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Abstract

An algorithm for automatic construction of a 3D model of an object is presented. The
construction is based on a sequence of images of the object taken from different viewpoints.
The object’s silhouette is the only feature which is extracted from an input image. Images
are acquired by rotating the object on a turntable in front of a stationary camera. The
algorithm uses an octree representation of the model, and builds this model incrementally,
by performing limited processing of all input images for each level of the octree. Beginning
from the root node at the level 0 a rough model of the object is obtained quickly and is
refined as the processed level of the octree increases. Results of the algorithm developed
are presented for both synthetic and real input images.



Contents

1

Introduction 3
1.1 Types of Model Representation . . . . .. ... .. ... .. ........ 4
1.2 Octree Model Representation . . . .. ... ... ... .. ......... 5
Acquisition System 6
2.1 Description . . . . . . ..o e e e 6
2.2 Turntable Calibration. . . . . . . . . . . .. .. .. .. ... ..., 7
Building a 3D Model of an Object 9
3.1 OVerview . . . . . . o e e e e 9
3.2 Extraction of the Silhouette of an Object . . . . . . . .. .. .. ... ... 10
3.3 Projection of an Octree Node into the Image Plane . . . . . ... ... .. 10
3.4 Silhouette Intersection Test . . . . . . . . . .. .. ... .. .. ..., 13
Results 16
4.1 Synthetic Objects . . . . . . . . . . 16
4.2 Real Objects. . . . . . . . . . 18
4.3 Analysis . . . . . . L 20
Conclusion 23
Implementation Details 26
A1l Environment . . . . . . . . ... 26
A.2 Implementation . . . . . . . .. .. 26
User’s Manual 31
B.1 Requirements . . . . . . . . . . . . .. 31
B.2 Imstallation . . . ... ... . ... ... .. 31
B.3 Uninstallation . . . . . . . . . . .. . e 32
B.4 Manual Page . . . . . . .. . 32



List of Figures

CO I O U i W N =

Ne)

10
11
12
13
14
15
16
17
18
19

Image silhouette (a) and the corresponding conic volume (b) . . . . . . .. 3
A simple object (a) and the corresponding octree (b) . . . . ... ... .. 5
Geometrical setup of the camera and the turntable . . . .. ... ... .. 6
The acquisition system . . . . . . . . . . ... 7
Image- (a) and object (b) coordinate system . . . . ... .. ... ..... 8
Algorithm overview . . . . . . . ..o oL 9
Extraction of an object’s silhouette . . . . . . . ... ... ... ... .. 11
The octree-, object- and image coordinate system . . . . ... ... .. .. 12
Correction of the image coordinates . . . . . . . .. .. .. ... ... .. 14
Projection of a node (a) and its bounding box (b) . . . . .. ... ... .. 14
Selection of pixels for the intersection test . . . . . ... ... .. .. ... 15
Synthetic 3D objects: a sphere (a) and acone (b) . . . ... ... ... .. 16
Synthetic input image for the sphere (a) and the cone (b) . . . . . ... .. 17
Constructed models of synthetic objects in different voxel resolutions . . . 17
Constructed models of synthetic objects with different number of views . . 18
Real objects: a metal cuboid (a) and two ceramic pots (b) and (¢) . . . . . 19
Constructed models of real objects in different voxel resolutions . . . . . . 20
Constructed models of real objects with different number of views . . . . . 21
Reconstructed 3D models of the pot 1 (a) and pot 2 (b). . . . ... .. .. 22

List of Tables

St W N~

Comparison of analytic and calculated dimensions (1) . . . . . ... .. .. 18
Comparison of analytic and calculated dimensions (2) . . . . ... ... .. 19
Octree statistics for reconstruction of synthetic objects . . . . . .. .. .. 19
Octree statistics for real data with varying octree resolution . . . . .. .. 21
Octree statistics for real data with varying number of views . . . . . . . .. 22



1 Introduction

Shape from Silhouette is a method of automatic construction of a 3D model of an object
based on a sequence of images of the object taken from multiple views, in which the
object’s silhouette represents the only interesting feature of an image [Sze93, Pot87]. The
object’s silhouette in each input image corresponds to a conic volume in the object real-
world space (Figure 1). A 3D model of the object can be built by intersecting the conic
volumes from all views.

(b)

()

Figure 1: Image silhouette (a) and the corresponding conic volume (b)

Shape from Silhouette is a computationally simple algorithm — it employs only basic
matrix operations for all transformations — and it requires only a camera as equipment,
so it can be used to obtain a quick initial model of an object which can then be refined by
other methods. It can be applied on objects of arbitrary shapes, including objects with
certain concavities (like a handle of a cup), as long as the concavities are visible from at
least one input view. It can also be used to estimate the volume of an object.

There have been many works on construction of 3D models of objects from multiple
views. Baker [Bak77] used silhouettes of an object rotating on a turntable to construct
a wire-frame model of the object. Martin and Aggarwal [MA83] constructed volume
segment models from orthographic projection of silhouettes. Chien and Aggarwal [CA83|
constructed an object’s octree model from its three orthographic projections. Veenstra and
Ahuja [VA86] extended this approach to thirteen standard orthographic views. Potmesil
[Pot87] created octree models using arbitrary views and perspective projection. For each of
the views he constructs an octree representing the corresponding conic volume (Figure 1)
and then intersects all octrees. In contrast to this, Szeliski [Sze93] first creates a low
resolution octree model quickly and then refines this model iteratively, by intersecting
each new silhouette with the already existing model. The last two approaches project an



octree node into the image plane to perform the intersection between the octree node and
the object’s silhouette. Srivastava and Ahuja [SA90] in contrast, perform the intersections
in 3D-space. The work of Szeliski [Sze93] was used as a base for the approach presented
in this report.

To acquire images from multiple views, we put an object on a turntable which rotates
in front of a stationary camera. For 3D models of objects octree [CH88| representation
is used, which has several advantages: for a typical solid object it is an efficient repre-
sentation, because of a large degree of coherence between neighboring volume elements
(voxels), which means that a large piece of an object can be represented by a single octree
node. Another advantage is the ease of performing geometrical transformations on a node,
because they only need to be performed on the node’s vertices. The disadvantage of octree
models is that they digitize the space by representing it through cubes whose resolution
depend on the maximal octree depth and therefore cannot have smooth surfaces.

The implementation of the Shape from Silhouette method presented in this paper was
done as part of the project Computer Aided Classification of Ceramics [Cer|, which is per-
formed by Pattern Recognition and Image Processing Group at the Institute of Computer
Aided Automation at the Vienna University of Technology in cooperation with the Insti-
tute of Classical Archaeology at the University of Vienna, with the goal of automating
the documentation process of archaeological sherds.

This document is structured as follows: Section 1.1 gives an overview of possible 3D
model representations. Section 1.2 is a short review of octree representation. Section 2
describes the acquisition system and gives an overview of the calibration method used.
Section 3 describes the implemented approach in detail, Section 4 presents the results,
followed by the conclusion in Section 5.

Appendix A goes into implementation details on the programming language level and
Appendix B is the user’s manual for the implemented task.

1.1 Types of Model Representation

There are many different model representations in computer vision and computer graphics
used. Here we will mention only the most important ones. Surface-based representations
describe the surface of an object as a set of simple approximating patches, like planar
or quadric patches [Nal93]. Generalized cylinder representation [Shi87] defines a volume
by a curved axis and a cross-section function at each point of the axis. Overlapping
sphere representation [OB79] describes a volume as a set of arbitrarily located and sized
spheres. Approaches such as these are efficient in representing a specific set of shapes
but they are not flexible enough to describe arbitrary solid objects. Two of the most
commonly used representations for solid volumes are boundary representation (B-Rep)
and constructive solid geometry (CSG) [Shi87]. The B-Rep method describes an object as
a volume enclosed by a set of surface elements, typically sections of planes and quadratic
surfaces such as spheres, cylinders and cones. The CSG method uses volume elements
rather than surface elements to describe an object. Typical volume elements are blocks,
spheres, cylinders, cones and prisms. These elements are combined by set operations
into the modeled object. The B-Rep and CSG method suffer from quadratic growth of
elemental operations as the complexity of the modeled object increases.



1.2 Octree Model Representation

An octree [CH88| is a tree-formed data structure used to represent 3-dimensional objects.
Each node of an octree represents a cube subset of a 3-dimensional volume. A node of an
octree which represents a 3D object is said to be:

e black, if the corresponding cube lies completely within the object

e white, if the corresponding cube lies completely within the background, i.e., has no
intersection with the object

e gray, if the corresponding cube is a boundary cube, i.e., belongs partly to the object
and partly to the background. In this case the node is divided into 8 child nodes
(octants) representing 8 equally sized subcubes of the original cube

All leaf nodes are either black or white and all intermediate nodes are gray. An example
of a simple 3D object and the corresponding octree is shown in Figure 2.

An octree described above contains binary information in the leaf nodes and therefore
it is called a binary octree, and it is suitable for representation of 3D objects where the
shape of the object is the only object property that needs to be modeled by the octree.
Non-binary octrees can contain other information in the leaf nodes, e.g., the cube color
in RGB-space. For the Shape from Silhouette algorithm presented, a binary octree model
is sufficient to represent 3D objects, and in the remainder of this paper the term octree
will always refer to a binary octree.

root node
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Figure 2: A simple object (a) and the corresponding octree (b)



2 Acquisition System

This section describes the acquisition system used during the implementation of the Shape
from Silhouette algorithm presented and also gives an overview of the method used for
its calibration.

2.1 Description

The acquisition system [KTO00] consists of the following devices:

e a monochrome CCD-camera with a focal length of 16 mm and a resolution of 768x576
pixels

e a turntable with a diameter of 50 cm, whose desired position can be specified with
an accuracy of 0.05 degrees

The distance between the camera and the turntable is approx. 120 cm and it is estimated
by the calibration algorithm. Figure 3 depicts the geometrical setup of the camera and
the turntable.
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Figure 3: Geometrical setup of the camera and the turntable

Another important issue is the illumination of the object observed. The object should
be clearly distinguishable from the background, independent from the object’s shape or
the type of its surface. For that reason backlighting [HS91] is used. A large (approx.
50x40 c¢m) rectangular lamp is put behind the turntable (as seen from the camera). In
addition, a white piece of paper, larger than the lamp, is put right in front of the lamp, in
order to make the light more diffuse. The whole system is protected against the ambient
light by a thick black curtain. Figure 4 shows the real acquisition system used — in the
lower left corner is the camera and on the right side in the middle is the test object (in
this case an archeological sherd) on the turntable, in front of the paper covering the lamp,
which cannot be seen in the figure.



Figure 4: The acquisition system

2.2 Turntable Calibration

The calibration method used was exclusively developed for the Shape from Silhouette
algorithm presented and it is described in detail in [Tos99] and [KT00]. Here we give a
short overview only.

The calibration is based on tracking the peak and the baseline of a cone with known
dimensions (diameter of the base 160 mm, height 80 mm) while it turns on the turntable.
The output is a 4 X 4 matrix which transforms the image coordinate system into the
object coordinate system if the points in each system are written in their homogeneous
form [Nal93]. The origin of the image coordinate system is taken to be in the center of the
image and the origin of the object coordinate system at the intersection of the rotational
axis of the turntable and the plane of its surface, with the y axis being the rotation axis.
Figure 5 illustrates the orientation of the two coordinate systems to one another.

The detection of the peak and the base of the cone is based on the linear Hough
transform [DHT72], with the assumption that the base of the cone is projected into a
straight line in the image coordinate system. For that reason the following assumptions
were made for the calibration algorithm:

e pinhole camera model [Nal93]
e there is no lens distortion
e image center point lies exactly in the center of an image

e the optical axis of the camera is orthogonal to the rotational axis of the turntable
and its distance to the plane of the turntable’s surface (d in Figure 3) is negligible
(ideally 0)
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Figure 5: Image- (a) and object (b) coordinate system



3 Building a 3D Model of an Object

This section describes the presented Shape from Silhouette algorithm in detail. Section 3.1
gives an overview of the algorithm, without going into details on all of its steps. Section
3.2 describes the method of extracting an object’s silhouette from an input image, Section
3.3 the projection of an octree node into the image plane and Section 3.4 is a description
of the intersection test of the projected octree node with the object’s image silhouette.

3.1 Overview

The algorithm described in this report builds up a 3D model of an object in the following
way: first, all input images are transformed into binary images where a ”black” pixel
belongs to the object observed and a ”white” one to the background® (Figure 6a). Then,
the initial octree is created with a single root node (Figure 6b) representing the whole
object space, which will be ”carved out” corresponding to the shape of the object observed.
Then, the octree is processed in a level-by-level manner: starting from level 0 (with root

.I

(a) Extraction of object’s silhouette (b) Initial octree

(c) Octree node projection (d) Intersection test result (e) Final octree

Figure 6: Algorithm overview

node as the only node), all octree nodes of the current level marked as ”black”, i.e.,
belonging to the object, are projected into the first input image (Figure 6¢) and tested for

Lin the implementation, black means background and white means object, but it is more intuitive to
describe an object pixel as ”black” and a background pixel as ”white”



intersection with the object’s image silhouette. Depending on the result of the intersection
test, a node can remain to be ”black”, it can be marked as ”white” (belonging to the
background) or in case it belongs partly to the object and partly to the background, it is
marked as ”grey” and divided into 8 black child nodes of the next higher level (Figure 6d).
The remainder of the black nodes of the current level is then projected into the next input
image where the procedure of intersection testing with the object’s silhouette is repeated.
Once all input images have been processed for the current octree level, the current level
is incremented by one and the whole procedure (starting from the projection of the black
nodes of the current level into the first input image) is repeated, until the maximal octree
level has been reached. The remaining octree after the processing of the last level is the
final 3D model of the object (Figure 6e).

3.2 Extraction of the Silhouette of an Object

A reliable extraction of the object’s silhouette from an input image is of crucial importance
for obtaining an accurate 3D model of an object. If the background brightness is not
uniform, i.e., if there are parts of the background which are brighter than the others, and
especially if there are parts with similar brightness like the object observed, the silhouette
extraction can be a difficult task. For that reason, in addition to all images of the object
taken from different viewpoints, an image of the turntable (Figure 7b) is taken, without
any object on it. Then, the absolute difference between this image and an input image is
built, which creates an image (Figure 7c) with a uniform background and a high contrast
between the object and the background. Then, a simple thresholding is used to create a
binary image (Figure 7d) where pixels with the value 1 represent the object’s silhouette
and those with value 0 the background. The threshold value is user definable. Figure 7
illustrates the process of silhouette extraction described above.

3.3 Projection of an Octree Node into the Image Plane

We define the following coordinate systems relevant for the projection of an octree node
into the image plane:

e octree coordinate system: rooted at the intersection of the rotational axis of the
turntable and its rotational plane. For the first input image, it is identical to the
object coordinate system and it rotates with the object observed

e object coordinate system: rooted at the same point as the octree coordinate system,
but it is static, i.e., it doesn’t rotate with the object. The y axis is the rotation axis
of the turntable and the z axis is orthogonal to the image plane

e image coordinate system: lies in the image plane and it is rooted at the image center
point

Units of the octree- and object coordinate system are millimeters and units of the image
coordinate system pixels. Figure 8 depicts these coordinate systems and their relative
positions to one another.

10
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Figure 7: Extraction of an object’s silhouette

An octree node is projected into the image plane by projecting all of its eight vertices.
Octree coordinates of a vertex can be determined by the path from the root node of the
octree to the node the vertex belongs to. We need to transform the octree coordinates
of a vertex into image coordinates. This transformation is performed in three steps,
each of which, if we use homogeneous coordinates [Nal93] to represent points in all three
coordinate systems, can be described by a 4 x 4 or 4 x 3 transformation matrix.

1. transformation of octree coordinate system into object coordinate system. This
transformation can be described by the rotation angle « (see Figure 8) around the
y axis, represented by the transformation matrix R,

2. transformation of object coordinate system into image coordinate system. The
parameters of this transformation are represented by the matrix 7', calculated by
the calibration algorithm, described in Section 2.2

3. correction (scaling) of the image = and y coordinates, based on the value of the
"imaginary” image z coordinate, as calculated in the steps 1 and 2. The corre-
sponding transformation matrix is named S,

11
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Figure 8: The octree-, object- and image coordinate system

For a given viewing angle a (Figure 8), the transformation matrix R, (step 1) has the
following form:

cosa 0 —sina O

0 1 0 0

Ro = sina 0 cosa 0
0 0 0 1

The transformation matrix 7" (step 2) calculated by the calibration algorithm is inde-
pendent from the viewing angle and generally looks as follows:

re re r3 t
Ty Ts Te i
r7 Ty Tg9 t3
0 0 0 1

T =

ri—rg9 are rotation and t;—t3 translation parameters of the transformation between the
object and image coordinate systems.

The scaling matrix S, (step 3) depends on the result of the transformations from
the first two steps, i.e., there will be different scaling matrices for different 3D points in
the object coordinate system. The reason is that the transformation matrix T gives the
correct image x and y coordinates of a point in object space only if the z coordinate (in
object coordinate system) equals zero, because the calibration algorithm actually gives
the transformation parameters between image coordinates in the image (z—y) plane and
the object coordinates in the x—y plane of the object coordinate space. For all other points

12



a correction has to be made, which is a simple scaling by a factor k,, whose calculation
will be described later. The scaling matrix S, then looks like:

k., 0 00

S,=1 0 &k, 00

0 0 01
The octree coordinates are denoted with (Zoct, Yocts Zoct), the object coordinates with
(@objs Yobj, Zobj) and the image coordinates with (Zimg, Yimg). With (Zimgo, Yimgo, Zimgo) We
denote the 3-dimensional image coordinates with the imaginary z axis, before performing
the step 3 (correction of the image z and y coordinates). Using the homogeneous form
[Nal93] of these coordinates, the transformations described above can be expressed as

follows:

Zobj Zoct Timgo Zobj Timg0 Zoct
Yobj Yoct Yimg0 Yobj Yimg0 Yoct
=R, , =T == =TR,

Zobj Zoct Zimg0 Zobj Zimg0 Zoct
1 1 1 1 1 1
Limgo
Limg Yima0 kzximgo

— mg —
Yimg - Sz - kzyimgo
Zimg0
1 1
1

We still need to explain how the factor £, is calculated. This process is illustrated in
Figure 9. A point with z coordinate of zero in the object coordinate space (like P in
Figure 9) multiplied with the transformation matrix 7" will have the "imaginary” z co-
ordinate in the image coordinate system with the value of ¢3 (from the transformation
matrix T'). That means, if the value of z;,4 equals ¢3, we do not perform any correction
of Zimgo and Yimgo, i.€., k, equals 1. In all other cases k, has the value by which we need
to scale the vector (Zimgo, Yimgo, 2imgo) (the point Py in Figure 9) in order to bring zimgo
to the value of ¢3. It follows that &, equals t3/zimgo-

To summarize, an octree node is projected into the image plane in the following way:
as a preprocessing step, the matrices 7" and R, are multiplied for all possible view angles
a, and the resulting matrices of these multiplications are stored in a lookup table. This
is done before any processing of octree nodes starts. Once it starts, all vertices of the
current node are projected into the image plane by multiplying their octree coordinates
with the matrix from the lookup table corresponding to the current view angle and then
multiplying the result with the appropriate scaling matrix S,.

3.4 Silhouette Intersection Test

The result of the projection of an octree node into the image plane are image coordinates of
all of the vertices of the node’s corresponding cube. In the general case, the projection of a
node looks like a hexagon, as depicted in Figure 10(a). To find the hexagon corresponding
to the eight projected vertices is a costly task, because it requires to determine which
points are inside and which outside the hexagon, and there can be hundreds of thousands

13
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Figure 9: Correction of the image coordinates

of octree nodes that need to be processed. It is much simpler (and therefore faster) to
compare the bounding box of the eight points. Figure 10 shows a projected octree node
and the corresponding bounding box. The bounding box is tested for intersection with

Xmin Xmax
| |
ymin_ =
-
_— ]
|
|
_ |
ymax
(@) (b)

Figure 10: Projection of a node (a) and its bounding box (b)

the object’s silhouette in the current input (binary) image. All image pixels within the
bounding box are checked for their color, whether they are black or white. The output of
the intersection testing procedure is percentage of the black pixels of the bounding box,
i.e., percentage of pixels belonging to the object. If this percentage is equal or higher
than a user definable threshold for black nodes, the node is marked as black. If the
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percentage is smaller than or equal with a user definable threshold for white nodes, the
node is marked as white. Otherwise, the node is marked as gray and it is divided into
eight child nodes representing eight subcubes of finer resolution.

One more issue needs to be mentioned. The calculated image coordinates of the
cube’s vertices can lie between two image pixels, and a pixel is the smallest testable unit
for intersection testing. Which pixels are considered to be ”within” the bounding box?
Figure 11 illustrates our answer to this question. We decided to test only pixels that lie
completely within the bounding box (Figure 11a), because that way the number of pixels
that need to be tested is smaller than if we tested all pixels that are at least partly covered
by the bounding box and it also makes sense to exclude the pixels at the border of the
bounding box, because most of them do not lie within the hexagon approximated by the
bounding box. In the special case if there are no pixels that lie completely within the
bounding box (Figure 11b) the pixel closest to the center of the bounding box is checked
for the color.

|
T .. I I I
" T T T T1 | | pixel borders ! ! !
-I-F—+-d--I-=-F -1 -]1H- 7T r l l l
| | | | | | | | |
NI [N Y I I IR B A X | ] |
[ Coor | D bounding box of - -------
o e i o projected node |
N M. |
B [ S 4. I:l area tested for |
e I intersection | - -
(a) at least one pixel completely (b) no pixels completely
within bounding box within bounding box

Figure 11: Selection of pixels for the intersection test
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4 Results

This section presents the tests performed on the implemented Shape from Silhouette algo-
rithm and analyzes their results. Section 4.1 describes the tests with synthetic 3D objects
and Section 4.2 with real objects. Section 4.3 analyses the results of tests with both
synthetic and real objects.

4.1 Synthetic Objects

Here we describe the tests with two synthetic 3D objects: a sphere and a cone (Figure 12).
Both objects are rotational-symmetric, so if we assume that they rotate around their axis
of symmetry, we need to create only one synthetic input image for each object, because
the projection of the object into the image plane will always look the same, independent
on the viewing angle. We assume we have such a virtual acquisition system where:

e a millimeter in the z—y plane of the object coordinate system (see Figure 5) corre-
sponds to exactly one pixel in the image plane

e r and y axes of the object coordinate system are parallel to the z and y axes of the
image coordinate system

Under these assumptions the transformation matrix describing the transformation be-
tween the two systems is very simple, containing only 0’s and +1’s as rotational parame-
ters (7179 of the transformation matrix T, see Section 3.3). The translational parameters
(t1-t3 of the matrix 7" in Section 3.3) can be chosen freely in a certain range. We assume
t; and t5 to be 0, which means that the origin of the object coordinate systems projects
exactly into the origin of the image coordinate system, and we set ¢35 to 1000, which means
that the distance between the virtual camera and the rotation axis of the object is 1000
millimeters.

125 mm

\
\
\
r
1
/
/
/

(@) (b)
Figure 12: Synthetic 3D objects: a sphere (a) and a cone (b)

Under the assumptions described above, we can construct perfect synthetic input im-
ages for the sphere and the cone in Figure 12, i.e., the transformation between the virtual
image and object coordinate systems will be described by our synthetic transformation
matrix T without any errors. With the results of the tests of these synthetic images we

16



can estimate the accuracy of the Shape from Silhouette algorithm implemented, without
any influence of camera calibration error, which is unavoidable for a real acquisition sys-
tem. Figure 13 shows the synthetic input images corresponding to the sphere and the
cone in Figure 12.

(a) (b)

Figure 13: Synthetic input image for the sphere (a) and the cone (b)

In the first sequence of tests we build a 3D model of an object based on 36 different
views, with an angle of 10° between two consequent views, in 643, 128% and 2563 voxel
resolutions. Figure 14 shows the reconstructed 3D models of our synthetic objects for each
of these resolutions and Table 1 compares their analytic and the computed dimensions
and volume.

643 voxels 1283 voxels 2563 voxels

Figure 14: Constructed models of synthetic objects in different voxel resolutions

In the second test sequence we vary the number of views used to build a 3D model
of an object. First we use 4, then 12, then 36 and then 72 input images (with an angle
of 90°, 30°, 10° and 5° between two consequent views, respectively). The constructed 3D

17



object dimensions voxel size volume
analytic sphere 120 x 120 x 120 mm — 904 779 mm?3
sphere 64° voxels | 112x112x 112 mm | 4 mm 733184 mm? (-18.96%)
sphere 1282 voxels | 120 x 116 x 120 mm | 2 mm 823296 mm? (-9.01%)
sphere 2562 voxels | 120 x 120 x 120 mm | 1 mm 883712 mm? (-2.33%)
analytic cone 250 x 125 x 250 mm — 2045 308 mm?
cone 643 voxels 224x112x 224 mm | 4 mm | 1802240 mm? (-11.88%)
cone 1283 voxels |240x 120 x 240 mm | 2 mm 1943040 mm? (-5.00%)
cone 256° voxels | 248x124x248 mm | 1mm | 2037056 mm? (-0.40%)

Table 1: Comparison of analytic and calculated dimensions (1)

models are shown in Figure 15 and their analytic and computed dimensions and volume
compared in Table 2.

Figure 15: Constructed models of synthetic objects with different number of views

Table 3 summarizes some performance-related statistics for the tests described above.
All test were done on a Pentium II 450 MHz machine with 256 MB of RAM.

4.2 Real Objects

For tests with real objects we used a metal cuboid and two ceramic pots (Figure 16). The
acquisition system was calibrated by using the turntable calibration method described in
the section 2.2. The calculated distance between the camera and the rotation axis of the
turntable (D in Figure 3) was 118.0 cm.

Just like with synthetic objects, two sequences of tests were performed: one with a
varying voxel resolution of the final octree and one with a varying number of views taken
as input.

In the first test sequence all octrees were built using 36 views. Figure 17 shows the
constructed 3D models of the objects in Figure 16 with octree resolution of 642, 1283 and
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object dimensions voxel size volume

analytic sphere | 120 x 120 x 120 mm — 904 779 mm?
sphere 4 views | 120x 120 x 120 mm | 1mm | 1071072 mm? (+18.38%)
sphere 12 views | 120 x 120 x 120 mm 1 mm 895616 mm?® (-1.01%)
sphere 36 views | 120 x 120 x 120 mm | 1 mm 883712 mm? (-2.33%)
sphere 72 views | 120 x 120 x 120 mm | 1 mm 882432 mm? (-2.47%)
analytic cone 250 x 125 x 250 mm — 2045 308 mm?

cone 4 views 248x124x 248 mm | 1mm | 2364368 mm® (+15.60%)
cone 12 views | 248 x 124 x 248 mm | 1 mm 2048 256 mm® (+0.01%)
cone 36 views | 248 x 124x 248 mm | 1 mm 2037056 mm® (-0.40%)
cone 72 views | 248 x124x 248 mm | 1 mm 2028384 mm?® (-0.83%)

Table 2: Comparison of analytic and calculated dimensions (2)

object number of processed octree nodes | total CPU time
sphere 64° voxels 40633 5.24 sec
sphere 1282 voxels 178 281 14.75 sec
sphere 256 voxels 360401 34.55 sec
sphere 4 views 81681 8.92 sec
sphere 12 views 179089 14.26 sec
sphere 36 views 360401 34.55 sec
sphere 72 views 573265 80.96 sec
cone 64° voxels 45097 5.90 sec
cone 1283 voxels 205 289 18.31 sec
cone 2563 voxels 395721 39.74 sec
cone 4 views 111569 9.88 sec
cone 12 views 209 393 16.04 sec
cone 36 views 395721 39.74 sec
cone 72 views 618 409 95.00 sec

Table 3: Octree statistics for reconstruction of synthetic objects

(a)

(b)
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Figure 16: Real objects: a metal cuboid (a) and two ceramic pots (b) and (c)




2562 voxels. Table 4 gives some octree statistics and compares the size of the real object,
i.e., its maximal width, height and depth with the maximal width, height and depth of
the reconstructed 3D model.

In the second test sequence we built three octree models for each object in Figure 16,
by using 4, 12 and 36 input views, with uniform angle between two consequent views,
with octree resolution of 256% voxels. Figure 18 shows the 3D models constructed and
Table 5 gives the octree statistics and and the size comparison between the real objects
and their constructed models.

Finally, Figure 19 shows the reconstructed 3D models of the two pots from three sides.
For these models octree of resolution of 256 voxels was built, based on input images from

AL A A |
(R A 4

643 voxels 1283 voxels 2563 voxels

Figure 17: Constructed models of real objects in different voxel resolutions

4.3 Analysis

The results with both synthetic and real input data show that there is a certain minimal
octree resolution required to obtain an accurate model of an object, especially for highly
detailed objects, like the two pots used for tests with real images. To increase the octree
resolution to 5123 would not improve the results of our tests, because the projection of
a single voxels would be less than half the pixels size. Concerning the number of input
views used for obtaining a model of an object, it turned out that beginning from 12 views,
the constructed model doesn’t change a lot — in our tests the octrees built from 12 views
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object dimensions voxel size | # nodes | CPU time
cuboid real 100.2 x 60.1 x 70.3 mm — — —
cuboid 64% voxels 103.1 x 609 x 75.0 mm | 2.34 mm | 44337 8.61 sec
cuboid 1283 voxels | 107.8 x 60.9 x 77.3 mm | 1.17 mm | 190105 | 20.91 sec
cuboid 2562 voxels | 109.0 x 62.1 x 77.3 mm | 0.59 mm | 310649 | 36.10 sec
pot 1 real 141.2 x 93.7 x 84.8 mm — — —
pot 1 643 voxels 137.5x 87.5x 81.2mm | 3.12mm | 58713 8.08 sec
pot 1 1283 voxels 140.6 x 93.8 x 84.4 mm | 1.56 mm | 277169 | 22.77 sec
pot 1 2563 voxels 145.3x 93.8 x 85.9 mm | 0.78 mm | 857753 | 67.28 sec
pot 2 real 114.2 x 87.4 x 114.6 mm — — —
pot 2 643 voxels 100.0 x 87.5 x 106.2 mm | 3.12 mm | 47849 8.14 sec
pot 2 1283 voxels | 115.6 x 87.5 x 112.5 mm | 1.56 mm | 231921 | 21.36 sec
pot 2 2563 voxels | 117.2 x 89.1 x 114.1 mm | 0.78 mm | 726689 | 65.10 sec

Table 4: Octree statistics for real data with varying octree resolution

4 views

B #
v
ve

12 views

36 views

Figure 18: Constructed models of real objects with different number of views

were almost the same as the ones built from 36 views, except that they took much less

time to construct.

The results with synthetic data, where we had a perfect transformation matrix, showed
that the error in the dimensions of the model lies within or is slightly higher than the error
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object dimensions voxel size | # nodes | CPU time
cuboid real 100.2 x 60.1 x 70.3 mm — — —
cuboid 4 views 109.0x 62.1 x 77.3 mm | 0.59 mm | 84065 9.76 sec
cuboid 12 views | 109.0 x 62.1 x 77.3 mm | 0.59 mm | 161625 | 15.15 sec
cuboid 36 views | 109.0 x 62.1 x 77.3 mm | 0.59 mm | 310649 | 36.10 sec
pot 1 real 141.2 x 93.7 x 84.8 mm — — —
pot 1 4 views 148.4x 93.8 x 89.1 mm | 0.78 mm | 275177 | 12.30 sec
pot 1 12 views 145.3x 93.8 x 89.1 mm | 0.78 mm | 486585 | 23.47 sec
pot 1 36 views 145.3x 93.8 x 8.9 mm | 0.78 mm | 857753 | 67.28 sec
pot 2 real 114.2 x 87.4 x 114.6 mm — — —
pot 2 4 views 118.8 x 89.1 x 115.6 mm | 0.78 mm | 257897 | 12.57 sec
pot 2 12 views | 117.2x 89.1 x 114.1 mm | 0.78 mm | 424201 | 23.32 sec
pot 2 36 views | 117.2x 89.1 x 114.1 mm | 0.78 mm | 726689 | 65.10 sec

Table 5: Octree statistics for real data with varying number of views

Figure 19: Reconstructed 3D models of the pot 1 (a) and pot 2 (b)
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introduced through the minimal voxel size. The error with real data depends additionally
on the accuracy of the calibration algorithm,

The results also showed that the algorithm works much better with oval objects, i.e.,
with objects that do not have completely flat surfaces or sharp edges.




5 Conclusion

In this report an implementation of Shape from Silhouette method was presented, which
creates a 3D model of on object from images of the object taken from different viewpoints.
It showed to be a simple and fast algorithm, which is able to reconstruct models of
arbitrarily shaped objects, as long as they do not have too many hidden concavities, i.e.,
concavities not visible in any of the input images. The algorithm is simple, because it
employs only simple matrix operations for all the transformations and it is fast, because
even for highly detailed objects, a high resolution octree (2563 voxels) and a high number of
input views (36), the computational time hardly exceeded 1 minute. Already for a smaller
number of views (12) the constructed models were very similar to the ones constructed
from 36 views and they took less than 25 seconds of computational time.

Except for the general drawback of any Shape from Silhouette algorithm, that cer-
tain concavities of an object cannot be reconstructed independent from the number of
input images and where they were taken from, the implementation presented has some
other drawbacks which could be lifted. The first one refers more to the calibration algo-
rithm, which makes many simplifying assumptions about the acquisition system, the one
about the optical axis of the camera lying exactly in the turntable plane being the most
questionable one, because it never really holds. However, it showed to be a very good
approximation which greatly simplifies the calibration algorithm. A more severe draw-
back is that the Shape from Silhouette algorithm presented uses ”too much” knowledge
about the calibration — for projection of the nodes into the image plane it uses the fact
that the image plane and the z—y plane of the object coordinate system are completely
parallel, making the algorithm unusable for any other setup of a camera and a turntable,
where the camera, for example, looks at the turntable from the angle of 45°. A better
approach would be to give the parameters of transformation between object- and camera
coordinate system as output of the calibration, and pass the intrinsic camera parameters
as additional input to our Shape from Silhouette algorithm, which then can be used for
a transformation between the camera and the object coordinate system. Another thing
that could be improved is the method of acquiring binary images with object’s silhouette
from a real-world input image. In our approach we use simple user definable thresholding.
An ideal threshold value can differ from image to image, therefore adaptive thresholding
would be a better idea. Another possibility would be to use edge detection for silhouette
extraction instead of thresholding.
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A Implementation Details

A.1 Environment
The System

The Shape from Silhouette algorithm presented was implemented using Khoros 2001 [Kho|
programming environment, on a 450 MHz Pentium II machine with 256 MB of RAM
running Linuz [Lin] operating system with kernel version 2.2.14 (Red Hat [RH] Linux
distribution 6.2) and C-compiler gcc version egcs-2.91.66.

The Program

A new Khoros-toolbox named tos_silhouette was created, with a single kroutine named
silhouette, the executable program file. All source files for the program were written
in C.

A.2 TImplementation

This part of the section describes the implementation of the program on the programming
language level. First we will describe the data structure used to represent an octree,
followed by description of most important C-routines.

Octree Data Structure

The data structure tNode, used for a single octree node, looks as follows:

typedef struct t_octree_node { VAL single octree node ok /
int type; /* ’B’ or W’ or G’ */
double CX; /* x, y and z octree coordinates */
double cy; /* coordinates of the center of */
double cz; /* the node */
struct t_octree_node *octant[8]; /* pointers to child nodes */

struct t_octree_node *nextNode; /* next node at the same level */
} tNode;

type of the node can be *B’ (black node), W’ (white node) or ’G’ (gray node). cx, cy
and cz, are coordinates of the center of the node in octree coordinate space (see Figure
8). octant is an array of pointers to child nodes of this node, in case of a black or white
node all these pointers have value of NULL. nextNode is a pointer to the next node at
the same level. It is used to build a linear data structure for nodes at the same level,
so processing of nodes at the same level can be done without traversing the octree. The
whole octree is represented by a single pointer to the root node:

tNode *rootNode;

The average number of nodes created for an object during the testing of the program
was around 530 000, sometimes being near 1 000 000, with multiple accesses per node. For
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that reason additional data structures were created, in order to improve the performance
of allocating memory for a node and accessing it.

To speed up memory allocation for a node, the allocation is done for 50 000 nodes at
once. A data structure called tNodePool is holder for the allocated nodes:

typedef struct t_node_pool { /**x container for nodes **x/
int length; /* number of allocated nodes */
int count; /* number of occupied nodes */
tNode *nodes; /* list of allocated nodes  */
struct t_node_pool *nextPool; /* pointer to next container */

} tNodePool;

If the number of occupied nodes in a node pool reaches 50 000, a new node pool is created
and attached to the previous pool as nextPool.

To speed up the per-level access to the octree nodes, a data structure tLevel was
created, which contains all relevant information for a single level:

typedef struct t_level { /**%* single octree level data **x/
tNode *nodes; /* list of nodes at this level * /
int nodeCount; /* number of nodes at this level */
double nodeSize; /* size of a node at this level x/
double cpuTime; /* CPU time used for this level x/
} tlevel;

nodes points to a node allocated in tNodePool. The nodes of the same level are concate-
nated through the nextNode field of the tNode structure.
Finally, all these structures are summarized in the data structure tOctree:

typedef struct t_octree { [ *%x all octree data *okok /
tNodePool *nodePool; /* pointer to the node container */
tLevel level [MAX_POSSIBLE_OCTREE_DEPTH] ;
/* array of octree levels */
int maxDepth; /* maximal possible octree depth */
} tOctree;

The global variable octree is the final holder for all octree data:
tOctree octree;

The access to nodes of the level i is made through octree.level[%].nodes. Root node
can be referred to as rootNode, which is the same as octree.level[0] .nodes.

C-Routines

The source files for the program are silhouette.h, silhouette.c and utilities.c.

silhouette.c contains the main routine, run_silhouette and all other routines are in

the file utilities.c. The most important routines are processNode, which does all
the necessary processing of a single octree node, including projection of the node into
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the image plane and decision whether the node should be marked as black, white or
gray, and testBoundingBox, which gives the percentage of image pixels within the node’s
projection that belong to the silhouette of the observed object. This percentage is the
base for deciding the color of the octree node.

The main routine (run_silhouette in silhouette.c), written in pseudo-C code, looks
as follows:

int run_silhouette(void)

{

/* initialize global variables */
/* parse the command line input parameters */

/* parse transformation matrix input file and build the
inverse matrix of the input transformation matrix */

/* determine minimal voxel size and maximal octree depth */

/* create initial octree, with a single root black node,
centered at (0, 0, 0) */

/* in case of real (grey scale) input images, extract
objects silhouette from every input image, i.e.,
create binary images */

/* calculate the final transformation matrix for every input
image, which is equal the inverted input transformation
matrix multiplied with the viewing angle of the input image
relative to the viewing angle of the first input image
and store the result in an array, and store the results
in an array */

/* loop through octree levels: */
for (currentlevel = 0;
currentlLevel <= octree.maxDepth;
++currentLevel)

VE TN ¥
/* loop through all input images for the current level: */
for (angleCounter = angleCounterStart;

angleCounter < angleCounterEnd;

angleCounter += angleCounterStep)

/* process each node at this level: */
hPtr = octree.level[currentlLevel] .nodes;
while (hPtr != NULL)
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{

if (hPtr->type == ’B’)
processNode (hPtr, currentLevel);
/* ... %/

hPtr = hPtr->nextNode;
}

/* build a 3D output object based on the octree */

/* clean up resources and exit */

}

The routines processNode and testBoundingBox from utilities.c look as follows:

void processNode(tNode *thisNode, int thisNodeLevel)
{

/* project the vertices into the image plane, by multiplying
their octree coordinates with the final transformation
matrix for the current input image and then correcting
the calculated x and y image coordinates */

/* find the minimum and maximum of x and y image coordinates
of the eight projected vertices of the node and store
them in localMinX, localMaxX, localMinY and localMaxY */

/* test the bounding box of the projection of the node: */
fractionBlack = testBoundingBox(localMinX, localMaxX,
localMinY, localMaxY);

/* depending on the test result, determine the color of the node: */
if (fractionBlack >= blackThreshold)

{
thisNode->type = ’B’;
}
else if (fractionBlack <= whiteThreshold)
{
thisNode->type = ’W’;
}
else if (thisNodeLevel == octree.maxDepth)
{

if (fractionBlack < 0.5)
thisNode->type = ’W’;

else
thisNode->type

)B);
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else
{

thisNode->type = ’G’;

/* create eight child nodes of this node and mark them as black */
}

return;

double testBoundingBox(double xMin, double xMax,
double yMin, double yMax)

{
/* determine the range of pixels that lie completely
within the bounding box: */
ixMin = (int) (xMin+1.49999);
ixMax = (int) (xMax-0.5);
iyMin = (int) (yMin+1.49999);
iyMax = (int) (yMax-0.5);
/* count the black and white pixels within this range:
countB and countW */
/* calculate the fraction of the black pixels: */
fractionB = ((double) countB) / ((double) (countB+countW));
/* in case there are no pixels within the range, just
check the color of the pixels nearest to the center
of the bounding box -- if it’s black, set
fractionB to 1.0, otherwise to 0.0 */
return fractionB;
}
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B User’s Manual

B.1 Requirements

You have to have a working Khoros 2001 [Kho|] environment on your system. Make sure
that the following toolboxes are installed: datamanip, design and matrix.

B.2 Installation

The installation procedure follows the rules of installing a new toolbox on a Khoros 2001
[Kho| conform system. We assume that the distribution file silhouette.tar.gz is
downloaded or copied to the directory <toolboz-distrib-dir> and that the toolbox
should be installed in the directory <toolboz-install-dir>. The distribution file
silhouette.tar.gz can be found at the following URL:
http://www.prip.tuwien.ac.at/ "tos/silhouette.tar.gz

1. Copy the distribution file silhouette.tar.gz to the installation directory:
cd <toolboz—-install-dir>
cp <toolboz-distrib-dir>/silhouette.tar.gz

2. Uncompress the distribution file:
gunzip silhouette.tar.gz
tar xf silhouette.tar

in the installation directory

3. Add the following line at the end of your $HOME/ .kri/KP2001/Toolboxes file:
TOS_SILHOUETTE:<toolboz-install-dir>/tos_silhouette

4. Go to the objects directory of the toolbox:
cd <toolboz-install-dir>/tos_silhouette/objects

5. Generate the makefiles:
kgenmake -recreate
kmake Makefiles

6. Build and install the program file:
kmake install

7. Optionally, to save some disk space, you can type:
kmake clean
rm <toolboz-install-dir>/silhouette.tar.gz
The first command removes the object files created during the build of the program
file and the second removes the distribution file from the installation directory.

The program named silhouette is now ready for use. It can be accessed through
cantata — in the ’Glyph’ menu select the submenu ’Shape from...’, then its submenu
‘Silhouette’ and then the entry ’Shape from Silhouette’ or you can start program
directly by typing
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<toolboz-install-dir>/bin/<conf-name>/silhouette -gui &
<conf-name> depends on the system you have, for example, it can be linux2.2.14.
Sample cantata workspaces for silhouette can be found under alias name
Shape_from_Silhouette:workspaces:<workspace—name >.

B.3 Uninstallation

To remove the program and all its belonging files, do the following:

1. Remove the following line from your $HOME/ .kri/KP2001/Toolbozxes file:
TOS_SILHOUETTE:<toolboz-install-dir >/tos_silhouette

2. Delete the toolbox directory and all of its subdirectories:
cd <toolboz-install-dir>
rm -fR tos_silhouette

B.4 Manual Page

create volumetric object from sequence of images
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PROGRAM NAME
silhouette - create volumetric object from sequence of
images

DESCRIPTION
silhouette is a task that creates a 3D model of an object
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from sequence of images taken from multiple views. It is an
implementation of Shape from Silhouette method, which takes
the image silhouette of the observed object as the only
interesting feature of an input image. The 3D model of the
object is built based on the shapes of the object in all
input images.

The basic input for the task are:

- the input images, specified by the path of the starting
input image, whose name has to be a 4-digit number (plus
the extension). An example of the name for an input
image would be 1500.pgm

- the transformation matrix which describes the
transformation from the image coordinate system into
object coordinate system. A calibration task, that can
produce such a matrix as output, is TosCalib

- viewing angle for each input image. It must be encoded
in the names of input images, through a 4-digit number.
An input image taken from O degrees has to have a name
0000 (plus the extension), and a one taken from
75 degrees 0750

Output of the program is a 3D kdf object representing the
contructed model of the object. It can be visualized using
the Khoros taks gisosurface, followed by render. In gisosur-
face, the contouring level has to be set to 1.

REQUIRED ARGUMENTS
-il type: infile
desc: first of the sequence of input images

-i2 type: infile
desc: image-to-realworld 4x4 transformation matrix

-angle type: double
desc: angle between two consequent input images
(0-360)
bounds: 0 < [-angle] < 360
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-blackthres
type: double
desc: object node threshold [%]
bounds: 0 < [-blackthres] < 100

-whitethres
type: double
desc: background node threshold [J]
bounds: 0 < [-whitethres] < 100

-owidth
type: double
desc: maximal width of the object area [mm]
bounds: value > 0.0
-vsize type: double
desc: minimal voxel size [mm]

bounds: value > 0.0

-0 type: outfile
desc: output volumetric object

Mutually Exclusive Group; you must specify ONE of:

-bin  type: flag
desc: input images are already binary

OR
Mutually Inclusive Group; you must specify ALL of:

-real type: flag
desc: input images are real-world images

AND
-i3 type: infile
desc: turntable image, with no object on it
default: {none}

AND

-thres type: double
desc: object-background threshold [%]
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default: 50
bounds: 0 < [-thres] < 100

EXAMPLES
none

SEE ALSO
TOS_CALIB::TosCalib, GEOMETRY::gisosurface, GEOMETRY::render

RESTRICTIONS
none

REFERENCES

COPYRIGHT
Copyright (C) 1993 - 2000, Khoral Research, Inc., ("KRI").
All rights reserved. See $BOOTSTRAP/repos/license/License
or run klicense.
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