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Abstract

This thesis proposes a method of three-dimensional reconstruction of objects using a combi-
nation of two different methods, Shape from Silhouette and Shape from Structured Light,
focusing on reconstruction of archaeological vessels. Shape from Silhouette is a method
suitable for reconstruction of objects with handles, whereas it is unable to reconstruct con-
cavities on an object’s surface, such as inside of a bowl. Shape from Structured Light can
reconstruct such concavities, but it often creates incomplete models because of camera and
light occlusions. The purpose of combining these two methods is to overcome the weak-
nesses of one method through the strengths of the other, making it possible to construct
complete models of arbitrarily shaped objects. The construction is based on multiple views
of an object using a turntable in front of stationary cameras. The method is adaptive,
because it automatically selects a subset of possible views, guided by the complexity of the
object modeled. Results of the algorithm developed are presented for both synthetic and
real objects.



Kurzfassung

Diese Diplomarbeit stellt ein Verfahren zur dreidimensionalen Erfassung von Objekten
vor, das auf zwei im Bereich der Computer Vision bekannten Methoden basiert: Shape
from Silhouette und Shape from Structured Light. Bei Shape from Silhouette wird das
3D-Modell aus mehreren Bildern gewonnen, welche die Silhouetten des Objektes aus ver-
schiedenen Blickwinkeln darstellen. Dieses Verfahren eignet sich für Modellierung von
konvexen Objekten, sowie Objekten mit Henkeln. Konkavitäten, wie z.B. das Innere
einer Schüssel, können mit dieser Methode nicht rekonstruiert werden. Deswegen wird
Shape from Silhouette mit Shape from Structured Light kombiniert. Bei dieser Tech-
nik werden unterschiedliche, im Vorhinein definierte Lichtmuster auf das Objekt pro-
jiziert. Aus den aufgenommenen Bildern und der bekannten Geometrie zwischen dem
Lichtprojektor und der Kamera werden die dreidimensionalen Koordinaten der Punkte
auf der Objektoberfläche berechnet. Mit diesem Verfahren können theoretisch beliebige,
also auch konkave Flächen erfaßt werden. In der Praxis sind aber mit dieser Methode
erzeugte Flächenmodelle oft unvollständig, wegen Licht- und Kameraverdeckungen. Das
vorgestellte, kombinierte Verfahren versucht die Probleme der beiden zugrundeliegenden
Methoden aufzuheben und Objekte beliebiger Form vollständig zu erfassen. Experimente
mit synthetischen und realen Objekten werden beschrieben und die Ergebnisse präsentiert.
Verschiedene Ansichten der Objekte werden durch die Drehung eines Rotationstellers
gewonnen. Es wurde eine Methode der automatischen Auswahl der Ansichten entwickelt,
weswegen das vorgestellte Modellierungsverfahren als adaptiv bezeichnet wird.
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Chapter 1

Introduction

The 3D modeling method proposed in this thesis has been done as part of the project
Computer Aided Classification of Ceramics [SM96, KS99a, AKK+01], which is performed
by the Pattern Recognition and Image Processing Group at the Institute of Computer
Aided Automation at the Vienna University of Technology in cooperation with the Insti-
tute of Classical Archeology at the University of Vienna, with the goal of providing an
objective and automated method for classification and reconstruction of archaeological
pottery.

Three-dimensional reconstruction of archaeological vessels and sherds is interesting for
archaeologists for several reasons. The models can be analyzed by archaeologists without
having physical access to the excavation site, or be exhibited in virtual museums. The
volume of a vessel can be estimated by calculating the volume of its 3D model, which
allows more precise classification [OTV93]. Furthermore, by intersecting a 3D model of a
sherd with an appropriate plane a nearly perfect sherd profile can be extracted. Profiles
are commonly used by archaeologists for classification of sherds [OTV93]. The surface of
a 3D model of a vessel can also be unwrapped, which can help archaeologists illustrate its
decoration.

At the PRIP Group, there have been performed many works related to classification
and reconstruction of archaeological pottery. Here we will mention the most recent ones:
surface reconstruction using Shape from Structured Light based on projection of laser
planes onto the object [Lis99, LS00]; surface reconstruction based on registration of range
images of the front and the back view of the object [Kam99, KS99b]; volume reconstruc-
tion based on Shape from Silhouette [Tos00, TS01]; classification of sherds based on profile
primitives [KSC01, SKS01].

The method proposed in this work is a combination of Shape from Silhouette and
Shape from Structured Light, using a turntable to obtain multiple views of an object.
The works of Tosovic [Tos00] and Liska [Lis99] were used as a base for the combined
method. Both of the underlying methods have their strengths and weaknesses. The
idea behind combining them is to overcome the weaknesses of one method by using the
strengths of the other and build models more precise and accurate than the models built
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using one of the methods only.

In addition to 3D modeling of objects, we also developed a method for automatic
selection of views, i.e., Next View Planning [TAT95]. However, this has been a secondary
goal of the thesis, made after the work on modeling was done. Therefore, Next View
Planning is introduced and described in a separate section (Section 6).

The remainder of this chapter gives an overview of Shape from Silhouette, Shape from
Structured Light and the related works, followed by an outline of the thesis structure.

1.1 Shape from Silhouette

Shape from Silhouette is a method of automatic construction of a 3D model of an object
based on a sequence of images of the object taken from multiple views, in which the ob-
ject’s silhouette represents the only interesting feature of an image [Sze93, Pot87]. The
object’s silhouette in each view (Figure 1.1a) corresponds to a conic volume in 3D space
(Figure 1.1b). A 3D model of an object (Figure 1.1c) can be obtained by intersecting the
conic volumes, which is also called Space Carving [KS00]. Multiple views of the object
can be obtained either by moving the camera around the object or by moving the object
inside the camera’s field of view. In our approach the object rotates on a turntable in
front of a stationary camera.

(a) (b) (c)

Figure 1.1: Image silhouettes (a), a conic volume (b) and the final model (c)

Shape from Silhouette can be applied on objects with variety of shapes, including
objects with handles, like the cup in Figure 1.1c and like many archaeological vessels
and sherds. However, concavities on an object’s surface remain invisible for this method,
making it unusable for reconstruction of the inside of a bowl or a cup (Figure 1.1c) or the
inner side of a sherd. Therefore, another method, Shape from Structured Light, is used
to discover the concavities.

There have been many works on Shape from Silhouette based construction of 3D
models of objects, in literature also called Visuall Hull construction. Baker [Bak77] used

2



silhouettes of an object rotating on a turntable to construct a wire-frame model of the
object. Martin and Aggarwal [MA83] constructed volume segment models from ortho-
graphic projection of silhouettes. Chien and Aggarwal [CA86] constructed an object’s
octree model from its three orthographic projections. Veenstra and Ahuja [VA86] ex-
tended this approach to thirteen standard orthographic views. Potmesil [Pot87] created
octree models using arbitrary views and perspective projection. For each of the views he
constructs an octree representing the corresponding conic volume (Figure 1.1b) and then
intersects all octrees. In contrast to this, Szeliski [Sze93] first creates a low resolution
octree model quickly and then refines this model iteratively, by intersecting each new
silhouette with the already existing model. The last two approaches project an octree
node into the image plane to perform the intersection between the octree node and the
object’s silhouette. Srivastava and Ahuja [SA90] in contrast, perform the intersections
in 3D-space. Niem [Nie94] uses pillar-like volume elements (pillars) rather than octree
for model representation and compares the complexity of his approach with Potmesil’s
[Pot87] and Szeliski’s [Sze93] approach, suggesting that his algorithm requires far less
intersection tests. De Bonet and Viola [BV99] extended the idea of voxel reconstruction
to transparent objects by introducing the Roxel algorithm — a responsibility weighted
3D volume reconstruction. Wong and Cipolla [WC01] use uncalibrated silhouette images
and recover the camera positions and orientations from circular motions. In the recent
years there have been also Shape from Silhouette approaches based on video sequences
[DF99, BL00]. The work of Szeliski [Sze93] was used as a base for the Shape from Silhou-
ette part of the method presented in this thesis, initially developed in [Tos00].

1.2 Shape from Structured Light

Shape from Structured Light is a method which constructs a surface model of an object
based on projecting a sequence of well defined light patterns onto the object. The pat-
terns can be in the form of coded light stripes [Kam99] or a ray or plane of laser light
[Lis99]. For every pattern an image of the scene is taken. This image, together with the
knowledge about the pattern and its relative position to the camera are used to calculate
the coordinates of points belonging to the surface of the object. This process is also called
active triangulation [Bes88, DT96], illustrated in Figure 1.2. If the geometry between the
laser plane and the image is known, then each 2D image point belonging to the laser line
corresponds to exactly one 3D point on the surface of the object.

Shape from Structured Light method used in our approach is based on projection of
laser planes onto the object (Figure 1.3a). 3D points obtained through active triangulation
using all views represent a cloud of points belonging to the object’s surface (Figure 1.3b).
This cloud of points can be used to create a smooth surface representation (Figure 1.3c).

A strength of Shape from Structured Light is that it can reconstruct any kind of con-
cavities on the surface of the object (see the top of the amphora in Figures 1.3b and 1.3c),
as long as the projected light reaches these concavities and the camera detects it. However,
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Laser

Laser plane

Image with detected laser line

Figure 1.2: Active triangulation

(a) (b) (c)

Figure 1.3: Projection of laser plane (a), cloud of points (b) and reconstructed surface (c)

this method often suffers from camera and light occlusions [Lis99], resulting in incomplete
surface models (like the neck of the amphora in Figure 1.3c).

Most laser light based Shape from Structured Light methods use a camera, a cali-
brated laser ray or plane and a motion platform — usually a linear slide or a turntable.
Borgese et al. [BFB+98] use a pair of standard video cameras, a laser pointer, and a
special hardware that lets the laser spot be detected with high reliability and accuracy.
Takatsuka et al. [TWVC99] built a range scanner consisting of one camera and a laser
pointer, to which three LEDs are attached. The camera captures the image of spots (one
from the laser, and the others from LEDs), and triangulation is carried out using the cam-
era’s viewing direction and the optical axis of the laser. By using a laser pointer, both
of these methods [BFB+98, TWVC99] obtain a single surface point at each step, which
implies a slow, sparse sampling of the surface. Liska [Lis99, LS00] uses two lasers aligned
to project the same plane, a camera and a turntable. Using two lasers eliminates some
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of the light occlusions but not the camera occlusions, resulting in incomplete models for
many objects (images of the model of the amphora in Figures 1.3b and 1.3c were taken
from [Lis99]). Park et al. [PDK01] built a DSLS (Dual Beam Structured Light) scanner,
which uses two lasers and a camera mounted on a linear slide. The planes projected by
the two lasers never overlap in the camera view, resulting in denser range images and a
reduced number of view registrations required for 3D modeling. Davis and Chen [DC01]
use two calibrated fixed cameras viewing a static scene and an uncalibrated laser plane
which is freely swept over the object. Focus of their research is also to minimize the cost
of the equipment and therefore they actually use a single camera and a system of mirrors
arranged to split the camera’s view into two virtual views. Other Shape from Structured
Light approaches similar to projection of a laser plane use an ordinary light source and
some kind of wand which is placed in front of the light source, creating a shadow on the
object, thus defining a plane in 3D space. Bouguet and Perona [BP98] use a checkerboard
as the ground plane and move a pencil in front of a desk-lamp, which illuminates the
object. The object’s 3D surface coordinates are extracted by tracking the pencil shadows
on the object and the ground plane. Fisher et al. [FARW99] use a similar approach, but,
beside tracking the wand shadow on the object, they track the wand itself instead its
ground plane shadow. Recently there are also projects on reconstruction on large statues
with high precision and high cost equipment, such as modeling of historic heritage in
Japan [NSI99] and the Digital Michelangelo Project [LPC+00], where the models achieve
the resolution of as fine as 0.05 mm. The work of Liska [Lis99] was used as a guide for
the Shape from Structured Light part of the approach presented in this thesis.

There are not many works on combination of Shape from Silhouette and Shape from
Structured Light known to the author of this thesis. Immersion Corporation [Imma] makes
a commercial product called LightScribe [Immb] which combines Shape from Silhouette,
Shape from Structured Light and texture mapping for generation of fully textured models
of real objects, priced at about ten thousand dollars.

1.3 Thesis Structure

This document is structured as follows: Chapter 2 presents the mathematical background
necessary to understand all geometrical transformations performed by the modeling al-
gorithm, such as camera models and geometrical transformations between 2D and 3D
coordinate systems. Chapter 3 describes our acquisition system, its configuration and
calibration. Chapter 4 discusses 3D modeling in general and possible approaches for com-
bining Shape from Silhouette with Shape from Structured Light, followed by a detailed
description of our combined approach in Chapter 5. Chapter 6 introduces Next View
Planning, first in general and then describing our approach for selection of the next view.
The experimental results with synthetic and real objects, as well as with Next View Plan-
ning, are presented in Chapter 7. Finally, Chapter 8 concludes the thesis by giving a
summary and an outlook to the possible future work.
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Chapter 2

Mathematical Background

This chapter introduces the mathematical background for the 3D modeling approach
presented in this thesis. Beginning from an overview of the pinhole camera model in
Section 2.1, Tsai’s parameterization of this model is described in Section 2.2, followed
by a description of the process of calculating image coordinates of any 3D point in space
in Section 2.3. Section 2.4 gives a brief overview of the camera calibration techniques.
Finally, Section 2.5 discusses a 2D plane in 3D space and its parameterization, followed
by a summary in Section 2.6.

2.1 Pinhole Camera Model

The pinhole camera model [Nal93] assumes an ideal camera, i.e., a camera without any
lens distortions. The camera is assumed to have an infinitely small hole through which the
light enters before forming an inverted image on the camera’s image plane. The pinhole
camera model is also called perspective camera model because the creation of an image in
the image plane can be described through perspective projection completely [Fau93]. Per-
spective projection is the projection of a three-dimensional object onto a two-dimensional
surface by straight lines that pass through a single point (Figure 2.1). It is completely
defined by choosing a perspective projection center and a projection plane. For a pinhole
camera, the projection center is the hole where the light enters and the projection plane
is the camera’s image plane.

If we assume that the coordinate system is rooted in the perspective center and that
its x-y plane is parallel to the image plane with the distance f (as shown in Figure 2.1),
then the image coordinates (xi, yi) are related to the object coordinates (xo, yo, zo) by:

xi =
f

zo

xo and yi =
f

zo

yo (2.1)

In case zo is zero, both xi and yi are equal zero. Using homogeneous form [Nal93], a 2D
or 3D transformation consisting of a combination of rotation, scaling and translation can
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Figure 2.1: Pinhole camera model and perspective projection

be described by a single matrix. In homogeneous form, Equation 2.1 can be written as:





xi

yi

1



 =





f

zo
0 0 0

0 f

zo
0 0

0 0 0 1



 ·









xo

yo

zo

1









(2.2)

The coordinates (xi, yi) are given in the coordinate system rooted in the perspective center.
This system is called camera coordinate system. If we want to calculate the corresponding
coordinates (Xi, Yi) in the image coordinate system (X-Y in Figure 2.1), we have to take
into account four additional parameters:

• Cx, Cy — the image coordinates of the point C in Figure 2.1, which is called the
image principal point — it is the intersection of the camera’s optical axis with the
image plane.

• dx, dy — the distance between two neighboring sensor elements of the camera in x

and y direction.

Given these parameters and the camera coordinates (xi, yi) of the point Pi from Figure 2.1,
its image coordinates (Xi, Yi) can be calculated as follows:

Xi =
xi

dx

+ Cx and Yi =
yi

dy

+ Cy (2.3)
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or in the homogeneous form:




Xi

Yi

1



 =





1
dx

0 Cx

0 1
dy

Cy

0 0 1



 ·





xi

yi

1



 (2.4)

By replacing the vector (xi, yi, 1)T in Equation 2.4 with the right hand side of the Equa-
tion 2.2 we can build the matrix transforming the object coordinates (in camera coordinate
system) (xo, yo) into image coordinates (Xi, Yi) of a pinhole camera:





Xi

Yi

1



 =





f

zodx
0 0 Cx

0 f

zody
0 Cy

0 0 0 1



 ·









xo

yo

zo

1









(2.5)

2.2 Tsai’s Camera Model

In Section 2.1 we discussed the transformation of the camera coordinates into the image
coordinates. In a real situation we define a certain world coordinate system independent
from where the camera is placed and we want to establish the relation between the world
coordinates and the computer image coordinates (Figure 2.2). The establishing of such
a relation is called camera calibration (see also Section 2.4). The relation between the
world and the camera coordinate system defines the position of the camera in the world
3D space and it is called camera external orientation. The relation between the camera
and the computer image coordinate system depends on the internal parameters of the
camera and the frame grabber used and it is called camera internal orientation. The
transformations in Section 2.1 also ignore any possible lens distortions. This can be suf-
ficient for some applications, but if higher accuracy is required, lens distortion has to be
taken into account.

Tsai ’s camera model [Tsa86] is a pinhole based model which defines the transforma-
tion between the desired world coordinate system and the computer image coordinate
system and takes into account nonlinear effects in the process of image acquisition such
as radial lens distortion. It is the model used for the 3D modeling approach presented in
this thesis. Tsai’s model has 16 parameters — 6 external, 6 internal and 4 so-called fixed
internal parameters.

The six external (also called extrinsic) parameters define the external orientation of
the camera, i.e., the transformation between the world coordinate system and the camera
coordinate system (see Figure 2.2). This transformation can uniquely be defined as a 3D
rotation around the origin followed by a 3D translation. Each of these transformations is
defined by three parameters:

• ψ, φ, θ — Euler angles defining the 3D rotation: roll ψ, pitch φ and yaw θ

• Tx, Ty, Tz — the components of the vector T from Figure 2.2 defining the 3D
translation.
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Figure 2.2: Coordinate systems in Tsai’s camera model

The ten internal (also called intrinsic) parameters define the transformation between
the camera coordinate system and the image coordinate system. This transformation can
be viewed as the transformation of the camera coordinates into the undistorted image
coordinates described in Section 2.1 and characterized by Equation 2.5, followed by an
additional nonlinear transformation as a result of the radial lens distortion. The point Pu

in Figure 2.2 is the undistorted perspective projection of the point Pw calculated accord-
ing to Equation 2.5. The radial lens distortion moves this point to the point Pd along
the line CPu in Figure 2.2. How Pd is derived from Pu is described in detail in Section 2.3.

Tsai’s camera model defines the following internal parameters:

• f — effective focal length of the camera, i.e., the distance between the optical center
and the image plane (see Figure 2.2).

• κ1 — radial lens distortion coefficient.

• κ2 — tangential lens distortion coefficient. According to [Tsa86] its value is negli-
gible compared to the radial distortion and therefore it is usually ignored.

• Cx, Cy — computer image coordinates of the intersecting point of the optical axis
of the camera with the image plane, i.e., the principal point (C in Figure 2.2).

• sx — scale factor to account for any uncertainty in the frame grabber’s resampling
of the horizontal scanline.

• Ncx — number of sensor elements in camera’s x direction.
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• Nfx — number of pixels in frame grabber’s x direction.

• dx — x dimension of camera’s sensor element (in mm).

• dy — y dimension of camera’s sensor element (in mm).

The last four parameters are called fixed because they never change — they should be
provided by the camera and frame grabber manufacturers.

2.3 World-to-image Transformation

As described in [Tsa86], the transformation from the world coordinate system to the
computer image coordinate system is performed in 4 steps (as illustrated in Equation 2.6):

1. Rigid body transformation from the world coordinate system to the camera coordi-
nate system, i.e., calculation of the camera coordinates (xwcam

, ywcam
, zwcam

) of the
point Pw in Figure 2.2 from its world coordinates (xwwrl

, ywwrl
, zwwrl

).

2. Perspective projection of the camera coordinates of Pw into the image plane, i.e.,
obtaining the undistorted camera coordinates (Xucam

, Yucam
) of the point Pu from

Figure 2.2.

3. Radial lens distortion of Pu, i.e., calculating camera coordinates (Xdcam
, Ydcam

) of
the point Pd.

4. Calculation of the image coordinates (Xdimg
, Ydimg

) of the point Pd in the image
coordinate system.





xwwrl

ywwrl

zwwrl



 −→





xwcam

ywcam

zwcam



 −→

(

Xucam

Yucam

)

−→

(

Xdcam

Ydcam

)

−→

(

Xdimg

Ydimg

)

(2.6)

Step 1: This step is the only one regarding the external orientation of the camera. It
is defined through the matrix R and the vector T :





xwcam

ywcam

zwcam



 = R ·





xwwrl

ywwrl

zwwrl



 + T (2.7)

where R is the 3×3 rotation matrix and T the translation vector:

R =





r1 r2 r3
r4 r5 r6
r7 r8 r9



 , T =





Tx

Ty

Tz



 (2.8)

The 3D rotation represented by the matrix R can be viewed as composition of rotations
around the X, Y and Z axis:

R = RX ·RY ·RZ (2.9)
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Matrix RX describing the rotation around the X axis is defined through the angle ψ (roll).

RX =





1 0 0
0 cosψ sinψ
0 − sinψ cosψ



 (2.10)

Matrix RY describing the rotation around the Y axis is defined through the angle φ

(pitch).

RY =





cosφ 0 − sin φ
0 1 0

sinφ 0 cosφ



 (2.11)

Matrix RZ describing the rotation around the Z axis is defined through the angle θ (yaw).

RZ =





cos θ sin θ 0
− sin θ cos θ 0

0 0 1



 (2.12)

Multiplication of the matrices RX , RY and RZ gives us the final form of the rotation
matrix R:

R =





cosφ cos θ − cosψ sin θ + sinψ sinφ cos θ sinψ sin θ + cosψ sinφ cos θ
cosφ sin θ cosψ cos θ + sinψ sinφ sin θ − sinψ cos θ + cosψ sinφ sin θ
− sinφ sinψ cosφ cosψ cosφ



 (2.13)

This means, given the values of the camera’s external parameters ψ, φ, θ, Tx, Ty and Tz,
we can calculate the camera coordinates of the point Pw from Figure 2.2 in the following
way (written in homogeneous form):









xwcam

ywcam

zwcam

1









=









r1 r2 r3 Tx

r4 r5 r6 Ty

r7 r8 r9 Tz

0 0 0 1









·









xwwrl

ywwrl

zwwrl

1









(2.14)

where

r1 = cosφ cos θ

r2 = − cosψ sin θ + sinψ sinφ cos θ

r3 = sinψ sin θ + cosψ sin φ cos θ

r4 = cosφ sin θ

r5 = cosψ cos θ + sinψ sin φ sin θ

r6 = − sinψ cos θ + cosψ sin φ sin θ

r7 = − sinφ

r8 = sinψ cosφ

r9 = cosψ cosφ

Step 2: This step is the perspective projection of the point Pw = (xwcam
, ywcam

, zwcam
)

(Figure 2.2) into the image plane, which gives us the point Pu = (Xucam
, Yucam

). Given
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the focal length f we can apply Equation 2.2:





Xucam

Yucam

1



 =







f

zwcam
0 0 0

0 f

zwcam
0 0

0 0 0 1






·









xwcam

ywcam

zwcam

1









(2.15)

Step 3: Now we take the lens distortion into account and calculate the camera co-
ordinates of the point Pd = (Xdcam

, Ydcam
) based on the camera coordinates of the point

Pu = (Xucam
, Yucam

).
(

Xdcam

Ydcam

)

=

(

Xucam
+Dx

Yucam
+Dy

)

(2.16)

Using Tsai’s [Tsa86] lens distortion model Dx and Dy are calculated as follows:

Dx = Xdcam
(κ1r

2 + κ2r
4)

Dy = Ydcam
(κ1r

2 + κ2r
4)

where r =
√

X2
dcam

+ Y 2
dcam

(2.17)

κ1 and κ2 are the radial and the tangential lens distortion coefficients. Tsai reasons that
the tangential distortion (κ2) can be ignored, which gives us the following equation for
calculating the camera coordinates of the distorted point Pd in Figure 2.2:

(

Xdcam

Ydcam

)

=

(

Xucam
+ κ1Xdcam

(X2
dcam

+ Y 2
dcam

)
Yucam

+ κ1Ydcam
(X2

dcam
+ Y 2

dcam
)

)

(2.18)

As one can see, this equation is nonlinear and includes solving cubic equations.

Step 4: In the final step the actual computer image coordinates (in pixels) of the
distorted point Pd from Figure 2.2 are calculated. For that we need the internal parameters
Cx, Cy, sx, Ncx, Nfx, dx and dy described in Section 2.2. This is a linear transformation
and can be written in homogeneous form:





Xdimg

Ydimg

1



 =





sx

dpx
0 Cx

0 1
dpy

Cy

0 0 1



 ·





Xdcam

Ydcam

1



 (2.19)

where

dpx =
Ncx

Nfx

dx and dpy = dy

dpx and dpy are called effective x and y dimension of a pixel in the frame grabber.

2.4 Camera Calibration

Camera calibration is the computation of the camera’s internal and external parameters
based on a number of points whose world coordinates (xw, yw, zw) are known and image
coordinates (X, Y ) are measured. There have been many works on camera calibration
[AAK71, Tsa86, Rob96, Zha00, JZ01]. They can be roughly divided into two categories,
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depending on whether they involve a full-scale nonlinear parameter optimization or per-
form linear equation solving only. In the methods of the latter category lens distortion
can not be considered. In our approach we used the technique proposed by Roger Y. Tsai
[Tsa86], which falls into the first category. This method was chosen for several reasons:
it is efficient and accurate, lens distortion can be considered but also ignored if desired,
and there is a publicly available implementation on Internet [Wil], which has been used
for the 3D modeling approach presented.

Tsai’s calibration uses the camera model described in Section 2.2, calculating the ex-
ternal and internal camera parameters. Detailed description of Tsai’s calibration approach
is beyond the scope of this thesis. Interested readers can find the complete description in
[Tsa86].

2.5 Plane in 3D Space

There are many ways to represent a plane in 3D space [Wat99]. One of the possibilities is
to specify three non-collinear points belonging to the plane (A, B and C in Figure 2.3).

If we denote the corresponding vectors of A, B and C with ~a, ~b and ~c, we can build the

B

A

d

~b

~c

−~u

~q

P

~n = ~u× ~v

~n′ = ~n
|~n|

d = ~a · ~n′

DQ = ~q · ~n′ − d

~p

~n

~n′

~a

Q

O

−~v

DQ

C

Figure 2.3: Plane in 3D space

vectors ~u and ~v as follows:

~u = ~c− ~a

~v = ~c−~b
(2.20)

The vectors ~u and ~v are parallel to the plane defined by A, B and C so they can be placed
in this plane (see Figure 2.3). The vector product of ~u and ~v is the vector ~n perpendicular
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to the plane:
~n = ~u× ~v (2.21)

Dividing this vector with its length |~n| gives us the corresponding normalized vector ~n′

(also illustrated in Figure 2.3):

~n′ =
~n

|~n|
(2.22)

The vector ~n′ is orthogonal to our plane and has the length 1. Building a scalar product
of ~n′ with any vector representing a point on the plane (e.g., the vector ~a from Figure 2.3)
we calculate the distance d between the plane and the origin of the coordinate system:

d = ~a · ~n′ (2.23)

This means, given the plane’s normalized orthogonal vector ~n′ and the distance d between
the plane and the coordinate system’s origin, any point P (i.e., vector ~p) in the plane
satisfies the following equation:

~p · ~n′ − d = 0 (2.24)

Moreover, the distance DQ between any point Q (i.e., vector ~q) in 3D space and the plane

defined through ~n′ and d can be calculated as:

DQ = ~q · ~n′ − d (2.25)

2.6 Summary

This chapter gave an overview of mathematical background necessary to understand the
3D modeling approach presented in this work. The focus was on establishing relations and
defining geometrical transformations between different coordinate systems which make a
3D acquisition system — the world, the camera and the image coordinate system. The
following chapter describes the acquisition system used for implementation of our 3D
modeling method.
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Chapter 3

Acquisition System

This chapter presents the acquisition system which has been used for the implementation
of the 3D acquisition method proposed in this work. Section 3.1 describes the devices of
the acquisition system and their geometrical setup while Section 3.2 defines the relevant
coordinate systems. Section 3.3 describes how the calibration points needed for camera
calibration are acquired, followed by the description of determining of the laser position
in Section 3.4 and the summary in Section 3.5.

3.1 Description

The acquisition system (Figure 3.1) consists of the following devices:

• a turntable (Figure 3.1a) with a diameter of 50 cm, whose desired position can be
specified with an accuracy of 0.05◦ (however, the minimal relative rotation angle is
1.00◦). The turntable is used to obtain multiple views of the object observed.

• two monochrome CCD-cameras (Figure 3.1b and 3.1c) with a focal length of 16
mm and a resolution of 768 × 576 pixels. One camera (Camera-1 in Figure 3.1) is
used for acquiring the images of the object’s silhouettes and the other (Camera-2
in Figure 3.1) for the acquisition of the images of the laser light projected onto the
object.

• a laser (Figure 3.1d) used to project a light plane onto the object. The laser is
equipped with a prism in order to span a plane out of the laser beam. The color of
the projected light is red.

• a lamp (Figure 3.1e) used to illuminate the scene for the acquisition of the silhouette
of the object. The object should be clearly distinguishable from the background.
This can be best achieved with backlighting [HS91].

The geometrical setup of the acquisition devices is shown in Figure 3.2. Both cameras
are placed in a distance of about 50 cm from the rotational axis of the turntable. Ideally
the optical axis of the camera for acquiring object’s silhouettes (Camera-1 in Figure 3.2)
lies nearly in the rotational plane of the turntable, orthogonal to the rotational axis. The

15



(c) Camera−2

(a) Turntable(b) Camera−1

(d) Laser (e) Lamp

Figure 3.1: Acquisition System

camera for acquiring the projection of the laser plane (Camera-2 in Figure 3.2) onto the
object views the turntable from an angle of about 45◦ (β in Figure 3.2). The laser is
directed such that the light plane it projects contains the rotational axis of the turntable.
Camera-2 from Figure 3.2 views the light plane also from an angle of about 45◦ (α in
Figure 3.2). The relative position of the two cameras to one another is not important,
since the acquisition of the silhouettes and the acquisition of the laser light projection are
independent from one another.

3.2 Relevant Coordinate Systems

Before 3D reconstruction of any object can take place, the acquisition system has to be
calibrated, i.e., the relative positions of the cameras, the lasers and the turntable have to
be computed.

For the acquisition system described in this section we define the following coordinate
systems (Figure 3.3), all of which are right-handed:
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Figure 3.2: Geometrical setup of acquisition system

• world coordinate system: it is rooted at the intersection of the rotational axis of the
turntable and its rotational plane. Its z axis is identical to the rotational axis of the
turntable. x and y axes lie in a plane parallel to the turntable’s rotational plane.
The x axis is positioned such that the x-z plane is identical to the laser plane.

• camera-1 coordinate system: rooted at the center of the lens of the Camera-1 from
Figure 3.2, with the z axis being identical to the camera’s optical axis, and x and y
axes as shown in Figure 3.3.

• camera-2 coordinate system: rooted at the center of the lens of the Camera-2 from
Figure 3.2, with z axis being identical to the camera’s optical axis, and x and y axes
as shown in Figure 3.3.

• image-1 coordinate system: 2D image coordinate system for images taken with
Camera-1.

• image-2 coordinate system: 2D image coordinate system for images taken with
Camera-2.

With this definition of the relevant coordinate systems the calibration has to provide
the following information:

1. the transformation from world to image-1 coordinate system, which is a composition
of transformations from world to camera-1 and from camera-1 to image-1 coordinate
systems.

2. the transformation from world to image-2 coordinate system, which is a composition
of transformations from world to camera-2 and from camera-2 to image-2 coordinate
systems.
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Figure 3.3: Relevant coordinate systems

3. the position of the laser in world coordinate system, i.e., the world coordinates of
the point source of the laser plane (point P in Figure 3.3).

The first two transformations and the parameters needed to perform them were de-
scribed in Section 2.3. Section 2.4 gave a general overview of camera calibration. What
still has not been described is how the pairs of 3D world calibration points and their
corresponding 2D image points are obtained.

3.3 Acquisition of Calibration Points

As noted in Section 2.4, in order to perform camera calibration, a set of 3D points is needed
whose world coordinates are known and whose 2D image coordinates are measured. Tsai’s
calibration method [Tsa86] needs at least 7 pairs of 3D world and the corresponding 2D
image points. However, for fully optimized calibration at least 11 points are needed.
The 3D points can be either coplanar or non-coplanar. The calibration is more accurate
with non-coplanar 3D data, because with planar data the internal parameter sx can not be
optimized. The accuracy of the calibration increases with the increasing number of points.

In our approach we use a pattern of 25 circles in 5 rows and 5 columns, with the distance
of 30 mm between the centers of two neighboring circles in each row/column (Figure 3.4).

18



The circles were made large enough to contain a sufficient number of pixels in an image
in order to calculate their centers with a sub-pixel accuracy, and small enough that the
coordinates of the centers can be approximated by the mean value of the coordinates of
all points belonging to the corresponding circle.
In order to obtain non-coplanar calibration points, in our experiments the pattern was

30 30
30

30

Figure 3.4: Calibration Pattern

placed in 3 different planes of the world coordinate system, thus providing us with up to
75 points defined by the circle centers.

As shown in Figure 3.3, we make the z axis of the world coordinate system identical
to the rotational axis of the turntable and the x-z plane identical to the laser light plane.
The aligning of the laser plane with the x-z plane simplifies processing of laser light im-
ages. In order to place the calibration pattern from Figure 3.4 ”correctly” in the world
coordinate system, we perform three steps:

Step 1: A metal rod in placed the center of the turntable (Figure 3.5a). Then two
lasers (one of which we will use for the Shape from Structured Light part of the method
proposed) are oriented such that the two light planes are perpendicular to one another,
intersecting in the turntable’s rotational axis approximated by the rod (Figure 3.5b).

Step 2: The rod is taken out and a piece of paper containing a 2D coordinate system
is placed on the turntable’s surface such that the planes of the two lasers which were
oriented on the rod in Step 1 pass through the axes on the paper (Figure 3.6). Doing so,
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RodTurntable Laser light plane 1 Laser light plane 2

(a) (b)

Figure 3.5: Aligning lasers on turntable’s rotational axis

we align the z axis of the world coordinate system with the turntable’s rotational axis.
The x axis is set to lie in the light plane of the laser used later for data acquisition.

x

zy

Figure 3.6: Setting up the world coordinate system

Step 3: The calibration pattern from Figure 3.4 is placed on any desired position
on the turntable, vertically to the world x-y plane. In our experiments we placed it in 3
planes parallel to the world x-z plane — one plane with y = 50 (Figure 3.7a), one with
y = 0 (Figure 3.7b) and one with y = −50 (Figure 3.7c). Doing so, the calibration points
are spread across the acquisition space where the objects are placed.

Knowing the dimensions of the calibration pattern from Figure 3.4, after performing
these 3 steps we know the position of the pattern in our world coordinate system and
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(a) (b) (c)

Figure 3.7: Placement of the calibration pattern

therefore we know the world coordinates of the circle centers. Now we need to measure
their corresponding image coordinates. This can be done by finding connected compo-
nents in the image (in this case circles) and calculating the mean image coordinates of
each component, illustrated in Figure 3.8.

coordinates

circle
center

Figure 3.8: Calculating coordinates of circle centers

Another possibility for calculation of circle centers using the same calibration pattern is
to detect ellipses in the images, estimate their principal axes, and calculate the centers by
intersecting the axes of the corresponding ellipse. This method is computationally more
complex, but it could achieve higher accuracy.

The pairs of 3D world coordinates of circle centers and their corresponding 2D image
coordinates acquired as described above are used as input for camera calibration (see
Section 2.4).

3.4 Calculation of the Laser Position

The position of the laser is calculated by intersecting two rays coming from the laser. The
rays are obtained using an object with known dimensions and placing it in the laser plane,
i.e., in the x-z plane of the world coordinate system. We used a metal cuboid shown in
Figure 3.9. Using a grid paper representing the world x-y plane and knowing the height
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of the cuboid we can read the coordinates of two points belonging to the ray (P1 and P2

in Figure 3.9). Placing the cuboid in two different positions, the world coordinates of 4

Ray coming from laser
P1

P2

Figure 3.9: Cuboid in laser plane

points P11, P12, P21 and P22, can be read, defining two rays, as illustrated in Figure 3.10.
The intersection of the rays defined by P11P12 and P21P22 gives the position of the laser,

Laser

Ray 1
Ray 2

Cuboid 2
Turntable surface

Cuboid 1

P

P11

P22P12

P21

Figure 3.10: Intersecting laser rays

point P in Figure 3.10. If we denote the coordinates of the point Pij with (xij, yij, zij),
then the coordinates (xP , yP , zP ) of the point P , with the assumption that yij = 0 for
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every i, j, are calculated as follows:





xP

yP

zP



 =





x11

y11

z11



 + t ·





x12 − x11

y12 − y11

z12 − z11



 (3.1)

where

t =
(x11 − x21)(z22 − z21) − (x22 − x21)(z11 − z21)

(x22 − x21)(z12 − z11) − (x12 − x11)(z22 − z21)

3.5 Summary

This chapter presented the acquisition system used for design and implementation of the
3D modeling method presented. It described its components — the cameras, the laser,
the turntable — and how the relative positions of these components are determined, i.e.,
how the system is calibrated. The calibration of the acquisition system is a prerequisite
for any 3D modeling approach. Possible approaches are discussed in the following chapter.
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Chapter 4

3D Modeling — Possible Approaches

This chapter addresses the questions that need to be answered when designing an algo-
rithm for building a 3D model of an object, with focus on combining Shape from Silhouette
and Shape from Structured Light. Section 4.1 gives an overview of types of 3D model
representation, followed by a more detailed description of the octree representation in
Section 4.1.3. Section 4.2 describes the main characteristics of the Shape from Silhouette
and Shape from Structured Light based models and problems encountered when trying
to combine them. Section 4.3 concludes the discussion of possible approaches, leading to
the approach selected.

4.1 Types of 3D Model Representation

There are many different model representations in computer vision and computer graph-
ics used. Most of them can be roughly categorized into surface-based and volume-based
representations.

4.1.1 Surface-Based Representations

Surface-based representations describe a three-dimensional object by defining the surfaces
that bound the object. The bounding surfaces can be represented by different computer
graphics methods. For example, they can be represented by a cloud of points belonging
to the surface (an amphora in Figure 4.1a) or as a set of simple approximating patches,
like planar or quadric patches [BJ88]. Figure 4.1b shows a sphere represented by quadri-
lateral planar patches. Points and patches representing the surface can also be associated
with a normal vector, which is the vector of the length 1 and normal to the associated
point or patch. An advantage of this kind of representation is that it can be used for
arbitrarily shaped objects and it is particularly useful for object visualization. However,
it is difficult to perform any 3D measurements on the model, such as volume computation.

Another surface-based representation, usually used for solid objects, is the B-Rep
[Wat99] representation. It describes an object as a volume enclosed by a set of primi-
tive surface elements, typically sections of planes and quadratic surfaces such as spheres,
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Figure 4.1: Cloud of points (a) and planar patches (b)

cylinders and cones. This representation is shown in Figure 4.2. The volume of a B-Rep
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Figure 4.2: B-Rep representation

model of an object can be computed analytically, but the complexity of the model grows
quadratically as the complexity of the object increases.

Generalized cylinder [MN78] representation describes the surface of an object by a two-
dimensional cross-sectional figure which is swept along a three-dimensional space curve
acting as the axis (also called spine) of the cylinder. The cross section can vary smoothly
along the axis. Each cross section is orthogonal to the cylinder axis. This representation
is illustrated in Figure 4.3. With generalized cylinder representation of an object the
computation of the volume is straight-forward — the integral of the surface of the cross-
sectional figure is built along the cylinder axis. However, this representation is suitable for
a specific set of shapes only and it is not flexible enough to describe arbitrary solid objects.
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Cross sections

Cylinder axis

Cross sections’ normals

Figure 4.3: Generalized cylinder representation

4.1.2 Volume-Based Representations

Volume-based representations use volume elements rather than surface elements to de-
scribe an object. Constructive Solid Geometry (CSG) [Wat99, Shi87] method uses simple
volumetric primitives, such as blocks, cones, cylinders and spheres, and a set of boolean
operations — union, intersection, and difference. Figure 4.4 shows a CSG representation
of a simple object. While the computation of the volume of an object based on a CSG
model is relatively simple, this representation is not suitable for arbitrarily curved objects.

_
U

Figure 4.4: Constructive Solid Geometry (CSG)

Another kind of volume-based representations are the so called spatial occupancy
representations. An object is represented using non-overlapping subregions of the 3D
space occupied by the object. There are many variants of this representation, such as
voxel (volume element) or octree [CH88] representation. In a voxel representation, an
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object is built up from a 3D binary array, where elements have the value 1 if occupied,
otherwise 0. The resolution is uniform throughout the representation. Figure 4.5 shows
a voxel representation of an object. Octree representation is just an efficient way of
representing 3D voxel array describing an object. The Octree is the representation we
chose for the 3D modeling approach presented in this work and it is described in detail
in the following section.

(a) (b)

Figure 4.5: An object (a) and its voxel representation (b)

Spatial occupancy representations can be used for arbitrarily shaped objects, but they
give a low-level description of an object which is unsuitable for some applications, such
as object recognition. However, it is suitable for volume computation and other 3D
measurements of arbitrarily shaped objects.

4.1.3 Octree Model Representation

An octree [CH88] is a tree-formed data structure used to represent 3-dimensional objects.
Each node of an octree represents a cube subset of a 3-dimensional volume. A node of an
octree which represents a 3D object is said to be:

• black, if the corresponding cube lies completely within the object

• white, if the corresponding cube lies completely within the background, i.e., has no
intersection with the object

• gray, if the corresponding cube is a boundary cube, i.e., belongs partly to the object
and partly to the background. In this case the node is divided into 8 child nodes
(octants) representing 8 equally sized subcubes of the original cube

All leaf nodes are either black or white and all intermediate nodes are gray. An example
of a simple 3D object and the corresponding octree is shown in Figure 4.6.

An octree as described above contains binary information in the leaf nodes and there-
fore it is called a binary octree, and it is suitable for representation of 3D objects where
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Figure 4.6: A simple object (a) and the corresponding octree (b)

the shape of the object is the only object property that needs to be modeled by the octree.
Non-binary octrees can contain other information in the leaf nodes, e.g., the cube color in
RGB-space. For the 3D modeling approach presented in this work, a binary octree model
is sufficient to represent 3D objects.

Octree model representation has several advantages: for a typical solid object it is an
efficient representation, because of a large degree of coherence between neighboring volume
elements (voxels), which means that large pieces of an object can be represented by a single
octree node. Another advantage is the ease of performing geometrical transformations on
a node, because they only need to be performed on the node’s vertices. The disadvantage
of octree models is that they digitize the space by representing it through cubes whose
resolution depend on the maximal octree depth and therefore cannot have smooth surfaces.
However, this is a problem with any kind of voxel-based volumetric representation.

4.2 Building a 3D Model

An input image for Shape from Silhouette defines a conic volume in space which contains
the object to be modeled (Figure 4.7a). Another input image taken from a different view
defines another conic volume containing the object (Figure 4.7b). Intersection of the
two conic volumes narrows down the space the object can possibly occupy (Figure 4.7c).
With an increasing number of views the intersection of all conic volumes approximates
the actual volume occupied by the object better and better, converging to the 3D convex
hull of the object. Therefore by its nature Shape from Silhouette defines a volumetric
model of an object.

An input image for Shape from Structured Light using laser light defines solely the
points on the surface of the object which intersect the laser plane (Figure 4.8a). Using
multiple views provides us with a cloud of points belonging to the object surface (Fig-
ure 4.8b), i.e., with the surface model of the object.
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(c)(b)(a)

Figure 4.7: Two conic volumes and their intersection

(a) (b)

Figure 4.8: Laser projection and cloud of points

The main problem that needs to be addressed in an attempt to combine these two
methods is how to adapt the two representations to one another, i.e., how to build a
common 3D model representation. This can be done in several ways:

• Building the Shape from Silhouette’s volumetric model and the Shape from Struc-
tured Light ’s surface model independently from one another. Then, either convert
the volumetric model to a surface model and use the intersection of the two surface
models as the final representation or convert the surface model to a volumetric model
and use the intersection of the two volumetric models as the final representation.

• Using a common 3D model representation from the ground up, avoiding any model
conversions. That means either design a volume based Shape from Structured Light
algorithm or a surface based Shape from Silhouette algorithm.

With the former method both underlying algorithms would build their ”native” model
of the object. However, conversion and intersection of the models would not be a sim-
ple task. While conversion of the Shape from Silhouette’s volumetric model to a surface
model is straightforward — one only has to find 3D points of the volume belonging to
the surface — an intersection of two surface models can be rather complex. One could
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start from the points obtained by Shape from Structured Light (because they really lie on
the object’s surface, whereas points on the surface of the volume obtained by Shape from
Silhouette only lie somewhere on the object’s convex hull) and fill up the missing surface
points with points from the Shape from Silhouette model. There are several problems
with this approach. There could be many ”jumps” on the object surface, because the
points taken from the Shape from Silhouette model might be relatively far away from the
actual surface. The approach would also not be very efficient, because we would need to
build a complete volumetric model through Shape from Silhouette, then intersect it with
every laser plane used for Shape from Structured Light in order to create a surface model,
and then, if we also want to compute the volume of the object, we would have to convert
the final surface model back to the volumetric model.

Another possibility would be converting the surface model obtained by Shape from
Structured Light to a volumetric model and intersect it with the Shape from Silhouette’s
model. In this case the intersection is the easier part — for each voxel of the space ob-
served one would only have to look up whether both models ”agree” that the voxel belongs
to the object — only such voxels would be kept in the final model and all others defined
as background. Also the volume computation is simple in this case — it is a multiplica-
tion of the number of voxels in the final model with the volume of a single voxel. But
the problem with this approach is the conversion of the Shape from Structured Light’s
surface model to a volumetric model — in most cases, the surface model obtained using
laser plane is very incomplete (see the model of an amphora in Figure 4.8b) because of
the light and camera occlusions (Figure 4.9), so one would have to decide how to handle
the missing parts of the surface. Also, the conversion of a surface model to a volumetric
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Figure 4.9: Light and camera occlusions

model is generally a complex task, because if the surface is not completely closed, it is
hard to say whether a certain voxel lies inside or outside the object. With closed surfaces
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one could follow a line in 3D space starting from the voxel observed and going in any
direction and count how many times the line intersects the surface. For an odd number
of intersections one can say that the voxel belongs to the object. But even in this case
there would be many special cases to handle, e.g., when the chosen line is tangential to
the object’s surface.

4.3 Conclusions on Possible Approaches

The discussion of possible approaches in Section 4.2 lead us to the following conclusions:

• Building a separate Shape from Structured Light surface model and a Shape from
Silhouette volumetric model followed by converting one model to the other and
intersecting them is mathematically complex and computationally costly.

• If we want to estimate the volume of an object using our model, any intermedi-
ate surface models should be avoided because of the problems of conversion to a
volumetric model.

• The modeling approach presented in this work will be mostly applied to archaeo-
logical vessels and sherds, which are often objects with many differently sized and
shaped curvatures, so we need a model representation which is flexible enough to
represent arbitrarily shaped objects and makes it easy to calculate the volume of an
object.

Therefore, our approach proposes building a single octree model from the ground up,
using both underlying methods in each step.

When building a 3D volumetric model of an object based on a number of its 2D
images, there are two possibilities regarding the decision whether a certain voxel is a part
of the object or belongs to the background. One possibility is to start from the input
images and project all pixels belonging to the object into the 3D space, finding all the
voxels which can possibly be occupied by the object (for example, that would be the conic
volume corresponding to the image of a coffee mug in Figure 4.7a). Then, these voxels
can be intersected with the voxels defined through the other input images (Figure 4.7b)
in order to obtain the final model (Figure 4.7c). Another possibility is to start from a
limited 3D space and project its voxels into all input images, testing whether all input
images ”agree” that the voxel belongs to the object. This is illustrated in Figure 4.10.
Each voxel of the starting object space is projected into every input image and intersected
with the object’s image representation. The former approach requires intersection testing
in 3D space whereas the latter approach requires intersection testing in 2D image planes.
Therefore, we chose to use the latter approach, i.e., project the 3D space into the input
images.
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Figure 4.10: Voxel occupancy test
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Chapter 5

3D Modeling — Octree Based

Approach

This chapter presents our 3D modeling approach in detail. It assumes having a fully
calibrated acquisition system and describes what happens between acquiring a set of
silhouette and laser light images of an object from different views and producing the final
3D model of the object. In short, our approach takes the images acquired, binarizes them
and builds an octree model of the object by projecting the octree nodes into the relevant
binary images and intersecting them with the object’s image representation, in order
to decide whether the node belongs to the object or to the background. The following
sections go into details of each of these steps. Section 5.1 describes the acquisition of
silhouette and laser light images of an object and Section 5.2 the binarization of the
images acquired. Section 5.3 presents the steps of projection of an octree node into both
kinds of input images, followed by the description of the intersection test of a node with
the object’s image representation in Section 5.4. Finally, Section 5.5 puts all the pieces
together, giving a step-by-step description of the model building algorithm, followed by
the summary in Section 5.6.

5.1 Image Acquisition

The acquisition system with all its components was described in detail in Chapter 3 (see
also Figure 3.1). For image acquisition, an object is placed on the turntable (Figure 3.1a),
approximately in its center, so that the object stays close to the center of the images ac-
quired, independent from the rotation angle of the turntable. During the acquisition
process, the whole acquisition space is protected against ambient light by a thick black
curtain.

For the acquisition of silhouette images, Camera-1 from Figure 3.1 is used, and the
lamp (Figure 3.1e) is switched on for backlighting of the object, in order to create high
contrast between the object and the background. As an example, a silhouette image of a
coffee mug is shown in Figure 5.1a.
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(a) (b)

Figure 5.1: Sample silhouette (a) and laser light (b) image of a coffee mug

For the acquisition of laser light images, Camera-2 (Figure 3.1c) and the laser (Fig-
ure 3.1d) are used. Figure 5.1b shows a laser light image of a coffee mug.

In order to acquire multiple views of an object, the turntable is either rotated by a
fixed angle between two neighboring views (usually in the range 1◦–20◦, resulting in 18–
360 views) or this angle is computed automatically for each view. The latter method is
covered in detail in Chapter 6, Next View Planning.

5.2 Binarization of the Acquired Images

The first step between the image acquisition and creation of the final 3D model of an
object consists of converting the images acquired into binary images. A pixel in such
a binary image should have the value 0 if it represents a point in 3D space which does
not belong to the object for sure, and the value of 1 otherwise (i.e., if it represents a
point possibly belonging to the object). The purpose of having such binary images is to
simplify the processing of images during the model building process — a simple lookup
of the value of a pixel (0 or 1) tells whether the pixel represents the background or the
object. The binarization is performed on input images for both Shape from Silhouette
and Shape from Structured Light.

5.2.1 Binarization of Shape from Silhouette Images

For the Shape from Silhouette part of the method presented in this work, a reliable ex-
traction of the object’s silhouette from an acquired image is of crucial importance for
obtaining an accurate 3D model of an object. If the background brightness is not uni-
form, i.e., if there are parts of the background which are brighter than others (especially if
there are parts with similar brightness like the object observed), the silhouette extraction
can be a difficult task. For that reason, in addition to the images of the object (Fig-
ure 5.2a) taken from different viewpoints, an image of the acquisition space (Figure 5.2b)
is taken, without any object in it. Then, the absolute difference between this image and
an input image is built, which creates an image (Figure 5.2c) with a uniform background
and a high contrast between the object and the background. Then, thresholding is used
to create a binary image (Figure 5.2d) where pixels with the value 1 represent the object’s
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Figure 5.2: Binarization of Shape from Silhouette images

silhouette and those with value 0 the background. The threshold value is either calculated
automatically or specified by the user.

Another option for extracting object silhouettes from input images would be to use
edge detection [NB86] instead of thresholding. This approach could be more accurate,
even a sub-pixel precision could be reached, but it is also more complex. One of the ques-
tions that would have to be answered, given the edges of the object, is how to decide what
is inside and what outside the object. This question might be easy to answer for simple
objects, but for more complex objects (e.g. archaeological vessels with a thin handle) it
could be rather complicated.

By using backlighting for acquisition of silhouette images, saturation problems could
occur — the brighter image areas tend to be larger than they are, what could add some
error to the silhouette extraction. Because of this it is important to establish the lowest
brightness possible, just sufficient to distinguish the object from the background.

5.2.2 Binarization of Shape from Structured Light Images

An input image for Shape from Structured Light contains the projection of a laser plane
onto the object (Figure 5.3). A white pixel in this image represents a 3D point on the
object’s surface which intersects the laser plane. A black pixel represents a 3D point in
the laser plane which does not belong to the object’s surface — it is either inside the
object or it does not belong to the object at all. For our approach, if we know that a pixel
represents a point outside the object, we want to leave it black. If we know it is inside
the object or if we are not sure, we want to paint it white. How can we decide whether
a black pixel corresponds to a point inside or outside the object? If we know where the
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laser light is coming from we can project it into the image plane (point P in Figure 5.3)
and draw a line through this point and the black pixel we want to test (points Q1, Q2

and Q3 in Figure 5.3). If there is a white pixel R (i.e., a pixel belonging to the laser line)
between P and the pixel tested, like Q1 in Figure 5.3, then Q1 can not be reached by the
laser light and therefore we can not say whether it is inside or outside the object and it
should be changed to white. Q2 from Figure 5.3 lies between P and R so it is for sure
outside the object and should remain black. Finally, if there is no white pixel on the line
between P and the pixel tested, such as Q3 in Figure 5.3, this pixel is occluded by a part
of the object outside the laser plane so we can not tell anything about it being inside or
outside the object and we set it to white.

P

Q2

Q1

Q3

R

Figure 5.3: Finding pixels inside/outside the object

Our implementation creates binary images described above performing the following
steps, assuming that, in addition to the input images containing projection of the laser
light onto the object (Figure 5.4c), we also have taken an image of the projection of the
laser light onto the acquisition space without any objects in it (Figure 5.4a) and that we
know the world coordinates of the laser.

1. Image coordinates of the laser are calculated (point P in Figure 5.3).

2. The image of the acquisition space (Figure 5.4a) is binarized in the following way:
starting from every pixel belonging to the laser line we ”walk” toward the laser
point P , painting all the encountered pixels white, resulting in image shown in
Figure Figure 5.4b.

3. For every input image, an initial binary image is created, identical to the binarized
image of the acquisition space (Figure 5.4b). In other words, we assume that the
object lies entirely in the laser plane from Figure 5.4b.

4. Starting from every pixel belonging to the laser line in each input image we ”walk”
toward the laser point P , painting all the encountered pixels black. The resulting
binary image is shown in Figure 5.4d.
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Figure 5.4: Binarization of Shape from Structured Light images

A line in an acquired image is typically 1–4 pixels wide, depending on the intensity of
the laser light. Each point of the line (such as R in Figure 5.3) should represent the
intersection of the corresponding laser ray and the surface of the object. Mathematically,
each laser ray intersects the surface in at most one point (excluding special cases in which
the object’s surface at the point where the ray hits the surface is parallel to the ray).
Therefore, as a preprocessing step, the laser line in each acquired image is thinned to
1-pixel width (Figure 5.5).

Thinning

(a) Original image (b) Thinned image

Figure 5.5: Laser line thinning

Note that in order to be able to calculate the image coordinates of the laser point P
from Figure 5.3 we need to calibrate the camera and determine the world coordinates of
the laser, as described in Sections 2.4 and 3.4, respectively.
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5.3 Projection of an Octree Node into Image

In Section 3.2 we discussed the relevant coordinate systems, as shown in Figure 3.3. We
still need to define where we place the octree. It is aligned with the world coordinate
system. The center of the root node is identical to the origin of the world coordinate
system. This is illustrated in Figure 5.6, which is identical to Figure 3.3 with the octree
added. The initial size of the octree (i.e., the size of the root node) can be set manually

camera−2 coordinate system
image−1 coordinate system
image−2 coordinate system

camera−1 coordinate system
world coordinate system

y

x

y

z

z

x

Camera−1 image plane

y

x

Camera−2 image plane

P

Octree

Rotational axisLaser plane

Turntable

y

xz

y

x

Figure 5.6: Placing the octree in world coordinate system

or calculated automatically by finding a cube rooted in the origin of the world coordinate
system whose projection into all Shape from Silhouette images completely contains the
silhouette of the object.

Knowing the world position and the size of the root node of the octree we can also
calculate the world coordinates of the center or the vertices of any node at any level. The
camera calibration described in Section 2.4 provides us with the parameters of the trans-
formation between the world and the image coordinate system. If we denote the world
coordinates of the point of the octree node we want to project into an image with (xw, yw),
then, applying the for steps of world-to-image transformation described in Section 2.3, we
can calculate its image coordinates (Xi, Yi).

However, by acquiring images from multiple views by rotating the turntable around
its rotational axis, our world coordinate system also rotates around its z axis in front
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of the camera. Because of this, for every input image there is a new relation between
the image and the initial world coordinate system. The camera calibration provides us
with the relation between the rotated world coordinate system and the image coordinate
system. If the rotation angle of the world coordinate system around its z axis was α
(Figure 5.7) for the image we want to process, we have to take this angle α into account
when performing world-to-image transformation.

y

x

y
z

x

Camera image plane z

y

x

Turntable

Rotational axisz

y

x

camera coordinate system
image coordinate system

initial world coordinate system
rotated world coordinate system

α

Figure 5.7: Initial and rotated world coordinate system

An input image for Shape from Silhouette contains three-dimensional information
about the object (see conic volumes in Figure 4.7) while a Shape from Structured Light
input image contains two-dimensional information only — the intersection of the object
with the laser plane (see Figure 4.8a). Therefore, in the Shape from Silhouette part we
calculate the α-rotated world coordinates of the node tested and then perform the world-
to-image transformation described in Section 2.3. We do this for every input image (i.e.,
for every α) because we want to test whether the current node lies in all conic volumes.
In contrast to this, in the Shape from Structured Light part we only want to test the node
in the images representing the laser planes intersecting the node. There can be several
planes intersecting the node and finding all of them can be a complex task. Instead, we
decided to find one plane only, the one nearest to the center of the node and project the
node into that plane before we perform the world-to-image transformation described in
Section 2.3.

The remainder of this section describes the projection of a node into Shape from
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Silhouette and Shape from Structured Light images in more detail, as well as finding the
nearest laser plane.

5.3.1 Projection of a Node into Shape from Silhouette Image

For an input image for Shape from Silhouette taken from an angle α we have to rotate
the initial world coordinate system in order to be able to apply the parameters obtained
through camera calibration. If we apply Equation 2.12 from Section 2.3, the rotation
between two coordinate systems with the angle α around the z axis is described through
the rotation matrix RZ (here given in homogeneous form):

RZ =









cosα sinα 0 0
− sinα cosα 0 0

0 0 1 0
0 0 0 1









(5.1)

Through the camera calibration we obtained among others the parameters r1–r9 and Tx–
Tz from Equation 2.14 defining the transformation between the (α-rotated) world and the
camera coordinate system. For coordinates given in the initial world coordinate system we
have to apply Equation 5.1 first, resulting in the modified world-to-camera transformation:
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(5.2)

The other steps of the world-to-image transformation described in Section 2.3 are unaf-
fected by the rotation angle α.

5.3.2 Finding the Nearest Laser Plane

When testing an octree node against Shape from Structured Light input images, only
those images which represent laser planes that intersect the node are relevant for the test.
The plane containing the node center is the most relevant one, because its intersection
with the node is the largest among the planes intersecting the node. However, by having
a limited number of input images, it is very likely that none of the corresponding laser
planes contain the node center. Therefore, among all planes represented by the input
images, we search for the one nearest to the node center. This is done by calculating the
distance between the center of the node processed and all laser planes and selecting the
plane for which this distance is minimal.
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Section 2.5 explained how to find the distance DQ between any point Q in 3D space

and a given 2D plane, defined by its normalized orthogonal vector ~n′ and the distance d
to the origin (see Equation 2.25). According to our definition of relevant coordinate sys-
tems (see Figure 3.3), a Shape from Structured Light image taken with the initial world
coordinate system represents the world x-z plane. An image taken with α-rotated world
coordinate system (Figure 5.7) contains the world z-axis and the angle between this plane
and the x-z plane is α. Applying Equation 2.25 for every laser plane acquired, we can
calculate the distance of the center of the node processed and the laser plane. The laser
plane for which this distance is minimal is the nearest plane to the node.

How do we find the vector ~n′
α and the distance dα of the plane taken from angle α?

Let us denote this plane Πα and take a look into Figure 5.8. Considering that all our laser
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rotated world coordinate system

x

y

Turntable

x

z

z
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y

P = (xP , yP , zP )

Pα = (xPα
, 0, zPα

)
Πα

~p

~n′
α

~uα

~vα α

Figure 5.8: Parameterization of laser plane

planes contain the z axis of the world coordinate system, all of them contain its origin,
which means d = 0 for all planes. In order to calculate ~n′

α we need three non-collinear
points on the plane Πα (see Section 2.5). Finding two points is trivial — we can take any
two points on the z axis, for example (0, 0, 0) and (0, 0, 1). For the third point we can
set z to 0 and calculate x and y. Considering the angle α between Πα and the world x-y
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plane it is obvious that

z = 0 =⇒

{

x = r · cosα r ∈ R

y = r · sinα
(5.3)

We set r from Equation 5.3 to 1. Using these three points we now can build the vectors
~u and ~v from Equation 2.20 (now denoting them ~uα and ~vα)

~uα =





0
0
1



 , ~vα =





cosα
sinα

0



 (5.4)

and the vector ~nα using Equation 2.21

~nα = ~uα × ~vα =





0
0
1



 ×





cosα
sinα

0



 =





sinα
− cosα

0



 (5.5)

Note that the length of ~nα is 1, i.e., it is already normalized, which means that the vector
~n′
α we are looking for is

~n′
α = ~nα =





sinα
− cosα

0



 (5.6)

Now we can calculate the distance Dα between any node with the center in point C =
(xC , yC , zC) and the plane Πα as

Dα = ~c · ~n′
α =





xC

yC

zC



 ·





sinα
− cosα

0



 = xC sinα− yC cosα (5.7)

Among all planes Πα the node processed is projected to the plane for which the absolute
value of Dα is minimal.

5.3.3 Projection of a Node into Shape from Structured Light

Image

Having found the node’s nearest laser plane and its corresponding rotation angle α, we
can proceed with the projection of the node into this plane. Note that the vectors ~uα

and ~vα from Equation 5.4 and ~n′
α from Equation 5.6 are the unit vectors of the z, x and

y axes of the α-rotated world coordinate system (see Figure 5.8). The laser plane Πα

is the x-z plane of this α-rotated world coordinate system. This greatly simplifies the
projection of a 3D point P (i.e., vector ~p), given with its coordinates (xP , yP , zP ) in the
initial world coordinate system, into the plane Πα. If we denote the projected coordinates
with (xPα

, yPα
, zPα

), then they can be calculated as follows:
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 (5.8)
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Now we can use the calibration parameters to perform the the four steps of world-to-image
transformation as described in Section 2.3.

5.4 Intersection Test

The result of the projection of an octree node into the image plane are image coordinates of
all of the vertices of the node’s corresponding cube. In the general case, the projection of a
node looks like a hexagon, as depicted in Figure 5.9(a). To find the hexagon corresponding
to the eight projected vertices is a costly task, because it requires to determine which
points are inside and which outside the hexagon, and there can be hundreds of thousands
of octree nodes that need to be processed. It is much simpler (and therefore faster) to
compare the bounding box of the eight points. Figure 5.9 shows a projected octree node
and the corresponding bounding box. The bounding box is tested for intersection with

xxmin

min

max

y

y
max

(b)(a)

Figure 5.9: Projection of a node (a) and its bounding box (b)

the object’s representation in the current input (binary) image. All image pixels within
the bounding box are checked for their value, whether they have the value 0 (background)
or 1 (object). The output of the intersection testing procedure is percentage of the pixels
of the bounding box with value 1, i.e., percentage of pixels belonging to the object. If this
percentage is equal or higher than a user definable threshold for black nodes, the node is
marked as black, i.e., it belongs to the object (node 2 in Figure 5.10). If the percentage is
smaller than or equal with a user definable threshold for white nodes, the node is marked
as white, i.e., belonging to the background (node 1 in Figure 5.10). Otherwise, the node
is marked as gray and it is divided into eight child nodes representing eight subcubes of
finer resolution (node 3 in Figure 5.10). In the special case when the desired maximal
octree depth has been reached and the intersection test would mark the node as gray, the
node is simply marked as black instead.

One more issue needs to be mentioned. The calculated image coordinates of the
cube’s vertices can lie between two image pixels, and a pixel is the smallest testable unit
for intersection testing. Which pixels are considered to be ”within” the bounding box?
Figure 5.11 illustrates our answer to this question. We decided to test only pixels that
lie completely within the bounding box (Figure 5.11a), because that way the number of
pixels that need to be tested is smaller than if we tested all pixels that are at least partly
covered by the bounding box and it also makes sense to exclude the pixels at the border
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Figure 5.10: Intersection Test

of the bounding box, because most of them do not lie within the hexagon approximated
by the bounding box. In the special case if there are no pixels that lie completely within
the bounding box (Figure 5.11b) the pixel closest to the center of the bounding box is
checked for the color.

Area tested for
intersection

Bounding box of
projected node

(a) At least one pixel completely
within bounding box

(b) No pixels completely
within bounding box

Pixel borders

Figure 5.11: Selection of pixels for intersection test

5.5 Putting It All Together

Our approach builds a 3D model of an object performing the following steps (illustrated
in Figure 5.12):

1. Binarize the acquired images for both Shape from Silhouette and Shape from Struc-
tured Light as described in Section 5.2 (Figure 5.12a).

2. Build the initial octree, containing one single root node marked ”black” (Fig-
ure 5.12b). This node is said to be at the level 0. Set the current level to
0.
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Shape from Silhouette

Shape from Structured Light

(a) Binarization of input images

(c) Intersection testing

(b) Initial octree

(d) Final model

Figure 5.12: Algorithm overview

3. All black nodes of the current level are assumed to be in a linked list. Set the
current node to the first node in the list. If there are no nodes in the current

level, the final model has been build so jump to Step 9. Otherwise, the current

node needs to be projected into the relevant input images (Figure 5.12c), so continue
with Step 4.

4. Find the two binarized Shape from Structured Light images representing the two
laser planes nearest to the current node — one plane is the nearest among the
images acquired with the turntable’s rotation angle between 0◦ and 180◦ and the
other the nearest among images taken with the angle between 180◦ and 360◦. For
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each of these intervals the nearest plane is found as described in Section 5.3.2. The
separation into 2 intervals is done because if we use a single nearest plane, it could
happen that the projection of the node lies completely in the occluded part of the
image. Two nearest planes defined this way are almost identical, because they both
contain the rotational axis of the turntable (because of the way we set the laser
plane, see Figure 3.3) so if the nearest plane in the range 0◦ −−180◦ was with the
angle α, then the nearest plane in the range 180◦ − −360◦ will be with the angle
α+180◦. This way we increase the chance that the node does not lie in the occluded
area in at least one of the planes.

5. Project the current node into the two images found in Step 4, as described in Sec-
tion 5.3.3, and for both images perform the intersection test described in Section 5.4.
If at least one image says ”this node is white”, it is set to white. Otherwise, if at
least one image says ”this node is gray”, it is set to gray and only if both images
agree that the node is black, it stays black.

6. If the current node after Step 5 is not white, project it into all binarized Shape
from Silhouette input images (as described in Section 5.3.1) and intersect it with
the image silhouettes of the object (as described in Section 5.4). If at least one
image says ”this node is white”, it is set to white. Otherwise, if at least one image
says ”this node is gray”, it is set to gray and only if all images agree that the node
is black, it stays black.

7. If the node is set to gray it is divided into 8 child nodes of the current level + 1,
all of which are marked ”black”

8. Processing of the current node is finished. If there are more nodes in the current

level set the current node to the next node and go back to Step 4. If all nodes
of the current level have been processed, increment the current level and go
to Step 3.

9. The final octree model has been built (Figure 5.12d).

By building a 3D model as described above the octree is traversed only once — each
node, when being processed, is projected to all relevant input images and once it is done,
it does not need any further processing. The octree is also processed in a level-by-level
manner — all nodes of one level are completely processed before we go one with the
next higher level. This is efficient because there are no unnecessarily processed nodes. To
illustrate this, let us go back to the conic volumes in Figure 4.7. The volume in Figure 4.7c
was built using two views only (from Figure 4.7a and 4.7b), but we can already see that the
conic volumes in Figure 4.7a and 4.7b have many high level details which are completely
cut by the intersection of the volumes. Therefore, it is better to consider all views while
building each level so that the minimal possible number of high level nodes is processed.
Intuitively described, by processing the octree in a level-by-level manner, we carve out a
large block of space in the shape of the object modeled, removing larger pieces first and
then going into finer and finer details, as illustrated in Figure 5.13. At Level 0 there is one
node only, the root node, and it is gray. At Level 1 there are 8 nodes, all of them gray,
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Figure 5.13: Level-by-level building of octree model

because each of the occupies partly the object and partly the background. Therefore,
the models at Level 0 and Level 1 are identical. Starting from Level 2 some white nodes
start showing up and from Level 3 the model starts shaping up in the form of the mug,
resulting with a fine resolution model at Level 8.

5.6 Summary

This chapter presented our 3D modeling approach in detail — how the input images
are acquired and processed and how an octree model of an object is built based on
projection and intersection of its nodes with the object’s representations in the images.
For acquisition of multiple views of an object it has been mentioned that the turntable
can be rotated by a constant angle between two views or that the angle can be calculated
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automatically for each view. Automatic calculation of the next view is called Next View
Planning and it is the topic of the following chapter.
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Chapter 6

Next View Planning

This chapter covers the topic of Next View Planning (NVP) — it starts with introducing
the problem of Next View Planning with a simple example in Section 6.1, followed by
a general overview of the NVP problem in Section 6.2. Section 6.3 proposes a simple
solution for our 3D modeling approach and our specific acquisition system, followed by
the summary in Section 6.4.

6.1 Introduction

In order to create a complete three-dimensional model of an object based on its two-
dimensional images, the images have to be acquired from different views. An increasing
number of views generally improves the accuracy of the final 3D model but it also increases
the time needed to build the model. The number of the possible views can theoretically
be infinite. Therefore, it makes sense to try to reduce the number of views to a minimum
while preserving a certain accuracy of the model, especially in applications for which the
performance is an important issue.

One possibility for obtaining multiple views is to choose a fixed subset of possible views,
usually with a constant step between two neighboring views, independent on the shape
and the complexity of the object observed. This is illustrated in Figures 6.1a and 6.1b,
which show a reconstruction of a corner of a square by drawing lines from the point O with
a constant angle between two lines and connecting the points where the lines intersect
the square. We can see that the corner reconstructed using 9 lines (Figure 6.1b) looks
”better” that the one reconstructed using 5 lines (Figure 6.1a), but also that neither of
these two methods was able to reconstruct the corner perfectly. In addition to this, some
of the views (20◦ in Figure 6.1a and 10◦, 20◦, 30◦, 60◦ and 70◦ in Figure 6.1b) could have
been omitted — without them the reconstruction of the corner in Figures 6.1a and 6.1b
would have been exactly the same.

This simple example illustrates the need for selection of views based on the features
of the object — this is called Next View Planning (in short, NVP). For the square from
Figure 6.1, if we had a way of selecting the significant views only, we could reconstruct
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Figure 6.1: Reconstruction of a square corner

the corner of the square perfectly using 3 views only, as shown in Figure 6.1c.

6.2 Overview

The example from Figure 6.1 illustrates only one in a broad range of problems addressed
by Next View Planning. A thorough survey of Next View Planning, also called Sen-
sor Planning, is given in [TAT95]. The following sentence, taken from Tarabanis et al.
[TAT95], summarizes the NVP problem: ”Given the information about the environment
(e.g., the object under observation, the available sensors) as well as the information about
the task that the vision system is to accomplish (i.e., detection of certain object features,
object recognition, scene reconstruction, object manipulation), develop strategies to auto-
matically determine sensor parameter values that achieve this task with a certain degree
of satisfaction”. Following this definition, in order to design an NVP algorithm for a given
computer vision task, one has to identify the sensor parameters which can be manipulated
(e.g., the position of the camera) and define the ”degree of satisfaction”, i.e., construct a
metrics for evaluation of the parameter values proposed. The number of parameters that
can be manipulated is also called the number of degrees-of-freedom. Increasing number of
degrees of freedom increases the complexity of an NVP algorithm.

There are several computer vision tasks which can incorporate an NVP problem,
differing in the necessary amount of an a priori knowledge about the object, the sensors
and the environment:

• Object feature detection: here the goal of NVP is to determine the sensor parameters
values for which the particular features of a known object in an image satisfy certain
constraints, such as being visible and in-focus [CK88, TTK91]. A considerable
amount of a priori knowledge about the approximate pose of the object and the
environment is required.
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• Visual inspection: this is a sub-area of object feature detection — a typical task
of visual inspection is to determine how accurately a particular object has been
manufactured [TG95b, TG95a, MR95]. A nearly perfect estimate of the geometry
and the pose of the object have to be known.

• Model-based object recognition: in this area NVP tries to find the sensor parameter
values which make it possible to identify an object and/or estimate its pose in
a most accurate and efficient way [KK94, KJV85]. Based on models of sensors
and possible objects, a search on object’s identity and pose is performed, usually
using the hypothesize-and-verify method: in the first step, the hypotheses regarding
the object’s identity and pose are formed; then, these hypotheses are evaluated
according to certain metrics; finally, the new sensor parameter values are proposed
based on a given criterion until a stopping condition is met.

• Scene or object reconstruction: in this case, the task of NVP is to find the best
values of the sensor parameters in order to build a model of an unknown scene or
object [MC96, Con85, MB93, Pit99]. A model is built incrementally, guided by the
information about the scene/object acquired to this point. Usually there is no a
priori known scene information.

The approach presented in this work falls into the category of object reconstruction. For
this task, many different NVP strategies have been developed. Here we give an overview
of few.

Maver and Bajcsy [MB93] proposed an NVP algorithm for an acquisition system con-
sisting of a light stripe range scanner and a turntable. They represent the unseen portions
of the viewing volume as 2 1

2
D polygons. The polygon boundaries are used to determine

the visibility of unseen portions from all candidate next views. The view which can see
the largest area unseen up to that point is selected as the next best view.

Connolly [Con85] used an octree to represent the viewing volume. An octree node
close to the scanned surface was labeled as seen, a node between the sensor and this
surface as empty and the remaining nodes as unseen. Next best view was chosen from a
sphere surrounding the object. Connolly proposed two NVP algorithms: one called plan-
etarium, which used a form of ray tracing to determine the number of unseen nodes from
each candidate view and selected the one seeing the most unseen nodes, and a normal
algorithm, which selected the next best view from 8 candidate positions only and did not
take occlusions into account, and therefore was significantly faster.

Whaite and Ferrie [WF94] use the range data sensed so far to build a parametric
approximate model of the object. The view from which the data fits the current model
the worst is chosen as the next best view. This approach does not check for occlusions
and does not work well with complex objects because of limitations of a parametric model.

Pito [Pit99] uses a range scanner which moves on a cylindrical path around the object.
He partitions the viewing volume into its seen and unseen portions, and defines the sur-
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face separating the two volume portions as void surface. This surface is approximated by
a series of small rectangular oriented void patches. In his positional space (PS) algorithm,
the next best view is chosen as the position of the scanner which samples as many void
patches as possible while resampling at least a certain amount of the current model.

Liska [Lis99] uses a system consisting of two lasers projecting a plane onto the viewing
volume and a turntable. The next best view (the next position of the turntable) is com-
puted based on information from the current and the preceding scan. In each of the two
scans the surface point farthest from the turntable’s rotational axis is detected as well as
the corresponding point in the other scan. The pair of points with the greater change in
the distance from the rotational axis is used to determine whether the current turntable
step should be enlarged or made smaller.

6.3 Our Approach

Since the Next View Planning was not the main focus of this thesis, the idea was to
implement a simple and straight-forward NVP algorithm which will at least nearly pre-
serve the accuracy of models built using all possible views while reducing the number
of views significantly. In most of object reconstruction tasks which involve some kind of
Next View Planning, the NVP algorithm is part of the model building process and it is
guided by some features of the partial model built based on preceding views. In our 3D
modeling approach the acquisition of multiple views of an object and the actual object
reconstruction are separated tasks — the modeling algorithm takes the images acquired
as input and does not perform any view planing itself (see Section 5.5). Therefore, our
goal was to design an NVP algorithm which does not need the partial model but uses
only the features of the images acquired.

As described in Chapter 3, our acquisition system consists of a turntable, two cameras
and a laser (Figure 3.1). The cameras and the laser are fixed while the turntable can
rotate around its rotational axis. That means, our system has one degree of freedom. As
noted in Section 3.1, the minimal rotation angle of the turntable is 1◦. Therefore, the
maximal number of views for our system is 360. With one degree of freedom and 360
possible views our acquisition system is fairly simple from the NVP point of view. Having
the additional constraint of using the features of the images only, we propose a simple
approach which takes only the current and the preceding image to decide what the next
rotational step of the turntable will be. It defines a normalized metrics for comparison of
the current and the preceding image. If the change is less than or equal to the maximal
allowed change then the step is doubled. If the change is higher than the maximal change,
then the current image is discarded and the turntable moves back by half the current step.
In special cases where doubling the step exceeds the maximum or halving the step falls
below the minimum, the new step is set to the maximum or minimum, respectively. The
remainder of this section describes the metrics for comparison of images in detail and
gives a step-by-step description of the NVP algorithm proposed.
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6.3.1 Metrics for Comparison of Shape from Silhouette Images

The only information provided by a pixel in a silhouette image (see Figure 5.1a) is whether
the pixel represents the object or the background. Following the notation common in NVP,
we define a pixel representing the object as seen and a pixel representing the background
as empty. Note that in a silhouette image there are no occlusions — the value of a pixel
depends only on whether in the conic volume defined by the pixel there is a 3D point
belonging to the object. Therefore, there can not be any unseen pixels, i.e., pixels for
which we can not be sure whether they should be marked as seen or empty. In a binarized
silhouette image (see Figure 5.2d) all white pixels are seen and all black pixels empty.
Therefore, our NVP algorithm binarizes an acquired image in the same way as described
in Section 5.2.1 and compares two binary images in the following way (illustrated in Fig-
ure 6.2): it counts all pixels which are seen in one and empty in the other image; in order
to normalize this value, it is divided by the number of pixels which are seen in at least
one of the images. With this metrics definition, if two silhouette images are identical, the
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Silhouette in current image

Silhouette in previous image

Figure 6.2: Change between two silhouette images

change is 0, and if the silhouettes do not intersect at all, it is 1.

Note that calculating the change used features of the images only and none of the
information about the geometry of the acquisition system. This means that the system
does not need to be calibrated prior to applying the NVP algorithm.

6.3.2 Metrics for Comparison of Shape from Structured Light

Images

For Shape from Structured Light images we follow the same idea — we mark the pixels
of the current and the preceding image as seen, empty or unseen, and count pixels which
are seen in one and empty in the other image. A Shape from Structured Light input
image contains a curve representing the intersection of the laser plane and the object (see
Figure 5.1b). How do we decide which pixels are seen/empty/unseen? If we denote the
source point of the laser with P and image pixels with Qi (Figure 6.3), and draw a line
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P

Q2

Q1

Q3

Figure 6.3: Seen, empty and unseen pixels in laser images

from P going through Qi, we can differentiate between three types of points: if this line
intersects the laser curve before it reaches Qi (or exactly at Qi), then Qi is below the
surface of the object and we mark it as seen (point Q1 in Figure 6.3); if the line intersects
the laser curve after the point Qi, then Qi is above the object’s surface and we mark it
as empty (Q2 in Figure 6.3); finally, if the line does not intersect the laser curve at all,
then Qi is occluded by a part of the object outside the current laser plane and we can
not say whether it is above or below the surface, so we mark it as unseen (Q3 in Figure 6.3).

In order to perform the marking of pixels, our NVP algorithm processes the images
acquired in a way very similar to binarization of laser images described in Section 5.2.2:

1. Image coordinates of the laser are calculated (point P in Figure 6.3).

2. The image of the acquisition space (Figure 6.4a) is binarized in the following way:
starting from every pixel belonging to the laser line we ”walk” toward the laser point
P , painting all the encountered pixels gray (unseen), resulting in image shown in
Figure 6.4b.

3. For the image acquired, an initial marking image is created, identical to the resulting
image of the acquisition space from the previous step (Figure 6.4b).

4. Starting from every pixel belonging to the laser line in the acquired image we ”walk”
toward the laser point P , painting all the encountered pixels black (empty), and away
from the point P , painting all the encountered pixels white (seen). The resulting
image is shown in Figure 6.4d.

Having processed the current and the preceding image this way, our NVP algorithm com-
pares these two images by counting pixels which are seen in one and empty in the other
image. This number is normalized by dividing it with the number of pixels which are seen
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(a) (b)

(c) (d)

Figure 6.4: Processing a Shape from Structured Light image for NVP

in at least one of the two images, but not unseen in the other. In other words, because
of uncertainty associated with the unseen pixels, they are completely disregarded by our
NVP algorithm.

In order to mark the image pixels as described above, the NVP algorithm needs to
know the laser position as well as how to transform the image to the world coordinates.
Therefore, for Shape from Structured Light the acquisition system needs to be calibrated
prior to applying the NVP algorithm.

6.3.3 Step-by-Step Description

To describe our NVP approach in detail, we use the following parameter notation:

• Angle steps: αmin, αmax, αinit, αcurr — the minimal, maximal, initial and the current
step.

• Images acquired: In denotes the nth image taken.

• The change between two images: Cmax, Ccurr — the maximal allowed and the
current change.

For both Shape from Silhouette and Shape from Structured Light images, our NVP
approach performs these steps:

1. Parameters are initialized. The users sets the initial step αinit and the maximal
step αmax (αinit ≤ αmax), as well as the maximal allowed change Cmax between two
subsequent images. This change is assumed to be normalized, i.e., 0 ≤ Cmax ≤ 1.
The minimal step αmin is implied by the resolution of the turntable (1◦ for our
turntable).
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2. The first image I1 is taken. The current step αcurr is set to the initial value: αcurr =
αinit. Number of acquired views n is set to one: n = 1.

3. If the turntable already has made a complete revolution of 360◦, we are done. Oth-
erwise, the turntable is rotated by the angle αcurr, the image In+1 is taken and we
continue with Step 4.

4. The change Ccurr between the images In+1 and In is evaluated. If Ccurr ≤ Cmax or
αcurr = αmin the image In+1 is accepted, jump to Step 6. Otherwise the image In+1

is discarded, continue with Step 5.

5. The step αcurr is halved: αcurr = 1
2
·αcurr. If αcurr became smaller than αmin it is set

to αmin. The turntable is rotated by −αcurr (i.e., back by the half of the previous
step). Go back to Step 4.

6. Increment the image counter n by one and double the step αcurr: n = n + 1,
αcurr = 2 · αcurr. Jump back to Step 3.

6.4 Summary

This chapter introduced and discussed the problem of Next View Planning in general and
presented a simple approach for a turntable-based acquisition system with one degree of
freedom. It concludes the part of this thesis describing the theoretical background and
the algorithms developed. The following chapter presents experimental results.
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Chapter 7

Results

This chapter presents the tests performed on the 3D modeling method described in this
work and analyzes their results. Sections 7.1 and 7.2 analyze camera and laser calibration
errors, respectively. Tests and results with synthetic data are described in Section 7.3,
with real data in Section 7.4 and experiments with Next View Planning in Section 7.5.
Section 7.6 discusses the performance issues, followed by the summary in Section 7.7.

7.1 Analysis of Camera Calibration Errors

Calibration of both cameras was performed with a data set of 75 points whose world
coordinates (xw, yw, zw) are known and the corresponding image coordinates (Xi, Yi) are
measured. Once the calibration is completed and the model of the camera has been built,
we can estimate its accuracy by using the camera model to perform world-to-image or
image-to-world projection of the points from the calibration data set and measuring the
distance between the projection of the points and their ideal coordinates.

For both cameras we measure this distance for each point from the calibration data
set and calculate the mean error, the maximal error and the standard deviation of the
error. Table 7.1 summarizes the results for the Shape from Silhouette camera and Ta-
ble 7.2 for the Shape from Structured Light camera. For the distorted image plane error
the ideal image coordinates of calibration points are compared with the image coordinates
obtained through applying the camera model on the calibration points’ world coordinates,
taking lens distortion into account. Undistorted image plane error is the same, with the
difference that lens distortion is ignored. For the object space error the camera model
is applied to the ideal image coordinates of calibration points and the calculated world
coordinates are compared with the ideal ones.

The 3D modeling method presented in this work performs world-to-image transforma-
tions of the vertices of the octree nodes. Therefore, the distorted or undistorted image
plane error, depending on whether lens distortion is taken into account or not, is the
relevant error measure for our approach. For both cameras the average error was 0.5 pixel
or less, which is sufficient for our approach, because the smallest unit processed in an
image is 1 pixel.
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type of error mean max standard deviation
distorted image plane 0.286592 pix 0.641272 pix 0.125903 pix
undistorted image plane 0.287583 pix 0.642413 pix 0.126503 pix
object space 0.129321 mm 0.265288 mm 0.055917 mm

Table 7.1: Camera calibration errors — Shape from Silhouette

type of error mean max standard deviation
distorted image plane 0.496943 pix 1.203704 pix 0.256143 pix
undistorted image plane 0.502029 pix 1.224840 pix 0.258809 pix
object space 0.153209 mm 0.334654 mm 0.073592 mm

Table 7.2: Camera calibration errors — Shape from Structured Light

7.2 Analysis of Laser Calibration Errors

The position of the laser is calculated by intersecting rays coming from the laser (see
Section 3.4). A ray can be defined through two points belonging to it. For error estimation
we measured four rays (i.e., eight points) and intersected each two, thus obtaining six
results as the position of the laser. The mean error, the maximal error and the standard
deviation of the error are summarized in Table 7.3, taking the mean position as the exact
one. The mean position is about 373 mm away from the origin of the world coordinate
system where the objects are placed. As Table 7.3 indicates, the error of the estimated

mean error max error standard deviation
0.956311 mm 2.492263 mm 0.881400 mm

Table 7.3: Laser calibration errors

position of the laser is about 1 mm. In our experiments the objects are placed around
the origin of the world coordinate system and for all objects their surface was at least 300
mm away from the laser. The position of the laser is used for the binarization of Shape
from Structured Light images (see Section 5.2.2) in order to find the pixels inside and
outside the object (see Figure 5.3). At the distance of 300 mm or more, an error of 1 mm
of the position of the laser is negligible.

7.3 Synthetic Objects

For tests with synthetic objects we can build a model of a virtual camera and laser and
create input images such that the images fit perfectly into the camera model. This way we
can analyze the accuracy of the constructed models without impact of camera calibration
errors. The parameters and the position of the camera and the laser are arbitrary, so we
choose realistic values. We assume having a virtual camera with focal length f = 20 mm,
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placed on the y axis of the world coordinate system, 2000 mm away from its origin (Fig-
ure 7.1). We set the distance between two sensor elements of the camera to dx = dy = 0.01
mm. The laser is located on the z axis of the world coordinate system, 850 mm away
from its origin, and the turntable 250 mm below the x-y plane of the world coordinate
system, with its rotational axis identical to the z world axis, as shown in Figure 7.1. We

Camera

Laser

z

y

2000 mm

Turntable

x250 mm

850 mm

Rotational axis

Figure 7.1: Virtual acquisition system

build input images with size 640 × 480 pixels, in which 1 pixel corresponds to 1 mm in
the x-z plane of the world coordinate system.

Having built the camera model and the input images we can test our 3D modeling
algorithms with varying modeling parameters. As the measure of the accuracy of the
models we compare the size (width, height and length) and the volume of the model with
the size and the analytical volume of the object.

7.3.1 Synthetic Sphere

As the first synthetic object we create a sphere with radius r = 200 mm, shown in Fig-
ure 7.2a. If we place the center of the sphere in the origin of the world coordinate system
(see Figure 7.1), the sphere will look the same from all possible views. For our virtual
acquisition system we can assume having neither camera nor light occlusions and we can
construct perfect input images of the sphere (Figure 7.2b and c) which can be used for
any view. Note that the image from Figure 7.2c can not be obtained using the laser from
Figure 7.1. Instead, we assume seeing the complete profile of the sphere, in order to be
able to reconstruct the complete object using Shape from Structured Light only. Since the
sphere does not contain any cavities, Shape from Silhouette can also reconstruct it com-
pletely. Therefore, we can measure the accuracy of each of the methods independently,
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as well as of the combined method.

(a)

r

r = 200 mm

(b) (c)

Figure 7.2: Synthetic sphere (a) and an input image for Shape from Silhouette (b) and
Shape from Structured Light (c)

In the first test we build models using 360 views with the constant angle of 1◦ between
two views, while increasing octree resolution. Table 7.4 summarizes the results, giving the
size, the computed volume and the relative error of volume computation for each model
built. Figure 7.3 visualizes these models. The models built with octree resolution of 23,
43, 83 and 163 are shown only once in Figure 7.3, because the models produced by the
two methods were identical.

octree voxel size method dimensions (mm) volume (mm3) error

— — analytic 400× 400× 400 33510 322 —

23 256 mm
Silhouette 512× 512× 512 134217 728 +300.52%
Structured Light 512× 512× 512 134217 728 +300.52%

43 128 mm
Silhouette 512× 512× 512 117440 512 +250.46%
Structured Light 512× 512× 512 117440 512 +250.46%

83 64 mm
Silhouette 512× 512× 512 60817 408 +81.49%
Structured Light 512× 512× 512 60817 408 +81.49%

163 32 mm
Silhouette 448× 448× 448 46661 632 +39.25%
Structured Light 448× 448× 448 46661 632 +39.25%

323 16 mm
Silhouette 416× 416× 416 38666 240 +15.39%
Structured Light 416× 416× 416 39321 600 +17.34%

643 8 mm
Silhouette 400× 400× 400 35241 984 +5.17%
Structured Light 400× 400× 400 35868 672 +7.04%

1283 4 mm
Silhouette 400× 400× 400 33786 880 +0.83%
Structured Light 400× 400× 400 34352 640 +2.51%

2563 2 mm
Silhouette 396× 396× 400 33034 528 -1.42%
Structured Light 400× 400× 400 33605 888 +0.29%

5123 1 mm
Silhouette 396× 396× 400 32936 452 -1.71%
Structured Light 400× 400× 400 33605 248 +0.28%

Table 7.4: Reconstruction of synthetic sphere with increasing octree resolution
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Shape from Silhouette

Shape from Structured Light

4323 83 163

1283 51232563323 643

323 643 1283 51232563

Figure 7.3: 3D models of synthetic sphere with increasing octree resolution

In the second test we build models with an increasing number of views and a con-
stant octree resolution. The idea is to measure the impact of the number of views on
the accuracy of the models. Since the number of possibly useful views increases with an
increasing octree resolution, this resolution should be as high as possible. For our virtual
acquisition system from Figure 7.1 and the synthetic input images from Figure 7.2 the
maximal reachable octree resolution is 5123, because the projection of higher resolution
octree nodes into the image plane would be less than 0.5 × 0.5 pixels, and 1 square pixel
is the smallest testable area in our modeling algorithm. However, considering that the
models with the resolution 2563 were insignificantly different from models with the reso-
lution 5123, but two times faster to build, in this test we use the octree resolution of 2563.
The angle between two neighboring views is always constant. Voxel size is 2 mm for all
models. The results are summarized in Table 7.5 and the models shown in Figure 7.4.
The column error 1 in Table 7.5 refers to the error of the computed volume relative to
the analytic volume and the column error 2 to the error relative to the model built with
360 views and the same octree resolution of 2563.

For the synthetic sphere, the models built using the combined method were identical

61



views method dimensions (mm) volume (mm3) error 1 error 2

— analytic 400× 400× 400 33510 322 — —

360
Silhouette 396× 396× 400 33034 528 -1.42% —
Structured Light 400× 400× 400 33605 888 +0.29% —

4
Silhouette 400× 400× 400 38218 688 +14.05% +15.69%
Structured Light 404× 404× 400 42650 944 +27.28% +26.92%

10
Silhouette 400× 408× 400 33494 656 -0.05% +1.39%
Structured Light 400× 420× 400 34749 408 +3.70% +3.40%

20
Silhouette 400× 400× 400 33230 464 -0.83% +0.59%
Structured Light 400× 400× 400 33883 968 +1.12% +0.82%

30
Silhouette 400× 396× 400 33183 792 -0.97% +0.45%
Structured Light 400× 400× 400 33726 304 +0.64% +0.36%

60
Silhouette 396× 396× 400 33097 536 -1.23% +0.19%
Structured Light 400× 400× 400 33634 944 +0.37% +0.09%

90
Silhouette 396× 396× 400 33067 552 -1.32% +0.10%
Structured Light 400× 400× 400 33617 440 +0.32% +0.03%

180
Silhouette 396× 396× 400 33048 448 -1.38% +0.04%
Structured Light 400× 400× 400 33608 320 +0.29% +0.01%

Table 7.5: Reconstruction of synthetic sphere with increasing number of views

to the models obtained using Shape from Silhouette only. Therefore, these models and
their statistics are not shown in Figures 7.3 and 7.4 and Tables 7.4 and 7.5.

7.3.2 Synthetic Cone

As the second synthetic object we create a cone, having a cavity in the shape of a smaller
cone (Figure 7.5a). We place the cone’s axis of rotational symmetry in the rotational
axis of the turntable and its base in the turntable’s x-y plane (see Figure 7.1). With
the virtual camera and laser placed as shown in Figure 7.1 we can construct input im-
ages fitting perfectly into the camera model. An input image for Shape from Silhouette is
shown in Figure 7.5b and an input image for Shape from Structured Light in Figure 7.5c.

In this case none of the two algorithms can reconstruct the complete object — Shape
from Silhouette can not see the cavity inside the cone and Shape from Structured Light
can not see the outer cone shape because of light occlusions. Figure 7.6 shows the models
constructed by using one of the underlying methods only.

Again, in the first test we build models of the cone using 360 views, while increasing
octree resolution. In addition to measuring the accuracy of the computed volume of the
complete object, we also measure the accuracy of the computed volume of the outer cone
(reconstructed by Shape from Silhouette) and of the inner cone (carved out by Shape from
Structured Light). Table 7.6 summarizes the results and Figure 7.7 shows the models built.

In the second test all models are built with the same octree resolution of 2563 and
voxel size of 2 mm, while increasing the number of views. The accuracy of the computed
volume is measured for the outer and the inner cone, and for the complete object. The
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180 views 360 views90 views60 views

4 views 10 views 20 views 30 views

180 views 360 views90 views60 views

Shape from Structured Light

Shape from Silhouette

Figure 7.4: 3D models of synthetic sphere with increasing number of views

results are summarized in Table 7.7 and the constructed models shown in Figure 7.8.
Figure 7.4. The column error 1 in Table 7.5 refers to the error of the computed volume
relative to the analytic volume and the column error 2 to the error relative to the model
built with 360 views and the same octree resolution of 2563.

7.3.3 Synthetic Cuboid

As the third and final synthetic object we create a cuboid with the size 100×70×60 mm,
which is equal to the size of the real cuboid we used in test with real objects, described
later in this section. The camera and the laser from our virtual acquisition system from
were placed closer to the object than shown in Figure 7.1, because otherwise the cuboid
would appear small in the input images. The cuboid and a sample Shape from Silhouette
and Shape from Structured Light image are shown in Figure 7.9.
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Figure 7.5: Synthetic cone (a) and an input image for Shape from Silhouette (b) and
Shape from Structured Light (c)

(b)(a)

Figure 7.6: Models of the cone using either Shape from Silhouette (a) or Shape from
Structured Light only (b)

Also for this object neither of the two methods alone was able to reconstruct the object
completely, as illustrated in Figure 7.10 — Shape from Silhouette could not recover the
upper flat surface of the cuboid (Figure 7.10a) and Shape from Structured Light could
not see the four sides (Figure 7.10b) because of light occlusions.

In the first test of the combined method, we build models of the cuboid using 360
silhouette and 360 laser light views. Table 7.8 summarizes the results and Figure 7.11
shows the models built. The maximal octree resolution reached was 1283, because at that
depth there were no more gray nodes.

By using 360 views for both Shape from Silhouette and Shape from Structured Light,
a perfect model of the cuboid was built, without any dimension or volume errors. In the
second test, we vary the number of views while setting the maximal octree resolution to
2563 and voxel size to 0.5 mm and compare the models built with the analytical object.
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octree voxel size method volume (mm3) error

— —
analytic (outer cone) 8 337580 —
analytic (inner cone) 6 107256 —
analytic (complete object) 2 270 324 —

23 256 mm
Silhouette (outer cone) 67 108864 +704.90%
Structured Light (inner cone) 0 -100.00%
combined (complete object) 67 108 864 +2 855.92%

43 128 mm
Silhouette (outer cone) 41 943040 +403.60%
Structured Light (inner cone) 0 -100.00%
combined (complete object) 41 943 040 +1 747.45%

83 64 mm
Silhouette (outer cone) 22 020096 +164.11%
Structured Light (inner cone) 1 048576 -82.83%
combined (complete object) 20 971 520 +823.72%

163 32 mm
Silhouette (outer cone) 14 024704 +68.21%
Structured Light (inner cone) 3 276800 -46.35%
combined (complete object) 10 747 904 +373.41%

323 16 mm
Silhouette (outer cone) 10 649600 +27.73%
Structured Light (inner cone) 4 620288 -24.35%
combined (complete object) 6 029 312 +165.57%

643 8 mm
Silhouette (outer cone) 9 228288 +10.68%
Structured Light (inner cone) 5 367808 -12.11%
combined (complete object) 3 860 480 +70.04%

1283 4 mm
Silhouette (outer cone) 8 676352 +4.06%
Structured Light (inner cone) 5 808384 -4.89%
combined (complete object) 2 867 968 +26.32%

2563 2 mm
Silhouette (outer cone) 8 366592 +0.34%
Structured Light (inner cone) 6 026208 -1.33%
combined (complete object) 2 340 384 +3.09%

5123 1 mm
Silhouette (outer cone) 8 335984 -0.02%
Structured Light (inner cone) 6 040760 -1.09%
combined (complete object) 2 295 224 +1.10%

Table 7.6: Reconstruction of synthetic cone with increasing octree resolution

23 43 83 163

25631283643323 5123

Figure 7.7: 3D models of synthetic cone with increasing octree resolution
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views method volume (mm3) error 1 error 2

—
analytic (outer cone) 8 337 580 — —
analytic (inner cone) 6 107 256 — —
analytic (complete object) 2 270 324 — —

360
Silhouette (outer cone) 8 366 592 +0.34% —
Structured Light (inner cone) 6 026 208 -1.33% —
combined (complete object) 2 340 384 +3.09% —

4
Silhouette (outer cone) 9 798 464 +17.52% +17.11%
Structured Light (inner cone) 7 706 176 +26.18% +27.88%
combined (complete object) 2 092 288 -7.84% -10.60%

10
Silhouette (outer cone) 8 507 120 +2.03% +1.68%
Structured Light (inner cone) 6 229 168 +2.00% +3.37%
combined (complete object) 2 277 952 +0.34% -2.67%

20
Silhouette (outer cone) 8 433 184 +1.15% +0.80%
Structured Light (inner cone) 6 068 480 -0.63% +0.70%
combined (complete object) 2 364 704 +4.16% +1.04%

30
Silhouette (outer cone) 8 415 760 +0.94% +0.59%
Structured Light (inner cone) 6 046 512 -0.99% +0.34%
combined (complete object) 2 369 248 +4.36% +1.23%

60
Silhouette (outer cone) 8 393 952 +0.68% +0.33%
Structured Light (inner cone) 6 030 976 -1.25% +0.08%
combined (complete object) 2 362 976 +4.08% +0.97%

90
Silhouette (outer cone) 8 383 424 +0.55% +0.20%
Structured Light (inner cone) 6 028 128 -1.30% +0.03%
combined (complete object) 2 355 296 +3.74% +0.64%

180
Silhouette (outer cone) 8 371 808 +0.41% +0.06%
Structured Light (inner cone) 6 026 720 -1.32% +0.01%
combined (complete object) 2 345 088 +3.29% +0.20%

Table 7.7: Reconstruction of synthetic cone with increasing number of views

60 views 90 views 180 views 360 views

4 views 10 views 30 views20 views

Figure 7.8: 3D models of synthetic cone with increasing number of views

The results are summarized in Table 7.9 and the constructed models shown in Figure 7.12.
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100 mm 70 mm

60 mm

(a) (b) (c)

Figure 7.9: Synthetic cuboid (a) and an input image for Shape from Silhouette (b) and
Shape from Structured Light (c)

(b)(a)

Figure 7.10: Models of the synthetic cuboid using either Shape from Silhouette (a) or
Shape from Structured Light only (b)

octree voxel size method dimensions (mm) volume (mm3) error
— — analytic 100.0× 70.0× 60.0 420000 —
23 256 mm combined 128.0× 128.0× 64.0 1 048576 +149.66%
43 128 mm combined 128.0× 128.0× 64.0 1 048576 +149.66%
83 64 mm combined 128.0× 96.0× 64.0 786432 +87.25%
163 32 mm combined 112.0× 80.0× 64.0 573440 +36.53%
323 4 mm combined 104.0× 72.0× 60.0 449280 +6.97%
643 2 mm combined 100.0× 72.0× 60.0 432000 +2.86%
1283 1 mm combined 100.0× 70.0× 60.0 420000 0.00%

Table 7.8: Reconstruction of synthetic cuboid with increasing octree resolution

7.3.4 Analysis of Results

In the tests with synthetic sphere we compared Shape from Silhouette and Shape from
Structured Light against one another. With respect to octree resolution there was no sig-
nificant difference in the behavior of the two methods – the accuracy of the models built
was approximately the same (see Table 7.4), with exception of octrees 2563 and 5123,
where the volume and size of the Shape from Silhouette model started being smaller than
the analytical values, while the Shape from Structured Light model truly converged to the
analytical one. This can be explained through the complexity of building a Shape from
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Figure 7.11: 3D models of synthetic cuboid with increasing octree resolution

views method dimensions (mm) volume (mm3) error
— analytic 100.0× 70.0× 60.0 420 000 —
4 combined 104.0× 73.0× 60.0 435 420 +3.67%
10 combined 104.0× 97.5× 60.0 508 746 +21.13%
20 combined 104.0× 73.0× 60.0 435 402 +3.67%
30 combined 104.0× 76.0× 60.0 446 304 +6.26%
60 combined 104.0× 73.0× 60.0 435 137 +3.60%
90 combined 100.0× 73.0× 60.0 427 891 +1.88%
180 combined 100.0× 72.0× 60.0 426 071 +1.45%
360 combined 100.0× 70.0× 60.0 420 000 0.00%

Table 7.9: Reconstruction of synthetic cuboid with increasing number of views

60 views 90 views 180 views 360 views

4 views 10 views 30 views20 views

Figure 7.12: 3D models of synthetic cuboid with increasing number of views
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Silhouette based octree – each node is projected into all 360 input images by projecting
its 8 vertices, which means 2880 world-to-image projections of points per node. In the
Shape from Structured Light method, a node is projected into two nearest images only,
i.e., there are 16 world-to-image projections per octree node. Therefore, when dealing
with octree nodes of finer resolution (when the projection of the node has approximately
the size of a pixel), errors due to numerical instabilities are more likely to happen in Shape
from Silhouette, especially when using a large number of views.

Regarding number of views, there was also no significant difference between the two
methods. Using 20 instead of 360 input views was sufficient for both methods to create
models less than 1% different from the models built using 360 views (see Table 7.5).

When building the synthetic cone the relative error of the computed volume of models
built with increasing octree resolution (Table 7.6) was much larger than the error of the
models of the sphere built with same parameters. The reason for this is that the cone
has a large number of octree nodes belonging to the surface, and these nodes are the ones
contributing mostly to the error.

The models of the cone built with different number of views showed the same behavior
as the models of the sphere – starting from 20 input views the volume error relative to
the volume of the object built with 360 views falls to 1% or less (Table 7.7).

The synthetic cuboid was the only object reconstructed perfectly, which can be ex-
plained by a perfect alignment of the object with the voxel space. However, the model was
ideal only when using all 360 created views, both for Shape from Silhouette and Shape
from Structured Light. When using any smaller number of views, the error was relatively
large compared to the error of models of the sphere and the cone with the same number
of views. This shows the complexity of reconstruction of flat surfaces. Interestingly, the
model built using 4 views was better than the models built using 10 or 30 views. This
illustrates the importance of selection of most significant views when reconstructing ob-
jects with flat surfaces using a small number of views.

If an object only needs to be visualized, without calculating its volume, a model built
with the octree resolution 323 and 10 input views can give a satisfactory result.

However, it should be noted that the sufficient octree resolution as well as the sufficient
number of view depend on the properties of the camera, the geometry of the acquisition
system and the properties of the object observed. In the tests with synthetic data we
dealt with relatively simple objects only. For more realistic cases with more complex data
sets tests with real objects are necessary.
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7.4 Real Objects

For tests with real objects we use 8 objects shown in Figure 7.13: a metal cuboid, a wooden
cone, a globe, a coffee cup, two archaeological vessels and two archaeological sherds. The

Metal cuboid Wooden cone

Vessel #2 Sherd #1 Sherd #2Vessel #1

Globe Coffee cup

Figure 7.13: Real objects used for tests

cuboid, the cone and the globe have known dimensions so we can calculate their volumes
analytically and compare them with the volumes of their reconstructed models. Using
these three objects we can also measure the impact of ignoring camera lens distortion on
the accuracy of the models. The other objects have unknown volume, so we will just show
the models constructed. All models shown in this section are built using 360 views, with
constant angle of 1◦ between two neighboring views.

7.4.1 Cuboid, Cone and Globe

For these three objects, we build models with octree resolution of 643, 1283, 2563 and
5123, once with and once without taking lens distortion into account. Table 7.10 sum-
marizes the results. Figure 7.14 shows the models built taking lens distortion into account.

7.4.2 Vessels, Sherds and Cup

As noted earlier in this section, the exact volumes of these objects are unknown and
therefore the accuracy of the volume calculated through reconstruction can not be esti-
mated. However, we can measure the bounding cuboid (i.e., the minimal possible cuboid
aligned with the x, y and z axis of the world coordinate system which contains the object
entirely) and compare it with the dimensions of the model. Table 7.11 summarizes the
results. The resulting models, shown from three views, are depicted in Figure 7.15. All
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object octree lens d. dimensions (mm) volume (mm3) error

cuboid (analytic) — — 100.0× 70.0× 60.0 420000 —

cuboid

643
no 102.0× 72.0× 60.0 410912 -2.16%
yes 102.0× 72.0× 60.0 413128 -1.64%

1283
no 101.0× 71.0× 59.0 381922 -9.07%
yes 101.0× 71.0× 60.0 387018 -7.86%

2563 no 101.0× 71.0× 59.0 379727 -9.59%
yes 101.0× 71.0× 60.0 384678 -8.41%

5123 no 101.0× 71.0× 59.0 379727 -9.59%
yes 101.0× 71.0× 60.0 384678 -8.41%

cone (analytic) — — 156.0× 156.0× 78.0 496950 —

cone

643
no 153.0× 153.0× 79.2 513271 +3.28%
yes 152.2× 155.0× 77.5 522252 +5.09%

1283
no 148.9× 150.2× 76.5 457833 -7.87%
yes 150.8× 150.8× 77.5 463526 -6.73%

2563
no 147.5× 148.9× 75.8 430709 -13.33%
yes 150.1× 149.4× 77.5 435180 -12.43%

5123 no 147.5× 148.9× 75.8 428930 -13.69%
yes 148.0× 149.4× 77.5 433067 -12.86%

globe (analytic) — — 149.7× 149.7× 149.7 1 756564 —

globe

643 no 151.0× 151.0× 147.3 1 851896 +5.43%
yes 151.0× 154.5× 147.3 1 867583 +6.32%

1283
no 149.1× 149.1× 145.6 1 752341 -0.24%
yes 151.0× 149.1× 145.6 1 766591 +0.57%

2563
no 148.2× 148.2× 144.6 1 703854 -3.00%
yes 149.1× 148.2× 144.6 1 717624 -2.22%

5123 no 148.2× 148.2× 144.6 1 697687 -3.35%
yes 149.1× 148.2× 144.6 1 711564 -2.56%

Table 7.10: Reconstruction of cuboid, cone and globe with different octree resolutions

models are built with an octree resolution of 2563 and using 360 views.

object voxel size measured dimensions (mm) calculated dimensions (mm) volume (mm3)
vessel #1 0.74 mm 141.2× 84.8× 93.7 139.2× 83.2× 91.4 336 131
vessel #2 0.53 mm 114.2× 114.6× 87.4 113.0× 111.9× 86.4 263 696
sherd #1 0.84 mm 51.8× 67.0× 82.2 51.0× 66.0× 79.4 35 911
sherd #2 0.76 mm 76.0× 107.3× 88.5 74.9× 103.9× 86.2 38 586

cup 0.66 mm 113.3× 80.0× 98.9 111.6× 79.0× 98.3 276 440

Table 7.11: Reconstruction of two vessels, two sherds and a cup

In order to illustrate how much each of the algorithms (Shape from Silhouette and
Shape from Structured Light) contributes to the final models from Figure 7.15, Figure 7.16
shows models using one of the methods only, as well as using the combination of both.
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Cuboid

Cone

Globe

5123643 1283 2563

Figure 7.14: 3D models of cuboid, cone and globe with different octree resolutions

7.4.3 Analysis of Results

The tests with real objects showed the difference between using a theoretical and a real-
world acquisition system. The errors in computed dimensions and volume were by an
order of magnitude larger than the errors with synthetic data. However, the errors were
consistent — the computed volume for fine grained models (2563 and 5123) was always
smaller (from 3% to 13%) than the analytical volume of the three objects with known
volume (see Table 7.10) and the size of the bounding cuboid was usually 1–5 mm smaller
than the real size in each dimension (see Tables 7.10 and 7.11). Exception were models
of the cone whose dimensions in x and y direction were up to 8 mm smaller than the real
dimensions (see Table 7.10).

The main reason for these inaccuracies turned out to be the input images, especially
the process of their binarization. The binarization of both silhouette and laser images
(described in Sections 5.2.1 and 5.2.2) is partly based on automatic thresholding of the ac-
quired images and for some images the thresholding interpreted object pixels close to the
object border as background, resulting in models smaller than the corresponding objects.
This problem was especially present for the side of the objects bordering the turntable,
which explains why the error was the largest for the cone and the smallest for the globe
(see Table 7.10). The cone has a large base leaning on the turntable, while the globe only
touches the turntable in an almost tangential way.
Another problem related to the image acquisition itself was in the occasional camera syn-
chronization errors — by acquiring a large number of images (720 images per object, at
rate of one image in about 2.5 seconds) it was impossible to manually proof every sin-
gle image — there were several images which contained some pixels from the previously
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Vessel #1 CupVessel #2

Sherd #1 Sherd #2

Figure 7.15: 3D models of two vessels, two sherds and a cup

acquired image. This especially played a role in the Shape from Structured Light part,
because having a white pixel on a wrong place in the image could cause the algorithm
to simply cut off a part of the object. For example, the right handle of the vessel #2 in
Figure 7.16, built using the combined method, was partly cut off because of this reason.
Regarding lens distortion, Table 7.10 indicates that the models built taking lens distortion
into account were always slightly better than the models built ignoring it, but there was
no significant difference, which can be expected when the objects stay mainly close to the
center in all input images.

Purely visually, all the models built using the combined method looked truthful (see
Figures 7.15 and 7.16) and except the inside of the vessel #2 and the cup, the objects
were reconstructed completely, with all their cavities and concavities.

Comparing models built using one of the methods only, either Shape from Silhouette
or Shape from Structured Light (see Figure 7.16) we can see than Shape from Silhouette
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Vessel #1

Vessel #2

Sherd #1

Sherd #2

Cup

Original Silhouette Structured Light Combined

Figure 7.16: Comparison of models built with Shape from Silhouette, Shape from Struc-
tured Light and the combined method

alone is able to reconstruct the convex hull of an object in an accurate way. Shape from
Structured Light alone, in the form presented in this work, does not create usable models.
However, it is a great method to supplement the weaknesses of Shape from Silhouette and
recover the cavities not visible in silhouette images.
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7.5 Next View Planning

For the synthetic cuboid from Figure 7.9 and for all real objects from Figure 7.13 we
also built models based on views obtained through Next View Planning. As described
in Section 6.3.3, user definable parameters for NVP are the maximal and the initial step
between two neighboring views, as well as the maximal allowed difference between them.
The parameter with the greatest impact on the number of the views selected is the differ-
ence between two images. We experimented with different values of this parameter and it
turned out that the most reasonable value is dependent on the complexity of the surface
of the object modeled. For all objects presented the most reasonable value was in the
range from 2–15%, both for Shape from Silhouette and Shape from Structured Light. It
was low for highly symmetrical objects (the cuboids and the cone) and high when the
object was not placed in the center of the turntable (the two sherds). For all objects the
maximal step was set to 16◦ and the initial to 4◦ for silhouette and 2◦ for laser images.

In order to evaluate the NVP-based models, we compare them with models built with
nearly the same number of equiangular views and with models built using all 360 possible
views. We expect to see that the volume of NVP-based models is closer to the volume of
models built using all views than the models built with equiangular views. Figure 7.17
shows the models built and Table 7.12 summarizes the results. All models were built
using octree resolution of 2563 and taking into account the lens distortion. The column
labeled ”#silh.” in Table 7.12 refers to the number of Shape from Silhouette views and
”#laser” to the number of Shape from Structured Light views used.

The results in Table 7.12 indicate that for none of the objects there is a significant
difference between the volume computed using NVP-based and equiangular views. This
can be expected for objects with asymmetric, highly detailed surface, such as the vessels
and the sherds, or completely rotationally symmetric objects, such as the cone or the
globe. For simply shaped, but asymmetrical objects, such as the cuboids and the cup,
a certain increase in the accuracy of the models built using NVP could be expected. In
order to additionally examine our NVP algorithm, in Figure 7.19 we illustrate the views
selected for the synthetic and real cuboid, the cone and the cup. All objects are showing
the objects from the top view, facing the x-y plane of the world coordinate system (shown
in Figure 3.3).

For Shape from Silhouette views (Figures 7.19a, 7.19c, 7.19e and 7.19g) each dashed
line indicates the direction the camera was viewing from, i.e., it represents the camera’s
optical axis. High density scanning areas should be those for which the silhouette border
moves fast, e.g., when the width of the silhouette changes rapidly. This happens when
an object’s part which is far from the rotational axis starts or ends being visible from
the camera. For the cuboids (Figures 7.19a and 7.19c) such parts are its corners, for the
cone (Figure 7.19e) there are no such parts and for the cup (Figure 7.19g) it is its handle.
For the purpose of better understanding of the selected Shape from Silhouette views in
Figure 7.19, Figure 7.18 illustrates the difference between two views. Also in this figure,
each dashed line represents the optical axis of the camera. If we define O from Figure 7.18
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Figure 7.17: Comparison of models built using NVP-based and equiangular views

View 1

View 2

Object

P2

P1

Q2

Q1

O

Figure 7.18: Difference between two silhouette views

as the point representing the rotational axis of the turntable, then we can view the lines
P1Q1 and P2Q2 as the width of the silhouette in views 1 and 2, respectively. The parts
of an object for which this width changes significantly from one view to the next need to
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object view selection #silh. #laser dimensions (mm) volume (mm3) error

synth. cuboid
all 360 360 100.0× 70.0× 60.0 420 000 —
NVP-based 54 71 103.5× 74.0× 60.0 436 666 +3.97%
equiangular 60 72 104.0× 73.0× 60.0 434 248 +3.39%

real cuboid
all 360 360 101.0× 71.0× 60.0 384 678 —
NVP-based 54 79 101.6× 72.3× 60.0 397 937 +3.45%
equiangular 60 90 101.6× 71.9× 59.5 397 684 +3.38%

cone
all 360 360 150.1× 149.4× 77.5 435 180 —
NVP-based 24 25 151.6× 151.6× 76.5 462 155 +6.20%
equiangular 24 24 151.6× 152.2× 76.5 462 207 +6.21%

globe
all 360 360 149.1× 148.2× 144.6 1 717 624 —
NVP-based 24 25 150.0× 149.1× 144.6 1 733 613 +0.93%
equiangular 24 24 150.0× 150.0× 144.6 1 732 919 +0.89%

vessel #1
all 360 360 139.2× 83.2× 91.4 336 131 —
NVP-based 52 45 138.5× 84.0× 92.1 341 216 +1.51%
equiangular 52 45 139.2× 83.2× 92.1 339 227 +0.92%

vessel #2
all 360 360 112.9× 111.8× 86.4 263 696 —
NVP-based 55 148 113.4× 111.8× 86.3 269 321 +2.13%
equiangular 60 120 113.4× 112.3× 86.3 269 819 +2.32%

sherd #1
all 360 360 51.0× 66.0× 79.4 35 911 —
NVP-based 99 163 50.1× 66.0× 80.1 37 237 +3.69%
equiangular 90 180 50.9× 61.8× 80.2 38 047 +5.95%

sherd #2
all 360 360 74.8× 103.9× 86.3 38 586 —
NVP-based 90 181 74.8× 103.8× 87.0 40 751 +5.61%
equiangular 90 180 74.8× 103.8× 87.0 41 565 +7.72%

cup
all 360 360 111.6× 79.0× 98.3 276 440 —
NVP-based 36 34 112.2× 80.4× 100.3 286 265 +3.55%
equiangular 36 36 112.2× 79.7× 102.3 282 989 +2.37%

Table 7.12: Comparison of models built using all views, NVP-based views and equiangular
views

be scanned with a higher density.

Shape from Structured Light views (Figures 7.19b, 7.19d, 7.19f and 7.19h) are easier
to understand. A dashed line in these figures represents the laser plane projected onto
the object for that view. High density scanning areas should be those where the distance
between the rotational axis and the intersection point of the laser plane and the object
surface changes rapidly. For the cuboids (Figures 7.19b and 7.19d) such areas are the
ones around the cuboids’ corners, for the cone (Figure 7.19f) these areas do not exist, and
for the cup (Figure 7.19h) they lie around the cup handle.

Let us analyze each of the objects from Figure 7.19. For the silhouette views of the
cuboids (Figures 7.19a and 7.19c) the views with the highest density are 0◦–60◦ and
180◦–240◦. That makes sense, because the width of the cuboid silhouettes as defined in
Figure 7.18 is smallest for views from 30◦ and 210◦ and largest from approximately 75◦,
165◦, 255◦ and 345◦. For views close to 30◦ and 210◦ the silhouette width is determined
by the two corners close to the camera (see View 2 in Figure 7.18). Because of being close
to the camera these corners move almost orthogonally as the turntable moves, so the
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Figure 7.19: Analysis of selected views for cuboids, cone and cup
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silhouette width changes rapidly here and the scans are most dense in these areas. The
laser views of the cuboids (Figure 7.19b and 7.19d) are more dense close to the corners,
as expected, but it can also be seen that for both synthetic and the real cuboid several
corners were missed, because the step was too large, but the NVP algorithm did not see
it — for example, the next left and next right view of the lower right corner intersect the
cuboid surface at almost the same distance from the rotational center.

For both silhouette and laser views of the cone (Figures 7.19e and 7.19f) not much
needs to be said — all views look nearly the same, so the step between two views was
constantly equal to the maximal allowed step. The step was smaller only for views close
to 0◦, solely because of the starting angle being smaller than the maximal angle.

For the silhouette views of the cup (Figure 7.19g) high density view were taken from
angles close to 165◦ and 255◦. This is expected, because for those views the cup handle
starts/ends being visible (i.e., not occluded by the body of the cup). The laser views
(Figure 7.19h) are dense only in areas where the projected laser plane ”jumps” from the
body of the cup to its handle and back, just as expected.

Obviously, our NVP algorithm did not fail in choosing the ”right” views (except for the
laser views of corners of the cuboids), but it did not bring any significant improvements
in the results (measured in terms of the volume and the size of the objects) compared
to the models built using an equivalent number of equiangular views. We believe that
the reason lies in the errors from the image acquisition and binarization process (due to
camera synchronization errors and automatic thresholding) — that they were significantly
larger than what could be made up by NVP-based selection of views. For example, the
NVP-based model of the cup in Figure 7.17 contains the complete handle, whereas the
model built using equiangular views misses some parts close to the top of the handle —
they were cut off through irregularities in input images. On the other hand, the NVP-
based model also contains some non-existing volume inside the cup, close to the handle,
also caused by errors in the input images.

7.6 Performance Issues

This section gives an idea how much time it takes to perform all steps of the modeling
algorithm presented. The process between having an uncalibrated acquisition system and
producing a 3D model of an object, in terms of the tasks performed, can be observed
through 4 steps:

1. Calibration of the acquisition system. This step, described in detail in Chapter 3,
requires a lot of manual work and takes about 30–60 minutes to complete.

2. Image acquisition. On our system, the computer connected to the camera was a
233 MHz Pentium with 256 MB of RAM. The automatic acquisition of all 360
possible views took about 13–15 minutes, i.e., one image in 2.5 seconds. NVP-based
acquisition requires additional image processing during the acquisition process and,
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depending on the complexity of the object acquired, it took between 3 and 45
minutes to complete.

3. Binarization of input images, as described in Section 5.2. For this and the next step,
we used a 450 MHz Pentium II with 128 MB or RAM. For silhouette images, the
binarization of 360 images took about 34 seconds. The binarization of laser images,
being more complex, took between 9 and 12 minutes, depending on the complexity
of input images.

4. The actual model building. Depending on the maximal octree resolution and the
number of views used, as well as on the other user-definable parameters, this process
took anywhere between 8 seconds and 60 minutes for the objects presented in this
section. For large number of views Shape from Structured Light was by an order
of magnitude faster than Shape from Silhouette, in some instances up to 15 times
faster using the same number of views and the same octree resolution.

The times needed for the step 4, model building, are elaborated in Table 7.13 for syn-
thetic, and in Table 7.14 for real objects. The column ”#silh.” refers to the number
of Shape from Silhouette, and ”#laser” to the number of Shape from Structured Light
views of the object. Accordingly, ”tCPU silh.” refers to the CPU time needed for building
the model using Shape from Silhouette only, ”tCPU laser” to the time for Shape from
Structured Light based models, and ”tCPU comb.” to the time to build the models using
the combined method. All CPU times are given in seconds.

From the tables 7.13 and 7.14 we can draw several conclusions:

• The time needed for completion of both Shape from Silhouette and Shape from
Structured Light linearly grows with an increasing octree resolution.

• The time needed for Shape from Silhouette is also linearly dependent on the number
of views, whereas for Shape from Structured Light the time is nearly constant for
any number of views.

• Shape from Structured Light is by an order of magnitude faster than Shape from
Silhouette for the same octree resolution and the same number of views.

• Ignoring camera lens distortion reduces the time needed to build a model by 75%.

• Ignoring the lens distortion while reducing the number of silhouette images to 30
or 40 at the same time, a performance gain of more than 95% is possible without
heavily penalizing the accuracy of the final model.

7.7 Summary

This chapter presented the experimental results of the 3D modeling method described in
this work and gave their analysis. Experiments with synthetic objects were performed
in order to evaluate the modeling algorithm without any influence of camera calibration
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object octree #silh. #laser tCPU silh. tCPU laser tCPU comb.

sphere

23 360 360 16.21 8.41 24.65
43 360 360 26.58 8.56 35.08
83 360 360 43.85 8.52 51.83
163 360 360 63.65 9.10 72.51
323 360 360 91.22 9.70 100.69
643 360 360 136.99 11.75 149.11
1283 360 360 255.66 17.68 274.74
2563 360 360 540.92 40.61 581.44
5123 360 360 981.45 91.64 1031.05
2563 4 4 15.81 14.44 20.50
2563 10 10 25.66 13.61 29.21
2563 20 20 39.31 13.90 42.52
2563 30 30 52.86 14.40 55.24
2563 60 60 95.92 15.85 97.82
2563 90 90 135.11 17.58 140.67
2563 180 180 274.59 23.89 269.93

cone

23 360 360 9.71 N/A 18.44
43 360 360 12.70 N/A 21.13
83 360 360 16.79 N/A 24.86
163 360 360 25.06 N/A 32.14
323 360 360 33.71 N/A 42.45
643 360 360 52.07 N/A 61.26
1283 360 360 99.62 N/A 141.87
2563 360 360 195.15 58.94 332.58
5123 360 360 361.38 105.39 611.73
2563 4 4 10.68 N/A 15.44
2563 10 10 14.01 N/A 20.77
2563 20 20 18.89 N/A 29.06
2563 30 30 23.82 N/A 38.92
2563 60 60 43.28 N/A 69.78
2563 90 90 55.42 N/A 91.72
2563 180 180 103.07 N/A 171.26

cuboid

23 360 360 N/A N/A 17.04
43 360 360 N/A N/A 17.84
83 360 360 N/A N/A 20.04
163 360 360 N/A N/A 22.98
323 360 360 N/A N/A 28.18
643 360 360 N/A N/A 44.50
1283 360 360 N/A N/A 72.78
2563 4 4 N/A N/A 9.72
2563 10 10 N/A N/A 12.92
2563 20 20 N/A N/A 13.76
2563 30 30 N/A N/A 16.80
2563 60 60 N/A N/A 22.90
2563 90 90 N/A N/A 22.50
2563 180 180 N/A N/A 38.46
2563 54 71 N/A N/A 21.88

Table 7.13: CPU times for reconstruction of synthetic objects
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object octree #silh. #laser CPU time

cuboid

643 360 360 219.90
1283 360 360 699.18
2563 360 360 1638.04
5123 360 360 2109.74
2563 54 79 329.82

cuboid (lens distortion ignored)

643 360 360 69.17
1283 360 360 154.90
2563 360 360 393.64
5123 360 360 422.15

cone

643 360 360 181.33
1283 360 360 565.15
2563 360 360 1871.33
5123 360 360 2035.25
2563 24 25 153.73

cone (lens distortion ignored)

643 360 360 69.52
1283 360 360 142.26
2563 360 360 398.35
5123 360 360 451.21

globe

643 360 360 217.97
1283 360 360 615.68
2563 360 360 1782.76
5123 360 360 3995.65
2563 24 25 142.16

globe (lens distortion ignored)

643 360 360 95.47
1283 360 360 170.07
2563 360 360 401.25
5123 360 360 830.15

vessel #1
2563 360 360 1313.70
2563 52 45 227.49

vessel #2
2563 360 360 2345.72
2563 55 148 458.31

sherd #1
2563 360 360 605.74
2563 99 163 174.68

sherd #2
2563 360 360 832.67
2563 90 181 203.92

cup
2563 360 360 1891.52
2563 36 34 197.91

Table 7.14: CPU times for reconstruction of real objects

errors and/or imperfect input images. These tests showed that it is possible to build
models with the volume less than 1% different from the analytical value. Experiments
with real objects showed the behavior of the modeling algorithm in a real environment.
The models were visually truthful, but slightly (about 10%) smaller than the actual
objects, due to hardware caused irregularities in input images and information loss in
binarization of these images. Experiments with Next View Planning were also presented,
and they indicated that our NVP method does choose ”good” views, but it does not
bring any significant improvement in the accuracy of the models produced, compared to
the models built using the same number of equiangular views. Finally, the performance
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of the modeling algorithm has also been analyzed, suggesting that the two parameters
that can influence the speed of the algorithm the most are the camera lens distortion (i.e.,
whether it is ignored or not) and the number of Shape from Silhouette views.
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Chapter 8

Conclusion and Outlook

The work presented in this thesis proposed a 3D modeling method based on combination of
Shape from Silhouette and laser based Shape from Structured Light, using a turntable to
obtain multiple views of an object. The intended application of the method is reconstruc-
tion of archaeological vessels and sherds, although it can be applied to any kind of objects.

The purpose of combining Shape from Silhouette and Shape from Structured Light
was to create a method which will use the advantages and overcome the weaknesses of
both underlying methods. The main advantage of Shape from Silhouette is that it can
quickly obtain an approximate volumetric model of a complete object, including objects
with handles, such as many archaeological vessels. Its main limitation is that it is not able
to detect concavities on the surface of an object, what makes it incapable of reconstruct-
ing most of archaeological sherds. Shape from Structured Light, on the other hand, can
theoretically reconstruct the complete surface of an object, including the concave surfaces,
but the models built using Shape from Structured Light only are usually incomplete, due
to camera and light occlusions.

Because of the different nature of these two methods (volumetric vs. surface model),
the main problem that needed to be solved when combining them was to find a data struc-
ture which can be used by both methods. We decided to use a volumetric representation in
the form of an octree, and build a model in an incremental way — a starting coarse model
is refined in a level-by-level manner using all available silhouette and laser light images
at each level. Doing so, large coherent blocks of the object are modeled quickly and the
only higher level octree nodes processed are the ones close to the object’s surface. When
processed, each node of the octree is projected into all silhouette images and intersected
with the object’s silhouette, and it is also projected into the nearest laser plane and tested
whether it lies below or above the intersection of that laser plane with the object’s surface.

The experiments with synthetic objects showed that construction of nearly perfect
models is possible, limited only by image and model resolution. In the experiments with
real objects the results were less accurate — the computed volume was about 10% smaller
than the actual object volume — this was mainly caused by errors in the input images
and inaccuracies in their binarization, as a preprocessing step for the modeling algorithm.
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However, the algorithm was able to produce complete and visually faithful models for all
objects, including sherds and vessels with concave surfaces and a handle. Only the in-
side of deep objects could not be completely recovered, due to camera and light occlusions.

Using all possible views (360 silhouette and 360 laser light views) the modeling takes
up to 60 minutes on a low-end hardware (450 MHz CPU and 128 MB RAM), but by re-
ducing the number of views by 70–80% and ignoring the lens distortion at the same time,
nearly the same models can be built in less than a minute on the same hardware. The
number of views can be reduced either by using a fixed step of more than 1◦ between two
views or by introducing Next View Planning, which selects the views based on features
of the object modeled. As the secondary goal of this thesis, a simple NVP algorithm was
developed, both for Shape from Silhouette and Shape from Structured Light. The algo-
rithm performs NVP-based image acquisition by doubling or halving the step depending
on the change it percepts between two most recently acquired images. The analysis of
our NVP method showed that it does make intelligent choice of the input images, but
in our tests it did not bring any significant improvement in the accuracy of the models
produced when compared with models built using the same number of views based on a
constant step between two views. However, it can be argued that any accuracy gain was
outweighed by the errors in acquiring and processing the input images.

Overall, our combined modeling approach proved to be useful for automatic creation
of virtual models of arbitrarily shaped objects. With respect to its archaeological applica-
tion it can provide models of any kind of archaeological pottery for, for example, virtual
museums. The models can also be intersected with arbitrary planes, resulting in profile
sections of a sherd or a vessel. Furthermore, the volume of an object can be estimated,
including the inside volume of objects such as bowls or cups. However, for high precision
measurements of the volume our method did not produce sufficiently accurate results, but
it gave a good rough estimate, which is sufficient for most archaeological applications.

There are several possibilities how our method could be improved:

• More reliable image acquisition. Because of camera synchronization errors it would
make sense to acquire multiple images for each view and use the image which is
least likely to contain errors.

• More robust binarization of acquired images. Binarization of both silhouette and
laser light images employs automatic or user defined global thresholding of an image,
which in many cases made the silhouette of an object smaller than it should be,
resulting in models smaller than the objects. More sophisticated techniques, such
as adaptive thresholding or edge detection should produce better results.

• More accurate testing of octree nodes against laser light images. An octree node is
projected into the nearest plane only, also in cases when the node lies somewhere
between two neighboring scanned planes or if it spans across several scanned planes.
The decision whether the node belongs to the background or the object would be
more accurate if these cases would also be considered.
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• Improvement of the NVP algorithm. While simple and straight-forward, our NVP
method showed not sophisticated enough for acquisition of laser light images, failing
to scan all corners of the cuboid. A partial cause for this failure is that our method
simply ignores unseen portions of the object when deciding which view to choose
next. It would be better to give the unseen areas a special treatment. Furthermore,
not being the main focus of the thesis, Next View Planning was not given the
same attention as the modeling method — further evaluation of our NVP approach
should be done with more complex synthetic data, in order to eliminate the impact
of calibration and image acquisition errors on the results.

Improvements listed above would make the method significantly more accurate in terms of
estimating the dimensions and the volume of objects. The method could also be combined
with other Shape-from-X techniques, such as Shape from Stereo, Shape from Shading or
Shape from Texture — the base for combining Shape from Silhouette and Shape from
Structured Light in our approach was the common octree model, used by both methods,
so possibilities could be investigated to use the octree model for other Shape-from-X
methods. Another interesting enhancement would be to take additional color images of
an object and perform texture mapping onto the model. This would broaden the range
of applications of our 3D modeling method.
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