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Abstra
t

This paper presents a new formalism for irregular pyramids based on 
ombinatorial maps.

This te
hni
al report 
ontinues the work begun with the TR-54 and TR-57 reports (see

[15℄ and [6℄).We provide in this te
hni
al report algorithms allowing eÆ
ient parallel or

sequential implementation of 
ombinatorial pyramids
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1 Introdu
tion

Obje
ts that are mapped into the image plane indu
e spatial relations among

ea
h other and between their parts. Geometri
al measurements derived from

a digital image are very sensitive to errors due to noise, dis
rete sampling

and motion ina

ura
ies. However these stru
tural and topologi
al relations

are inherent to the obje
ts and their arrangement in the image and mostly

do not depend on the parti
ular imaging situation. This is the ba
kground of

several re
ent 
ontributions des
ribing spatial/stru
tural representations and

transformations preserving existing topologi
al relations in the image plane.

Following list enumerates a few possibilities to preserve stru
tural relations

into a more abstra
t representation:

1. The simplest one uses 
oordinates as vertex attributes of an attributed

relational graph. This immediate representation depends on the par-

ti
ular mapping geometry. For well 
ontrolled environments (e.g. geo-

graphi
 information systems) it is widely used due to its simpli
ity.

2. Another approa
h [17℄ 
onsiders lo
al deformations of digital 
urves

that preserve an impli
itly given topology. The idea is that images

showing the same topologi
al arrangement of regions and 
urves 
an

be transformed into ea
h other. An interesting extension to higher

dimension is presented by Fourey and Malgouyres [7℄.

3. A pair of plane

1

dual graphs is the base of an irregular graph pyramid

built by repeated dual graph 
ontra
tions [12℄. It di�ers from the pre-

vious approa
h that the transformed data are redu
ed at ea
h step by

a fa
tor whi
h is the origin of its 
omputational eÆ
ien
y.

4. Topologi
al and 
ombinatorial maps have been investigated in [8℄ and

[14℄. There the embedding is determined by the lo
al orientation of

the stru
tural elements. These works have been the basis of our two

pre
eding te
hni
al reports [15, 6℄.

The rest of this report is stru
turate as follows: First we brie
y re
all the

main results of our previous te
hni
al reports, in the se
tions 1.1, 1.2 and 1.3.

Then, we present in Se
tion 2 an impli
it representation of 
ombinatorial map

1

A plane graph is an embedded planar graph. We purposely use the term 'plane'

be
ause two embeddings of the same planar graph need not be topologi
ally isomorphi
.
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(a) A plane graph (b) de
omposed along dual edges (
) 
ombinatorial map

Figure 1: From a plane graph to a 
ombinatorial map

pyramids de�ned by a sequen
e of 
ontra
tions, or a sequen
e of removals.

An expli
it representation of 
ombinatorial maps pyramid is also proposed.

In Se
tion 3 we extend this new en
oding of a 
ombinatorial map pyramid by

allowing 
ontra
tions and removal operations during the 
onstru
tion of the

pyramid. Note that one step of the 
onstru
tion of the 
ombinatorial map

pyramid is en
oded by kernels (see [6℄ and Se
tion 1.3) and thus en
odes only

one type of operation.

1.1 Combinatorial Maps

A 
ombinatorial map may be seen as a planar graph en
oding expli
itly the

orientation of edges around a given vertex. Thus all graph de�nitions used

in irregular pyramids [13℄ su
h as end verti
es, self loops, or degrees may be

retrieved easily.

Figure 1 demonstrates the derivation of a 
ombinatorial map from a plane

graph. First edges are split where their dual edges 
ross (see Figure 1-b).

That de
omposes the graph into 
onne
ted parts of half-edges that surround

ea
h vertex. These half edges are 
alled darts and have their origin at the ver-

tex they are atta
hed to. The fa
t that two half-edges (darts) stem from the

same edge is re
orded in the reverse permutation �. A se
ond permuta-

tion �, 
alled the su

essor permutation, de�nes the (lo
al) arrangement

of darts around a vertex. Counter
lo
kwise ordering is assumed here. Fig-

3



ure 2 gives a slightly enhan
ed example of 
ombinatorial map with 12 darts.

The symbols �

�

(d) and �

�

(d) stand, respe
tively, for the � and � orbits of

1 -1

2

-2

3

4

-4

5 -5

6

-6

-3

� = (1; 2;�4)(�2;�1; 3)(�3;�6;�5)(4; 5; 6)

Figure 2: The permutation �

the dart d. More generally, if d is a dart and � a permutation we will denote

the �-orbit of d by �

�

(d). The 
ardinal of this orbit will be denoted j�

�

(d)j.

A 
ombinatorial map G is the triplet G = (D; �; �), where D is the

set of darts and �, � are two permutations de�ned on D su
h that � is an

involution, e.g. satisfying

8d 2 D �

2

(d) = d

If the darts are en
oded by positive and negative integers, the permutation �


an be impli
itly en
oded by �(d) = �d (see Figure 2). In the following, we

will use alternatively both notations, the notation �(d) = �d will be often

use for pra
ti
al results linked to the implementation of our model. Indeed,

if the permutation � is impli
itly en
oded, the 
ombinatorial map may be

implemented by a basi
 array of integers en
oding the permutation �, whi
h

looks as follows for Fig. 2:

d -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

�(d) -5 -3 1 -6 -1 3 2 -4 -2 5 6 4

Following 
on
epts from graph theory that are needed later for stru
ture

preserving operations 
an be expressed in terms of 
ombinatorial maps: self-

4



loop, duality, and bridge. An edge �

�

(d) is 
alled a self loop, i�: �d 2 �

�

(d).

Or, if the two endpoints of an edge are the same vertex.

A fa
e of a planar graph is de�ned by the set of edges whi
h surround

it. Using a 
ombinatorial map, one dart per edge is suÆ
ient to en
ode

a fa
e, sin
e for ea
h dart the involution � allows us to retrieve the other

dart de�ning the edge. Moreover, the ordered sequen
e of darts around a

vertex en
oded by permutation � indu
e an order in the sequen
e of fa
es

en
ountered when turning around a fa
e. This order is en
oded thanks to

the permutation ' = � Æ �: Given a 
ombinatorial map G = (D; �; �), the


ombinatorial map G = (D; '; �) is 
alled dual 
ombinatorial map of

G. The orbits of ' en
ode the fa
es of G. Note that the fun
tion ' is a

permutation, sin
e it is the 
omposition of two permutations on the same

set. Using a 
lo
kwise orientation for permutation � all the fa
es of the


ombinatorial map ex
ept one are 
ounter-
lo
kwise oriented. The 
lo
kwise

oriented fa
e is 
alled the in�nite fa
e. The dual map of Fig. 2 is given as

follows:

d -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

'(d) 4 6 5 -2 -4 2 3 -1 -6 1 -3 -5

The 
onne
tivity of a graph (or a subgraph representing an obje
t) is

an essential stru
tural property. Sin
e our goal is to su

essively remove

unne
essary parts the 
onne
tivity 
an be lost by these operations. Before

dis
onne
ting a graph into two 
omponents these two 
omponents will be


onne
ted by a single edge whi
h is 
alled a bridge whi
h 
an be 
hara
ter-

ized by

�(d) 2 '

�

(d)

1.2 Contra
tion and Removal

In order to preserve the number of 
onne
ted 
omponents of the original


ombinatorial map bridges must be ex
luded from removal operations. Using

this restri
tion, the removal operation may be expressed as the de�nition of

a sub 
ombinatorial map without the removed edges. A formal de�nition of

the removal operation written in terms of modi�
ations of permutation � is

given in [15℄.

Given a partition of an image, merging two regions may be 
onsidered in

two di�erent ways: First we 
an 
onsider that the two regions are merged

by removing one of their 
ommon boundaries. This operation is en
oded

5



in our 
ombinatorial map formalism by the edge removal. Se
ondly, we 
an

also 
onsider that the two regions are merged by identifying the two regions

and removing one of their 
ommon boundaries. This dual point of view is

en
oded in our formalism by the 
ontra
tion operation.

Using the duality we de�ne the 
ontra
tion of dart d of a given 
ombina-

torial map G = (D; �; �) whi
h is not a self loop. The result is the following

graph

G

0

= G=�

�

(d) = G n �

�

(d)

Note that this operation is well de�ned sin
e d is a self-loop in G i� it is a

bridge in G.

Note that, under the same hypothesis, we have:

G=�

�

(d) = G n �

�

(d)

Thus the two dual points of view on merging regions are performed by two

dual operations on the 
ombinatorial map and its dual. Thus many parti
ular


ases of one operation may be retrieved thanks to the parti
ular 
ases of the

other. For example, sin
e bridges are forbidden for removal operation the

dual of a bridge, i.e. a self-loop, is forbidden for 
ontra
tion.

1.3 Equivalent Contra
tion Kernels

The 
on
ept of a tree and of a forest are used to de�ne a 
ontra
tion kernel

that 
olle
ts a set of darts that 
an be 
ontra
ted independently of ea
h other

without destroying the 
onne
tivity stru
ture of the graph. A sequen
e of

merging segments of a partition may be en
oded by a sequen
e of 
ontra
-

tions of the 
ombinatorial map en
oding the partition. Sin
e the 
ontra
tion

operation is forbidden for self-loops the set of darts involved in su
h a se-

quen
e of 
ontra
tions must not 
ontain a 
ir
uit. Thus the set of edges

involved in su
h a 
ontra
tion may be en
oded by a tree whi
h is a sub-map

of the 
ombinatorial map G = (D; �; �) with only one '

0

-orbit. The only

dual fa
e of a tree is the ba
kground fa
e.

More generally, if we 
ontra
t a set of verti
es into a given set of surviving

verti
es, the set of darts involved in su
h 
ontra
tions may be en
oded by

a forest F = (D

1

; : : : ;D

n

) whi
h is a 
olle
tion of non-overlapping trees

spanning the given 
ombinatorial map G = (D; �; �).

6



The forest K = (D

1

; : : : ;D

n

) of G will be 
alled a 
ontra
tion kernel

i�:

SD = D �

n

[

i=1

D

i

6= ;

The set SD is 
alled the set of surviving darts.

We 
an apply su

essively two (and more) 
ontra
tion kernels K

01

and

K

12

to a given 
ombinatorial map G

0

: G

1

= G

0

=K

01

and G

2

= G

1

=K

12

.

The same result 
an be a
hieved by applying a bigger kernel only on
e:

G

2

= G

0

=K

02

. Conversely, a 
ontra
tion kernel may be de
omposed into two

smaller ones. The su

essive appli
ation of the resulting 
ontra
tion kernels

is equivalent to the appli
ation of the initial one. Di�erent 
ontra
tion kernels

on the same 
ombinatorial map G

0

may be related by in
lusion, su

essive

kernels give rise to prede
essor and su

essor relations whi
h allow us to

formulate the above mentioned equivalen
es:

In
lusion of Contra
tion Kernels: Let us 
onsider two di�erent 
ontra
-

tion kernels K

01

and K

02

de�ned on a 
ombinatorial map G

0

. We will

say that the 
ontra
tion kernel K

02

in
ludes K

01

i� K

01

� K

02

. In this


ase ea
h 
onne
ted 
omponent, a tree T

1

of K

01

is in
luded in exa
tly

one 
onne
ted 
omponent, a tree T

2

of K

02

:

8T

1

2 CC(K

01

)9! T

2

2 CC(K

02

) s.t. T

1

� T

2

:

Prede
essor and Su

essor Kernels Given a 
ombinatorial map G

0

=

(D; �; �), a 
ontra
tion kernel K

01

of G

0

and the 
ontra
ted 
ombina-

torial map G

1

= G

0

=K

01

. If K

12

is a 
ontra
tion kernel of G

1

then we

say that K

01

is the prede
essor of K

12

, or that K

12

is the su

essor of

K

01

. This relation will be denoted K

01

� K

12

.

The su

essive appli
ation of K

01

and K

12

forms a new operator on G

0

denoted by K

12

ÆK

01

.

Based on these two de�nitions two theorems 
ould be formulated in TR-57 [6℄

that relate 
omposition and de
omposition of 
ontra
tion kernels:

Theorem 4 in [6℄ derives in
lusion kernels from su

essor kernels:

K

01

� K

12

=) K

01

� K

02

= K

01

[K

12

with (G

0

=K

01

) =K

12

= G

0

=K

02

:

7



The kernel K

02


ombines kernel K

01

with the subtrees of K

12

su
h

that that the result of 
ontra
ting G

0

with K

02

is the same as if G

0

is


ontra
ted with K

01

and with K

02

in su

ession.

Theorem 6 in [6℄ derives su

essor kernels from in
lusion kernels:

K

01

� K

02

=) K

01

� K

12

= K

02

�K

01

with G

0

=K

02

= (G

0

=K

01

) =K

12

:

Given two 
ontra
tion kernels K

01

; K

02

for G

0

, K

01

being in
luded in

K

02

, the larger kernel K

02


an be de
omposed into K

01

and the su
-


essor kernel K

12

whi
h 
an be used after 
ontra
ting G

0

with K

01

to

yield the same result.

The de�nitions of 
onne
ting walk and the appli
ation follow from TR-

57 [6℄ are adapted here to 
learly identify the pyramid levels of both the

input and the output elements.

De�nition 1 Conne
ting walk

Given an initial 
onne
ted 
ombinatorial map G

0

= (D; �; �) and a 
on-

tra
tion kernel K

ij

we asso
iate to ea
h dart d of SD

j

a 
onne
ting walk

CW

ij

(d) de�ned on SD

i

by:

CW

ij

(d) = (d; '

i

(d); : : : ; '

n�1

i

(d)) with n =Minfp 2 IN

�

j '

p

i

(d) 2 SD

j

g

De�nition 2 Fun
tion follow Given an initial 
onne
ted 
ombinatorial

map G

0

= (D; �; �) and a 
ontra
tion kernel K

ij

the appli
ation follow

ij

(d)

relates the dart d 2 SD

j

with its su

essor in SD

j

through the 
onne
ting

walk CW

ij

(d) � SD

i

:

follow

ij

(d) = '

n

i

(d) with n =Minfp 2 IN

�

j '

p

i

(d) 2 SD

j

g

We have shown in TR-57 [6℄ that the set of 
onne
ting walks de�ned by an

initial 
ombinatorial map and a 
ontra
tion kernel K

ij

may be stru
tured

into a 
ombinatorial map GC

ij

su
h that GC

ij

is isomorph to G

j

= G

i

=K

ij

.

2 Coding All Contra
tions of a Pyramid

We will study in this se
tion an en
oding of a sequen
e of 
ontra
tions de�ned

by a sequen
e of su

essor or in
lusion kernels. The basi
 idea of this en
oding

is to store for ea
h dart the index of the 
ontra
tion kernel whi
h en
loses it.

We will show that this information is suÆ
ient to retrieve all the 
ontra
tion

kernels and all the 
ontra
ted 
ombinatorial maps.

8



2.1 Coding the life time of a dart

Given a sequen
e of su

essive 
ontra
tion kernels K

01

� K

12

� : : : � K

n�1;n

we 
an 
onsider the sequen
e of in
lusion kernels K

01

� K

01

[ K

12

� : : : �

[

n

i=1

K

i�1;i

whi
h provides the same series of 
ontra
ted 
ombinatorial maps

(see Se
tion 1.3 and [6℄). We 
an thus, without loss of generality, restri
t

our study to in
lusion kernels. In this last 
ase, all the 
onne
ting walks are

de�ned on the same initial 
ombinatorial map.

Proposition 1 Given a 
ombinatorial map G

0

= (D; �; �), and two 
on-

tra
tion kernels K

01

and K

02

, K

01

� K

02

. The 
onne
ting walks of K

02

in
lude the 
onne
ting walks of K

01

(see Def. 1):

8d 2 SD

2

CW

01

(d) � CW

02

(d)

Proof:

Both 
onne
ting walks are de�ned by:

CW

01

(d) = (d; '

0

(d); : : : ; '

n�1

0

(d)) with n = Minfp 2 IN

�

j'

p

0

(d) 2 SD

1

g

CW

02

(d) = (d; '

0

(d); : : : ; '

m�1

0

(d)) with m = Minfp 2 IN

�

j'

p

0

(d) 2 SD

2

g

Sin
e SD

2

� SD

1

we have m � n and thus CW

01

(d) � CW

02

(d). 2

This result is illustrated in Figure 3.

Proposition 2 Given a 
ombinatorial map G

0

= (D; �; �), and two 
on-

tra
tion kernels K

01

and K

02

, K

01

� K

02

. Ea
h 
onne
ting walk of K

01

is

in
luded in exa
tly one 
onne
ting walk of K

02

:

8d 2 SD

1

9!d

0

2 SD

2

su
h that CW

01

(d) � CW

02

(d

0

)

Proof:

We know that, given a 
ontra
tion kernel, ea
h dart belongs to exa
tly

one 
onne
ting walk (see [6℄). Thus there exists a unique dart d

0

in SD

2

su
h

that d 2 CW

02

(d

0

).

Let us 
onsider n su
h that '

n

(d) = follow

01

(d) (see Def. 2). The se-

quen
e CW

01

(d) = (d; '(d); : : : ; '

n�1

(d)) is in
luded in K

01

� K

02

by de�-

nition of a 
onne
ting walk. A sequen
e of '-
onse
utive darts in
luded in

K

02

is in
luded in exa
tly one 
onne
ting walk of K

02

:

CW

01

(d) � CW

02

(d

0

)

2

9
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9

4

11 12

10

3

8

2

7 8 9

3 4

10 11 12

5 6

1 2

K

01

= �

�

(1; 7)

G

1

= G

0

=K

01

K

12

= �

�

(8; 10)

G

2

= G

0

=K

02

= G

1

=(K

12

)

9

12

2

4

11

6

5

3

Figure 3: This �gure shows two in
luded 
ontra
tion kernels K

01

and K

02

. Ea
h


onne
ting walk of K

02

de�ned by one dart in SD

2

= �

�

(2; 3; 4; 5; 6; 9; 11; 12) in-


ludes the 
orresponding 
onne
ting walk of K

01

. We have for example, CW

01

(3) =

3, while CW

02

(3) = 3;�8
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Proposition 3 Given a 
ombinatorial map G

0

= (D; �; �), and two 
on-

tra
tion kernels K

01

and K

02

, K

01

� K

02

. Ea
h 
onne
ting walk of K

02

is

equal to a 
on
atenation of 
onne
ting walks of K

01

:

8d 2 SD

2

CW

02

(d) = CW

01

(d

1

) � � �CW

01

(d

p

)

with CW

12

(d) = (d

1

; : : : ; d

p

)

Proof:

Given a dart d 2 SD

2

, let us 
onsider the ordered set

(d

1

; : : : ; d

n

) = CW

02

(d) \ SD

1

The order of the sequen
e (d

1

; : : : ; d

n

) is dedu
ed from the order de�ned in

CW

02

(d). Note that we have d

1

= d, sin
e d 2 SD

2

� SD

1

and d is the �rst

dart of CW

02

(d).

Let us 
onsider two 
ases:

� If n = 1, then the walk CW

02

(d)� fdg does not 
ontain any surviving

dart of SD

1

. Therefore, '(d) 2 SD

2

and:

CW

02

(d) = CW

01

(d) = (d)

Moreover, we have in this 
ase, '

1

(d) = follow

01

(d) = '(d) 2 SD

2

.

Thus CW

12

(d) = (d).

� If n > 1, ea
h dart d

i

is en
losed in CW

02

(d), thus we have by propo-

sition 2:

8fd

1

; : : : ; d

n

g 2 SD

1

CW

01

(d

i

) � CW

02

(d)

Moreover, by de�nition of a 
onne
ting walk, all darts 
ontained in

CW

02

(d), and thus all (d

i

)

i2f1;:::;ng

belong to the same '-orbit. There-

fore, we have by 
onstru
tion of the ordered set (d

1

; : : : ; d

n

), follow

01

(d

i

) =

d

i+1

. Thus CW

01

(d

1

) � � �CW

01

(d

n

) is a walk of G

0

in
luded in CW

02

(d)

starting from d.

If follow

01

(d

n

) belongs to SD

1

� SD

2

, we 
an �nd another dart d

n+1

in CW

02

(d) \ SD

1

whi
h 
ontradi
ts the de�nition of n. Therefore,

follow

01

belongs to SD

2

and:

CW

02

(d) = CW

01

(d

1

) � � �CW

01

(d

n

)

Moreover, sin
e d

i+1

= follow

01

(d

i

) = '

1

(d

i

) 2 SD

1

�SD

2

, for ea
h i in

f1; : : : ; n� 1g, the sequen
e (d

1

; : : : ; d

n

) is in
luded in CW

12

(d). Sin
e

11



we have by hypothesis follow

01

(d

n

) = '

1

(d

n

) 2 SD

2

, the 
onne
ting

walk CW

12

(d) must stop at d

n

and we have:

CW

12

(d) = (d

1

: : : d

n

)

2

Using the example given in Figure 3, we obtain for the dart -3: CW

12

(�3) =

(�3; 8), while CW

02

(�3) = (�3;�7; 1; 8) = CW

01

(�3) � CW

01

(8).

Proposition 4 Given a 
ombinatorial map G

0

= (D; �; �), and a sequen
e

of 
ontra
tion kernels K

0;1

; : : : ; K

n�1;n

. For ea
h i in f1; : : : ; n � 1g, ea
h


onne
ting walk CW

j;i+1

(d) with j < i and d 2 SD

i+1

is equal to a 
on
ate-

nation of 
onne
ting walks de�ned by K

j;i

:

8i 2 f1; : : : ; n� 1g

8j 2 f0; : : : ; i� 1g

�

8d 2 SD

i

CW

j;i+1

(d) = CW

j;i

(b

1

) � � �CW

j;i

(b

p

)

with CW

i;i+1

(d) = (b

1

; : : : ; b

p

).

Proof:

Given two indexes j and i ful�lling the above 
onditions and a dart d in

SD

i+1

, let us 
onsider the two sequen
es of darts:

CW

j;i+1

(d) = (d

1

; : : : ; d

n

) and

CW

j;i

(b

1

) � � �CW

j;i

(b

p

) = (d

0

1

; : : : ; d

0

q

)

with CW

i;i+1

(d) = (b

1

; : : : ; b

p

).

Sin
e the �rst dart of a 
onne
ting walk is equal to the dart whi
h de�nes

it we must have b

1

= d

0

1

= d

1

= d. Let us denote the 
onne
ting walks

CW

j;i

(b

k

) by:

CW

j;i

(b

k

) = b

k;1

: : : ; b

k;p

k

By de�nition of a 
onne
ting walk, '

i

(b

k

) = b

k+1

= '

j

(b

k;p

k

) for ea
h k in

f1; : : : ; p� 1g. Moreover, for ea
h dart b

k;j

in CW

j;i

(b

k

), b

k;j+1

= '

j

(b

k;j

).

Therefore, CW

j;i

(b

1

) � � �CW

j;i

(b

p

) is a sequen
e of '

j

-su

essors. More-

over, by de�nition of 
onne
ting walks:

8k 2 f2; : : : ; pg b

k

2 K

i;i+1

8k 2 f1; : : : ; pg CW

j;i

(b

k

)� fb

k

g � K

j;i

12



Therefore:

(CW

j;i

(b

1

)� fb

1

g) � CW

j;i

(b

2

) � � �CW

j;i

(b

p

) � K

j;i

[K

i;i+1

= K

j;i+1

(1)

Sin
e CW

j;i+1

(d)�fdg is the maximal sequen
e of '

j

-su

essors in
luded in

K

j;i+1

and starting from '

j

(d = b

1

):

CW

j;i

(b

1

) � � �CW

j;i

(b

p

) � CW

j;i+1

(d)

Using our notations we have b

p;p

p

= d

0

q

. Moreover, by de�nition of the 
on-

ne
ting walk CW

i;i+1

(d): '

i

(b

p

) = '

j

(d

0

q

) 2 SD

i+1

. Using equation 1, '

j

(d

0

q

)

is the �rst dart of the sequen
e of '

j

-su

essors starting from d whi
h belongs

to SD

i+1

. Therefore, by de�nition of a 
onne
ting walk n = q and:

CW

j;i+1

(d) = CW

j;i

(b

1

) � � �CW

j;i

(b

p

)

2

De�nition 3 Pyramid Constru
tion Plan

Given a 
ombinatorial map G

0

= (D; �; �), and a sequen
e of in
lu-

sion kernels K

01

� K

02

: : : � K

0n

, the pyramid 
onstru
tion plan LP =

(G

0

; level), asso
iated to this sequen
e of 
ontra
tions of G

0

, is de�ned by

G

0

and a fun
tion level:

level

�

D ! f1; : : : ; n+ 1g

d 7! maxfi j d 2 SD

i�1

g

�

Note that sin
e ea
h set of surviving darts SD

i

; i 2 f1; : : : ; ng is symmetri


with respe
t to �, the fun
tion level must satisfy the following property:

8d 2 D level(�(d)) = level(d)

Therefore, if the pyramid 
onstru
tion plan is implemented with an impli
it

en
oding of the involution � by the sign, only the level of positive darts needs

to be stored.

Proposition 5 Given a 
ombinatorial map G

0

= (D; �; �), and a pyramid


onstru
tion plan LP = (G

0

; level) de�ned by n 
ontra
tion kernels, ea
h

dart of level i � n belongs to K

i�1;i

:

K

i�1;i

= fd 2 D j level(d) = ig

13



Proof:

Let us 
onsider d in D su
h that level(d) = i � n. By de�nition of the

fun
tion level, d belongs to SD

i�1

and d 62 SD

i

. Sin
e SD

i

= SD

i�1

�K

i�1;i

d must belong to K

i�1;i

.

Conversely, if d belongs to K

i�1;i

we have, d 2 SD

i�1

and d 62 SD

i

.

Moreover, sin
e SD

k

� SD

i

for ea
h k greater than i, d 62 SD

k

for k � i.

We thus obtain level(d) = i. 2

Corollary 1 Given a 
ombinatorial map G

0

= (D; �; �) and the pyramid


onstru
tion plan LP = (G

0

; level). Ea
h 
ontra
tion kernel K

0i

is equal to

the darts having a level less than or equal to i:

8i 2 f1; : : : ; ng K

0i

= fd 2 D j level(d) � ig

Proof:

We have for ea
h level i in f1; : : : ; ng:

K

0i

=

i

[

j=1

K

j�1;j

Using proposition 5 we obtain:

K

0i

= fd 2 D j level(d) � ig

2

Corollary 2 Given a 
ombinatorial map G

0

= (D; �; �) and the pyramid


onstru
tion plan, LP = (G

0

; level) de�ned by n 
ontra
tion kernels. The

surviving darts of the i

th


ontra
tion kernel have a level stri
tly greater than

i:

8i 2 f1; : : : ; ng SD

i

= fd 2 D j level(d) > ig

Proof:

The surviving darts of level i are de�ned by:

SD

i

= D �K

0i

Sin
e K

0i

= fd 2 D j level(d) � ig (see 
orollary 1) we have:

SD

i

= fd 2 D j level(d) > ig

2

14



Remark 1 Given a pyramid 
onstru
tion plan LP = (G

0

; level) de�ned by

an initial 
ombinatorial map G

0

and n in
lusion kernels, a dart d 2 D su
h

that level(d) = n + 1 belongs to SD

n

. Therefore, this dart is not 
ontra
ted

during the sequen
e of 
ontra
tions generating the pyramid.

Proposition 5, Corollaries 1 and 2 show that the fun
tion level allows us to

retrieve the di�erent 
ontra
tion kernels and their asso
iated surviving darts.

The permutation � being the same for all 
ontra
ted 
ombinatorial maps,

a given 
ontra
ted map G

i

= (SD

i

; �

i

; �) will be 
ompletely determined

if we 
an de�ne the permutation �

i

from the fun
tion level. Propositions

below show that Algorithm 1 allows us to retrieve the di�erent permutations

�

i

thanks to the impli
it en
oding of the 
ontra
tion kernels K

0i

by the

fun
tion level. It 
an be 
onsidered the 'life time' of a dart in the sequen
e

of 
ontra
tions generating the pyramid.

dart survive

C

(int i, dart d)

f

if ( level(d) > i )

return d;

return survive

C

(i,'(d))

g

Algorithm 1: The fun
tion survive

C

returns the �rst dart in SD

i

en
ountered

when turning around the fa
e '

�

(d)

De�nition 4 survive

C

Sta
k Given a 
ombinatorial map G

0

= (D; �; �),

and the pyramid 
onstru
tion plan, LP = (G

0

; level). The ordered set

Sta
k

C

(i; d) is the sequen
e of darts whi
h will be passed as se
ond argument

of the re
ursive fun
tion survive

C

during a 
all to survive

C

(i; d).

Remark 2 Using the same notations and hypothesis as de�nition 4, the last

dart of Sta
k

C

(i; d) is equal to survive

C

(i; d).

Proposition 6 Using the same notations and hypothesis as de�nition 4,

the ordered set Sta
k

C

(i; '(d)) is equal to CW

0i

(d)� fdg 
on
atenated with

15
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Figure 4: An illustration of the algorithm survive

C

. A 
all to survive

C

(2;�7)

will indu
e the traversal of the darts �7; 1; 8 and �3 represented by empty arrows.

Note that we have CW

02

(�3) = �3;�7; 1; 8. and thus '

2

(�3) = '(8) = �3 (see

Figure 3)

follow

0i

(d) for ea
h i in f1; : : : ; ng and ea
h d in SD

i

:

8 i 2 f1; : : : ; ng

8 d 2 SD

i

�

d � Sta
k

C

(i; '(d)) = CW

0i

(d) � follow

0i

(d)

Proof:

� If CW

0i

(d) = (d), then '(d) belongs to SD

i

. In this 
ase level('(d)) is

stri
tly greater than i (see Corollary 2) and survive

C

(i; '(d)) is equal

to '(d). Therefore:

Sta
k

C

(i; '(d)) = ('(d))

with '(d) = follow

0i

(d).

� Let CW

0i

(d) = (d; d

1

; : : : ; d

p

) with p � 1. Suppose that the series

Sta
k

C

(i; '(d)) and CW

0i

(d)� fdg are equal until a given index j:

Sta
k

C

(i; '(d)) = (d

1

; : : : ; d

j

; : : :)

We have by de�nition of a 
onne
ting walk d

k

= '

k

(d) for ea
h k in

f1; : : : ; pg. Thus d

1

= '(d) belongs simultaneously to Sta
k

C

(i; '(d))

and CW

0i

(d) � fdg and the property is true for j = 1. If the prop-

erty is true until a given rank j < p, we have: d

j+1

= '(d

j

) and

d

j

2 K

i

. Therefore, the level of d

j

is less than i (see 
orollary 1) and

survive

C

(i; d

j

) = survive

C

(i; d

j+1

). Thus d

j+1

belongs to Sta
k

C

(i; '(d))

16



and follows d

j

in this order. The property is thus true until the rank

j + 1.

The sequen
e (d

1

; : : : ; d

p

) is thus in
luded in Sta
k

C

(i; '(d)). Moreover,

by de�nition of a 
onne
ting walk '(d

p

) = follow

0i

(d) 2 SD

i

. There-

fore, the level of '(d

p

) is stri
tly greater than i and survive

C

(i; d

p

) =

survive

C

(i; '(d

p

)) = '(d

p

) = follow

0i

(d). Thus the sequen
e of re
ur-

sive 
alls to the fun
tion survive

C

stops on '(d

p

) and Sta
k

C

(i; '(d))

is equal to:

Sta
k

C

(i; '(d)) = (d

1

; : : : ; d

p

; follow

0i

(d))

2

Corollary 3 Given a 
ombinatorial map G

0

= (D; �; �) and a pyramid 
on-

stru
tion plan, LP = (G

0

; level) de�ned by n in
lusion kernels. The appli
a-

tion follow

0i

de�ned by G

0

and the 
ontra
tion kernel K

0i

may be retrieved

with the fun
tion survive

C

by using the following equation:

8 i 2 f1; : : : ; ng

8 d 2 SD

i

�

follow

0i

(d) = survive

C

(i; '(d))

Proof:

See proposition 6 and remark 2. 2

A 
ombinatorial map G = (D; �; �) is expli
itly en
oded by its set of

darts D and the two permutations � and �. Corollary 3 shows us that

the fun
tion follow

0i

, and thus �

i

may be retrieved thanks to the algorithm

survive

C

. However, the pyramid 
onstru
tion plan remains impli
itly de�ned

by fun
tion level. One idea to obtain a more expli
it form of the pyramid


onstru
tion plan is to store the results of the fun
tion survive

C

in a fun
tion

�

C

(see Table 1) whi
h then en
odes expli
itly the pyramid 
onstru
tion plan:

De�nition 5 Appli
ation �

C

Given a 
ombinatorial map G

0

= (D; �; �), and a pyramid 
onstru
tion

plan, LP = (G

0

; level) de�ned by n in
lusion kernels. The appli
ation �

C

from f1; : : : ; ng �D to D is de�ned by:

�

C

�

f1; : : : ; ng �D ! D

(i; d) 7! survive(i; �(d))

17



De�nition 6 Restoration of the pyramid 
onstru
tion plan

Given a 
ombinatorial map G

0

= (D; �; �), and a pyramid 
onstru
-

tion plan LP = (G

0

; level) de�ned by a sequen
e of n in
lusion kernels, the

restoration p

i

is an appli
ation from SD

i

to f1; : : : ; ng�D whi
h asso
iates

to ea
h dart d in SD

i

the 
ouple (i; d):

p

i

�

SD

i

! f1; : : : ; ng �D

d 7! (i; d)

Proposition 7 Given a 
ombinatorial map G

0

= (D; �; �), a pyramid 
on-

stru
tion plan, LP = (G

0

; level) de�ned by n in
lusion kernels and the

restoration (p

1

; : : : ; p

n

).

The permutation �

i

of G

i

= (SD

i

; �

i

; �) is equal to �

C


omposed with p

i

.

8i 2 f1; : : : ; ng �

C

Æ p

i

= �

i

Proof:

Given an index i in f1; : : : ; ng and a dart d in SD

i

, the appli
ation �

C

Æp

i

maps d into survive

C

(i; �(d)). Thus, using Corollary 3 we have:

�

C

Æ p

i

(d) = survive(i; �(d)) = survive(i; '(�(d))) = follow

0i

(�(d))

Using the isomorphism between the 
onne
ting walk map and the 
ontra
ted

one (see [6℄) we have: �

i

= follow

i

Æ �. Therefore:

8i 2 f1; : : : ; ng 8d 2 SD

i

�

C

Æ p

i

(d) = �

i

(d)

2

Thus, using the fun
tion level and the algorithm survive

C

we 
an retrieve,

all the 
ontra
tion kernels and all the 
ontra
ted 
ombinatorial maps de�ned

by these kernels. If the result of the fun
tion survive

C

(i; �(d)) is stored in

�

C

for ea
h level i and for ea
h dart d in SD

i

, the impli
it de�nition of

the pyramid 
onstru
tion plan be
omes expli
it and it 
an be denoted by:

LP = (G

0

; level) = (D;�

C

; level; �) (see Table 1).

If the sequen
e of 
ontra
tions is de�ned by su

essive 
ontra
tion ker-

nels, instead of in
lusion kernels, the di�erent 
ontra
tion kernels may be

retrieved from the fun
tion level by the proposition 5. This proposition may

be used as a 
onsequen
e of De�nition 3 if the pyramid is de�ned by in
lusion
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d max

i

+ 1 �

C

(i; d)

dart level 0 1 2

1 1 7

-1 1 8

2 3 -1 10 5

-2 3 9 9 9

3 3 -7 8 -3

-3 3 11 11 11

4 3 -8 -8 2

-4 3 12 12 12

5 3 -10 -10 3

-5 3 6 6 6

6 3 -11 -11 -11

-6 3 -12 -12 -12

7 1 1

-7 1 10

8 2 2 2

-8 2 -3 -3

9 3 -2 -2 -2

-9 3 -4 -4 -4

10 2 3 3

-10 2 5 5

11 3 4 4 4

-11 3 -5 -5 -5

12 3 -9 -9 -9

-12 3 -6 -6 -6

Table 1: This table represents a possible implementation of the fun
tion �

C

by a bi-dimensional array with lines of variable size. Note that in this 
ase the

fun
tion level en
ode simultaneously the level on whi
h a dart is 
ontra
ted

and the size of its asso
iated line. The di�erent values of �

C

(i; d) given in

this table 
orrespond to the 
ontra
tions de�ned in Figure 3

19



kernels or as a de�nition of the fun
tion level if the pyramid is de�ned by

su

essive kernels. However, note that in this 
ase, the un
ontra
ted darts

whi
h belongs to D �K

0n

must be labeled with n+ 1.

The basi
 idea of a parallel implementation of the fun
tion survive

C

is

to run the algorithm survive

C


on
urrently on jDj pro
essors. If we suppose

that we have an ideal CREW PRAM (Con
urrent Read Ex
lusive Write

Parallel Random A

ess Ma
hine, [10℄) the parallel algorithm 
onsists to

initialize a linear array survive of darts to the identity and to determine

for ea
h dart its next surviving dart within the fa
e (see algorithm 2). This


omputation being performed 
on
urrently.

void set next survivor(int i)

f

For ea
h d in D do in parallel

survive[d℄ = d;

For ea
h d in D do in parallel

get survive(i,d);

g

Algorithm 2: The algorithm set next survivor 
omputes the next survivor of

ea
h dart. The fun
tion get survive is des
ribed in Algorithm 3

void get survive(int i, dart d)

f

while(level(survive[d℄) � i )

f

survive[d℄=survive['(d)℄;

g

g

Algorithm 3: The algorithm get survive is atta
hed to one dart and 
omputes

its next survivor

If we suppose that a fa
e is de�ned by '

�

(1) = (1; 2; 3; 4; 5; 6; 7; 8; 9), and

that the surviving darts of this fa
es are 2 and 5, the algorithm get survive

20



will produ
e the following steps:

survive :

0

B

B

B

B

B

B

�

1 2 3 4 5 6 7 8 9

2 2 4 5 5 7 8 9 1

2 2 5 5 5 8 9 1 2

2 2 5 5 5 9 1 2 2

2 2 5 5 5 1 2 2 2

2 2 5 5 5 2 2 2 2

Using a PRAMmodel, ea
h elementary operation is performed syn
hronously.

Therefore, the number of elementary steps of ea
h algorithm get survive(i; d)

is equal to the 
y
li
 distan
e between d and its asso
iated surviving dart .

If we denote by D the maximum of these distan
es, the parallel algorithm

will terminate after D steps. Therefore, worst 
ase parallel 
omplexity of our

algorithm is linear in the 
y
li
 max-distan
e between surviving darts. More-

over, using Brent's Lemma [2℄ our algorithm may be exe
uted on a PRAM

ma
hine with p pro
essors in:

t(p) � D +

jDj+ jSD

i

j �D

p

steps.

2.2 Adaptations from removal kernels

Sin
e a single 
ontra
tion of a 
ombinatorial map does not 
hange the number

of (dual) fa
es also a sequen
e of 
ontra
tions 
annot remove a fa
e. Thus

using 
ontra
tion kernels solely, at least one dart must survive in ea
h fa
e

(see [6℄). Therefore, we 
annot 
ontra
t a 
omplex 
ombinatorial map into

a self-loop by 
ontra
tions solely. Consequently also 
ontra
tions of the dual


ombinatorial map, i.e. removals, must be 
onsidered. The redu
tion of the

initial 
ombinatorial map to a self-loop or to a 
ombinatorial map with less

fa
es than the original needs both 
ontra
tions and removals. In the following

we study some properties of the removal operation.

De�nition 7 Removal Kernel

Given a 
ombinatorial map G , a removal kernel is a 
ontra
tion kernel

of G.

Note that a 
ontra
tion operation on G is equivalent to a removal op-

eration on G and vi
e-versa [15℄. Moreover, a removal kernel is a forest of
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G. Therefore if K is a 
ontra
tion kernel of G, its dual K is not ne
essarily

a 
ontra
tion kernel of the dual map G. Thus, if we talk about a removal

kernel below, we mean an in
lusion kernel de�ned in the dual 
ombinatorial

map G, and not the dual of an in
lusion kernel of G.

Sin
e a dual in
lusion kernel is de�ned in the dual 
ombinatorial map G,

the permutations � and ' have to 
hange their roles. Therefore, the de�nition

of a 
onne
ting walk has to be 
hanged a

ordingly(see De�nition 1):

De�nition 8 Dual 
onne
ting Walk

Given an initial 
onne
ted 
ombinatorial map G

0

= (D; �; �) and a re-

moval kernel K

ij

de�ned on G

0

, we asso
iate to ea
h dart d of SD

j

a dual


onne
ting walk DCW

ij

(d) de�ned on SD

i

by:

DCW

ij

(d) = (d; �

i

(d); : : : ; �

n�1

i

(d)) with n = Minfp 2 IN

�

j �

p

i

(d) 2 SD

j

g

A removal kernel is simply a 
ontra
tion kernel de�ned in the dual 
om-

binatorial map. Therefore, given a 
ombinatorial map G, all the properties

in G shown in TR-57 [6℄ for in
lusion or su

essor kernels remain valid in G

for in
lusion or su

essor removal kernels de�ned in G.

One su
h property of a removal is the preservation of stru
ture. We want

that any surviving part remains 
onne
ted or dis
onne
ted after removal.

It has been shown in [11℄ that parallel edges or self-loops 
an be removed

without destroying the stru
ture if the en
losed fa
e has a degree less than

three. This 
riterion generates automati
ally removal kernels that '
lean' the

original map from redundant parallel edges and self-loops.

A pyramid 
onstru
tion plan may be de�ned by a sequen
e of 
ontra
tions

or by a sequen
e of removals. De�nition 3, Proposition 5 and Corollary 1

and 2, remain valid in both 
ases.

However, if we use a sequen
e of removals, the fun
tion survive

C

has to

be adapted in order to traverse the dual 
onne
ting walks (see Algorithm 4).

Moreover, it 
an be easily shown that the fun
tion survive

R

de�ned by Al-

gorithm 4 is a trans
ription of the algorithm survive

C

in the dual graph.

Therefore, all the results given in the previous se
tion may be adapted and

are given here without demonstration.

De�nition 9 survive

R

Sta
k

Given a 
ombinatorial map G

0

= (D; �; �), a sequen
e of removal in
lu-

sion kernels

2

K

01

� K

02

: : : � K

0n

and their asso
iated pyramid 
onstru
tion

2

Note that K

0i

must be a spanning forest of G

0

= (D; '; �).
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dart survive

R

(int i, dart d)

f

if ( level(d) > i )

return d;

return survive

DC

(i,�(d))

g

Algorithm 4: The fun
tion survive for a removal kernel

plan, LP = (G

0

; level). The ordered set Sta
k

DC

(i; d) is the sequen
e of darts

whi
h will be passed as se
ond argument of the re
ursive fun
tion survive

R

during a 
all to survive

R

(i; d).

Remark 3 Using the same notations and hypothesis as de�nition 9, the last

dart of Sta
k

R

(i; d) is equal to survive

R

(i; d).

Proposition 8 Using the same notations and hypothesis as de�nition 9, the

ordered set Sta
k

R

(i; �(d)) is equal to DCW

0i

(d) � fdg 
on
atenated with

follow

0i

(d) for ea
h i in f1; : : : ; ng and ea
h d in SD

i

.

8 i 2 f1; : : : ; ng

8 d 2 SD

i

�

d:Sta
k

R

(i; �(d)) = DCW

0i

(d) � follow

0i

(d))

Where DCW

0i

(d) is the 
onne
ting walk of d de�ned by K

0i

on G

0

. And

follow

0i

is the appli
ation follow

0i

de�ned on G

0

by the removal kernel K

0i

.

Corollary 4 Given a 
ombinatorial map G

0

= (D; �; �) and a pyramid 
on-

stru
tion plan LP = (G

0

; level) de�ned by n removal kernels. The appli
a-

tion follow

0i

de�ned by G

0

and the removal kernel K

0i

is equal to:

8i 2 f1; : : : ; ng 8d 2 SD

i

follow

0i

(d) = survive

R

(i; �(d))

De�nition 10 Appli
ation �

R

Given a 
ombinatorial map G

0

= (D; �; �) and a pyramid 
onstru
tion

plan LP = (G

0

; level) de�ned by n dual in
lusion kernels. The appli
ation

�

R

from f1; : : : ; ng �D to D is de�ned by:

�

R

�

f1; : : : ; ng �D ! D

(i; d) 7! survive

R

(i; �(d))
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Proposition 9 Given a 
ombinatorial map G

0

= (D; �; �) and a pyramid


onstru
tion plan LP = (G

0

; level) de�ned by n dual in
lusion kernels. The

appli
ation �

R

Æ p

i

is equal to the permutation �

i

of the i

th

removed 
ombi-

natorial map.

8i 2 f1; : : : ; ng �

R

Æ p

i

= �

i

Proof:

A

ording to the de�nitions of appli
ation �

R

and p

i

the 
omposition of

both appli
ations is equal to survive

R

(i; �(d)) for ea
h i in f1; : : : ; ng and

ea
h d in SD

i

:

8i 2 f1; : : : ; ng8d 2 SD

i

�

R

Æ p

i

(d) = survive

R

(i; �(d))

Using Corollary 4:

�

R

Æ p

i

(d) = survive

R

(i; �(d)) = follow

i

(d)

Using the isomorphism between the dual 
onne
ting walk map and the re-

moved one (see [6℄) we have: �

i

= follow

0i

, therefore:

8i 2 f1; : : : ; ng8d 2 SD

i

�

R

Æ p

i

(d) = �

i

(d)

2

3 Generalized Pyramid Constru
tion Plans

In this se
tion we 
onsider a sequen
e of n su

essive kernels su
h that ea
h

kernel performs either 
ontra
tions or removals of a set of darts of the 
urrent


ombinatorial map. A

ording to the de�nition of a 
ontra
tion kernel, the

set of darts 
ontra
ted or removed at level i, is a forest of G

i�1

if K

i�1;i

is a


ontra
tion kernel and a forest ofG

i�1

ifK

i�1;i

is a removal kernel. Therefore,

the su

essive appli
ation of two su

essive kernels K

i�1;i

andK

i;i+1

is neither

a forest of G

i�1

nor of G

i�1

if K

i�1;i

and K

i;i+1

do not perform the same type

of 
ontra
tion. Sin
e we no longer 
onsider 
ontra
tion kernels K

i;j

with

j 6= i+ 1 we simplify the notations by denoting K

i�1;i

by K

i

.
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Proposition 10 Given a sequen
e of 
ontra
tion or removal kernels (K

1

; : : : ; K

n

)

su

essively applied on the initial 
ombinatorial map G

0

= (D; �; �), the two

following properties hold:

�

8i 2 f1; : : : ; ng SD

i

= D �

S

i

j=1

K

j

8(i; j) 2 f1; : : : ; ng

2

; i 6= j K

i

\K

j

= ;

Proof:

Let us demonstrate the �rst property by re
urren
e. We have, by de�ni-

tion of a 
ontra
tion kernel SD

1

= D �K

1

. Note that, this property holds

also if K

1

is a removal kernel. Let us suppose the property is true until a

given rank i < n. Then we have by de�nition of a kernel:

SD

i

= SD

i�1

�K

i

= D �

i�1

[

j=1

K

j

�K

i

= D �

i

[

j=1

K

j

Let us now suppose that we 
an �nd a dart d belonging to two kernels K

i

and K

j

with i < j. In order to be 
ontra
ted by K

j

, d must belong to SD

j�1

with :

SD

j�1

= D �

j�1

[

k=1

K

k

Sin
e K

i

�

S

j�1

k=1

K

k

we obtain the desired 
ontradi
tion. 2

3.1 Conne
ting dart sequen
es

In the following we will have to distinguish two 
ases:

1. When two su

essive kernels K

i

and K

i+1

are both 
ontra
tion kernels

or both removal kernels.

2. When K

i

is a 
ontra
tion kernel and K

i+1

a removal one or when K

i

is

a removal kernel and K

i+1

a 
ontra
tion kernel.

In order to simplify the notations, we will say that two su

essive kernels

K

i

and K

i+1

have the same type in the �rst 
ase and di�erent types in

the se
ond one. More generally the type of a 
ontra
tion kernel refers to

the 
ombinatorial map on whi
h it is applied (the initial or the dual one).

Figure 5 shows a sequen
e of 
ombinatorial maps built by 
ontra
tion and

removal kernels applied alternatively.
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K

2

1

= �

�

(�12;�6;�4)

K

1

1

= �

�

(1; 2; 7; 10)

K

1

K

2

K

3

K

4

RK K

1

2

= �

�

(9; 8) G

1

= (SD

1

; �

1

; �)

CK K

1

3

= �

�

(3)

RK K

1

4

= �

�

(5)

G

2

= (SD

2

; �

2

; �)

G

3

= (SD

3

; �

3

; �)

G

4

= (SD

4

; �

4

; �)

G

0

= (SD

0

= D; �

0

; �)

10

7

5

1

3

8

11

6

2

4

9

12

3

8

9

5

11

3

5

11

5

11

CK

Figure 5: The initial grid en
oded by the initial 
ombinatorial map G

0

= (D; �; �)

is su

essively 
ontra
ted by K

1

, K

2

, K

3

and K

4

. Kernels with even indi
es denote


ontra
tion kernels (CK) while odd indi
es denote removal kernels(RK).
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De�nition 11 Conne
ting Dart Sequen
es

Given a 
ombinatorial map G

0

= (D; �; �) and a sequen
e of 
ontra
tion

or removal kernels K

1

; K

2

: : : ; K

n

. The 
onne
ting dart sequen
e is de�ned

by the following re
ursive 
onstru
tion:

8d 2 D CDS

0

(d) = d

For ea
h level i in f1; : : : ; ng and for ea
h dart d in SD

i

� If K

i

and K

i�1

have the same type:

CDS

i

(d) = CDS

i�1

(d

1

) � � �CDS

i�1

(d

p

)

� If K

i

and K

i�1

have di�erent types:

CDS

i

(d) = d

1

� CDS

�

i�1

(�(d

1

)) � � �d

p

� CDS

�

i�1

(�(d

p

))

Where (d

1

: : : d

p

) is equal to CW

i�1;i

(d) if K

i

is a 
ontra
tion kernel and

DCW

i�1;i

(d) if K

i

is a removal kernel. The term CDS

�

i�1

(�(d

j

)) denotes the


onne
ting dart sequen
e CDS

i�1

(�(d

j

)) without its �rst dart. The kernels

K

0

= ; and K

1

have the same type by 
onvention.

The set of 
onne
ting dart sequen
es asso
iated to the kernels de�ned in

Figure 5 are given in Tables 2, 3, 4 and 5 (see se
tion A).

Proposition 11 Given a 
ombinatorial map G

0

= (D; �; �) and a sequen
e

of 
ontra
tion kernels K

1

; K

2

: : : ; K

n

. We 
an de�ne a sequen
e of in
lusion

kernels K

01

; : : : ; K

0n

with K

0i

= [

i

j=1

K

i

providing the same 
ontra
ted 
om-

binatorial maps. Moreover, in this 
ase the 
onne
ting dart sequen
es are

equal to the 
onne
ting walks de�ned on the kernels K

01

; : : :K

0n

:

8i 2 f1; : : : ; ng 8d 2 SD

i

CDS

i

(d) = CW

0i

(d)

Where CW

0i

(d) is de�ned by K

0i

on G

0

.

Proof:

First note that, if all the 
ontra
tion kernels have the same type, the


onne
ting dart sequen
es are de�ned by:

8d 2 SD

i

CDS

i

(d) = CDS

i�1

(d

1

); � � � ; CDS

i�1

(d

p

)
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With CW

i

(d) = d

1

; : : : ; d

p

is the 
onne
ting walk of d de�ned on G

i�1

by K

i

.

The proposition is trivially true for i = 1. Indeed, in this 
ase:

8d 2 SD

1

�

CDS

1

(d) = CDS

0

(d

1

) � � �CDS(d

p

)

CDS

1

(d) = (d

1

: : : d

p

) = CW

01

(d)

Let us suppose that this proposition is true until a given rank i. Sin
e K

i

and K

i+1

have the same type, we have for ea
h dart d in SD

i+1

:

CDS

i+1

(d) = CDS

i

(d

0

1

) � � �CDS

i

(d

0

q

)

= CW

0i

(d

0

1

) � � �CW

0i

(d

0

q

) (by our re
urren
e hypothesis)

With CW

0

i+1

(d) = (d

0

1

: : : d

0

q

) denotes the 
onne
ting walk of d de�ned by

K

i+1

on G

i

.

Moreover, we have by proposition 4:

CW

0;i+1

(d) = CW

0;i

(d

0

1

) � � �CW

0;i

(d

0

q

)

Therefore, CDS

i+1

(d) = CW

0;i+1

(d) and the re
urren
e hypothesis holds

until i+ 1. 2

Remark 4 Note that the demonstration of proposition 11 remains valid if

all kernels are removal ones, therefore:

Given a 
ombinatorial map G

0

= (D; �; �) and a sequen
e of removal

kernelsK

1

; K

2

: : : ; K

n

. We 
an de�ne a sequen
e of removal in
lusion kernels

K

01

; : : : ; K

0n

with K

0i

= [

i

j=1

K

i

providing the same 
ombinatorial maps. In

this 
ase the 
onne
ting dart sequen
es are equal to the dual 
onne
ting walks

de�ned on the kernels K

01

; : : :K

0n

:

8i 2 f1; : : : ; ng 8d 2 SD

i

CDS

i

(d) = DCW

0i

(d)

Where DCW

0i

(d) is de�ned by K

0i

on G

0

.

In the following, we will have to 
onsider 
onne
ting walks or dual 
on-

ne
ting walks a

ording to the type of the asso
iated kernel. All the prop-

erties of 
onne
ting walks used below are 
ommon to 
onne
ting walks and

dual 
onne
ting walks. In order to not overload the demonstrations, we will

denote both 
onne
ting walks CW

i�1;i

and dual 
onne
ting walks DCW

i�1;i

by CW

i

. The type of the 
onne
ting walk is then impli
itly de�ned by the

type of its asso
iated kernel K

i

.
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Proposition 12 Given a 
ombinatorial map G

0

= (D; �; �) and a sequen
e

of 
ontra
tion or removal kernelsK

1

; K

2

: : : ; K

n

. For any level i in f1; : : : ; ng,

the �rst dart of CDS

i

(d) with d in SD

i

is d:

8 i 2 f1; : : : ; ng

8 d 2 SD

i

�

CDS

i

(d) = (d; d

2

; : : : ; d

p

)

Proof:

The proposition is trivial for i = 0 (we have in this 
ase p = 0). Let us

suppose it is true until a given rank i � 1 < n and let us 
onsider a given

dart d in SD

i

with:

CW

i

(d) = (d

1

; : : : ; d

p

)

Note that a

ording to the de�nition of a 
onne
ting walk (see Def. 1) we

have d

1

= d.

Then, if K

i

and K

i�1

have the same type:

CDS

i

(d) = CDS

i�1

(d

1

) � � �CDS

i�1

(d

p

)

Sin
e d

1

is equal to d the proposition is true at rank i thanks to our re
urren
e

hypothesis.

If K

i

and K

i�1

have a di�erent type:

CDS

i

(d) = d

1

� CDS

�

i�1

(�(d

1

)) � � �d

p

� CDS

�

i�1

(�(d

p

))

Like previously, we have d

1

= d by de�nition of a 
onne
ting walk, and the

�rst dart of CDS

i

(d) is thus equal to d. 2

Proposition 13 Given a 
ombinatorial map G

0

= (D; �; �) and a sequen
e

of 
ontra
tion or removal kernelsK

1

; K

2

; : : : ; K

n

. For any level i in f1; : : : ; ng

and for any 
onne
ting dart sequen
e CDS

i

(d) with d in SD

i�1

, the sequen
e

CDS

�

i

(d) is in
luded in [

i

j=0

K

j

:

8i 2 f0; : : : ; ng 8d 2 SD

i

CDS

�

i

(d) �

i

[

j=0

K

j

Proof:

If i = 0, CDS

0

(d) = d therefore:

8d 2 D CDS

�

0

(d) = ; � K

0

= ;
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The proposition is thus trivial for i = 0. Let us suppose it is true until a

given rank i� 1.

Let us 
onsider a given d in SD

i

su
h that:

CW

i

(d) = (d

1

; : : : ; d

p

)

with d

1

= d and (d

2

; : : : ; d

p

) � K

i

.

� If K

i

and K

i�1

have the same type:

CDS

i

(d) = CDS

i�1

(d

1

) � � �CDS

i�1

(d

p

)

Using our re
urren
e hypothesis,

8j 2 f1; : : : ; pg CDS

�

i�1

(d

j

) �

i�1

[

k=0

K

k

and the fa
t that all darts d

j

; 1 < j � p; of the 
onne
ting walk CW

i

(d)

belong to K

i

we have:

CDS

�

i�1

(d) �

S

i�1

k=0

K

k

8j 2 f2; : : : ; pg CDS

i�1

(d

j

) �

S

i

k=0

K

k

Therefore,

CDS

�

i

(d) = CDS

�

i�1

(d) � CDS

i�1

(d

2

) � � �CDS

i�1

(d

p

) �

i

[

k=0

K

k

� If K

i

and K

i�1

have not the same type:

CDS

i

(d) = d

1

� CDS

�

i�1

(�(d

1

)) � � �d

p

� CDS

�

i�1

(�(d

p

))

Like previously, using our re
urren
e hypothesis:

CDS

�

i�1

(�(d)) �

S

i�1

k=0

K

k

8j 2 f2; : : : ; pg d

j

� CDS

�

i�1

(�(d

j

)) �

S

i

k=0

K

k

Therefore,

CDS

�

i

(d) = CDS

�

i�1

(�(d

1

)) � � �d

p

� CDS

�

i�1

(�(d

p

)) �

i

[

k=0

K

k
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2

Proposition 14 Given a 
ombinatorial map G

0

= (D; �; �) and a sequen
e

of 
ontra
tion or removal kernels K

1

; K

2

: : : ; K

n

. Any 
onne
ting dart se-

quen
e at level i, with i 2 f1; : : : ; ng is not shorter than the 
orresponding


onne
ting walk:

8i 2 f1; : : : ; ng 8d 2 SD

i

jCDS

i

(d)j � jCW

i

(d)j

Proof:

Given an index i in f1; : : : ; ng, and a dart d su
h that:

CW

i

(d) = (d

1

; : : : ; d

p

)

If K

i

and K

i�1

have the same type,

CDS

i

(d) = CDS

i�1

(d

1

) � � �CDS

i�1

(d

p

)

Sin
e ea
h 
onne
ting dart sequen
e CDS

i�1

(d

j

) with j in f1; : : : ; pg 
on-

tains at least d

j

(see proposition 12), we have jCDS

i

(d)j � jCW

i

(d)j. If K

i

and K

i�1

have not the same type, we have:

CDS

i

(d) = d

1

� CDS

�

i�1

(�(d

1

)) : : : d

p

� CDS

�

i�1

(�(d

p

))

The proposition is then trivial. 2

Proposition 15 Given a 
ombinatorial map G

0

= (D; �; �) and a sequen
e

of 
ontra
tion or removal kernels K

1

; K

2

: : : ; K

n

. If a 
onne
ting dart se-

quen
e CDS

i

(d) is redu
ed to d then '

i

(d) = '(d) if K

i

is a 
ontra
tion

kernel, and �

i

(d) = �(d) if K

i

is a removal kernel:

CDS

i

(d) = (d) =)

�

'

i

(d) = '(d) If K

i

is a 
ontra
tion kernel

�

i

(d) = �(d) If K

i

is a removal kernel

Proof:

If i = 1, CDS

1

(d) = CW

1

(d) for any d in SD

1

. Then if the 
ardinal of

CDS

1

(d) is redu
ed to 1, the 
ardinal of CW

1

(d) must also be equal to 1

(see proposition 14). We have thus in this 
ase CDS

1

(d) = CW

1

(d) = (d).

Therefore, using the de�nition of a 
onne
ting walk:
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� '

1

(d) = '(d) if K

1

is a 
ontra
tion kernel.

� �

1

(d) = �(d) if K

1

is a removal kernel.

The property is thus true at rank 1 for any dart in SD

1

. Let us suppose the

property is true until rank i � 1 < n. Then, if CDS

i

(d) = (d), we have as

previously, CW

i

(d) = (d). Therefore:

'

i

(d) = '

i�1

(d) if K

i

is a 
ontra
tion kernel

�

i

(d) = �

i�1

(d) if K

i

is a removal kernel

(2)

Moreover, if K

i

and K

i�1

have the same type:

CDS

i

(d) = CDS

i�1

(d) = (d)

using the re
urren
e hypothesis:

� '

i

(d) = '

i�1

(d) = '(d) if K

i

(and thus K

i�1

) is a 
ontra
tion kernel.

� �

i

(d) = �

i�1

(d) = �(d) if K

i

and K

i�1

are removal kernels.

If K

i

and K

i�1

have not the same type,

CDS

i

(d) = d � CDS

�

i�1

(�(d)) = (d)

We have thus CDS

i�1

(�(d)) = �(d), and using our re
urren
e hypothesis

and equation (2):

� If K

i

is a 
ontra
tion kernel and K

i�1

a removal one:

'

i

(d) = '

i�1

(d) = �

i�1

(�(d)) = �(�(d)) = '(d)

� If K

i

is a removal kernel and K

i�1

a 
ontra
tion kernel.

�

i

(d) = �

i�1

(d) = '

i�1

(�(d)) = '(�(d)) = �(d)

2
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Proposition 16 Given a 
ombinatorial map G

0

= (D; �; �) and a sequen
e

of 
ontra
tion or removal kernelsK

1

; K

2

: : : ; K

n

. For any level i in f1; : : : ; ng,

the se
ond dart of CDS

i

(d) with d in SD

i

is, when it exists, equal to '(d) if

K

i

is a 
ontra
tion kernel and �(d) if K

i

is a removal kernel:

8i 2 f1; : : : ; ng 8d 2 SD

i

j CDS

i

(d) = (d; d

1

; : : : ; d

p

) with p > 0

d

1

=

�

'(d) If K

i

is a 
ontra
tion kernel

�(d) If K

i

is a removal kernel

Proof:

This proposition 
annot be applied to i = 0, sin
e at this level all 
on-

ne
ting dart sequen
es are redu
ed to a singleton. If i = 1 we have for ea
h

d in SD

1

:

CDS

1

(d) = CW

1

(d) = (d; d

1

: : : d

p

) with p � 0

If p > 0 for one d 2 SD

1

, we have by de�nition of a 
onne
ting walk:

d

1

=

�

'(d) If K

1

is a 
ontra
tion kernel

�(d) If K

1

is a removal kernel

The proposition is thus true for i = 1, let us suppose it is true until a given

rank i� 1 < n.

Let us 
onsider a given dart d in SD

i

su
h that:

CW

i

(d) = (d; d

0

1

; : : : ; d

0

q

)

Moreover, we suppose that jCDS

i

(d)j > 1 to ful�ll the requirements of the

proposition.

� If K

i

and K

i�1

have the same type

CDS

i

(d) = CDS

i�1

(d) � CDS

i�1

(d

0

1

) � � �CDS

i�1

(d

0

q

)

If jCDS

i�1

(d)j > 1 we 
an apply the re
ursive hypothesis. If not, we

have CDS

i�1

(d) = (d). In this 
ase we must have q > 0 sin
e q = 0

and CDS

i�1

(d) = (d) implies that CDS

i

(d) = d whi
h is refused by

hypothesis. Therefore, d

0

1

exists and d

1

= d

0

1

. Using proposition 15:

{ If K

i

is a 
ontra
tion kernel,

d

1

= d

0

1

= '

i�1

(d) = '(d)
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{ If K

i

is a removal kernel,

d

1

= d

0

1

= �

i�1

(d) = �(d)

� If K

i

and K

i�1

have not the same type:

CDS

i

(d) = d �CDS

�

i�1

(�(d)) �d

0

1

�CDS

�

i�1

(�(d

0

1

)) � � �d

0

q

�CDS

�

i�1

(�(d

0

q

))

Let us denote:

CDS

i�1

(�(d)) = (�(d); b

1

; : : : ; b

r

)

{ If jrj � 1 the se
ond dart d

1

of CDS

i

(d) is equal to b

1

. Then using

our re
urren
e hypothesis:

� If K

i

is a 
ontra
tion kernel, then K

i�1

is a removal kernel

and:

d

1

= b

1

= �(�(d)) = '(d)

� If K

i

is a removal kernel, K

i�1

is a 
ontra
tion kernel and:

d

1

= b

1

= '(�(d)) = �(d)

{ If CDS

i�1

(�(d)) = (�(d)), then d

1

= d

0

1

, moreover:

� If K

i

is a 
ontra
tion kernel, K

i�1

is a removal kernel. There-

fore, using proposition 15:

�

i�1

(�(d)) = �(�(d)) = '(d)

and:

d

1

= d

0

1

= '

i�1

(d) = �

i�1

(�(d)) = '(d)

� If K

i

is a removal kernel, K

i�1

is a 
ontra
tion kernel. There-

fore '

i�1

(�(d)) = '(�(d)) = �(d) and:

d

1

= d

0

1

= �

i�1

(d) = '

i�1

(�(d)) = �(d)

2
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Proposition 17 Given a 
ombinatorial map G

0

= (D; �; �) and a sequen
e

of 
ontra
tion or removal kernels K

1

; K

2

: : : ; K

n

. The 
onne
ting dart se-

quen
e of any dart d 2 SD

i

de�ned at level i 2 f1; : : : ; ng:

CDS

i

(d) = (d

1

; : : : ; d

p

); p > 1

satis�es the following property:

� If K

i

is a 
ontra
tion kernel:

'

i

(d) =

�

'(d

p

) if d

p

is 
ontra
ted

�(d

p

) if d

p

is removed

� If K

i

is a removal kernel:

�

i

(d) =

�

'(d

p

) if d

p

is 
ontra
ted

�(d

p

) if d

p

is removed

Proof:

Let us show this proposition by re
urren
e.

1. If i = 1, the 
onne
ting dart sequen
es are equal to the 
onne
ting

walks. Thus:

8d 2 SD

1

CDS

1

(d) = CW

1

(d) = (d

1

; : : : ; d

p

)

Using , the de�nition of 
onne
ting walks:

(a) If K

1

is a 
ontra
tion kernel, d

p

is 
ontra
ted and: '

1

(d) = '(d

p

)

(b) If K

1

is a removal kernel, d

p

is removed and: �

1

(d) = �(d

p

)

The proposition is thus true for i = 1.

2. Let us suppose that it holds until a given rank i� 1.

(a) If K

i

and K

i�1

have the same type, then:

CDS

i

(d) = CDS

i�1

(d

0

1

) � � �CDS

i�1

(d

0

q

) = (d

1

; : : : ; d

p

)

with CW

i

(d) = (d

0

1

; : : : ; d

0

q

).

Then, the last dart of CDS

i

(d) is the last dart of CDS

i�1

(d

0

q

)

and we have, using the de�nition of 
onne
ting walks and the

re
urren
e hypothesis:
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i. If K

i

is a 
ontra
tion kernel,

'

i

(d) = '

i�1

(d

0

q

) =

�

'(d

p

) If d

p

is 
ontra
ted

�(d

p

) If d

p

is removed

ii. If K

i

is a removal kernel,

�

i

(d) = �

i�1

(d

0

q

) =

�

'(d

p

) If d

p

is 
ontra
ted

�(d

p

) If d

p

is removed

(b) If K

i

and K

i�1

have not the same type:

CDS

i

(d) = d

0

1

� CDS

�

i�1

(�(d

0

1

)) � � �d

0

q

� CDS

�

i�1

(�(d

0

q

))

= (d

1

; : : : ; d

p

)

with CW

i

(d) = (d

0

1

; : : : ; d

0

q

).

i. If CDS

i�1

(�(d

0

q

)) = (�(d

0

q

)), then the last dart of CDS

i

(d) is

d

0

q

whi
h is 
ontra
ted or removed at level i a

ording to K

i

.

A. If K

i

is a 
ontra
tion kernel, then K

i�1

is a removal kernel

and d

0

q

is 
ontra
ted at level i. Then we have by de�nition

of 
onne
ting walks:

'

i

(d) = '

i�1

(d

0

q

) = �

i�1

(�(d

0

q

))

Moreover, using proposition 15, sin
e K

i�1

is a removal

kernel:

�

i�1

(�(d

0

q

)) = �(�(d

0

q

)) = '(d

0

q

)

therefore, '

i

(d) = '(d

0

q

)

B. IfK

i

is a removal kernel, thenK

i�1

is a 
ontra
tion kernel,

and d

0

q

is removed at level i. Using proposition 15:

'

i�1

(�(d

0

q

)) = '(�(d

0

q

)) = �(d

0

q

)

Using the de�nition of 
onne
ting walks, we have: �

i

(d) =

�

i�1

(d

0

q

) = '

i�1

(�(d

0

q

)). Thus:

�

i

(d) = �(d

0

q

)

ii. If jCDS

i�1

(�(d

0

q

))j > 1, then the last dart of CDS

i

(d) is the

last dart of CDS

i�1

(�(d

0

q

)). Therefore, using our re
urren
e

hypothesis:
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A. If K

i

is a 
ontra
tion kernel, then

'

i

(d) = '

i�1

(d

0

q

) = �

i�1

(�(d

0

q

)) =

�

'(d

p

) If d

p

is 
ontra
ted

�(d

p

) If d

p

is removed

B. If K

i

is a removal kernel, then

�

i

(d) = �

i�1

(d

0

q

) = '

i�1

(�(d

0

q

)) =

�

'(d

p

) If d

p

is 
ontra
ted

�(d

p

) If d

p

is removed

2

Proposition 18 Given a 
ombinatorial map G

0

= (D; �; �) and a sequen
e

of 
ontra
tion or removal kernels K

1

; K

2

: : : ; K

n

. For ea
h i in f1; : : : ; ng,

ea
h dart d in D belongs to exa
tly one 
onne
ting dart sequen
e de�ned at

level i:

8i 2 f1; : : : ; ng 8d 2 D 9!d

0

2 SD

i

j d 2 CDS

i

(d

0

)

Proof:

Let us show this proposition by re
urren
e:

If i = 0, CDS

0

(d) is equal to d for ea
h d in D. The proposition is then

trivial. Let us suppose that the proposition is true until a given rank i� 1.

If d is neither 
ontra
ted nor removed until level i+ 1, it is the �rst dart

of its own 
onne
ting dart sequen
e until level i (see proposition 12) and

the demonstration of the existen
e of a 
onne
ting dart sequen
e at level

i 
ontaining d is then trivial. Moreover, in this 
ase, if d is 
ontained in

two 
onne
ting dart sequen
es de�ned at level i, it must be the �rst dart

of both 
onne
ting dart sequen
es (see proposition 13). The �rst dart of a


onne
ting dart sequen
e being the one whi
h de�nes it(see de�nition 11), the

demonstration of the uniqueness of the 
onne
ting dart sequen
e 
ontaining

d is trivial.

If d is 
ontra
ted or removed at level i, there exists a dart d

00

in SD

i

su
h

that d 2 CW

i

(d

00

). Therefore, d must belong to CDS

i

(d

00

) (see de�nition 11).

Moreover, a

ording to the de�nition of a 
onne
ting dart sequen
e, the

darts 
ontra
ted at level i whi
h belong to a 
onne
ting dart sequen
e, must

belong to its asso
iated 
onne
ting walk. Therefore, if d belongs to two


onne
ting dart sequen
es CDS

i

(d

00

) and CDS

i

(b), it must also belong to

the 
onne
ting walks CW

i

(d

00

) and CW

i

(b). Sin
e the set of 
onne
ting walks

37



de�ned at level i de�nes a partition of SD

i�1

[6℄, we have d

00

= b and therefore,

CDS

i

(d

00

) = CDS

i

(b).

Let us now suppose that d has been 
ontra
ted or removed before level i.

Then d 
annot be the �rst dart of any 
onne
ting walk de�ned at levels i or

i� 1. Let us now de
ompose the demonstration at rank i in two steps:

Existen
e: A

ording to our re
urren
e hypothesis, there exists a unique

dart d

0

in SD

i�1

su
h that: d 2 CDS

i�1

(d

0

).

� If K

i

and K

i�1

have the same type there exists a unique dart

d

00

2 SD

i

su
h that d

0

2 CW

i

(d

00

), with:

CDS

i

(d

00

) = CDS

i�1

(d

1

) � � �CDS

i�1

(d

p

)

sin
e d

0

2 CW

i

(d

00

) = d

1

; : : : ; d

p

, we have:

d 2 CDS

i�1

(d

0

) � CDS

i

(d

00

)

� If K

i

and K

i�1

have not the same type, there exists a unique dart

d

00

in SD

i

su
h that �(d

0

) 2 CW

i

(d

00

). Moreover, sin
e d is not

the �rst dart of CDS

i�1

(d

0

):

d 2 CDS

�

i�1

(d

0

) � CDS

i

(d

00

) with

CDS

i

(d

00

) = d

1

� CDS

�

i�1

(�(d

1

) � � �d

p

� CDS

�

i�1

(�(d

p

)

and �(d

0

) 2 CW

i

(d

00

) = (d

1

; : : : ; d

p

).

Uniqueness: Let us suppose that there exist at least two darts in SD

i

su
h

that d 2 CDS

i

(d

0

) \ CDS

i

(d

00

)

� If K

i

and K

i�1

have the same type, then:

�

CDS

i

(d

0

) = CDS

i�1

(b

1

) � � �CDS

i�1

(b

p

)

CDS

i

(d

00

) = CDS

i�1

(b

0

1

) � � �CDS

i�1

(b

0

q

)

with

�

CW

i

(d

0

) = (b

1

; : : : ; b

p

)

CW

i

(d

00

) = (b

0

1

; : : : ; b

0

q

)

If d 2 CDS

i

(d

0

) \ CDS

i

(d

00

), then there must exist at least two

indi
es i 2 f1; : : : ; pg and j 2 f1; : : : ; qg respe
tively su
h that

d 2 CDS

i�1

(b

i

) \ CDS

i�1

(b

0

j

). Using our re
urren
e hypothesis,
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d 
an belong to only one 
onne
ting dart sequen
e at level i� 1,

therefore, b

i

= b

0

j

. We have therefore one dart in SD

i

whi
h

belongs to two di�erent 
onne
ting walks CW

i

(d

0

) and CW

i

(d

00

)

whi
h is impossible sin
e the 
onne
ting walk at level i form a

partition of SD

i�1

(see [6℄ proposition 6).

� If K

i

and K

i�1

have the not same type, then:

�

CDS

i

(d

0

) = b

1

� CDS

�

i�1

(�(b

1

)) � � � b

p

� CDS

�

i�1

(�(b

p

))

CDS

i

(d

00

) = b

0

1

� CDS

�

i�1

(�(b

0

1

)) � � � b

0

q

� CDS

�

i�1

(�(b

0

q

))

with (b

1

; : : : ; b

p

) and (b

0

1

; : : : ; b

0

q

) de�ned as previously.

Sin
e d is 
ontra
ted or removed before level i, it does not belong

to fb

1

; : : : ; b

p

g [ fb

0

1

; : : : ; b

0

q

g whi
h are 
ontra
ted or removed at

level i.

Therefore, if d 2 CDS

i

(d

0

) \ CDS

i

(d

00

), there must exist two in-

di
es, i 2 f1; : : : ; pg and j 2 f1; : : : ; qg su
h that:

d 2 CDS

�

i�1

(�(b

i

)) \ CDS

�

i�1

(�(b

0

j

))

) d 2 CDS

i�1

(�(b

i

)) \ CDS

i�1

(�(b

0

j

))

Using our re
urren
e hypothesis we must have: �(b

i

) = �(b

0

j

) and

thus b

i

= b

0

j

. We obtain the same 
ontradi
tion as previously.

2

Using 
onne
ting walks, ea
h 
onne
ting walk is in
luded in one '-orbit,

or one �-orbit if the kernel is a removal one. Moreover, ea
h dart appears

only on
e in ea
h '-orbit and �-orbit. Thus ea
h dart appears also only on
e

in ea
h 
onne
ting walk. The 
onne
ting dart sequen
e are not in
luded in

one '-orbit nor in one ��orbit. Therefore, we have to demonstrate that ea
h

dart appears at most on
e in ea
h 
onne
ting dart sequen
e:

Proposition 19 Given a 
ombinatorial map G

0

= (D; �; �), a sequen
e of


ontra
tion kernels or removal kernels K

1

; K

2

: : : ; K

n

, ea
h dart d appears at

most on
e in ea
h 
onne
ting dart sequen
e.

Proof:

This property is trivial for i = 0. Let us suppose that it holds until a

given level i � 1 and let us suppose that we 
an �nd a dart d in D that

appears at least twi
e in a given 
onne
ting dart sequen
e CDS

i

(d

0

).
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� If K

i

and K

i�1

have the same type, then:

CDS

i

(d

0

) = CDS

i�1

(d

1

) � � �CDS

i�1

(d

p

)

with CW

i

(d

0

) = d

1

; : : : ; d

p

.

Using our re
urren
e hypothesis, d 
annot appear twi
e in the same


onne
ting dart sequen
e at level i� 1. Therefore, it must exists, two

di�erent indi
es i and j in f1; : : : ; pg su
h that d 2 CDS

i�1

(d

i

) \

CDS

i�1

(d

j

). This last assertion 
ontradi
ts the fa
t that ea
h dart

belongs to exa
tly one 
onne
ting dart sequen
e de�ned at level i� 1

(see proposition 18).

� If K

i

and K

i�1

have not the same type, then:

CDS

i

(d

0

) = d

1

� CDS

�

i�1

(�(d

1

)); : : : ; d

p

� CDS

�

i�1

(�(d

p

))

with CW

i

(d

0

) = d

1

; : : : ; d

p

.

The dart d 
annot appear twi
e in a 
onne
ting walk(see [6℄). There-

fore, d appears at most on
e in CW

i

(d

0

). Note that if d belongs to

CW

i

(d

0

) it must be 
ontra
ted or removed at level i.

Moreover, if d belongs to one CDS

�

i�1

(�(d

j

)) with j 2 f1; : : : ; pg then

it must belongs to one K

l

with l < i (see proposition 13). Therefore, d


annot belong simultaneously to CW

i

(d) and to one CDS

�

i�1

(�(d

j

)).

Therefore, d 
an appear twi
e in CDS

i

(d) only if there exist two dif-

ferent indi
es j and k su
h that:

d 2 CDS

�

i�1

(�(d

j

)) \ CDS

�

i�1

(�(d

k

))

Therefore, d must belong to CDS

i�1

(�(d

j

)) \ CDS

i�1

(�(d

k

)) . This

last assertion 
ontradi
ts proposition 18.

2

3.1.1 Traversing Conne
ting Dart Sequen
es

Proposition 17 allows us to 
ompute the '

i

and �

i

su

essors of a given dart

d at any level i by using its 
onne
ting dart sequen
e. Therefore, if we are

able to design an algorithm whi
h traverses the 
onne
ting dart sequen
es
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of any darts at any level we should be able to build the di�erent 
ontra
ted


ombinatorial maps. However, the traversal of a 
onne
ting dart sequen
e

indu
es the determination of the relation whi
h links two su

essive darts

within a 
onne
ting dart sequen
e. Using 
onne
ting walks, this relation is

given by the de�nition of a 
onne
ting walk. Using 
onne
ting dart sequen
es

we have to build a 
onstru
tive de�nition from the re
ursive one. The fol-

lowing proposition shows that the su

essor of a dart in a given 
onne
ting

dart sequen
e remains the same for all levels on
e it is de�ned.

Proposition 20 Given a 
ombinatorial map G

0

= (D; �; �) and a sequen
e

of 
ontra
tion or removal kernels K

1

; K

2

: : : ; K

n

. If a dart d belongs to a


onne
ting dart sequen
e CDS

i

(d

0

) and if d is neither the �rst nor the last

dart of CDS

i

(d

0

) then its su

essor within the 
onne
ting dart sequen
e will

be the same in all 
onne
ting dart sequen
es whi
h in
lude d and whi
h are

de�ned at a level greater than i.

Proof:

Let us 
onsider the smallest index l of the 
ontra
tion kernels su
h that

there exists a 
onne
ting dart sequen
e CDS

l

(d

0

) in
luding d and su
h that

d is neither the �rst nor the last dart of the 
onne
ting dart sequen
e. Note

that using proposition 13, if d is not the �rst dart of CDS

l

(d) it must be


ontra
ted or removed before level l (see the paragraph below this proof).

Let us suppose that CDS

l

(d

0

) = (d

1

; : : : ; d

p

) and that d is one of the darts

fd

2

; : : : ; d

p�1

g. Let us show that the su

essor of d remains the same in all


onne
ting dart sequen
es 
ontaining d de�ned at a level greater than or equal

to l. The proposition is trivial at level l, let us suppose it is true until a level

k < n. We have thus a dart d

0

in SD

k

su
h that CDS

k

(d

0

) = (d

1

; : : : ; d

p

),

d = d

m

, m 2 f2; : : : ; p� 1g and d

m+1

is the su

essor of d from level l.

� If K

k

and K

k+1

have the same type, let us 
onsider d

00

in SD

k+1

su
h

that d

0

2 CW

k+1

(d

00

). Then:

CDS

k+1

(d

00

) = CDS

k

(b

1

) � � �CDS

k

(b

q

)

with d

0

2 CW

k+1

(d

00

) = (b

1

; : : : ; b

q

). The su

essor of d in CDS

k+1

(d

00

)

is then the same as in CDS

k

(d

0

). Moreover, d is neither the �rst nor

the last dart of CDS

k+1

(d

00

) by 
onstru
tion.
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� If K

k

and K

k+1

have not the same type, let us 
onsider the dart d

00

in

SD

k+1

su
h that �(d

0

) 2 CW

k+1

(d

00

):

CDS

k+1

(d

00

) = b

1

� CDS

�

k

(�(b

1

)) � � � b

q

� CDS

�

k

(�(b

q

))

with �(d

0

) 2 CW

k+1

(d

00

) = (b

1

; : : : ; b

q

). Sin
e d is not the �rst nor the

last dart of CDS

k

(d

0

), its su

essor remains the same in CDS

k+1

(d

00

).

Moreover, d is not the �rst nor the last dart of CDS

k+1

(d

00

).

In both 
ases, CDS

k+1

(d

00

) satisfy the re
ursive hypothesis. Moreover, using

proposition 18, CDS

k+1

(d

00

) is the unique 
onne
ting dart sequen
e de�ned

at level k + 1 
ontaining d. Therefore, our re
ursive hypothesis holds until

level k + 1. 2

Proposition 16 shows us that the su

essor of the �rst dart of a 
onne
ting

dart sequen
e de�ned at one level depends on the type of 
ontra
tion applied

at this level. On the 
ontrary proposition 20 shows us that the su

essors of

the other darts do not depend on the type of the applied 
ontra
tion.

Therefore, the su

essor of a dart d in the 
onne
ting dart sequen
e whi
h


ontains it 
hanges at ea
h level a

ording to the type of the asso
iated kernel

until d is 
ontra
ted or removed. Then the su

essor of d in the 
onne
ting

dart sequen
es whi
h 
ontain it remains the same for all levels greater than

level(d).

In the following we will determine the relationships between two su

es-

sive darts within a 
onne
ting dart sequen
e.

Proposition 21 Given a 
ombinatorial map G

0

= (D; �; �), a dart d in

D and a sequen
e of 
ontra
tion or removal kernels K

1

; K

2

: : : ; K

n

. If d is


ontra
ted or removed at level l < n, the set of levels I

d

de�ned by:

I

d

= fi 2 fl; : : : ; ng j 9!d

0

2 SD

i

; CDS

i

(d

0

) = (d

1

; : : : ; d)g

is either empty or is a 
ontiguous interval of fl; : : : ; ng 
ontaining l.

Proof:

Let us suppose that I

d

is non empty and let us show that if k > l belongs

to I

d

then k � 1 does.

If k belongs to I

d

there exists one dart d

0

su
h that d is the last dart of

CDS

k

(d

0

). Let us denote by d

1

; : : : ; d

p

the 
onne
ting walk of d

0

de�ned at

level k:

CW

k

(d

0

) = (d

1

; : : : ; d

p

)
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� If K

k

and K

k�1

have the same type, then:

CDS

k

(d

0

) = CDS

k�1

(d

1

) � � �CDS

k�1

(d

p

)

Therefore, CDS

k

(d

0

) and CDS

k�1

(d

p

) have the same last dart d and

the re
ursive hypothesis holds at level k � 1.

� If K

k

and K

k�1

have not the same type, then:

CDS

k

(d

0

) = d

1

� CDS

�

k�1

(�(d

1

)) � � �d

p

� CDS

�

k�1

(�(d

p

))

If jCDS

k�1

(�(d

p

))j > 1, the last dart of this 
onne
ting dart sequen
e

must be equal to d and the re
ursive hypothesis holds at level k � 1.

If jCDS

k�1

(�(d

p

))j = 1 then, sin
e the last dart of CDS

k

(d

0

) is equal

to d, we must have d

p

= d and d is 
ontra
ted or removed at level

k = l. We have thus nothing to demonstrate sin
e l is the smallest

index 
ontained in I

d

.

Note that in both 
ases, the uniqueness of the 
onne
ting dart sequen
e


ontaining d at level k� 1 is insured by proposition 18. Moreover, the above

veri�
ation by indu
tion stops only for k = l. Therefore, the lower bound of

I

d

, must be equal to l if I

d

is non empty. 2

Using proposition 21, if I

d

is non-empty it 
an be written as flevel(d); : : : ; mg

where m denotes the upper bound of I

d

. Moreover, using Proposition 17 we


an determine both '

i

(d

i

) and �

i

(d

i

) from '(d) and �(d) for ea
h dart d

i

in

SD

i

su
h that the last dart CDS

i

(d

i

) is d.

Corollary 5 Using the same notations and hypothesis as proposition 21 if

I

d

is non empty, then it 
an be denoted by I

d

= fl; : : : ; mg, where m denotes

the upper bound of I

d

. If m < n, the su

essor of d in CDS

m+1

(d

0

) is equal

to '(d) if d is 
ontra
ted and �(d) if d is removed where CDS

m+1

(d

0

) denotes

the 
onne
ting dart sequen
e whi
h 
ontains d at level m+ 1.

Proof:

� If K

m

and K

m+1

have the same type, let us denote by d

0

the dart whose


onne
ting walk at level m + 1 in
ludes d

m

:

d

m

2 CW

m+1

(d

0

) = (d

1

; : : : ; d

p

)
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Let us suppose that d

m

= d

i

with i in f1; : : : ; pg. Sin
e d is the last dart

of CDS

m

(d

m

), but not the last dart of CDS

m+1

(d

0

) (by de�nition of

m) the index i 
annot be equal to p. The su

essor of d in CDS

m+1

(d

0

)

is then equal to d

i+1

. Using proposition 17:

{ If d is 
ontra
ted

d

i+1

= '(d) =

�

'

m

(d

m

) If K

m+1

is a 
ontra
tion kernel

�

m

(d

m

) If K

m+1

is a removal kernel

{ If d is removed

d

i+1

= �(d) =

�

'

m

(d

m

) If K

m+1

is a 
ontra
tion kernel

�

m

(d

m

) If K

m+1

is a removal kernel

� If K

m

and K

m+1

have not the same type, let us denote by d

0

the dart

whose 
onne
ting walk at level m+ 1 in
lude �(d

m

):

�(d

m

) 2 CW

m+1

(d

0

) = (d

1

; : : : ; d

p

)

We have then:

CDS

m+1

(d

0

) = d

1

� CDS

�

m

(�(d

1

)) � � �d

p

� CDS

�

m

(�(d

p

))

Like previously we 
annot have �(d

m

) = d

p

sin
e in this 
ase d is also

the last dart ofCDS

m+1

(d

0

) whi
h is in 
ontradi
tion with the de�nition

of m. Let us suppose that �(d

m

) = d

i

with i 2 f1; : : : ; p � 1g. Then

d is the last dart of CDS

�

m

(�(d

i

)) and its su

essor in CDS

m+1

(d

0

)

is d

i+1

. We obtain thus the same 
on
lusion as previously by using

proposition 17.

2

Remark 5 Note that, using the same notations as 
orollary 5, sin
e d is


ontra
ted or removed before level m, it 
an't be the �rst dart of CDS

m+1

(d

0

).

Moreover, it is not the last dart of this 
onne
ting walk by de�nition of m.

Therefore, using proposition 20, the su

essor of d in CDS

m+1

(d

0

) remains

the same in all 
onne
ting dart sequen
es whi
h are de�ned at a level greater

or equal to m+ 1 and whi
h 
ontain d.
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Proposition 22 Given a 
ombinatorial map G

0

= (D; �; �) and a sequen
e

of 
ontra
tion or removal kernels K

1

; K

2

: : : ; K

n

. Given a dart d 
ontra
ted

or removed at level l, if I

d

is empty, and if CDS

l

(d

0

) denotes the 
onne
ting

dart sequen
e 
ontaining d at level l, the su

essor of d in CDS

l

(d

0

) is equal

to '(d) if d is 
ontra
ted and �(d) if d is removed.

Proof:

Let us 
onsider d

0

in SD

l

su
h that:

d 2 CW

l

(d

0

) = (d

1

; : : : ; d

p

)

� If K

l

have K

l�1

have he same type:

CDS

l

(d

0

) = CDS

l�1

(d

1

) � � �CDS

l�1

(d

p

)

{ If [CDS

l�1

(d)j > 1, the dart following d in CDS

l

(d

0

) is given by

proposition 16 and is equal to:

�

'(d) If K

l

and K

l�1

are 
ontra
tion kernels

�(d) If K

l

and K

l�1

are removal kernels

Note that d is 
ontra
ted at level l, therefore, the dart following d

in CDS

l

(d

0

) is equal to '(d) if d is 
ontra
ted (K

l

is a 
ontra
tion

kernel) and �(d) if d is removed (K

l

is a removal kernel)

{ If jCDS

l�1

(d)j = 1 the dart following d in CDS

l

(d

0

) is given by

proposition 15 and is equal to:

�

'

l�1

(d) = '(d) If K

l

and K

l�1

are 
ontra
tion kernels

�

l�1

(d) = �(d) If K

l

and K

l�1

are removal kernels

� If K

l

and K

l�1

have not the same type:

CDS

l

(d

0

) = d

1

� CDS

�

l�1

(�(d

1

)) � � �d

p

� CDS

�

l�1

(�(d

p

))

{ If jCDS

l�1

(�(d))j > 1 then the dart following d in CDS

l

(d

0

) is the

se
ond dart of CDS

l�1

(�(d)) and is equal to(see proposition 16):

�

�(�(d)) = '(d) If K

l�1

is a removal kernel

'(�(d)) = �(d) If K

l�1

is a 
ontra
tion kernel

Sin
e K

l

and K

l�1

have not the same type, the dart following d

in CDS

l

(d

0

) is equal to '(d) if d is 
ontra
ted (K

l

is a 
ontra
tion

kernel) and �(d) if d is removed (K

l

is a removal kernel).

45



{ If jCDS

l�1

(�(d))j = 1 then the su

essor of d in CDS

l

(d

0

) is the

su

essor of d in CW

l

(d

0

) and is equal to (see proposition 15):

� If K

l

is a 
ontra
tion kernel and K

l�1

a removal one:

'

l�1

(d) = �

l�1

(�(d)) = �(�(d)) = '(d)

� If K

l

is a removal kernel and K

l�1

a 
ontra
tion kernel:

�

l�1

(d) = '

l�1

(�(d)) = '(�(d)) = �(d)

Note that d 
annot be the last dart of CW

l

(d

0

) sin
e I

d

is empty

by hypothesis.

2

Corollary 6 Using the same notations as proposition 22, sin
e d is 
on-

tra
ted at level l, it 
an't be the �rst dart of CDS

l

(d

0

). Moreover, sin
e I

d

is

empty, d is not the last dart of CDS

l

(d

0

). Therefore, using proposition 20,

the su

essor of d in all 
onne
ting dart sequen
es de�ned at a level greater

or equal to l and 
ontaining d is equal to '(d) if d is 
ontra
ted and �(d) if

d is removed.

Theorem 1 Given a 
ombinatorial map G

0

= (D; �; �), a sequen
e of 
on-

tra
tion kernels or removal kernels K

1

; K

2

: : : ; K

n

, the relation between the

su

essive darts of a 
onne
ting dart sequen
e CDS

i

(d) = (d

1

; : : : ; d

p

), with

i 2 f1; : : : ; ng and d 2 SD

i

is as follow:

d

2

=

�

'(d

1

) If K

i

is a 
ontra
tion kernel

�(d

1

) If K

i

is a removal kernel

and

8j 2 f3; : : : ; pg d

j

=

�

'(d

j�1

) if d

j�1

is 
ontra
ted

�(d

j�1

) if d

j�1

is removed

Proof:

Given a 
onne
ting dart sequen
e CDS

i

(d) = (d

1

; : : : ; d

p

) de�ned at level

i, the su

essor of d

1

is given by proposition 16. Let us 
onsider a dart d

j

with j 2 f2; : : : ; p� 1g. Sin
e d

j

is not the �rst dart of CDS

i

(d), it must be


ontra
ted at a level less than or equal to i (see proposition 13). Moreover,

sin
e d

j

has a su

essor in CDS

i

(d) it 
annot belong to the set I

d

j

. Therefore,

one of the two following statements must hold:

46



1. The set I

d

j

is empty. In this 
ase, the su

essor of d

j

is given by propo-

sition 22 (see also 
orollary 6) and is equal to '(d

j

) if d

j

is 
ontra
ted

and to �(d

j

) if d

j

is removed.

2. I

d

j

is not empty and i is stri
tly greater than the maximal level 
on-

tained in I

d

j

. In this last 
ase, we 
an apply 
orollary 5 (see also re-

mark 5) and the su

essor of d

j

, d

i+1

is equal to '(d

j

) if d

j

is 
ontra
ted

and �(d

j

) is d

j

is removed.

2

3.2 Coding Contra
tions and Removals

Sin
e two kinds of operations are allowed and ne
essary in the pyramid we

have to add some information in the pyramid 
onstru
tion plan in order to

en
ode in whi
h way a dart disappears at a given level:

De�nition 12 Generalized Pyramid Constru
tion Plan

Given an initial 
ombinatorial map G

0

and a sequen
e of su

essive 
on-

tra
tion or removal kernels K

1

; : : : ; K

n

, the generalized pyramid 
onstru
tion

plan GLP asso
iated to this sequen
e is de�ned by the initial 
ombinatorial

map G

0

, a fun
tion level de�ned on D by:

8d 2 D level(d) =Maxfi 2 f1; : : : ; n+ 1g j d 2 SD

i�1

g

and a (binary) fun
tion state from f1; : : : ; ng to fContra
ted; Removedg,

whi
h maps ea
h level i into:

� Contra
ted, if K

i

is a 
ontra
tion kernel,

� Removed, if K

i

is a removal kernel.

Proposition 23 Given a 
ombinatorial map G

0

= (D; �; �), and a general-

ized pyramid 
onstru
tion plan GLP = (G

0

; level; state) de�ned by n kernels,

ea
h kernel K

i

is equal to the set of darts mapped to i by the fun
tion level.

8i 2 f1; : : : ; ng K

i

= fd 2 D j level(d) = ig

Proof:

This demonstration is similar to the one of proposition 5. 2
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Proposition 24 Given a 
ombinatorial map G

0

= (D; �; �), and a general-

ized pyramid 
onstru
tion plan GLP = (G

0

; level; state) de�ned by n kernels,

the set of surviving darts of the i

th


ontra
ted map is equal to the set of darts

having a level stri
tly greater than i:

SD

i

= fd 2 D j level(d) > ig

Proof:

The surviving darts at level i are de�ned by (see proposition 10):

SD

i

= D �

i

[

j=1

K

j

Sin
e (see proposition 23) K

i

= fd 2 D j level(d) = ig, a surviving dart

of the i

th


ontra
tion kernel must have a level stri
tly greater than i:

SD

i

= fd 2 D j level(d) > ig

2

Note that a dart d with level(d) = n+1 must survive: SD

n

= D�[

n

i=1

K

i

.

Hen
e fun
tion state is not de�ned for the top level n+1. Furthermore re
all

that a dart d is removed from SD

i

if K

i

is a removal kernel. This is expressed

now by: state(level(d)) = Removed.

We will show in the following, that the generalized pyramid 
onstru
tion

plan and the fun
tion survive (see Algorithm 5) based on it allow us to

retrieve the di�erent 
ontra
tion kernels and 
ontra
ted 
ombinatorial map

de�ned by a sequen
e of 
ontra
tions and/or removals.

Remark 6 Note that given a generalized pyramid 
onstru
tion plan and a

level i � n, three 
ases may o

ur for ea
h dart d in D:

1. level(d) > i: the dart d remains at level i. This dart may disappear at

an upper level or remain until level n.

2. level(d) = i and state(i) = Contra
ted: The dart d is 
ontra
ted at

level i.

3. level(d) = i and state(i) = Removed: The dart d is removed at level i.
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Let us now 
onsider the Algorithm 5. Proposition 23 and 24 show that

the generalized pyramid 
onstru
tion plan allows us to retrieve the di�erent

kernels and surviving darts of our pyramid. We will show in the following that

Algorithm 5 together with a generalized pyramid 
onstru
tion plan allows us

also to retrieve the 
ontra
ted or removed 
ombinatorial maps de�ned at the

di�erent levels of the pyramid.

dart survive(int i, dart d)

f

if ( level(d) > i )

return d;

if(state(level(d)) == Contra
ted)

return survive(i,'(d))

return survive(i,�(d))

g

Algorithm 5: The general survive algorithm

De�nition 13 survive Sta
k

Given a 
ombinatorial map G

0

= (D; �; �) and the generalized pyramid


onstru
tion plan, GLP = (G

0

; level; state). The ordered set Sta
k(i; d) is

the sequen
e of darts whi
h will be passed as se
ond argument of the re
ursive

fun
tion survive during a 
all to survive(i; d).

Remark 7 Using the same notations and hypothesis as de�nition 13, the

last dart of Sta
k(i; d) is equal to survive(i; d).

Proposition 25 Using the same notations and hypothesis as de�nitions 13

and 11. For ea
h i in f1; : : : ; ng and for ea
h d in SD

i

, CDS

i

(d) may be

dedu
ed from the sta
k of fun
tion survive thanks to the following relations:

� If state(i) = Contra
ted

d � Sta
k(i; '(d)) = CDS

i

(d) � '

i

(d)
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� If state(i) = Removed

d � Sta
k(i; �(d)) = CDS

i

(d) � �

i

(d)

Proof:

A

ording to proposition 12, the �rst dart of CDS

i

(d) = (d

1

; : : : ; d

p

) is d,

moreover, using proposition 16 the se
ond dart of CDS

i

(d) is equal to '(d)

if K

i

is a 
ontra
tion kernel and to �(d) if K

i

is a removal kernel.

Therefore, the �rst two darts of d �Sta
k(i; '(d)) (resp. d �Sta
k(i; �(d)))

and CDS

i

(d)�'

i

(d) (resp. CDS

i

(d)��

i

(d)) are equal ifK

i

is a 
ontra
tion ker-

nel (resp. a removal kernel). Let us now suppose that state(i) = Contra
ted

(the demonstration may be adapted easily if state(i) = Removed) and let us


onsider the series (d

0

1

; : : : ; d

0

p+1

) su
h that:

d � Sta
k(i; '(d)) = (d

0

1

; : : : ; d

0

p+1

) with d

0

1

= d

Let us suppose that both series d �Sta
k(i; '(d)) and CDS

i

(d) �'

i

(d) are

equal until a given rank j 2 f2; : : : ; p�1g. Then, sin
e d

j

= d

0

j

is not the �rst

dart of CDS

i

(d) it must have been 
ontra
ted before level i. We have thus

level(d

j

) � i. Moreover if d

j

is 
ontra
ted, its su

essor in Sta
k(i; '(d))

is equal to '(d) while if d

j

is removed its su

essor is equal to �(d

j

) (see

Algorithm 5). Using Theorem 1, the su

essor of d

j

in CDS

i

(d) is equal to

'(d

j

) if d

j

is 
ontra
ted and �(d

j

) if d

j

is removed, therefore d

j+1

= d

0

j+1

.

We have thus:

8j 2 f1; : : : ; pg d

0

j

= d

j

Sin
e d

p

is not the �rst dart of CDS

i

(d), its level must be stri
tly less than

i. Therefore survive(i; d

p

) is equal to:

survive(i; '(d

p

)) if d

p

is 
ontra
ted

survive(i; �(d

p

)) if d

p

is removed

Thus, the su

essor d

0

p+1

of d

p

in Sta
k(i; '(d)) is equal to '(d

p

) if d

p

is


ontra
ted and �(d

p

) if d

p

is removed. Using proposition 17, d

0

p+1

is equal to

'

i

(d). Therefore, d

0

p+1

2 SD

i

and, using proposition 24, its level is stri
tly

greater than i. Therefore, d

0

p+1

is the last dart of Sta
k(i; '(d)) and both

series d � Sta
k(i; '(d)) and CDS

i

(d) � '

i

(d) are equal. 2
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De�nition 14 Appli
ation �

Given a 
ombinatorial map G

0

= (D; �; �) and the generalized pyra-

mid 
onstru
tion plan, GLP = (G

0

; level; state). The appli
ation � from

f1; : : : ; ng �D to D is de�ned by:

�

�

f1; : : : ; ng �D ! D

(i; d) 7! survive(i; �(d))

Proposition 26 Given an initial 
ombinatorial map G

0

and the generalized

pyramid 
onstru
tion plan, GLP = (G

0

; level; state) the permutation �

i

of

the i

th


ontra
ted map is equal to � Æ p

i

:

8i 2 f1; : : : ; ng 8d 2 SD

i

� Æ p

i

(d) = �

i

(d)

Proof:

Let us 
onsider a level i in f1; : : : ; ng and a dart d in SD

i

. The appli
ation

� Æ p

i

maps d into survive(i; �(d)). Using proposition 25 and remark 7:

� If state(i) = Contra
ted, survive(i; �(d)) is the last dart of Sta
k(i; �(d) =

'(�(d))). Therefore, using proposition 25:

survive(i; �(d)) = '

i

(�(d)) = �

i

(d)

� If state(i) = Removed, survive(i; �(d)) is the last dart of Sta
k(i; �(d))

and is thus equal to �

i

(d).

Therefore, in all 
ases:

� Æ p

i

(d) = survive(i; �(d)) = �

i

(d)

2

Note that a dire
t en
oding of the fun
tion � similar to the one illustrated

in Table 1 may be de�ned thanks to the fun
tion survive.

4 Con
lusion

The two major 
ontributions of this te
hni
al report are:
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� The study of pyramids de�ned by both 
ontra
tion kernels and removal

kernels.

� The de�nition of a pyramid 
onstru
tion plan and a generalized pyra-

mid 
onstru
tion plan.

The de�nition of a pyramid de�ned by both 
ontra
tion kernels and removal

kernels allows us to remove the restri
tions indu
ed by a sole kind of operation

(see se
tion 2.2). We thus gain further 
exibility whi
h allows us to 
ontra
t

any initial 
ombinatorial map into a smaller one eventually redu
ed to a self-

dire
t-loop. The de�nition of the fun
tion level, allows us to store the set of

kernels de�ning a given pyramid. An en
oding of the pyramid based on the

fun
tion level is also proposed.

The fun
tion survive de�ned in se
tion 3.2 is designed to build a par-

ti
ular level of the pyramid. The 
onstru
tion of the fun
tion � or of all

permutations �

i

with i 2 f1; : : : ; ng requires to apply this fun
tion on ea
h

level i and on ea
h dart in SD

i

. This last operation may indu
e some unne
-

essary 
al
ulations and a new fun
tion adapted to the dire
t 
onstru
tion of

several levels of the pyramid is under study.

Given a 
ombinatorial pyramid either de�ned by (D;�; level; �), or by

(D; (�

i

)

i2f1;:::;ng

; �) the modi�
ation of the pyramid in order to improve a

previous result or to adapt it to new input data is often required. We plan to

study this operation named relinking [9℄ in the 
ombinatorial map framework.

Finally, an implementation of 
ombinatorial maps pyramids should allow to

study interesting appli
ations of our model su
h as: segmentation [4, 1, 3, 5℄,

stru
tural mat
hing [16℄ or integration of moving obje
ts.
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A Appendix

A.1 Re
ursive 
onstru
tion of 
onne
ting dart sequen
es

The se
tion illustrates the re
ursive 
onstru
tion of the 
onne
ting dart se-

quen
es. All tables given below show the di�erent 
onne
ting walks asso
i-

ated to the pyramid de�ned in Figure 5. Note that these 
onne
ting dart

sequen
es may also be 
onstru
ted dire
tly by using Theorem 1.
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The 
onne
ting dart sequen
es of K

1

CDS

1

(9) = CW

1

(9) = 9;�4

CDS

1

(�9) = CW

1

(�9) = �9;�2;�1; 7; 10

CDS

1

(8) = CW

1

(8) = 8

CDS

1

(�8) = CW

1

(�8) = �8; 2

CDS

1

(3) = CW

1

(3) = 3

CDS

1

(�3) = CW

1

(�3) = �3;�7; 1

CDS

1

(5) = CW

1

(5) = 5; 6;�12

CDS

1

(�5) = CW

1

(�5) = �5;�10

CDS

1

(11) = CW

1

(11) = 11

CDS

1

(�11) = CW

1

(�11) = �11; 4; 12;�6

Table 2: The 
onne
ting dart sequen
es of the �rst 
ontra
tion kernel K

1

de�ned in Figure 5
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The 
onne
ting dart sequen
es of K

2

CW

2

(3) = 3; 8; 9

CDS

2

(3) = 3:CDS

1

(�3)

�

:8:CDS

�

1

(�8):9:CDS

�

1

(�9)

= 3;�7; 1; 8; 2; 9;�2;�1; 7; 10

CW

2

(�3) = �3

CDS

2

(�3) = �3:CDS

�

1

(3)

= �3

CW

2

(5) = 5

CDS

2

(5) = 5:CDS

�

1

(�5)

= 5;�10

CW

2

(�5) = �5;�9;�8

CDS

2

(�5) = �5:CDS

�

1

(5):� 9:CDS

�

1

(9):� 8:CDS

�

1

(8)

= �5; 6;�12;�9;�4;�8

CW

2

(11) = 11

CDS

2

(11) = 11:CDS

�

1

(�11)

= 11; 4; 12;�6

CW

2

(�11) = �11

CDS

2

(�11) = �11:CDS

�

1

(11)

= �11

Table 3: The 
onne
ting dart sequen
es of the removal kernel K

2

de�ned in

Figure 5
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The 
onne
ting dart sequen
es of K

3

CW

3

(5) = 5;�3

CDS

3

(5) = 5:CDS

�

2

(�5):� 3:CDS

�

2

(3)

= 5; 6;�12;�9;�4;�8;�3;�7; 1; 8; 2; 9;�2;�1; 7; 10

CW

3

(�5) = �5; 3

CDS

3

(�5) = �5:CDS

�

2

(5):3:CDS

�

2

(�3)

= �5;�10; 3

CW

3

(11) = 11

CDS

3

(11) = 11:CDS

�

2

(�11)

= 11

CW

3

(�11) = �11

CDS

3

(�11) = �11:CDS

�

2

(11)

= �11; 4; 12;�6

Table 4: The 
onne
ting dart sequen
es of the 
ontra
tion kernel K

3

de�ned

in Figure 5

The 
onne
ting dart sequen
es of K

4

CW

4

(11) = 11

CDS

4

(11) = 11:CDS

�

3

(�11)

= 11; 4; 12;�6

CW

4

(�11) = �11;�5; 5

CDS

4

(�11) = �11:CDS

�

3

(11)� 5:CDS

�

3

(5):5:CDS

�

3

(�5)

= �11;�5; 6;�12;�9;�4;�8;�3;�7; 1; 8; 2; 9;�2;�1; 7; 10; 5;�10; 3

Table 5: The 
onne
ting dart sequen
es of the removal kernel K

4

de�ned in

Figure 5 (see also Figure 6)
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Figure 6: Illustration of the 
onne
ting dart sequen
es given on Table 5.

A.2 Index of De�nitions

TR-54 refers to De�nitions in [15℄, TR-57 to De�nitions in [6℄ and TR-63

to De�nitions in this te
hni
al report.

Appli
ation �: TR-63, De�nition 14, page 51

Appli
ation �

C

: TR-63, De�nition 5, page 17

Appli
ation �

R

: TR-63, De�nition 10, page 23

Bridge: TR-54, De�nition 25, page 14

Cir
uit: TR-54, De�nition 13, page 6

Combinatorial map: TR-54, De�nition 2, page 3

Conne
ted Combinatorial Map: TR-54, De�nition 14, page 7

Conne
ting Dart Sequen
es: TR-63, De�nition 11, page 27

Conne
ting Path: TR-54, De�nition 31, page 25
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Conne
ting path map: TR-54, De�nition 35, page 28

Conne
ting series: TR-54, De�nition 40, page 32

Conne
ting series map: TR-54, De�nition 43, page 34

Conne
ting series set: TR-54, De�nition 41, page 33

Conne
ting walk: TR-57, De�nition 10, page 10; TR-63, De�nition 1,

page 8

Conne
ting walk map: TR-57, De�nition 13, page 19

Contra
tion Kernel : TR-54, De�nition 39, page 31; TR-57, De�nition 9,

page 7

Contra
tion operation: TR-54, De�nition 28, page 17

Cutset: TR-54, De�nition 22, page 11

Cy
le: TR-57, De�nition 8, page 6

Dart identi�
ation: TR-54, De�nition 27, page 17

Dart self dire
t loop: TR-54, De�nition 8, page 5

De
imation parameter: TR-54, De�nition 30, page 25

Degree: TR-54, De�nition 7, page 4

Disjoint Vertex Set : TR-57, De�nition 2, page 2

Dual Combinatorial Map: TR-54, De�nition 23, page 12

Dual 
onne
ting Walk: TR-63, De�nition 8, page 22

Edge self dire
t loop: TR-54, De�nition 9, page 5

End verti
es: TR-54, De�nition 5, page 4

Equivalent partition : TR-54, De�nition 18, page 8

Forest: TR-57, De�nition 4, page 4

Fun
tion follow: TR-63, De�nition 2, page 8
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Generalized Pyramid Constru
tion Plan: TR-63, De�nition 12, page 47

Group asso
iated to a 
ombinatorial map: TR-54, De�nition 3, page 3

In
lusion of Contra
tion Kernels: TR-57, De�nition 14, page 20

Independent vertex set: TR-54, De�nition 29, page 24

In�nite fa
e: TR-54, De�nition 24, page 12

Map tree : TR-54, De�nition 37, page 31; TR-57, De�nition 3, page 4

Map without pendant edges: TR-54, De�nition 32, page 26

Minimal partition : TR-54, De�nition 17, page 8

Morphism between 
ombinatorial maps: TR-54, De�nition 4, page 3

Partition : TR-54, De�nition 16, page 7

Partition into Conne
ted Components : TR-54, De�nition 21, page 11

Path: TR-54, De�nition 12, page 5; TR-57, De�nition 7, page 6

Pendant dart: TR-54, De�nition 10, page 5

Pendant edge: TR-54, De�nition 11, page 5

Prede
essor and Su

essor Kernels: TR-57, De�nition 15, page 21

Pyramid Constru
tion Plan: TR-63, De�nition 3, page 13

Removal Kernel: TR-63, De�nition 7, page 21

Removal Operation: TR-54, De�nition 26, page 15

Representative dart: TR-54, De�nition 34, page 27

Restoration of the pyramid 
onstru
tion plan: TR-63, De�nition 6,

page 18

Reversal of 
onne
ting paths: TR-54, De�nition 33, page 27

Reversal of Conne
ting series: TR-54, De�nition 42, page 34
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Reversal of Conne
ting walks: TR-57, De�nition 12, page 12

Self loop: TR-54, De�nition 6, page 4

Set of Conne
ting Walks: TR-57, De�nition 11, page 11

Spanning Forest: TR-54, De�nition 38, page 31

Stru
ture Preserving Contra
tion: TR-54, De�nition 36, page 29

Sub Combinatorial Map: TR-54, De�nition 19, page 9

survive Sta
k : TR-63, De�nition 13, page 49

survive

C

Sta
k: TR-63, De�nition 4, page 15

survive

R

Sta
k: TR-63, De�nition 9, page 22

Topologi
al map: TR-54, De�nition 1, page 2

Trail: TR-57, De�nition 6, page 6

Transitive group: TR-54, De�nition 15, page 7

Vertex Partition : TR-57, De�nition 1, page 2

Verti
es Indu
ed Sub 
ombinatorial map: TR-54, De�nition 20, page 9

Walk: TR-57, De�nition 5, page 5
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