be
contracted or removed before level [(see the paragraph below this proof).
Let us suppose that CDS;(d") = (di,...,d,) and that d is one of the darts
{dg,...,d,_1}. Let us show that the successor of d remains the same in all
connecting dart sequences containing d defined at a level greater than or equal
to [. The proposition is trivial at level [, let us suppose it is true until a level
k < n. We have thus a dart d' in SDj, such that CDSi(d') = (di,...,dp),
d=dm, me{2,...,p—1} and d,, 1 is the successor of d from level I.

e If K; and K} have the same type, let us consider d” in 8Dy, such
that d' € CWy.1(d"). Then:

CDSg.1(d") = CDSg(by) - - CDSy(b,)

with d' € CWy41(d") = (b1, ..., b,). The successor of d in CDSj11(d")
is then the same as in CDSk(d’'). Moreover, d is neither the first nor
the last dart of C'DSy1(d") by construction.

41

e If K}, and K}, have not the same type, let us consider the dart d” in
S8Dy1 such that a(d) € CWyiq(d"):

CDSpr1(d") = by - CDSy(a(br)) - - by - CDSE(x(by))

with a(d') € CWii1(d") = (by,...,b,). Since d is not the first nor the
last dart of C'DSj(d’), its successor remains the same in C' DSy 1(d").
Moreover, d is not the first nor the last dart of CDSk.(d").

In both cases, C' DSy 1(d") satisfy the recursive hypothesis. Moreover, using
proposition 18, C'DSy,1(d") is the unique connecting dart sequence defined
at level k + 1 containing d. Therefore, our recursive hypothesis holds until
level £+ 1. O

Proposition 16 shows us that the successor of the first dart of a connecting
dart sequence defined at one level depends on the type of contraction applied
at this level. On the contrary proposition 20 shows us that the successors of
the other darts do not depend on the type of the applied contraction.

Therefore, the successor of a dart d in the connecting dart sequence which
contains it changes at each level according to the type of the associated kernel
until d is contracted or removed. Then the successor of d in the connecting
dart sequences which contain it remains the same for all levels greater than
level(d).

In the following we will determine the relationships between two succes-
sive darts within a connecting dart sequence.

Proposition 21 Given a combinatorial map Gy = (D,o,a), a dart d in
D and a sequence of contraction or removal kernels Ky, Ky ..., K,. If d is
contracted or removed at level | < n, the set of levels I; defined by:

Iy={ie{l,...,n}|3d € SD;,CDS;(d') = (dy,...,d)}
is either empty or is a contiguous interval of {l,...,n} containing .

Proof:

Let us suppose that I; is non empty and let us show that if £ > [belongs
to I; then k£ — 1 does.

If k& belongs to I; there exists one dart d’ such that d is the last dart of
CDSy(d"). Let us denote by dy, ..., d, the connecting walk of d’ defined at
level k:

CWi(d') = (dy,...,d,)

42

e If K\, and Kj;_; have the same type, then:
CDSk(dl) = CDSk_l(dl) R CDSk_l(dp)

Therefore, C DSy (d’) and CDSy_,(d,) have the same last dart d and
the recursive hypothesis holds at level £ — 1.

e If K\ and Kj_; have not the same type, then:
CDS(d')=dy-CDS;_1(a(dy))---d, - CDS;_(a(dy))

If [CDSk_1(a(dp))| > 1, the last dart of this connecting dart sequence
must be equal to d and the recursive hypothesis holds at level k£ — 1.

If |CDSk—1(a(dy))| =1 then, since the last dart of CDS(d’) is equal
to d, we must have d, = d and d is contracted or removed at level
k = 1. We have thus nothing to demonstrate since [is the smallest
index contained in I,.

Note that in both cases, the uniqueness of the connecting dart sequence
containing d at level £ — 1 is insured by proposition 18. Moreover, the above
verification by induction stops only for k£ = [. Therefore, the lower bound of
14, must be equal to [if I; is non empty. O

Using proposition 21, if I; is non-empty it can be written as {level(d), ..., m}
where m denotes the upper bound of I;. Moreover, using Proposition 17 we
can determine both ¢;(d’) and o;(d*) from o(d) and o(d) for each dart d in
SD; such that the last dart CDS;(d") is d.

Corollary 5 Using the same notations and hypothesis as proposition 21 if
I is non empty, then it can be denoted by I; = {l,...,m}, where m denotes
the upper bound of Iy. If m < n, the successor of d in CDS,,1(d') is equal
to o(d) if d is contracted and o(d) if d is removed where CDS,,1(d") denotes
the connecting dart sequence which contains d at level m + 1.

Proof:

e If K, and K, have the same type, let us denote by d’ the dart whose
connecting walk at level m + 1 includes d™:

dm € CWm+1 (dl) - (dl, ey dp)

43

Let us suppose that d™ = d; with ¢ in {1,...,p}. Since d is the last dart
of CDS,,(d™), but not the last dart of C'DS,,,1(d") (by definition of
m) the index i cannot be equal to p. The successor of d in CDS,,, ;1 (d')
is then equal to d; ;. Using proposition 17:

— If d is contracted

div1 = p(d) = Om(d™) If K11 is a contraction kernel
i+1 = P\a) = om(d™) If K,y is a removal kernel

— If d is removed

dooy = o(d) = Om(d™) Tf Kp,qq is a contraction kernel
i1 =o0(d) = Om(d™) If K1 is a removal kernel

o If K,, and K, have not the same type, let us denote by d' the dart
whose connecting walk at level m + 1 include a(d™):

O[(dm) € CWm+1(d,) = (dl, ceey dp)
We have then:
CDSmH(d') =d, -CDS; (a(dy))---d,-CDS; (a(d,))

Like previously we cannot have a(d™) = d,, since in this case d is also
the last dart of C DS, 11 (d’) which is in contradiction with the definition
of m. Let us suppose that a(d™) = d; with i € {1,...,p — 1}. Then
d is the last dart of CDS} («(d;)) and its successor in CDS,, 1 (d')
is d;; 1. We obtain thus the same conclusion as previously by using
proposition 17.

Remark 5 Note that, using the same notations as corollary 5, since d is
contracted or removed before level m, it can’t be the first dart of C DS, 41 (d).
Moreover, it is not the last dart of this connecting walk by definition of m.
Therefore, using proposition 20, the successor of d in CDS,,1(d') remains
the same in all connecting dart sequences which are defined at a level greater
or equal to m + 1 and which contain d.

44

Proposition 22 Given a combinatorial map Gy = (D, 0, «) and a sequence
of contraction or removal kernels K1, K, ..., K,. Given a dart d contracted
or removed at level I, if I, is empty, and if CDS;(d") denotes the connecting
dart sequence containing d at level I, the successor of d in CDS)(d') is equal
to @(d) if d is contracted and o(d) if d is removed.

Proof:
Let us consider d’ in SD; such that:

de CWi(d) = (di,...,dp)
e If K, have K, ; have he same type:
CDSl(d,) — CDSlfl(dl) e CDSlfl(dp)

— If [CDS;—1(d)| > 1, the dart following d in C'DS;(d') is given by
proposition 16 and is equal to:

o(d) If K; and K, ; are contraction kernels
o(d) If K; and K, | are removal kernels

Note that d is contracted at level [, therefore, the dart following d
in CDS(d') is equal to ¢(d) if d is contracted (K is a contraction
kernel) and o(d) if d is removed (K] is a removal kernel)

— If |CDS,_1(d)| = 1 the dart following d in C'DS;(d’) is given by
proposition 15 and is equal to:

oi—1(d) = ¢(d) If K; and K;_; are contraction kernels
o,1(d) = o(d) If K; and K; ; are removal kernels

e If K; and K;_; have not the same type:
ODSI(d) = dy - CDS;(a(dy)) - dy - CDS}y(a(dy))

— If |CDS,—1(a(d))] > 1 then the dart following d in CDS,(d') is the
second dart of CDS; ;(a(d)) and is equal to(see proposition 16):

ola(d)) = ¢(d) If K; 1 is a removal kernel
e(a(d)) = o(d) If K;_; is a contraction kernel

Since K; and K;_; have not the same type, the dart following d
in CDS;(d') is equal to p(d) if d is contracted (K is a contraction
kernel) and o(d) if d is removed (K is a removal kernel).

45

— If |CDS;_1(a(d))| = 1 then the successor of d in CDS;(d’) is the
successor of d in CW,(d’) and is equal to (see proposition 15):

x If K is a contraction kernel and K;_; a removal one:

pi-1(d) = o (a(d)) = o(a(d)) = ¢(d)

x If K, is a removal kernel and K;_; a contraction kernel:

o1-1(d) = i1 (a(d) = p(ald)) = o(d)

Note that d cannot be the last dart of CW;(d') since I is empty
by hypothesis.

Corollary 6 Using the same notations as proposition 22, since d is con-
tracted at level [, it can’t be the first dart of CDS)(d'). Moreover, since I; is
empty, d is not the last dart of CDS,(d"). Therefore, using proposition 20,
the successor of d in all connecting dart sequences defined at a level greater
or equal to | and containing d is equal to o(d) if d is contracted and o(d) if
d s removed.

Theorem 1 Given a combinatorial map Gy = (D, 0, «), a sequence of con-
traction kernels or removal kernels Ky, K. .., K,, the relation between the
successiwve darts of a connecting dart sequence CDS;(d) = (dy,...,d,), with
i€{l,...,n} and d € 8D, is as follow:

p o(dy) If K; is a contraction kernel
2 o(dy) If K; is a removal kernel
and
. S o(dj_1) if dj—y is contracted
V€3 oph dp = { o(dj—1) if dj—y is removed

Proof:

Given a connecting dart sequence CDS;(d) = (dy, ..., d,) defined at level
i, the successor of d; is given by proposition 16. Let us consider a dart d;
with j € {2,...,p—1}. Since d; is not the first dart of C'DS;(d), it must be
contracted at a level less than or equal to i (see proposition 13). Moreover,
since d; has a successor in C'DS;(d) it cannot belong to the set I,,. Therefore,
one of the two following statements must hold:

46

1. The set I, is empty. In this case, the successor of d; is given by propo-
sition 22 (see also corollary 6) and is equal to ¢(d;) if d; is contracted
and to o(d;) if d; is removed.

2. Iy, is not empty and i is strictly greater than the maximal level con-
tained in Iy;. In this last case, we can apply corollary 5 (see also re-
mark 5) and the successor of d;, d; 1 is equal to ¢(d;) if d; is contracted
and o(d;) is d; is removed.

3.2 Coding Contractions and Removals

Since two kinds of operations are allowed and necessary in the pyramid we
have to add some information in the pyramid construction plan in order to
encode in which way a dart disappears at a given level:

Definition 12 Generalized Pyramid Construction Plan

Given an initial combinatorial map Gy and a sequence of successive con-
traction or removal kernels K+, ..., K,, the generalized pyramid construction
plan GLP associated to this sequence is defined by the initial combinatorial
map Gy, a function level defined on D by:

Vd € D level(d) = Maz{i € {1,...,n+1} | de€8D; }

and a (binary) function state from {1,...,n} to {Contracted, Removed},
which maps each level © into:

e Contracted, if K; is a contraction kernel,
e Removed, if K; is a removal kernel.

Proposition 23 Given a combinatorial map Gy = (D, 0,), and a general-
ized pyramid construction plan GLP = (G, level, state) defined by n kernels,
each kernel K; is equal to the set of darts mapped to i by the function level.

Vie{l,...,n} K;={de€D]|level(d) =i}

Proof:
This demonstration is similar to the one of proposition 5. O

47

Proposition 24 Given a combinatorial map Gy = (D, o0, «), and a general-
ized pyramid construction plan GLP = (G, level, state) defined by n kernels,
the set of surviving darts of the i'® contracted map is equal to the set of darts
having a level strictly greater than i:

SD;,={deD | level(d) > i}

Proof:
The surviving darts at level i are defined by (see proposition 10):

j=1

Since (see proposition 23) K; = {d € D | level(d) = i}, a surviving dart
of the " contraction kernel must have a level strictly greater than i

SD,={deD | level(d) > i}

Note that a dart d with level(d) = n+1 must survive: SD,, = D—-U!" | K.
Hence function state is not defined for the top level n+ 1. Furthermore recall
that a dart d is removed from SD; if K, is a removal kernel. This is expressed
now by: state(level(d)) = Removed.

We will show in the following, that the generalized pyramid construction
plan and the function survive (see Algorithm 5) based on it allow us to
retrieve the different contraction kernels and contracted combinatorial map
defined by a sequence of contractions and/or removals.

Remark 6 Note that given a generalized pyramid construction plan and a
level i < n, three cases may occur for each dart d in D:

1. level(d) > i: the dart d remains at level i. This dart may disappear at
an upper level or remain until level n.

2. level(d) = i and state(i) = Contracted: The dart d is contracted at
level 1.

3. level(d) =i and state(i) = Removed: The dart d is removed at level i.

48

Let us now consider the Algorithm 5. Proposition 23 and 24 show that
the generalized pyramid construction plan allows us to retrieve the different
kernels and surviving darts of our pyramid. We will show in the following that
Algorithm 5 together with a generalized pyramid construction plan allows us
also to retrieve the contracted or removed combinatorial maps defined at the
different levels of the pyramid.

dart survive(int i, dart d)

{

if (level(d) > i)
return d;

if(state(level(d)) == Contracted)
return survive(i,p(d))

return survive(i,o(d))

Algorithm 5: The general survive algorithm

Definition 13 survive Stack

Given a combinatorial map Gy = (D, 0, «) and the generalized pyramid
construction plan, GLP = (Gy, level, state). The ordered set Stack(i,d) is
the sequence of darts which will be passed as second argument of the recursive
function survive during a call to survive(i,d).

Remark 7 Using the same notations and hypothesis as definition 13, the
last dart of Stack(i,d) is equal to survive(i,d).

Proposition 25 Using the same notations and hypothesis as definitions 13
and 11. For each i in {1,...,n} and for each d in SD;, CDS;(d) may be
deduced from the stack of function survive thanks to the following relations:

e If state(i) = Contracted

d - Stack(i, p(d)) = CDS;(d) - p;(d)

49

e [f state(i) = Removed

d - Stack(i,o(d)) = CDSy(d) - oi(d)

Proof:

According to proposition 12, the first dart of CDS;(d) = (dy, - .., d,) is d,
moreover, using proposition 16 the second dart of C'DS;(d) is equal to ¢(d)
if K; is a contraction kernel and to o(d) if K; is a removal kernel.

Therefore, the first two darts of d- Stack(i, ¢(d)) (resp. d-Stack(i,o(d)))
and CDS;(d)-p;(d) (resp. CDS;(d)-0;(d)) are equal if K; is a contraction ker-
nel (resp. a removal kernel). Let us now suppose that state(i) = Contracted
(the demonstration may be adapted easily if state(i) = Removed) and let us

consider the series (dj,...,d;) such that:

d - Stack(i, o(d)) = (dy,...,d,,) with d} = d

Let us suppose that both series d- Stack(i, o(d)) and CDS;(d) - ¢;(d) are
equal until a given rank j € {2,...,p—1}. Then, since d; = d; is not the first
dart of C'DS;(d) it must have been contracted before level i. We have thus
level(d;) < i. Moreover if d; is contracted, its successor in Stack(i, ¢(d))
is equal to ¢(d) while if d; is removed its successor is equal to o(d;) (see
Algorithm 5). Using Theorem 1, the successor of d; in C'DS;(d) is equal to
©(d;) if d; is contracted and o(d;) if d; is removed, therefore d;,, = d; ;.
We have thus:

vie{l,....p} d =d,

Since d,, is not the first dart of C'DS;(d), its level must be strictly less than
i. Therefore survive(i, d,) is equal to:

survive(i, p(d,)) if d, is contracted
survive(i,o(dy)) if d, is removed

Thus, the successor d,,, of d, in Stack(i,p(d)) is equal to p(d,) if d, is
contracted and o(d,) if d,, is removed. Using proposition 17, d, 1 is equal to
¢i(d). Therefore, d,,, € SD; and, using proposition 24, its level is strictly
greater than 4. Therefore, d;,, is the last dart of Stack(i,p(d)) and both
series d - Stack(i, o(d)) and CDS;(d) - p;(d) are equal. O

20

Definition 14 Application X
Given a combinatorial map Gy = (D,o,a) and the generalized pyra-

mid construction plan, GLP = (Gy,level, state). The application ¥ from
{1,...,n} x D to D is defined by:

{1,...,n} xD — D
E((i, d) — survive(i,o(d))

Proposition 26 Given an initial combinatorial map Gy and the generalized
pyramid construction plan, GLP = (G, level, state) the permutation o; of
the i'" contracted map is equal to ¥ o p;:

Proof:
Let us consider alevel i in {1,...,n} and a dart d in SD;. The application
¥ o p; maps d into survive(i,o(d)). Using proposition 25 and remark 7:

o If state(i) = Contracted, survive(i,o(d)) is the last dart of Stack(i, o(d) =
@(a(d))). Therefore, using proposition 25:

survive(i,o(d)) = p;(a(d)) = o;(d)

e If state(i) = Removed, survive(i,o(d)) is the last dart of Stack(i,o(d))
and is thus equal to o;(d).

Therefore, in all cases:

Y o p;(d) = survive(i,o(d)) = o;(d)

Note that a direct encoding of the function ¥ similar to the one illustrated
in Table 1 may be defined thanks to the function survive.

4 Conclusion

The two major contributions of this technical report are:

ol

e The study of pyramids defined by both contraction kernels and removal
kernels.

e The definition of a pyramid construction plan and a generalized pyra-
mid construction plan.

The definition of a pyramid defined by both contraction kernels and removal
kernels allows us to remove the restrictions induced by a sole kind of operation
(see section 2.2). We thus gain further flexibility which allows us to contract
any initial combinatorial map into a smaller one eventually reduced to a self-
direct-loop. The definition of the function level, allows us to store the set of
kernels defining a given pyramid. An encoding of the pyramid based on the
function level is also proposed.

The function survive defined in section 3.2 is designed to build a par-
ticular level of the pyramid. The construction of the function ¥ or of all
permutations o; with ¢ € {1,...,n} requires to apply this function on each
level 7 and on each dart in SD;. This last operation may induce some unnec-
essary calculations and a new function adapted to the direct construction of
several levels of the pyramid is under study.

Given a combinatorial pyramid either defined by (D, X, level,), or by
(D, (0))ieq1,...ny» @) the modification of the pyramid in order to improve a
previous result or to adapt it to new input data is often required. We plan to
study this operation named relinking [9] in the combinatorial map framework.
Finally, an implementation of combinatorial maps pyramids should allow to
study interesting applications of our model such as: segmentation [4, 1, 3, 5],
structural matching [16] or integration of moving objects.

References

[1] J. P. Braquelaire and L. Brun. Image segmentation with topological
maps and inter-pixel representation. Journal of Visual Communication
and Image representation, 9(1), 1998.

2] R. P. Brent. Algorithms for Minimization without Derivatives. Prentice—
Hall, Englewood Cliffs, New Jersey, 1973.

(3] L. Brun. Segmentation d’images couleur a base Topologique. PhD the-
sis, Université Bordeaux I, 351 cours de la Libération 33405 Talence,
December 1996.

52

[4]

7]

[12]

L. Brun and J. P. Domenger. Incremental modifications on segmented
image defined by discrete maps. Technical report, RR-112696 LaBRI,
may 1996. Submitted.

L. Brun and J. P.and J.P. Braquelaire Domenger. Discrete maps : a
framework for region segmentation algorithms. In Workshop on Graph
based representations, Lyon, April 1997. to be published in Advances in
Computing (Springer).

L. Brun and Walter Kropatsch. Equivalent contraction kernels with
combinatorial maps. Technical Report 57, Institute of Computer Aided
Design, Vienna University of Technology, Istr. 3/1832,A-1040 Vienna
AUSTRIA, January 1999. URL: http://www.prip.tuwien.ac.at/.

S. Fourey and R. Malgouyres. Intersection number of paths lying on a
digital surface and a new jordan theorem”. In Gilles Bertrand, Michel
Couprie, and Laurent Perroton, editors, Proceedings of DGCI’99, Lec-
ture Notes in Computer Science, volume 1568, pages 104-117, Marne-
la-vallée, France, March 1999. Springer, Berlin Heidelberg New York.

A. Jones Gareth and David Singerman. Theory of maps on orientable
surfaces. volume 3, pages 273-307. London Mathematical Society, 1978.

Roland Glantz and Walter G. Kropatsch. Relinking of graph pyramids
by means of a new representation. In Tomadas Svoboda, editor, Czech
Pattern Recognition Workshop 2000. Czech Pattern Recognition Society,
February 2000.

Joseph Jaja. An Introduction to Parallel Algorithms. Addison-Wesley,
Reading, 1992.

Walter G. Kropatsch. Equivalent Contraction Kernels and The Do-
main of Dual Irregular Pyramids. Technical Report PRIP-TR-42, In-
stitute f. Automation 183/2, Dept. for Pattern Recognition and Im-
age Processing, TU Wien, Austria, 1995. Also available through
http://www.prip.tuwien.ac.at/ftp/pub/publications/trs/tr42.ps.gz.

Walter G. Kropatsch. Equivalent contraction kernels to build dual irreg-
ular pyramids. Advances in Computer Science, Advances in Computer
Vision:pp. 99-107, 1997.

23

[13] Walter G. Kropatsch. From equivalent weighting functions to equivalent
contraction kernels. In CZECH PATTERN RECOGNITION WORK-
SHOP’97, pages 1-13. Czech Pattern Recognition Society, February
1997.

[14] P. Lienhardt. Subdivisions of n-dimensional spaces and n-dimensional
generalized maps. In Kurt Mehlhorn, editor, Proceedings of the 5th
Annual Symposium on Computational Geometry (SCG ’89), pages 228
236, Saarbriicken, FRG, June 1989. ACM Press.

[15] Brun Luc and Walter Kropatsch. Dual contractions of combinatorial
maps. Technical Report 54, Institute of Computer Aided Design, Vi-
enna University of Technology, Istr. 3/1832,A-1040 Vienna AUSTRIA,
January 1999. URL: http://www.prip.tuwien.ac.at/.

[16] Jean-Gerard Pailloncy, Walter G. Kropatsch, and Jean-Michel Jolion.
Object Matching on Irregular Pyramid. In Anil K. Jain, Svetha
Venkatesh, and Brian C. Lovell, editors, 14th International Conference
on Pattern Recognition, volume II, pages 1721-1723. IEEE Comp.Soc.,
1998.

[17] Azriel Rosenfeld and Akira Nakamura. Local deformations of digital
curves. Pattern Recognition Letters, 18:613-620, 1997.

A Appendix

A.1 Recursive construction of connecting dart sequences

The section illustrates the recursive construction of the connecting dart se-
quences. All tables given below show the different connecting walks associ-
ated to the pyramid defined in Figure 5. Note that these connecting dart
sequences may also be constructed directly by using Theorem 1.

54

The connecting dart sequences of K;
CDS;(9) = CWy(9) = 9,—4
CDS(-9) = CWi(-9) = -9,-2,-1,7,10
CDS;(8) = CWy(8) = 8
CDS(—-8) = CWy(-8) = -8,2
CDS;(3) = CWy(3) = 3
CDS(-3) = CWy(=3) = =-3,-7,1
CDS;(5) = CWy(5) = 5,6,—12
CDS,(=5) = CWy(-5) = -=5,-10
CDS;(11) = CWi(11) = 11
CDS (—11) = CWy(-11) = -11,4,12,-6

Table 2: The connecting dart sequences of the first contraction kernel K
defined in Figure 5

95

The connecting dart sequences of Ko
CW,(3) = 3,8,9
C'DS5(3) = 3.CDS;(-3)*.8.CDS;(—8).9.CDS;(-9)
= 3,-7,1,8,2,9,—-2,—-1,7,10
CWy(-3) = =3
CDS5(—-3) = -3.CDS{(3)
= -3
C'DSs(5) = 5.CDS}(-5)
= 5,—10
CWy(-5) = —95,—9,-8
CDS5(—=5) = —=5.CDS{(5).—9.CDS;(9). — 8.C'DS}(8)
= —=5,6,—12,—-9,—4, -8
CWy(11) = 11
CDS,(11) = 11.CDSf(-11)
= 11,4,12,—6
CWy(—-11) = -11
CDSy(—11) = —11.CDS{(11)
= —11

Table 3: The connecting dart sequences of the removal kernel K, defined in
Figure 5

26

The connecting dart sequences of K3

CW3(5) = 5,-3
CDS5(5) = 5.CDS;(-5). —3.CDS;(3)

= 5,6,—-12,-9,—-4,-8,-3,-7,1,8,2,9,—-2,—1,7,10
CW3(-5) = —5,3
CDS;(—=5) = —5.CDS5(5).3.CDS5(-3)

= —5,-10,3
CW3(11) = 11
CDS;(11) = 11.CDS;(—11)

= 11
CWs(-11) = -11
CDS;(—11) = —11.CDS3(11)

= —11,4,12,-6

Table 4: The connecting dart sequences of the contraction kernel K3 defined
in Figure 5

The connecting dart sequences of Ky

CWL(11) = 11
CDS,(11) = 11.0DSi(—11)
= 11,4,12,—6
CWiy(-11) = —11,-5,5
CDSy(—11) = —11.CDS;(11) — 5.0DS;(5).5.CDS(—5)

= -—11,-5,6,-12,-9,-4,-8,-3,-7,1,8,2,9,-2,-1,7,10,5,—-10, 3

Table 5: The connecting dart sequences of the removal kernel K, defined in
Figure 5 (see also Figure 6)

57

o(11)

o(—11)

Figure 6: Illustration of the connecting dart sequences given on Table 5.

A.2 Index of Definitions

TR-54 refers to Definitions in [15], TR-57 to Definitions in [6] and TR~63
to Definitions in this technical report.

Application ¥: TR-63, Definition 14, page 51

Application ¥: TR-63, Definition 5, page 17

Application Yz: TR-63, Definition 10, page 23

Bridge: TR-54, Definition 25, page 14

Circuit: TR-54, Definition 13, page 6

Combinatorial map: TR-54, Definition 2, page 3

Connected Combinatorial Map: TR-54, Definition 14, page 7
Connecting Dart Sequences: TR-63, Definition 11, page 27

Connecting Path: TR-54, Definition 31, page 25

o8

Connecting path map: TR-54, Definition 35, page 28
Connecting series: TR-54, Definition 40, page 32
Connecting series map: TR-54, Definition 43, page 34
Connecting series set: TR-54, Definition 41, page 33

Connecting walk: TR-57, Definition 10, page 10; TR-63, Definition 1,
page 8

Connecting walk map: TR-57, Definition 13, page 19

Contraction Kernel : TR-54, Definition 39, page 31; TR-57, Definition 9,
page 7

Contraction operation: TR-54, Definition 28, page 17
Cutset: TR-54, Definition 22, page 11

Cycle: TR-57, Definition 8, page 6

Dart identification: TR-54, Definition 27, page 17
Dart self direct loop: TR-54, Definition 8, page 5
Decimation parameter: TR-54, Definition 30, page 25
Degree: TR-54, Definition 7, page 4

Disjoint Vertex Set : TR-57, Definition 2, page 2
Dual Combinatorial Map: TR-54, Definition 23, page 12
Dual connecting Walk: TR-63, Definition 8, page 22
Edge self direct loop: TR-54, Definition 9, page 5
End vertices: TR-54, Definition 5, page 4

Equivalent partition : TR-54, Definition 18, page 8
Forest: TR-57, Definition 4, page 4

Function follow: TR-63, Definition 2, page 8

29

Generalized Pyramid Construction Plan: TR-63, Definition 12, page 47
Group associated to a combinatorial map: TR-54, Definition 3, page 3
Inclusion of Contraction Kernels: TR-57, Definition 14, page 20
Independent vertex set: TR-54, Definition 29, page 24

Infinite face: TR-54, Definition 24, page 12

Map tree : TR-54, Definition 37, page 31; TR-57, Definition 3, page 4
Map without pendant edges: TR-54, Definition 32, page 26

Minimal partition : TR-54, Definition 17, page 8

Morphism between combinatorial maps: TR-54, Definition 4, page 3
Partition : TR-54, Definition 16, page 7

Partition into Connected Components : TR-54, Definition 21, page 11
Path: TR-54, Definition 12, page 5; TR-57, Definition 7, page 6

Pendant dart: TR-54, Definition 10, page 5

Pendant edge: TR-54, Definition 11, page 5

Predecessor and Successor Kernels: TR-57, Definition 15, page 21
Pyramid Construction Plan: TR-63, Definition 3, page 13

Removal Kernel: TR-63, Definition 7, page 21

Removal Operation: TR-54, Definition 26, page 15

Representative dart: TR-54, Definition 34, page 27

Restoration of the pyramid construction plan: TR-63, Definition 6,
page 18

Reversal of connecting paths: TR-54, Definition 33, page 27

Reversal of Connecting series: TR-54, Definition 42, page 34

60

Reversal of Connecting walks: TR-57, Definition 12, page 12
Self loop: TR-54, Definition 6, page 4

Set of Connecting Walks: TR-57, Definition 11, page 11
Spanning Forest: TR-54, Definition 38, page 31

Structure Preserving Contraction: TR-54, Definition 36, page 29
Sub Combinatorial Map: TR-54, Definition 19, page 9

survive Stack : TR-63, Definition 13, page 49

survives Stack: TR-63, Definition 4, page 15

surviver Stack: TR-63, Definition 9, page 22

Topological map: TR-54, Definition 1, page 2

Trail: TR-57, Definition 6, page 6

Transitive group: TR-54, Definition 15, page 7

Vertex Partition : TR-57, Definition 1, page 2

Vertices Induced Sub combinatorial map: TR-54, Definition 20, page 9

Walk: TR-57, Definition 5, page 5

61

