
Technical Report Pattern Recognition and Image Processing Group
Institute of Computer Aided Automation
Vienna University of Technology
Favoritenstr. 9/1832
A-1040 Vienna AUSTRIA
Phone: +43 (1) 58801-18351
Fax: +43 (1) 58801-18392
E-mail: {melzer,rei,bis}@prip.tuwien.ac.at
URL: http://www.prip.tuwien.ac.at/

PRIP-TR-65 March 14, 2001

Kernel Canonical Correlation Analysis1

Thomas Melzer, Michael Reiter, and Horst Bischof

Abstract

This paper introduces a new non-linear feature extraction technique based on Canonical Cor-
relation Analysis (CCA) with applications in regression and object recognition. The non-linear
transformation of the input data is performed using kernel-methods. Although, in this respect,
our approach is similar to other generalized linear methods like kernel-PCA, our method is espe-
cially well suited for relating two sets of measurements. The benefits of our method compared
to standard feature extraction methods based on PCA will be illustrated with several experiments
from the field of object recognition and pose estimation.

1This work was supported by the Austrian Science Foundation (FWF) under grant no. P13981-INF.

Contents

1 Introduction 2

2 Canonical Correlation Analysis (CCA) 3
2.1 What is CCA? . 3
2.2 The Kernel Trick . 4
2.3 Kernel CCA . 5
2.4 Numerical Issues . 7

3 Experiments 7

4 Conclusion and Outlook 14

A Proof of Proposition 1 15

1

1 Introduction

When dealing with high-dimensional observations, linear mappings are often used to reduce
the dimensionality of the data by extracting a small (compared to the superficial dimensionality
of the data) number of linear features, thus alleviating subsequent computations. A prominent
example of a linear feature extractor is Principal Component Analysis (PCA [7]). Among all
linear, orthonormal transformations, PCA is optimal in the sense that it minimizes, in the mean
square sense, the reconstruction error between the original signal x and the signal x̂ recon-
structed from its low-dimensional representation f(x). During the recent years, PCA has been
especially popular in the object recognition community, where it has successfully been em-
ployed in various applications such as face recognition [17], illumination planning [12], visual
inspection and even visual servoing [14].

Although this demonstrates the broad applicability of PCA, one has to bear in mind that
the goal of PCA is minimization of the reconstruction error; in particular, PCA-features are not
well suited for regression tasks. Consider a mapping φ : x �→ y. There is no reason to believe
that the features extracted by PCA on the variable x will reflect the functional relation between
x and y in any way; even worse, it is possible that information vital to establishing this relation
is discarded when projecting the original data onto the PCA-feature space.

There exist, however, several other linear methods that are better suited for regression tasks,
for example Partial Least Squares (PLS [6]), Multivariate Linear Regression (MLR, also re-
ferred to as Reduced Rank Wiener Filtering, see for example [5]) and Canonical Correlation
Analysis (CCA [8]). Among these three, only MLR gives a direct solution to the linear regres-
sion problem. PLS and CCA will find pairs of directions that yield maximum covariance resp.
maximum correlation between the two random variables x, y; regression can then be performed
on these features. CCA, in particular, has some very attractive properties (for example, it is
invariant w.r.t. affine transformations - and thus scaling - of the input variables) and can not
only be used for regression purposes, but whenever we need to establish a relation between two
sets of measurements (e.g., finding corresponding points in stereo images [2]).

As an example for CCA, consider constructing a parametric manifold for pose estimation
[13]. Fig. 1(a) shows two extreme views of an object, which was acquired with two varying pose
parameters (pan and tilt). Let X denote the set of training images and Y the set of corresponding
pose parameters.The visualization of the manifold given in Fig. 1(b) is obtained by plotting
the projections of the training set onto the first three eigenvectors obtained by standard PCA,
whereby neighboring (w.r.t. the pose parameters) projections are connected.

The parametric manifold serves as a starting point for computing pose estimates for new
input images. The standard-approach for retrieving these estimates is to resample the manifold
using, e.g., bicubic spline interpolation and then to perform a nearest neighbor search for each
new image [13].

Fig. 1(c) shows the manifold obtained by projecting the training images onto the first two
directions found by computing CCA on X and Y (the number of factors obtained by CCA is
limited by the dimensionality of the lower-dimensional set). In contrast to the PCA-manifold,
the CCA-factors span a perfect grid; one could also say that projections of the training images
onto the two linear features found by CCA are topologically ordered w.r.t. their associated pose
parameters. It is obvious that pose estimation on the manifold obtained by CCA is much easier
than on the PCA-manifold.

2

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

−5 −4 −3 −2 −1 0 1 2 3 4 5

x 10
−3

−0.01

−0.008

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008

0.01

(a) (b) (c)

Figure 1: Extreme views of training set (a) and the parametric manifold obtained with PCA (b)
and CCA (c).

In this paper we will propose a non-linear extension of CCA by the use of kernel-methods
[9]. Kernel-methods have become increasingly popular during the last few years, and have
already been applied to PCA [16] and the Fisher Discriminant [10]. In our derivation of kernel-
CCA we have used the fact that the solutions (principal directions) of CCA can be obtained
as the extremum points of an appropriately chosen Rayleigh Quotient (this is also true for the
other linear techniques discussed thus far, see [2]). We will also demonstrate the benefits of
kernel-CCA with an application in the field of appearance-based pose estimation. To this end
we will compare the performance of features obtained by PCA, standard CCA and kernel-CCA.

The rest of this paper is organized as follows: While section 2.1 gives a brief introduction
to “classical” CCA, section 2.2 discusses kernel-methods. In section 2.3, we will bring the
two concepts together and give a formal derivation of kernel-CCA. Several numerical issues
pertaining to kernel-CCA will be discussed in section 2.4. Experimental results are given in
section 3, followed by conclusions in section 4.

2 Canonical Correlation Analysis (CCA)

2.1 What is CCA?

Given two zero-mean random variables x ∈ IRp and y ∈ IRq, CCA finds pairs of directions
wx and wy that maximize the correlation between the projections x = wT

x x and y = wT
y y (in

the context of CCA, the projections x and y are also referred to as canonical variates). More
formally, CCA maximizes the function:

ρ =
E[xy]√

E[x2]E[y2]
=

E[wT
x xyT wy]√

E[wT
x xxT wx]E[wT

y yyT wy]
, (1)

ρ =
wT

x Cxywy√
wT

x CxxwxwT
y Cxywy

. (2)

3

Let

A =

(
0 Cxy

Cyx 0

)
, B =

(
Cxx 0

0 Cyy

)
. (3)

It can be shown [2] that the stationary points w∗ = (w∗T
x , w∗T

y)T of ρ (i.e., the points satisfying
∇ρ(w∗) = 0) coincide with the stationary points of the Rayleigh Quotient:

r =
wT Aw
wT Bw

, (4)

and thus, by virtue of the Generalized Spectral Theorem [5], can be obtained as solutions (i.e.,
eigenvectors) of the corresponding generalized eigenproblem:

Aw = µBw. (5)

The extremum values ρ(w∗), which are referred to as canonical correlations, are equally ob-
tained as the corresponding extremum values of Eq. 4 or the eigenvalues of Eq. 5, respectively,
i.e., ρ(w∗) = r(w∗) = µ(w∗).

2.2 The Kernel Trick

In the field of pattern recognition, kernel-methods were originally proposed as a non-linear
extension of the Support Vector Machine (SVM) classifier [3]. Recently, there has been an
increased interest in kernel-based methods, leading, for example, to the formulation of kernel-
PCA [16] and the kernel-Fisher Discriminant [10]. For a comprehensive overview, see [4] or
[15] 1.

To illustrate the key idea behind kernel-methods, consider a simple binary classification
problem in IRp with non-overlapping classes. As long as the two classes are linearly separable,
linear classifiers like the perceptron or the SVM will find a solution (a n − 1 dimensional
separating hyperplane). If, however, the training data x i ∈ IRp are not linearly separable, we
can still employ a linear classifier by first mapping the input data into some (high dimensional)
feature space:

φ : IRp → IRs, s > p. (6)

This approach is sometimes referred to as Generalized Linear Discriminant [1].
The kernel-trick can be applied whenever it is possible to formulate the classifier in such a

way that it uses only dot products of the transformed input data; the dot products in feature space
are than expressed in terms of kernel-functions in input space, i.e., φ(x)Tφ(y) = k(x,y). A
sufficient condition for a kernel-function k(., .) to correspond to a dot product in some feature
space is given by Mercers Theorem (see, for example, [4]). Prominent examples of Mercer-
kernels are RBF-kernels k(x,y) = e−

‖x−y‖
σ and polynomial kernels k(x,y) = (x,y)v, v ∈ N.

In particular, the mapping corresponding to a polynomial kernel of degree v is given by the
function Cv(x) which maps its argument to the vector of all vth-order monomial. For example,
for p = v = 2, we have Cv(x1, x2) = (x2

1, x
2
2, x1x2, x2x1). It can easily be shown that:

Cv(x)TCv(y) = (xTy)v,∀v ∈ N,x,y ∈ IRp. (7)
1Interested readers are also referred to the WWW-address: www.kernel-machines.org.

4

Choosing v = 2, for example, we obtain a quadratic classifier. Clearly, the above discussion
applies not only to classifiers, but to any algorithm that can be expressed solely in terms of dot
products.

Kernel-functions allow us to easily construct different nonlinear versions of the original
algorithm. Furthermore, the complexity of the transformed problem depends only on the size of
the training set, not on the dimensionality of the feature space (this will become more clear in the
next section); hence, the kernel-approach enables us to work with feature spaces of arbitrarily
high (or even infinite) dimensionality.

2.3 Kernel CCA

Given n pairs of mean-normalized observations (xT
i , yT

i)T ∈ IRp+q, and data matrices X =
(x1..xn) ∈ IRp×n, Y = (y1..yn) ∈ IRq×n, we obtain the estimates for the covariance matrices
A, B in Eq. 3 as

Â =
1

n

(
0 XYT

YXT 0

)
, B̂ =

1

n

(
XXT 0

0 YYT

)
(8)

If the mean was estimated from the data, we have to replace n by n − 1 in both equations.
As we know from section 2.1, computing the CCA between the data sets X,Y amounts to

determining the extremum points of the Rayleigh Quotient:

r =
wT Âw

wT B̂w
, (9)

which are obtained as the solutions of:

Âw = µwB̂. (10)

In order to apply the kernel-trick, we have to show that CCA can completely be expressed in
terms of dot products. To this end, we need:

Proposition 1 For all solutions w∗ = (w∗T
x , w∗T

y)T of Eq. 10, the component vectors w∗
x, w∗

y lie
in the span of the training data, i.e., w∗

x ∈ span(X) and w∗
y ∈ span(Y). The proof is given in

the appendix.

According to Proposition 1, for each eigenvector w∗ = (w∗T
x , w∗T

y)T solving Eq. 10, there exist
vectors f , g ∈ IRn, so that w∗

x = Xf and w∗
y = Yg. Thus, we may reformulate Eq. 9 as:

(
fT gT

)(XT 0
0 YT

)
Â

(
X 0
0 Y

)(
f
g

)

(
fT gT

)(XT 0
0 YT

)
B̂

(
X 0
0 Y

)(
f
g

) =

(
fT gT

)(0 (XT X)(YT Y)
(YT Y)(XT X) 0

)(
f
g

)

(
fT gT

)((XT X)2 0
0 (YT Y)2

)(
f
g

) . (11)

5

Eq. 11 shows that we can indeed reformulate the Rayleigh Quotient using only dot products,
which is a necessary and sufficient condition to apply the kernel-trick. Furthermore, Proposi-
tion 1 shows that we can efficiently compute CCA in high dimensional spaces (since the size
of the Gram matrices in Eq. 11 depends only on the number of training samples, not on their
dimensionality).

Now suppose we want to compute CCA on features that are non-linearly related to the input
data rather than on the input data itself, i.e., we are looking for the CCA of the vectors φ(X) =
(φ(x1)..φ(xn)) and θ(Y) = (θ(y1)..φ(yn)), whereby φ : IRp → IRm1 and θ : IRq → IRm2

are non-linear mappings. To simplify the discussion, we shall assume that the mapped data
are centered, i.e., have zero-mean; non-centered data can be accounted for in exactly the same
fashion as proposed in [16] for kernel-PCA.

The decomposition of the Rayleigh Quotient given in Eq. 11 makes it straightforward to
apply the kernel-trick, i.e., to compute CCA on the mapped data without actually having to
compute the mappings φ, θ themselves. To show this, let us define the kernel matrices K,L by
Kij = φ(xi)

Tφ(xj) and Lij = θ(yi)
Tθ(yj), K,L ∈ IRn×n. Then, by substituting φ(X) for X

and θ(Y) for Y in Eq. 11, the Rayleigh Quotient for the transformed data becomes:
(

fTφ gT
θ

)(0 KL
LK 0

)(
fφ
gθ

)

(
fT
φ gT

θ

)(K2 0
0 L2

)(
fφ

gθ

) , (12)

whereby fφ, gθ are the coefficients of the linear expansion of the principal vectors w∗
φ,w

∗
θ in

terms of the transformed data, i.e., φ(X)fφ = w∗
φ and θ(Y)fθ = w∗

θ.
Now let k(., .) be the kernel functions corresponding to the mapping θ. The projections onto

w∗
φ can be computed using only the kernel function, without having to evaluate φ itself:

φ(x)Tw∗
φ =

n∑
i=1

fφiφ(x)Tφ(xi) =
n∑

i=1

fφik(x,xi). (13)

The projections onto w∗
θ are obtained analogously.

There are several interesting issues pertaining to kernel-CCA:

• Using kernel-CCA, we can compute more than min(p, q) (p, q being the dimensionality
of the variable x and y, respectively) factor pairs, which is the limit imposed by classical
CCA.

• By choosing either φ or θ to be the identity mapping, we can selectively kernelize either
x or y. In particular, when kernel-CCA is used for regression purposes, it is easier to
kernelize only the input-variable x; otherwise we face the problem of computing y from
the estimate obtained for θ(y), i.e., of inverting θ. Although the problem of inverting
a kernel-function has been addressed by Mika et al. [11] in the context of kernel-PCA,
their solution is based on the minimization of the reconstruction error and can thus not be
applied to CCA. Thus, for kernel-CCA-regression involving a kernelized output-space, a
satisfactory solution has still to be found.

• The derivation given above can easily be adapted to other linear feature extractors, pro-
vided their principal vectors can be obtained as extremum points of an appropriately cho-
sen Rayleigh Quotient (this is the case, for example, for PLS and MLR, see [2]).

6

2.4 Numerical Issues

Unless the kernel matrices K and L introduced in the previous section have full rank n (whereby
n is the number of training samples), the block matrix:

C =

(
K2 0
0 L2

)
(14)

in the denominator of Eq. 12 will become singular. We will briefly discuss two possible ap-
proaches to making the problem numerically feasible:

• We can make C positive definite by adding a multiple of the identity matrix:

Cκ = C + κI (15)

This approach, which is akin to ridge regression, has also been proposed in [10] for
the kernel-Fisher Discriminant. It can be regarded as a kind of regularization, i.e., of
providing a priori knowledge on the problem by imposing additional constraints on the
solution.

• It is also possible to make C positive definite by choosing appropriate kernel functions
(for example, in the case of a RBF-kernel, we simply have to choose a sufficiently small
variance parameter σ; in the limit, we will even obtain a diagonal matrix).

But even if the matrices K and L are non-singular, their magnitudes can still differ consid-
erably, in which case the matrix C will again become (near) singular. For this reason, we divide
both K and L by their largest eigenvalue; this can be interpreted as rescaling of the transformed
data matrices (by the inverse of their largest singular value) and thus will not affect the outcome
of the CCA-computation.

3 Experiments

In the following example we apply CCA to a pose estimation problem, where we relate images
of objects at varying pose to corresponding pose parameters. Experiments were conducted on
three test objects, shown in figure 2. For each object a set of 180 images was obtained by
rotating the object through 180 poses in 2 degrees steps. Figure 3 shows some of the views of
object 2(b) images.

(a) (b) (c)

Figure 2: The 3 test objects used in the experiments

7

Figure 3: A subset of images of test object 2(b)

(a) (b) (c) (d) (e) (f)

Figure 4: (a) Image x1 of one of our test objects. (b) Canonical factor w∗
x computed on Xt

8.
(c),(d) Canonical factors obtained on the same set using a non-linear (trigonometric) represen-
tation of the output parameter space. (e),(f) 2 factors obtained by kernel-CCA with canonical
correlations ρ = 1.0.

Let X = 〈xi|1 ≤ i ≤ 180〉 denote the set of images and Y = 〈yi|yi ∈ [0, 358]〉 correspond-
ing pose parameters (horizontal orientation of the object w.r.t. the camera in degrees). The
images are represented as 1282-dimensional vectors that are obtained by sequentially stacking
the image columns.

Each image set X was subsampled to obtain a subset of images that was used as a training
set. The remaining images were assigned to the corresponding test set. Let Xk denote a training
set that was generated by subsampling X at every kth position2. Since yik is a scalar, standard
CCA yields only one feature vector (canonical factor) w∗

x (see figure 4(b)). Figure 6 gives a
quantitative comparison of the pose estimation error ε (linear regression model) using the PCA
and standard CCA. The pose estimation error ε was calculated on the test set as the absolute
difference between known and estimated parameter value (orientation in degrees).

Figure 5(a) shows a plot of pose estimates for the complete set of images X obtained using
CCA. The dotted line indicates the true pose parameter values y i. Pose parameter values of
Xk are marked by filled circles. In figure 5 a linear least-square mapping was used to map the
projections of the training set to pose parameters.

Note that the pose estimation error grows rapidly around i = 180. This problem is due to
the fact that the scalar representation for yi has a discontinuity at yi = 360. From figure 4(a) it
can be seen that the main part of information held in w∗

x is about the transition of image x180 to
image x1.

2Xk contains all images xik with ik ∈ {1, k, 2k, . . . , 	180/k
}. Since the original set shows the object in 2
degrees steps, Xk shows the object at 2k degrees steps.

8

For this reason we chose an periodic, trigonometric representation of pose parameters yi =
[sin(yi), cos(yi)]

T . The object’s pose is now characterized by 2 parameters, and thus CCA
yields 2 canonical factors (see figure 4 (c) and (d)) in the image vector space. Estimates obtained
for these intermediate output values (again using linear regression) are given in 5(b), while the
final pose estimates (obtained by combining these two estimates using atan2) are given in figure
5(d). Thus, by using a priori knowledge about the problem domain a significant increase in
pose estimation accuracy could be obtained.

0 20 40 60 80 100 120 140 160 180
−50

0

50

100

150

200

250

300

350

400

0 20 40 60 80 100 120 140 160 180
−1.5

−1

−0.5

0

0.5

1

1.5

(a) (b)

0 20 40 60 80 100 120 140 160 180
0

50

100

150

200

250

300

350

400

0 20 40 60 80 100 120 140 160 180
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

(c) (d)

Figure 5: Output parameter estimates obtained from feature projections by the linear regression
function of the training set. Horizontal axes correspond to the image indices, vertical axes to
estimated output parameter values. The dotted line indicates the true pose parameter values.
Parameter values of the training set are marked by filled circles. (a) shows estimates using
scalar representation of orientation (b) using trigonometric representation. (c) Estimated pose
obtained from trigonometric representation using the four-quadrant arc tangens. Note that the
accuracy of estimated pose parameters can be improved considerably. (d) Projections onto
factors obtained using kernel-CCA: optimal factors can be obtained automatically.

The last experiment shows the relative performance of CCA, kernel-CCA and PCA when
using spline interpolation and resampling [13] for pose estimation. For standard CCA we used
the hard-coded trigonometric pose representation (yielding 2 factor pairs), while kernel-CCA
obtained similar factors automatically from the original scalar pose representation (see figures
4 (e)-(f) and 5(d)).

9

1 2 3 4 5 6 7 8 9 10 11

0

10

20

30

40

50

60

70
penguin : PCA 10 features, lin.regr.

ab
so

lu
te

 e
rr

or
 (

de
gr

ee
s)

sampling interval
1 2 3 4 5 6 7 8 9 10 11

0

10

20

30

40

50

60
penguin : CCA, 1 feature, lin. regr.

ab
so

lu
te

 e
rr

or
 (

de
gr

ee
s)

sampling interval

1 2 3 4 5 6 7 8 9 10 11

0

10

20

30

40

50

60

70
hippo : PCA 10 features, lin.regr.

ab
so

lu
te

 e
rr

or
 (

de
gr

ee
s)

sampling interval
1 2 3 4 5 6 7 8 9 10 11

0

10

20

30

40

50

60
hippo : CCA, 1 feature, lin. regr.

ab
so

lu
te

 e
rr

or
 (

de
gr

ee
s)

sampling interval

1 2 3 4 5 6 7 8 9 10 11

0

10

20

30

40

50

60

70
indian : PCA 10 features, lin.regr.

ab
so

lu
te

 e
rr

or
 (

de
gr

ee
s)

sampling interval
1 2 3 4 5 6 7 8 9 10 11

0

10

20

30

40

50

60
indian : CCA, 1 feature, lin. regr.

ab
so

lu
te

 e
rr

or
 (

de
gr

ee
s)

sampling interval

Figure 6: Comparison of pose estimation error when using a linear regression from factor pro-
jections to pose parameters. The plots in the left column show the errors for a 10 dimensional
PCA-feature space for all three test objects. The plots in the right column show the results when
using only one CCA-feature. Image sets have been subsampled at different intervals (horizon-
tal axis) to obtain increasingly smaller training sets. Subsampling was done at at 9 different
sampling intervals (k = 〈2, ..., 10〉). Note that the plots have been scaled differently.

10

1 2 3 4 5 6 7 8 9 10

0

5

10

15
penguin : CCA, 2 trigonometric features, spline int/res

ab
so

lu
te

 e
rr

or
 (

de
gr

ee
s)

sampling interval
1 2 3 4 5 6 7 8 9 10

0

5

10

15
penguin : Kernel CCA, 2 features, spline int/res

ab
so

lu
te

 e
rr

or
 (

de
gr

ee
s)

sampling interval

1 2 3 4 5 6 7 8 9 10

0

5

10

15
hippo : CCA, 2 trigonometric features, spline int/res

ab
so

lu
te

 e
rr

or
 (

de
gr

ee
s)

sampling interval
1 2 3 4 5 6 7 8 9 10

0

5

10

15
hippo : Kernel CCA, 2 features, spline int/res

ab
so

lu
te

 e
rr

or
 (

de
gr

ee
s)

sampling interval

1 2 3 4 5 6 7 8 9 10

0

5

10

15
indian : CCA, 2 trigonometric features, spline int/res

ab
so

lu
te

 e
rr

or
 (

de
gr

ee
s)

sampling interval
1 2 3 4 5 6 7 8 9 10

0

5

10

15
indian : Kernel CCA, 2 features, spline int/res

ab
so

lu
te

 e
rr

or
 (

de
gr

ee
s)

sampling interval

Figure 7: The left column shows results for “classical” CCA when using a 2 dimensional
trigonometric representation of output parameters. The right column shows results when us-
ing 2 features obtained by kernel-CCA and a scalar pose representation.

11

1 2 3 4 5 6 7 8 9 10

0

5

10

15
penguin : PCA, 2 features, spline int/res

ab
so

lu
te

 e
rr

or
 (

de
gr

ee
s)

sampling interval
1 2 3 4 5 6 7 8 9 10

0

5

10

15
penguin : PCA, 10 features, spline int/res

ab
so

lu
te

 e
rr

or
 (

de
gr

ee
s)

sampling interval

1 2 3 4 5 6 7 8 9 10

0

5

10

15
hippo : PCA, 2 features, spline int/res

ab
so

lu
te

 e
rr

or
 (

de
gr

ee
s)

sampling interval
1 2 3 4 5 6 7 8 9 10

0

5

10

15
hippo : PCA, 10 features, spline int/res

ab
so

lu
te

 e
rr

or
 (

de
gr

ee
s)

sampling interval

1 2 3 4 5 6 7 8 9 10

0

5

10

15
indian : PCA, 2 features, spline int/res

ab
so

lu
te

 e
rr

or
 (

de
gr

ee
s)

sampling interval
1 2 3 4 5 6 7 8 9 10

0

5

10

15
indian : PCA, 10 features, spline int/res

ab
so

lu
te

 e
rr

or
 (

de
gr

ee
s)

sampling interval

Figure 8: Pose estimation error on 3 image sets using the first 10 eigenvectors (plots in the
left column) and only 2 eigenvectors (plots in the right column). Estimates were obtained from
feature projections using spline interpolation and resampling.

12

1 2 3 4 5 6 7 8 9 10

0

5

10

15
penguin : CCA, 2 trigonometric features, spline int/res

ab
so

lu
te

 e
rr

or
 (

de
gr

ee
s)

sampling interval
1 2 3 4 5 6 7 8 9 10

0

5

10

15
penguin : Kernel CCA, 2 features, spline int/res

ab
so

lu
te

 e
rr

or
 (

de
gr

ee
s)

sampling interval

1 2 3 4 5 6 7 8 9 10

0

5

10

15
penguin : PCA, 2 features, spline int/res

ab
so

lu
te

 e
rr

or
 (

de
gr

ee
s)

sampling interval
1 2 3 4 5 6 7 8 9 10

0

5

10

15
penguin : PCA, 10 features, spline int/res

ab
so

lu
te

 e
rr

or
 (

de
gr

ee
s)

sampling interval

Figure 9: Comparision of pose estimation performance of CCA, kernel-CCA and PCA on the
penguin image set. First row: Pose estimation error for CCA-features. The left column shows
results for “classical” CCA when using a 2 dimensional trigonometric representation of output
parameters. The right column shows results when using 2 features obtained by kernel-CCA and
a scalar pose representation. Second row: Pose estimation error using the first 10 eigenvectors
(left plot) and only 2 eigenvectors (right plot). Estimates were obtained from feature projections
using spline interpolation and resampling.

13

Results are given in figure 7 and figure 9. Figure 8 shows results for PCA. The pose estima-
tion error is significantly larger compared to CCA when using the same number of features.

4 Conclusion and Outlook

Although little known in the field of pattern recognition and signal processing, CCA is a very
powerful and versatile statistical tool that is especially well suited for relating two sets of mea-
surements. CCA, like PCA, can also be regarded as a linear feature extractor. CCA-features
are, however, much better suited for regression tasks than features obtained by PCA; this was
demonstrated in section 1 for the task of computing a parametric object manifold for pose esti-
mation.

In section 2, we discussed how to non-linearly extend CCA by using kernel-functions.
Kernel-CCA is a efficient non-linear feature extractor, which also overcomes some of the lim-
itations of classical CCA.

Finally, in section 3, we applied kernel-CCA to an object pose estimation problem. There,
it was also shown that kernel-CCA will automatically find an optimal, periodic representation
for a training set containing object views ranging from 0 to 360 degrees (i.e., for periodic data).

14

A Proof of Proposition 1

Consider the spectral factorization of B̂ (Eq. 8):

B̂ = EΛET =
p+q∑
i=1

λieieT
i (16)

whereby E is an orthonormal matrix, whose columns ei are the eigenvectors of B̂, and Λ is
a diagonal matrix containing the corresponding eigenvalues 3 λi > 0. For each eigenvector
e = (eT

x , eT
y)T we have:

B̂e =

(
XXT 0

0 YYT

)(
ex

ey

)
=

(
X(XT ex)
Y(YT ey)

)
= µ

(
ex

ey

)
(17)

which shows that the component vectors ex, ey are linear combinations of the training data.
Let us assume for the moment that B̂ is non-singular. We may then reformulate Eq. 10 as:

B̂
−1

Âw = µw. (18)

Combining Eq. 18 and Eq. 16 and observing that B̂
−1

= EΛ−1ET , we obtain:

B̂
−1

Âw∗ = E(Λ−1ET Âw∗) = λ

(
w∗

x

w∗
y

)
= λw∗ (19)

for all solutions w∗ of Eq. 18; thus, each w∗ is a linear combinations of the eigenvectors of B̂.
Let us further define:

Ex = (ex(1)..ex(p+q)) ∈ IRp×(p+q), (20)

Ey = (ey(1)..ey(p+q)) ∈ IRq×(p+q).

From Eq. 17 it is clear that each column of Ex (Ey) lies in the span of X (Y), respectively, and
this must of course also be true for any linear combination of their columns. Since

E =

(
Ex

Ey

)
, (21)

we conclude that Proposition 1 is true, provided that det(B̂) > 0. If B̂, however, is singular, we
can perform regularization (cf. Eq. 15). Note that this operation simply shifts the eigenvalues
of B̂, but leaves its eigenvectors unchanged, so Proposition 1 still holds.

3We use λ, e to denote the eigenvalue/vector pairs of B̂ to distinguish them from the solutions µ, w of the
generalized eigenproblem

15

References

[1] Christopher M. Bishop. Neural Networks for Pattern Recognition. Oxford University
Press, 1995.

[2] Magnus Borga. Learning Multidimensional Signal Processing. Linköping Studies in
Science and Technology, Dissertations, No. 531. Department of Electrical Engineering,
Linköping University, Linköping, Sweden, 1998.

[3] B.E. Boser, I.M. Guyon, and V.N. Vapnik. A training algorithm for optimal margin clas-
sifiers. In D. Haussler, editor, Proc. of the 5th Annual ACM Workshop on Computational
Learning Theory, pages 144–152. ACM Press, 1992.

[4] Nello Christianini and John Shawne-Taylor. Support Vector Machines and Other Kernel-
Based Methods. Cambridge University Press, 2000.

[5] Konstantinos I. Diamantaras and S.Y. Kung. Principal Component Neural Networks. John
Wiley & Sons, 1996.

[6] A. Höskuldsson. PLS regression methods. Journal of Chemometrics, 2:211–228, 1988.

[7] H. Hotelling. Analysis of a complex of statistical variables into principal components.
Journal of Educational Psychology, 24:498–520, 1933.

[8] H. Hotelling. Relations between two sets of variates. Biometrika, 8:321–377, 1936.

[9] Thomas Melzer and Micheal Reiter. Pose estimation using parametric stereo eigenspaces.
In Tomas Svoboda, editor, Proc. of Czech Pattern Recognition Workshop, pages 77–80.
Czech Pattern Recognition Society Praha, 2000.

[10] S. Mika, G. Rätsch, J. Weston, B. Schölkopf, and K.-R. Müller. Fisher discriminant anal-
ysis with kernels. In Y.-H. Hu, J. Larsen, E. Wilson, and S. Douglas, editors, Neural
Networks for Signal Processing, volume 9, pages 41–48. IEEE, 1999.

[11] S. Mika, B. Schölkopf, A. Smola, K.-R. Müller, M. Scholz, and G. Rätsch. Kernel PCA
and de-noising in feature space. In M.S. Kearns, S.A. Solla, and D.A. Cohn, editors,
Advances in Neural Information Processing Systems, volume 11, pages 536–542. MIT
Press, Cambridge, MA, 1999.

[12] Hiroshi Murase and Shree K. Nayar. Illumination planning for object recognition us-
ing parametric eigenspaces. IEEE Trans. Pattern Analysis and Machine Intelligence,
16(12):1219–1227, December 1994.

[13] Hiroshi Murase and Shree K. Nayar. Visual learning and recognition of 3-d objects from
appearance. International Journal of Computer Vision, 14(1):5–24, January 1995.

[14] Shree K. Nayar, Sameer A. Nene, and Hiroshi Murase. Subspace methods for robot vision.
IEEE Trans. Robotics and Automation, 12(5):750–758, October 1996.

16

[15] Bernhard Schölkopf. Support Vector Learning. PhD thesis, Technische Universität Berlin,
1997.

[16] Bernhard Schölkopf, Alex Smola, and K.-R. Müller. Nonlinear component analysis as a
kernel eigenvalue problem. Neural Computation, 10:1299–1319, 1998.

[17] Matthew Turk and Alexander P. Pentland. Eigenfaces for recognition. Journal of Cognitive
Neuroscience, 4(1):71–86, 1991.

17

