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Abstract

Computer-aided image analysis deals with the automatic recovery of visual information from digital images. Recent image
analysis research is trying to find more general and more efficient algorithms. Given a digital image with a certain contents or
certain problem domain, it is still mandatory to manually evaluate different approaches and processing sequences to extract
useful and plausible information from the image. Once a generic image analysis approach for the problem domain has been
found, the method can often be applied independent of the operator’s intuition and previous experience. Optical character
recognition (OCR) is an example for a successful development from initial research to off-the-shelf products. This work
provides a generic image analysis system for a class of images having a characteristic contents denoted as spot arrays. Spots
are defined as simply connected, irregularly shaped regions lighter (or darker) than their background. Representatives of this
image class include images of Braille paper for blind persons and DNA arrays - a tool of modern biotechnology. Analysis
of spot array image has three main tasks. The first task is to detect the spots present in the image and therefore deals
with the spatial localization process. The spots in the image are located on a grid which may be distorted in the course
of the image production process. The second task therefore deals with the fitting of a grid to the detected spots, such
that they can be correctly addressed. Once the spots are detected and addressed, they are characterized by their shape,
intensity and local background. The automatic image analysis presented in this work is composed of a set of tools arranged
in a general framework. This general framework enables to analyze spot arrays of high spot density with possibly multiple
overlapping spots. Furthermore, the concept is robust in order to cope with outliers in the spot array and artifacts like
image contaminations. These requirements can be fulfilled by robust statistical models: A key principle of grid fitting is to
fit straight line models to the rows and columns of the grid. The input for the straight line models is given by a maximum
search in matched filter response. Spot characterization is performed by fitting a parametric spot model to the corresponding
pixels with the help of a robust M-estimator. In a consecutive step, a semi-parametric fit is possible in order to cope with
deviations from the spot model assumptions. Analysis of DNA array images serves as a demonstration of the presented general
framework. Here, the intensity of a spot represents the amount of genetic material bound to the corresponding array element.
The ultimate image analysis goal of this application is to quantify as exactly as possible the intensity of tens of thousands of
possibly overlapping spots. The output of DNA array image analysis yields the raw data for the discovery of specific genes
and the genetic control system of organisms. The results of DNA array images demonstrate the successful application of the
framework presented in this work on thousands of images resulting from various biological experiments.
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Chapter 1

Introduction and Overview

Image analysis deals with the automatic recovery of visual information from digital images.
This information extraction is usually divided intohigh-level computer vision methodsandlow-
level image processing[Sonka et al., 1999]. High-level computer vision tries to imitate human
cognition and the ability to make decisions according to the information contained in the im-
age [Ullman, 1996]. Low-level methods, on the other hand, usually use very little knowledge
about the content of images. Knowledge about image content is normally provided by high-
level algorithms or directly by a human who knows the problem domain. Recent research on
low-level methods is trying to find more efficient and more general algorithms. Sonka et al.
[Sonka et al., 1999] point out a central image analysis problem:

A complicated and so far unsolved problem is how to order the low-level steps
to solve a specific task, and the aim of automating this problem has not yet been
achieved. It is usually still a human operator who finds a sequence of relevant
operations, and domain-specific knowledge and uncertainty cause much to depend
on this operator’s intuition and previous experience.

Given a digital image with a certain contents or a certain problem domain, it is therefore still
mandatory even for low-level methods to manually evaluate different approaches and process-
ing sequences to extract useful and plausible information from the image. Once a generic
image analysis approach for the problem domain has been found, the method can often be
applied independent of the operator’s intuition and previous experience. Optical character
recognition (OCR), for example, has been a very active field for research and development
[Mori et al., 1992]. Today, reasonably good OCR packages are off-the-shelf products. The
current research in OCR is now addressing documents that are not well handled by the avail-
able systems, including severely degraded, omni-font machine-printed text and (unconstrained)
handwritten text [Trier et al., 1996]. A generic image analysis system for invoices is presented
in [Bayer and Mogg-Schneider, 1997]: The system automatically extracts the requested items
such as invoice code, sender information, date, etc. from invoices with arbitrary form layout in
arbitrary domains. It consists of two components, an OCR tool which need not be adapted to
the current domain, and a component which contains the knowledge about the domain.

In a similar manner, this work provides a generic image analysis system for a class of images
having a characteristic contents we denote as aspot arrays. In the following, we first describe
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1. Introduction and Overview

spot images and spot array images, their characteristics and the image analysis tasks one might
want to solve.

1.1 Spot Images

The term “spot” is not uniquely defined in the literature. The simplest definition of a spot is
that of a pixel in a digital image whose intensity is either higher or lower than all the intensi-
ties of its eight neighbors [Sher and Rosenfeld, 1989], [Shneier, 1983]. Blanford and Tanimoto
[Blanford and Tanimoto, 1988] do not constrain the spot extension to a single pixel and describe
bright spots as localities noticeably brighter than their immediate surroundings. Van der Heij-
den et al. [van der Heijden et al., 1997] define spots in images as phenomena which correspond
to certain objects in the scene, where the projections of these objects are so small (relative to the
image resolution) that the internal structure of the objects cannot be observed. An encyclopedic
definition characterizes a spot as a small area which is different in color, material, or texture
from the surrounding area, especially ones that are more or less circular [Microsoft, 2001].
For this work we use the characteristic features described in [Minor and Sklansky, 1981] and
[Danker and Rosenfeld, 1981] and define spots asirregularly shaped regions lighter (or darker)
than their background, which share the following characteristics: they are usuallysimply con-
nectedand they are usuallysurrounded by a smoothly curved edge. Note that this definition
originally describes the very similar concept of ablob, where a blob is often distinguished from
a spot by its size [Shneier, 1983]. In many application domains, however, the defined phenom-
ena are denoted as spots.

The galactic nebula image in Fig. 1.1a illustrates characteristic features of a spot image:
First, the stars are brighter than the surrounding background area. Second, the stars are convex
and have an approximately circular or elliptic shape. If an ellipse in Fig. 1.1a is very elongated,
i.e. has a high ratio between the two principal axes, it is likely that it belongs to two or more
stars thatoverlapin the digital image. Overlap between adjacent spots can occur due occlusions

(a) Galactic Nebula (b) Microcalcifications (c) Gel Electrophoresis

Figure 1.1. Spot Images.A spot image contains simply connected objects which deviate moderately
but not severely from convexity.
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1. Introduction and Overview

caused by different distances of the stars. Another reason for star overlap might be the point
spread function of the optical system, describing the intensity variation of the image of an
isolated point object located on a uniformly black background [Nalwa, 1993]. If bright spots are
blurred by the point spread function, they will interfere with adjacent spots in the digital image.
The second example in Fig. 1.1b shows an X-ray image of the breast (mammogram) that helps
physicians detect and evaluate breast abnormalities. The abnormalities include small targets
called microcalcifications which are tiny calcium deposits that have accumulated in the breast
tissue, and appear as a small bright spot in the mammogram [Boccignone et al., 2000]. The third
spot image example in Fig. 1.1c is from the domain of biotechnology [Takahashi et al., 1997],
[Takahashi and Watanabe, 1998]. It shows a scanned autoradiograph (X-ray film to visualize
radioactively labeled molecules) [Johnston et al., 1990] of a 2D gel electrophoresis of DNA.
Electrophoresis in this context is the phenomenon of the movement of DNA fragments through
a liquid as a result of an electric field formed between electrodes immersed in the medium. Dark
spots in Fig. 1.1c correspond to (radioactively labeled) DNA fragments.

Spot image analysis is often partitioned into the following two main tasks (Fig. 1.2):Spot
detectiondeals with the spatial localization process: image analysis requires that spots be reli-
ably detected and distinguished fromimage noise. For example, biologists are interested in the
position of a DNA fragment in an electrophoresis autoradiograph, because it reveals information
about the length of the DNA strand (the longer the DNA fragments, the slower they move within
the gel [Lewin, 1997]). Further applications of spot localization include X-ray imagery for ma-

Spot Characterization

Spot Detection

Spot Image Analysis

Spot Image

Postprocessing

 Location      

        Shape    

    Intensity    

 Background 

    Quality      

Spot Description

Figure 1.2. Spot Image Analysis.Spot image analysis is often partitioned into spot detection yielding
spot locations in the image and subsequent spot characterization. A spot is fully characterized by its
location, shape (spatial extension), background and spot signal intensity. Both spot detection and spot
characterization can be influenced by interfering image structures like artifacts or overlapping spots. The
example spot image in this figure is a zoomed and inverted subimage of Fig. 1.1a. The manually drawn
circles show the partly overlapping stars detected by a human.
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1. Introduction and Overview

terial analysis and marker detection in navigation systems. Applications in which the number
of spots is primarily more relevant than their exact position include the detection of microcalci-
fications (Fig. 1.1b) and the counting of trees in aerial photographs of forest [Rewo, 1984]. The
second image analysis task,spot characterizationdeals with the exact shape reconstruction of
the spots, estimation of spot intensity and spot background (some existing spot characterization
methods include detection, see Sect. 1.3). For example, astronomers are not only interested in
the position of celestial objects. In order to determine their distance, they also want to extract
the red shift of the stars, i.e. the spot intensity in the red light band (Sloan Digital Sky Survey
Project [York et al., 2000, Chen et al., 2001]). Spot intensities are often considered as additive
signals to a background signal. In the gel electrophoresis example (Fig. 1.1c), one must account
for the so-called unspecific radioactivity, producing intensities in the autoradiograph not result-
ing from DNA-fragments. The distribution of the background signal is usually non-uniform and
one must find a reliable way to separate signal and background. The grey level patch in Fig. 1.2
shows a “negative” subimage of Fig. 1.1a and with superimposed stars (circles) detected by a
human observer in the original image. The largest star interferes with three adjacent small stars.
Spot detection and characterization algorithms should deal with overlapping spots and separate
them. If the application requires the spot intensity and background estimation, it is important
to assess the reliability of the data obtained. Without assessing the reliability of the data, the
conclusions drawn from analyzing such data may be misleading.

1.2 Spot Array Images

A spot array image consists of an array of spotsarranged in a grid. Consider, for example, em-
bossed printing with Braille letters for blind persons [Collins and Schneider, 1998]. Fig. 1.3a
shows the spot array of a scanned Braille paper with three-dimensional bright spots formed to-
wards a scanner window and dark spots formed backwards a scanner window. With an “Optical
Braille Recognition” (OBR) image analysis system blind readers would dispose of a Braille-
to-Braille copy machine. Sighted people would have a tool for easy communication with the
Braille world. Furthermore, producers of Braille prints would receive a tool for automatic proof-
reading, for cheap storage and for easy re-printing of old, worn-out unique Braille originals
[Halousek, 1999]. Another facility for non-sighted people aretactile systemsenhancing access
to computer graphics and the learning of visual concepts. A tactile array (Fig. 1.3) takes visual
information from a computer monitor or camera and transforms it into patterns of small elec-
trical stimuli that can be felt on the skin [Eye Institute, 1996]. Image analysis of tactile arrays
would support computer-aided quality control of producers. A similar image analysis appli-
cation would be the inspection of super-conducting arrays of Fig. 1.3 [Rimberg et al., 1997].
Figure 1.3d shows an image of a high-density DNA array , a tool becoming gradually stan-
dard equipment in biotech labs [Chee et al., 1996] [Schena, 2000]. Chapter 3 of this work is
devoted to the production and properties of DNA array images. The intensity of a spot in an
array element is proportional to the amount of DNA. A noisy example of a high-density DNA
array is shown in Fig. 1.3e. In this example, the small bright spots are contaminations, i.e.
signals that do not result from genetic material. Furthermore, it is clearly visible that some ad-
jacent spots do overlap. Fig. 1.3f shows a DNA array in which the spots correspond to proteins
[MacBeath and Schreiber, 2000].

4



1. Introduction and Overview

(a) Braille Paper (b) Tactile Array

(c) Superconducting Array (d) High-Density DNA Array

(e) DNA Array with Contaminations (f) Protein Array

Figure 1.3. Spot Array Images.The spots are arranged in a grid, but the image of the spot array may
be distorted.
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Spot Detection

Spot Array Image Analysis

Spot Array Image

Postprocessing

 Location      

     Grid node

    Intensity    

 Background 

    Quality      

Spot Characterization

Grid Fitting       Shape      

Prior knowledge

Spot Description

Figure 1.4. Spot Array Image Analysis. In addition to the spot detection and characterization as
outlined in Fig. 1.2, spot array image analysis must solve a grid fitting problem. Grid fitting deals with
the correct assignment of a detected spot location to a grid node. Furthermore, a fully restored grid
reveals location information of undetected spots. The example spot array image is from a DNA array.
The grid was manually drawn by a human and illustrates the major image analysis problems. The grid
fitting algorithm must tolerate a certain degree of irregularity in spot spacing. At the same time, the
algorithm must not be “distracted” by the artifact lying between the grid node.

The image analysis tasks for spot array images are identical to the tasks of spot image
analysis described in Sect. 1.1: The spot locations must be detected and its shape must be
characterized. There is, however, one task that distinguishes spot array image analysis from
general spot image analysis: The spots locations need not merely be detected but rather be
assigned to the correct address of the spot array (Fig. 1.4). For example, a detected bright spot
in the Braille paper must be assigned to the correct row and column of the corresponding Braille
letter in order to yield correct reading results. This addressing task is denoted asgrid fitting
and should cope with the following tasks:

• Index Detected Spots:While the spots in a spot array are inherently arranged in rows and
columns, the spots in the digital image need not be present in a regular manner, meaning
that distortions from aregular grida very likely to occur. Such distortion are often a result
of non-linear deformations of the medium carrying the spots (Fig. 1.3a,b). Sometimes the
distortions are a result of the (linear) rotation of the spot array in the image (Fig. 1.3c).

• Cope with Lacking Spots: Another key issue for grid fitting algorithms is to index the
spots correctly even at very low levels of intensity. The spot can be absent (as can occur
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1. Introduction and Overview

in a production error) or have such a low signal that it is not detected. Lacking spots make
simple horizontal and vertical ordering algorithms for indexing prohibitive. If one wants
to restore the full grid, the locations of the lacking spots must be inferred from the set of
the detected spot locations.

• Ignore Artifacts A grid fitting algorithm must deal effectively with two opposing criteria.
First, due to variation in spot position, as described above, the algorithm must tolerate a
certain degree of irregularity in the spot spacing. At the same time, the algorithm must
not be “distracted” by artifacts (Fig. 1.3e) that could be adjacent to a true arrayed spot.

1.3 Related Work

To get an idea about the demands a spot array analyzing method must meet, we discuss some
existing methods that detect spots and methods that characterize spots. Some methods accom-
plish spot detection and characterization together. We also show approaches and applications
that perform grid fitting on arrays.

1.3.1 Spot Detection

The most straightforward method to detect spots in an image ismatched filtering[Pratt, 1991]
[Schmidt, 1990]. First, the spot image is convolved with a kernel that resembles the shape of
the spot. Then, all positions corresponding to a (local) maximum of the convolved image are
marked as candidate spots (i.e. non-local maximum suppression). Finally, all candidate spots
for which the convolved image exceed a certain threshold are accepted as detected spots. The
matched filter approach is sensitive to interfering image structures (edges and lines resulting
from other objects in the scene) and overlapping spots. Another approach is to explicitly use
the known intensity value of a spot [Schmidt, 1990]. By increasing the error for spots with
different intensities, the sensitivity of detecting the spot increases dramatically. However, the
variation in their detection value is so large that it is more difficult to distinguish a spot from
noise than in ordinary matched filtering.

The second class of spot detectors are approaches based on astatistical parametric model
of the image data. Here, the spot shape is assumed to correspond to a statistical model with ad-
justable parameters which are optimized for the observed gray level data. Rewo [Rewo, 1984]
models convex objects (trees) as two-dimensional second order polynomials. He derives a spot
detection mask which enhances convex objects by minimization of the squared error between
the model and the observed data. A pixel is a spot element if the detector output exceeds a pos-
itive thresholdt. Noordmans and Smeulders [Noordmans and Smeulders, 1998] detect spots
with the help of Gaussian (isotropic) spot models of different sizes. For every image position
and every selected spot size (standard deviation), they fit the remaining parameters to the data
and compute a match error between the model and the data. If the match error is a local min-
imum and the spot intensity above a threshold, the corresponding position is a spot with the
fitted parameters. The parameters are refined in a characterization step, where it is possible to
deal with overlapping spots (see next section). Van der Heijden [van der Heijden et al., 1997]
also models spots as two-dimensional Gaussians and provides numerical algorithms to find the
optimal parameters of the spot detector. The optimizations are performed for the covariance
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1. Introduction and Overview

model (cvm) operator [van der Heijden, 1995], which is a parallel bank ofK filters with dif-
ferent kernels, the squared outputs of which are summed with weights. The first kernel has a
positive weight and resembles the spot shape. The other kernels have negative weights and have
zero output at the position of spot. Correspondingly, their squared (and thus positive) outputs
are subtracted from the squared output of the first filter. These filters therefore serve to sharpen
the peaks in the detector output without affecting the maximum of these peaks.

An efficient way of detecting differently sized spots is given by the class ofhierarchical
operators. Blanford and Tanimoto [Blanford and Tanimoto, 1988] provide hierarchical algo-
rithms to detect bright spots in image pyramids. An image pyramid is a collection of images of
a single scene at exponentially decreasing resolutions. The bottom level of the pyramid is the
original image. In the simplest case, each successive level of the pyramid is obtained from the
previous level by a filtering operation followed by a sampling operator [Haralick et al., 1991].
The basic bright-spot detection algorithm works with this pyramid as follows: starting at the top
level (consisting of one pixel), a path is traced down to the original image, at each step moving
from the current cell to is child with the highest value. They provide extensions to detect several
spots. The algorithms only work well for images where the spot and background intensities are
relatively constant [Blanford and Tanimoto, 1988]. Another hierarchical way for the detection
of spots is given by the wavelet transform [Antoine et al., 1993], [Mallat, 1999]. Wavelets are
scaled waveforms that measure signal variations and can therefore be used to detect sharp sig-
nal transitions. Strickland and Hahn [Strickland and Hahn, 1996] employ a wavelet transform
which acts as a bank of multiscale matched filters for detecting microcalcifications in mammo-
grams (Fig. 1.1b). Since the matched filter technique requires specific knowledge of the target
signal, they introduce the assumptions that the spots to be detected are truly Gaussian objects.

By choosing the Laplacian (second derivative) of Gaussian wavelets, the wavelet transform
performs as a multiscale matched filter: A filter bank convolves a signal with a low-pass fil-
ter and a high-pass filter and subsamples by 2 the output (high image frequencies correspond
to sharp signal transitions). At each scale, the output of the different subbands can be thresh-
olded to produce a detect/no detect result. The detection threshold is experimentally chosen as
a fixed percentile of the histogram of each channel. A drawback of this approach is that a cer-
tain number of pixels are always detected at each threshold. An approach which automatically
determines the threshold function by relying on an information-theoretic tool is presented in
[Boccignone et al., 2000].

1.3.2 Spot Characterization

Spot characterization deals with the exact shape reconstruction of the spots. If the spot detec-
tion is performed with a statistical model like a Gaussian, it is possible to reduce errors of the
model in the characterization steps as follows: Based on the dimensions of spot, a local image
is extracted around the spot. From the local image, the provisional models of the neighbor-
ing spots are subtracted to reduce the disturbing influence of artifacts and overlapping spots
[Noordmans and Smeulders, 1998]. When no statistical model is used, the shape reconstruc-
tion is accomplished as animage segmentationtask. Image segmentation results in a set of
disjoint regions corresponding uniquely with spots in the input image. Image segmentation is a
wide field of research in the image analysis literature [Sonka et al., 1999]. We will only review
methods specifically dedicated to the segmentation of spot-like objects. If a spot detection is
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1. Introduction and Overview

performed prior to spot characterization, segmentation can be constrained to local images ex-
tracted around detected spot centers. On the other hand, segmentation is often performed on the
entire image and therefore serves as a tool for both spot detection and characterization.

Thresholding

The simplest segmentation approach is to examine all image elements which exceed a given
threshold. Many different techniques have been used to select good thresholds for this purpose
[Sahoo et al., 1988]. Threshold selection involves choosing a gray levelt such that all gray
levels greater thant are mapped into the “spot” label, while all other gray levels are mapped
into the “background” label (segmentation by pixel classification). However, if the image is
noisy, thresholding will produce noisy results which may not be cleaned up in postprocessing.
Thresholding may extract regions that are not bounded by edge but are smooth continuations of
the background if the gray level fluctuations in the background cross the threshold level. In order
to overcome these problems, several local thresholds can be extracted from various parts of the
picture, and can be applied only in those regions. Shneier [Shneier, 1983] describes a method
of identifying parts of a picture on which to apply a threshold, and a means of calculating a
local threshold for each of these parts. The method involves constructing an image pyramid,
each of lower resolution than its predecessor (Sect. 1.3.1). At some level of the pyramid, it is to
be expected that any spot-like object should be contained in a single point which has a higher
value than its neighbors. Thus, by detecting such points in low-resolution images, the interesting
regions in the picture can be discovered, and only those regions need to be thresholded. Danke
and Rosenfeld describe a relaxation approach [Danker and Rosenfeld, 1981] that can be used
to defer the classification decisions (spot pixel or background pixel?) until more information is
available. In their approach, a degree of membership for each pixel in each class is computed
( a probability that it belongs to each class). These membership values are adjusted, based on
the values at neighboring pixels and the compatibilities of the various possible combinations
of class memberships of pairs of neighbors. After a few iterations, the membership values
stabilize, with some values becoming or remaining relatively high and others becoming very
low, so that it becomes easier to make the final classification decision.

Edge-based segmentation

Edge-based segmentations rely on edges found in an image by edge detecting operators, which
are pre-processing methods used to locate changes in the intensity function [Sonka et al., 1999].
Since the image resulting from edge detection cannot be used as a segmentation result, supple-
mentary processing steps must follow. For example, an early work using an edge detector
is described in [Minor and Sklansky, 1981], where the spots are found by an edge-based seg-
mentation, subsequent labelling and classification of labels into spot and non-spot. However,
the edge detector may respond in the interior of the spot or background as a result of noise
or may fail to respond strongly on the spot/background border because of blur. A very ef-
fective method to detect spots with a known boundary, e.g. circular, is the Hough transform
[Illingworth and Kittler, 1988], which can also be used successfully in segmentation of over-
lapping spots. A theoretical statistical approach with maximum likelihood estimation to detect
spot boundaries in noisy images was described in [Cooper, 1979]. However, the spots are re-
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1. Introduction and Overview

(a) Calibration pattern (b) Stereo cameras (c) Detected corners [Faugeras, 1993]

Figure 1.5. Grid Fitting for explicit camera calibration. In this examples, the corner points of the
squares on the calibration object have to be determined as accurately as possible and identified on the
calibration grid.

stricted to a constant foreground and background.

Region-based segmentation

The aim of thresholding and and edge-based segmentation described in the previous sections
was to find borders between regions. Region-based segmentation methods construct regions di-
rectly. Seeded Region growing [Adams and Bischof, 1994] is well suited for spot images. Af-
ter specification of seeds, the algorithm proceeds by growing all the foreground and background
regions simultaneously until all pixels in the image have been allocated to one of the regions. At
each stage, all pixels which are as yet unallocated, but which have at least one neighbor which
has already been allocated, are considered for allocation. Out of all these region-neighboring
pixels, the algorithm selects the one whose pixel value is nearest (in terms of absolute gray
level difference) to the average of the pixel values in the neighboring region. The process re-
peats until all pixels have been allocated. For spot images, the foreground and background
seeds are chosen using the spot detector output. The spots can also be grown from the detected
locations using the watershed transformation, which is motivated by the topographic view of
images [Beucher and Meyer, 1993]. Binary morphological segmentations are able to cope with
overlapping spots, where morphological gray-level segmentation produces similar outputs than
edge-based segmentation [Sonka et al., 1999].

1.3.3 Grid Fitting

Camera calibration [Abdel-Aziz and Karara, 1971], [Slama, 1980] was perhaps the first appli-
cation where a grid fitting problem had to be solved. Camera calibration is a necessary step in
3D computer vision in order to extract metric information from 2D images. It relates the loca-
tions of pixels in the digital image to points in the three-dimensional scene [Jain et al., 1995].
Two calibrated cameras are used to make three-dimensional measurements with the help of
stereo vision [Gennery, 1979, Sonka et al., 1999]. Explicit camera calibration is performed by
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1. Introduction and Overview

observing a calibration object1 whose geometry in the three-dimensional space is known with
very good precision [Trucco and Verri, 1998]. The calibration pattern is often a planar grid
of known-sized boxes on a contrasting background [Tsai, 1987], [Zhang, 1999]. Figure 1.5a
shows an example for a calibration pattern, Fig. 1.5b shows a camera setup for stereo vision
[Batista et al., 1999]. Before the parameters of the camera model are computed, two prepro-
cessing steps are necessary

1. Detect Feature Points: The feature points of the calibration objects have to be reli-
ably extracted. For box grids the feature points are the four corner points of each box
(Fig. 1.5c). If the feature points are selected manually as in [Broadhurst and Cipolla, 1999],
the image is often preprocessed with a corner detector [Haralick and Shapiro, 1992]. Au-
tomatic feature point detectors usually first apply an edge detector [Canny, 1986], find
box edges and fit lines to each box edge [Thacker and Lacey, 2000] and intersect lines
to find corner points [Bryant et al., 2000]. For calibration patterns with circular features,
the center points are usually located with subpixel precision ([Heikkilä and Silv́en, 1997]
describe how the distortions of perspective projections of circles can be corrected).

2. Identify Points: The grid fitting problem for camera calibration is to reliably assign the
detected feature points in the image to the three-dimensional coordinates of the calibration
pattern. In typical calibration environments usually all the feature points are detected.
Simple point sorting algorithms are then used to identify the points on the basis of their
vertical and horizontal ordering. A camera calibration application for an autonomous
underwater vehicle in which the detection of all points cannot be relied upon is described
in [Bryant et al., 2000]. They identify a box in the calibration pattern by computing a
planar projective invariant index [Rothwell, 1995] with all other boxes. 5 predetermined
corner points of each box pair are chosen such that certain collinearity constraints hold
[Bryant et al., 2000]. This method is generally not applicable to spot array images since
no organization in simple sub-units like “boxes” can be assumed.

Some grid fitting methods have been published in the field of DNA arrays [Hartelius, 1996],
[Zhou et al., 2001] [Bergemann et al., 2001], [Steinfath et al., 2001]. They will be reviewed in
chapter 4.

1.4 The Goals of this Work

The ultimate goal of spot array image analysis is an automatic system that utilizes algorithms
to find, index and characterize the spots without the need for any human intervention. This
work provides a set of tools and a framework which only requires the user to specify the spot
array configuration (i.e. the number of rows and columns, image resolution). Automatic image
analysis of an undistorted and fully-occupied array with displaced spots is not a difficult task and
could be immediately solved with the methods described in Sect. 1.3. The original contribution
of this work is aframework of spot array image analysis methodswhich is able to deal with

1. high spot densitywith possiblymultiple overlapping spots

1Implicit camera calibration techniques do not use any calibration object, see for example
[Maybank and Faugeras, 1992]
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1. Introduction and Overview

2. outliers in the spot array

3. artifacts in the spot array image

4. non-regular spot distances.

Conditions 1 to 4 require that the spot array image analysis method be robust. In order to ac-
complish this task, a novel robust grid fitting procedure and a novel robust spot characterization
method based on statistical models is presented. It is assumed that the spot array is planar and
approximately parallel to the image plane of the image acquisition system (camera, scanner).
Large perspective distortions of an array like the calibration pattern in Fig. 1.5 are therefore not
allowed. This restriction does not limit the usability of the framework, since its main appli-
cation lies in the field of inspection, where the image acquisition systems are mainly oriented
in the above-mentioned manner for practical reasons. It is also due to the industrial setup that
prior knowledge about spot array configuration and imaging parameters can be assumed to be
available.

1.5 Overview

Each chapter starts with a brief introduction and is concluded with a short summary. In Chapter
2 the core methods of the spot array image analysis framework for robust grid fitting and spot
fitting are presented. A major application of spot array image analysis is introduced in Chap-
ter 3, where key principles and techniques for DNA array production are described. Readers
familiar with the field DNA array technology may skip this chapter and move on to Chapter 4,
where the spot array image analysis is applied to various DNA arrays. Furthermore, related
work is presented and compared to an existing method. Chapter 5 concludes this work and
gives a brief outlook towards future work.
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Chapter 2

General Framework

This chapter provides a general framework of tools and processing sequences to solve the image
analysis task for an image containing a spot array. Fig. 2.1 illustrates the task decomposition
proposed in this work. Spot detection and grid fitting finds potential spot locations in the image
and fits a consistent grid to the locations of the possibly distorted grid nodes. Spot detection and
grid fitting is divided into three substeps, where the first substep is an amplification of the spot
locations (Sect. 2.2). The subsequent rotation estimation step (Sect. 2.3) determines the global
rotation of the spot array in the image. Finally, a consistent grid is spanned with the help of the
rotation estimation and the amplified spot locations (Sect. 2.4). The spot characterization part
is divided into the background estimation (Sect. 2.5) and the spot fitting step (Sect. 2.6). The
general framework is based upon the following principles:

1. Keep as much as information as possible:Processes involving loss of information like
geometric image transformations and thresholding should be avoided.

2. Bring in as much prior knowledge as possible:By considering different constraints
inherent in the imaging process a fast image analysis should be obtained without using
unnecessarily complicated processes.

2.1 Formal representation

This section introduces the notation and definitions of the main modeling concepts of the spot
array image and the spot grid.

2.1.1 Spot Array Image Representation

A M ×N spot array imageis represented as a matrixS ∈ ZM×N with pixel coordinates(m,n)
and pixel intensitiesS[m,n] ∈ 2B with B ∈ N as the bit-depth or radiometric resolution:

S =


S[1, 1] S[1, 2] . . . S[1, N ]
S[2, 1] S[2, 2] . . . S[2, N ]

. . .
S[M, 1] S[M, 2] . . . S[M,N ]

 (2.1)
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2. General Framework

Spot Detection and Grid Fitting

Spot Array Image Prior knowledge

Rotation Estimation

Grid Spanning

Spot Amplification

Spot Characterization

Spot Fitting

Background Estimation

Postprocessing

Figure 2.1. General Spot Array Image Analysis Framework.Overview of the general approach for
the image analysis of spot array images.

Some algorithms are more conveniently formulated in Cartesian coordinates rather than the
above pixel coordinates: Thespatial coordinate system(x, y) has its origin at the upper left
corner withx increasing to the right andy increasing downward. Thecentral coordinate system
(x′, y′) has its the origin at the image center widthx increasing to right andy increasing upward.
Cartesian coordinates are also represented as vectorsp = [x y]T ∈ R2.

2.1.2 Grid Representation

A grid G is a set of nodes in{1 . . . IG} × {1 . . . JG}, with IG as the number of grid rows and
JG as the number of grid columns. The grid row extraction relation RG extractsJG grid nodes
belonging to one row of a gridG:

RG({1 . . . IG}) = {(i, j) | (i, j) ∈ G ∧ i = k} ∀k ∈ {1 . . . IG} (2.2)

Similarly, the column extraction relation CG extractsIG grid nodes belonging to one column of
a gridG:

CG({1 . . . JG}) = {(i, j) | (i, j) ∈ G ∧ j = l} ∀l ∈ {1 . . . JG}. (2.3)
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2. General Framework

Grid fitting is the location assignment function L: G × S 7→ L, whereL = {p | p ∈ R2}.
The location of a grid nodegij = (i, j) ∈ G in the spot array imageS will sometimes be simply
denoted as L(gij).

2.1.3 Prior Knowledge

The prior knowledge apart from the grid dimensionsIG andJG consists of the theoretical dis-
tance between two spot locations in the spot array image. Thetheoretical horizontal spot dis-
tanceSx ∈ R and thetheoretical vertical spot distanceSy ∈ R are the distances in sub-pixels
between two adjacent spots in the horizontal and vertical direction computed as

Sx =
Nx

∆x
and Sy =

Ny

∆y
(2.4)

with Nx andNy as the spot distances on the medium in millimeters and∆x and∆y as the
scanner or camera resolution in millimeters per pixel. Note thatSx andSy are not rounded to
integer values.

2.2 Spot Amplification

The first step towards a detection of spots is an amplification of their locations. We want to find
signals in the spot array image which resemble the shape of the spots. We chose matched filters
(MF), which are filters whose shape match the shape of the signals one is trying to find. The
MF is optimal with respect to Gaussian noise. In order to find a random signal with non-zero
mean in white noise, the filter should be matched to the mean of the signal The MF for spots
is constructed by forming an average template from a number of representative spots in the
following way: The image patchesSk , k ∈ {1 . . . S} with the dimensionMMF × NMF contain
the intensity values of theS spots which are manually selected by the user. The matched
filter dimensionsMMF andNMF should cover the spot extension for a given image resolution
and spotting geometry. We formally define the matched filter dimensions as a function of the
theoretical spot distancesSy andSx defined in (2.4):

MMF =

{
◦(Sy) + 2 for ◦ (Sy) = 2k + 1
◦(Sy) + 1 otherwise

(2.5)

and

NMF =

{
◦(Sx) + 2 for ◦ (Sx) = 2k + 1
◦(Sx) + 1 otherwise

(2.6)

with k ∈ N and◦(.) as the rounding operator. Irrespective of its parity, the theoretical spot size
rounded to the next integer is increased to the next higher odd number in order to guarantee to
include some background information in the filter.

The S image patchesSk containing the spots are formally rearranged asD-dimensional
vectorssk by lexicographical ordering, withD = MMF ·NMF. The vectorssk are normalized as

s̃k =
sk − µsk

· 1
σsk

, (2.7)
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2. General Framework

where1 is aD × 1 vector of ones andµsk
is the mean intensity value of the the image patch

defined as

µsk
=

1

D

D∑
i=1

sk[i], (2.8)

andσsk
is the intensity standard deviation

σsk
=

√√√√ 1

D − 1

D∑
i=1

(sk[i]− µsk
)2. (2.9)

The matched filter is constructed by averaging theG normalized examples̃sk:

m̃ =
1

G

G∑
k=1

s̃k. (2.10)

Although the filterm̃ is guaranteed to have zero mean, it must be renormalized to a contrast of
one [Nayar and Poggio, 1996]:

m = m̃/σm̃ (2.11)

with the standard deviationσm̃ computed similar as in (2.9). Filtering of the spot array image
S with the matched filterm results in a response imageRM which is constructed as follows: If
p[m,n] denotes anMMF×NMF image patch around a pixelS[m,n] rearranged as aD-dimensional
vector, the image patchp[m,n] is first normalized to zero mean and contrast 1 similarly to (2.7)
as

p̃[m,n] =
p[m,n] − µp[m,n]

σp[m,n]

· 1. (2.12)

RM[m,n] = p̃[m,n] ·m (2.13)

corresponding to the statistical cross-correlation between the image patch and the matched filter.
Thus, response values close to one indicate that the image patch is strongly correlated with the
filter. Figure 2.2 shows a matched filter example for a simple spot array image.

Note that when the matched filter and the image patch are not normalized by the standard
deviation, the response image will correspond to the statistical covariance between the the image
patch and the matched filter. In this case, the spot intensity will also be taken into account and
yield high response values for bright spots compared to low response values for dark spots.

2.3 Rotation Estimation

The rotation estimation step provides the basis data for the grid spanning step with the help of
intensity projections. A one-dimensional projection of a two-dimensional continuous function
f(x, y) is a line integral in a certain directionθ, also known as the Radon transform [Jain, 1986].
In general, the Radon transform of a function f(x, y) is the line integral of f parallel to the
y′-axis:

Rθ(x
′) =

∫ ∞

−∞
f(x′ cos θ − y′ sin θ, x′ sin θ − y′ cos θ)dy′ (2.14)
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Figure 2.2. Matched Filtering. (a) Matched filter for spots in images of the type shown in (c). It is
a normalized spot template built from manually selected spot examples. The dimensions of the filter
are determined by the prior knowledge about the image resolution and the spot distance. (b) Three-
dimensional plot of matched filter. (c) Spot Array Image Example (d) Response image for spot array
image (c) filtered with matched filter (a). Response values close to 1 indicate strong correlation between
the image patch and the matched filter.

where [
x′

y′

]
=

[
cos θ sin θ

− sin θ cos θ

] [
x
y

]
. (2.15)

Figure 2.3 illustrates the geometry of the Radon transform. ThediscreteRadon transformRT

is defined as anR × C matrix. The number of rowsR corresponds to the number of directions
for which the projection is computed.R depends on the angle resolution∆θ of the projection
angles and the maximum rotation angleθM:

R =
2θM + 1

∆θ
(2.16)

Note that also negative rotation angles must be considered, hence the factor 2 in (2.16). The
rotation angleθ(r) belonging to a row indexr ∈ {1 . . . R} is given by

θ(r) = r∆θ − θM − 1. (2.17)
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The number of columnsC is defined as the size of the spot array image diagonal:

C =
⌈√

M2 +N2
⌉
. (2.18)

The simplest projections P(S, θ) are those forθ = 0 andθ = π/2, i.e. the projections to the
image coordinatesx andy. Figure 2.4a shows the projection P(S, π/2) of the intensities of a
spot array image to they-axis. One would expect that the spots will be most distinguishable
in the projection for the correct global rotation angleθG : For a non-distorted grid, the line
integral for the correct angle will intersect all spot centers in the spot array image, giving rise
to a high projection value (low projection value for dark spots). Similarly, background regions
will give rise to low projection values (high projection values in the case of bright spots). Note
that while the horizontal projection and vertical projection of the spot imageS might provide
useful information for a part of the subsequent grid spanning step, the global rotation angleθG
can be best estimated with projections of the spot amplification response imageRM. Figure 2.4b
shows a projection P(RM, θGC) through the grid columns at the correct grid rotation angle. The
highest projection values correspond to the spot array columns. Fig. 2.4c shows the different
projections (discrete Radon transform) P(RM, θ) with θ = (−6 : 0.125 : 6) ∗ π/180. The global
grid rotation estimateθG = θ(r) is in the rowr of the Radon transformRT having the highest
projection values. LetMr be the set of theJG (number of spots in a row) highest projection
values in the rowr of RT. The estimated rotation angle is then found in the row with the highest
median ofMr:

r = argmaxr{median(Mr)}. (2.19)

The median is used because of the following reason: The row with the true rotation angle has
the highest projection values but large intervals of low projection values. The other rows have

(x,y)f

y

x

x

R xθ( )

x

y

θ

Figure 2.3. Geometry of the Radon transform.A function f(x, y) is projected along they′-axis of a
coordinate system rotated by the angleθ.
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Figure 2.4. Rotation estimation by projections. The rotation estimation is determined by intensity
projections. (a) Horizontal projection of the spot imageS to they-axis. (b) Projection ofRM at the
correct grid angle. (c) Discrete Radon transform between the angles−6◦ and6◦ in steps of0.125◦.

lower projection values, but they are distributed over the columns. A simple horizontal addition
of the projection values would therefore not lead to reliable rotation estimations.

The computation of a row of the Radon transformRT involves a transformation of all the
pixels of the spot array imageS. In order to increase the efficiency, one should compute the
Radon transform in a hierarchical manner, determine a reasonable maximum rotation angleθM

and an angle resolution∆θ. These issues are covered in the Appendix.

2.4 Grid Spanning

Grid spanning is the core step of grid fitting and tries to reconstruct the spot grid of the spot array
image with the help of the matched filter response and the rotation estimation. The information
gained with the MF response image and the rotation estimation is used to define an initial spot
grid. Two ways to define such an initial spot grid are presented in Sections 2.4.1 and 2.4.2.
The initial spot grid is subsequently parameterized in order to remove false negatives and false
positive spot locations. Grid parameterization is described in Sect. 2.4.3.
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2.4.1 Algorithm I: Initial Grid after Maximum Search

One way to achieve an initial spot grid is to extract a set of potential spot locationsL by a local
maximum search inRM as a first step. The detected locationsL are subsequently aligned on a
transformed prior spot grid defined by the theoretical spot distances.

Maximum Search Algorithm

Pass 1 The initial spot location setL consists of the locations of the maximum value in every
non-overlappingML × NL window. The window dimensionsML andNL are the next smaller
odd number of the theoretical spot distanceSy andSx:

ML =

{
◦(Sy)− 2 if ◦ (Sy) = 2k + 1
◦(Sy)− 1 otherwise

(2.20)

and

NL =

{
◦(Sx)− 2 if ◦ (Sx) = 2k + 1
◦(Sx)− 1 otherwise

(2.21)

for k ∈ N. This window size avoids that two spot locations fall into one search window and
therefore avoids the cancellation of potential spot locations. Figure 2.5 illustrates this step. The
black pixels indicate the maxima in theML × NL windows. Note the two close maxima in the
second spot row.

Pass 2 For every detected maximum location[x y]T ∈ L, select the location[x′ y′]T with the
maximum response value in anML × NL window around[x y]T . If [x′ y′]T 6= [x y]T , remove

N

M
L

L

(a)

NL

M
L

(b)

Figure 2.5. Maximum Search. Maxima are first searched in non-overlappingML ×NL windows which
are smaller than the theoretical spot distance. Black pixels in (a) indicate local maxima. The maximum
search is repeated in a second pass in order to get plausible spot distances. In (b) the lower maximum
from the first pass will be canceled in the shaded area.
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(a) Prior spot locations (circles) (b) Transformed spot locations (circles)

Figure 2.6. Alignment of detected spot locations: The black circles in (a) indicate the prior spot
locations with theoretical spot distances, the squares indicate the detected guide spot locations. The
prior spot locations are rigidly transformed such that they define a reference grid for the detected spot
locations. A local search in the neighborhood of the reference locations then tries to map the detected
spot locations to the correct grid nodes.

[x y]T from L and add[x′ y′]T to L. After this pass it is guaranteed that two spot locations
have plausible distances. In Figure 2.5b the grey-shaded area illustrates the plausible distance
criterion. Assuming that in the second row the first local maximum value is higher than the
second maximum value, the second maximum will be canceled.

Pass 3 Since prior knowledge about the expected number of spots is available, the size of the
location set can be constrained to

card(L) = IG · JG. (2.22)

As background regions will normally result in low MF response values and therefore low local
maxima, it is natural to select theIG · JG-highest local maxima to remain inL. Clearly, noise
will produce false positives and must be dealt with accordingly in the subsequent steps.

Transforming Prior Spot Locations

The potential spot locations which were found with the maximum search in the MF response
image are only an unordered setL with no information about the node position on the spot
grid. It is therefore necessary to map the detected locations to the correct nodes of the spot grid.
This mapping is also denoted as thealignmentof the detected spot locations. The idea to align
the detected locations is to rigidly transformprior spot locationsLP(G,S) in a way that they
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can serve as reference locations for the detected locations. Figure 2.6 outlines the idea behind
this concept. The white squares indicate locations found by the maximum search. The black
circles in Fig. 2.6a are prior spot locations with theoretical horizontal and vertical inter-spot
distancesSx andSy defined in (2.4). The absolute location of the prior guide spot grid within
the spot array image does not matter; nevertheless, a position near the spot array can define
a region of interest in order avoid unnecessary false positives. The black circles in Fig. 2.2b
show rigidly transformed prior locations denoted asreference locationsLR(G,S). A search
for a detected location LD((i, j)) in a small neighborhood of LR((i, j)) should then provide the
correct location mapping.

A reference location[xR yR]
T in the central coordinate system is computed from a prior spot

location[xP yP]
T as follows:[

xR

yR

]
=

[
cos θG sin θG

− sin θG cos θG

] [
xP

yP

]
+

[
tx
ty

]
, (2.23)

whereθG is an estimate of the global grid rotation angle according to Sect. 2.3 andt = [tx ty]
T

is an estimate for the translation vector of the rotated prior spot locations. It is sufficient to
determine the location of one grid node of the reference grid LR(G): If, for example, the trans-
lation tUL to the reference location LR((1, 1)) of the upper left node ofG is known, the shift for
all the other grid nodes is the same. Formally, the translation vectortUL is given by

tUL = L̂D((1, 1))− Lθ((1, 1)). (2.24)

The rotated prior spot location Lθ((1, 1)) of the upper left node ofG is subtracted from an
estimate for the detected spot location of the upper left corner node ofG. Note that the upper
left location LD((1, 1)) is not yet available, since the determination of the grid of detected spot
locations LD(G) is the task of the grid fitting itself. We must therefore determine an estimate
L̂D((1, 1)) for the location LD((1, 1)) of the upper left corner node from the setL of detected
spot locations. We also estimate the location of the lower right corner node(IG, JG) of G and
define the translation vectortLR as

tLR = L̂D((IG, JG))− Lθ((IG, JG)). (2.25)

The translation vectort is then determined as

t = mean(tUL, tLR). (2.26)

The location estimatêLD((1, 1)) can be computed in the following way: try to extract from
the set of detected spot locations the locations LD(RG(1)) belonging to the first row and the
locations LD(CG(1)) belonging to the first column ofG. L̂D((1, 1)) is then the intersection point
of the straight lines fitted to the locations of the first row and first column, respectively. Sim-
ilarly, extract the locations LD(RG(IG)) belonging to the last row and the locations LD(CG(JG))
belonging to the last column ofG and intersect the corresponding fitted straight lines in order
to estimate the location of the lower right grid node ofG.

Extracting the First Spot Row. An algorithm to extract the locations LD(RG(1)) belonging
to the first row ofG works as follows (see also Fig. 2.7):
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1. Select as initial location(x0, y0) ∈ L the detected spot location with the highesty-
coordinate in the central coordinate system.

2. Determine the end points(xs, ys) and(xe, ye) of a digital straight line crossing the initial
location(x0, y0). The straight line has a slope corresponding to the estimated global grid
rotation angleθG (Sect. 2.3). The straight line reaches from the first pixel column of the
M ×N spot imageS to the last pixel column of the spot image.

3. Define an areaA in which to look for the detected locations belonging to the first row. The
search areaA includes locations of the digital straight line between the end points(xs, ys)
and (xe, ye). These locations belonging to the digital straight line are determined by a
modified Bresenham algorithm [Bresenham, 1965], [Watt, 1994]. Add also all locations
to the search areaA belonging to straight lines between(xs, ys±τ) and(xe, ye±τ), where
τ is a pixel tolerance parameter withτ ∈ {1 . . . ◦ (Sy/2)}. The height of the search area
therefore corresponds to the theoretical spot distance.

4. The locations belonging to the first grid row ofG correspond to the intersection of the set
of detected spot locations LD(G) with the locations of the search areaA:

LD(RG(1)) = A ∩ L. (2.27)

The location set is only accepted if the number of locations in the intersection (2.27) is at

x0 y0( ),xs ys( ), y

x

( ),xe ye

(a) Search area for first row and first column

y

x

(b) Search area for last row and last column

Figure 2.7. Determination of the points belonging to the first/last row/column.A search areaA
(one of the four shaded bars) is spanned by a straight line with a slope corresponding to the estimated
grid rotation angle going through the point with the smallest/biggesty/x-coordinate. The width of the
search area corresponds to the theoretical spot distance.
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least 50 % of the spot grid widthJG. We therefore have the plausibility condition

card(LD(RG(1))) ≥ JG/2. (2.28)

Condition (2.28) is necessary to cope with outliers. If inequality (2.28) does not hold, the
extraction restarts with step 1. Before, all the locations previously assigned to LD(RG(1))
are removed from the set of detected spot locations LD(G).

The locations LD(RG(IG)) belonging to the nodes of the last row are determined in the same
way except that the initial point(x0, y0) is chosen as the point with the smallesty-coordinate in
the central coordinate system. Likewise, the locations belonging to the nodes of the first and
last column LD(CG(1)) and LD(CG(JG)) are determined in a similar way, except that the digital
straight lines reach from the first row to the last row of the spot image.

Robust Straight Line Fitting. Once theR locations(xk, yk) ∈ LD(RG(1)), k ∈ {1 . . . R}
belonging to the first row are determined, it is possible to fit to the location data the parameters
ar andbr of a straight line model

y(x) = y(x; ar, br) = ar + brx. (2.29)

Robust fitting is performed with the following algorithm:

1. Initialization. Mark all the locations of the first row as valid. Fit the parametersar andbr
in the standard least squares sense , i.e. minimize the sum of the squares of the residuals
ek between the location data points(xk, yk) and the model:

R∑
k=1

ek
2 =

R∑
k=1

(yk − ar − brxk)
2 → min. (2.30)

The optimal solution is given by [Press et al., 1992, Cherkassky and Mulier, 1998]

ar = µy − brµx and br =
σxy

σ2
x

. (2.31)

The mean valuesµx andµy are computed as

µx =
1

R

R∑
k=0

xk and µy =
1

R

R∑
i=k

yk, (2.32)

with (xi, yi) ∈ LD(RG(IG)). The varianceσ2
x of thex-coordinates is given by

σ2
x =

1

R− 1

R∑
k=0

(xk − µx)
2, (2.33)

and the covarianceσxy between thex-coordinates and they-coordinates is given by

σxy =
1

R

R∑
k=0

(xk − µx)(yk − µy). (2.34)
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2. Large residual removal. Sort the residualsek of the initial fit and mark the nodes with
theρ highest residuals as invalid, whereρ is a percentageP1 of the valid spots.

3. Refitting. Re-fit the parametersar andbr if still at least 2 nodes in the row are valid; if
fewer than 2 nodes are valid, go to 5.

4. Outlier removal. Sort the residualsek. If the largest residual is below a thresholdt
[pixel], the fitting is finished and the parameters are valid; otherwise mark the corre-
sponding node as invalid. If more than 50 % of the initial number of valid nodesK0 are
valid, go to 3. Else go to 5.

5. Algorithm abortion. Mark theparametersas invalid and return.

A reasonable choice is to setP1 = 10, meaning that the straight lines are re-fitted at least once
with 10 % fewer nodes than at the first fit (the 10 % with the highest residuals). After the re-fit,
the absolute values of the residuals are regarded. The parameters are re-fitted

• if the distance between a model point and a data point exceeds a thresholdt [pixels] and

• if not more than 50 % of the initial valid nodes have already been marked as invalid.

The thresholdt is a percentageP2 of the theoretical spot distanceSx andSy, respectively. It is
reasonable to also setP2 = 10. The 50 % limit is thebreakdown pointof this fitting procedure
indicating the limit to which the percentage of outliers can increase which the estimator still can
tolerate.

The parameters for the straight line of the last row are estimated in the same way. As for the
parameter computation of the straight line of the first and last column, thex- andy-coordinates
are swapped. This is necessary because an unrotated grid would result in an infinite slope. A
straight line of the formy′ = ac + bcx

′ in the swappedx′, y′-coordinate system has the form
y = −ac/bc − 1/bcx in the original coordinate system (provided thatbc 6= 0).

Intersecting straight lines. After having estimated the straight line parametersar andbr for
the first row andac andbc for the first column, the intersection point can be determined with the
following equation:

ar + brx = −ac

bc
− 1

bc
x for bc 6= 0. (2.35)

Note that the right hand side of the equation is the straight line of the first column transformed to
the coordinate system of the straight line of the first row. After some manipulation we have the
following coordinates for the intersection point(xUL, yUL) = L̂D((1, 1)) of the upper left corner:

xUL =


(
−ar −

ac

bc

) /(
br −

1

bc

)
for bc 6= 0

ac for bc = 0

(2.36)

yUL = ar + brxUL. (2.37)

The intersection point(xLR, yLR) = L̂D((IG, JG)) for the lower right corner is computed in a sim-
ilar manner to (2.36) and (2.37). The intersection points(xUL, yUL) and(xLR, yLR) are illustrated
in Fig. 2.8. The final translation vectort is the mean vector according to (2.26).
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xUL yUL )( , y

x

(a) Determination of upper left location

xLR yLR( , )

y

x

(b) Determination of lower right location

Figure 2.8. Determination of the location of the upper left grid node and the location of the lower right
grid node of the spot grid. The locations are determined by the intersection of straight line models whose
parameters are fitted to the locations belonging to the first/last row/column.

Alignment of locations to grid nodes

Having an estimate of the rotation angleθG and the translation vectort = [tx ty]
T , it is possible

to rigidly transform the prior spot locations[xP yP]
T ∈ LP(G) to the reference spot locations

[xR yR]
T ∈ LR(G) according to (2.23). The reference spot locations LR(i, j) are expected to be

near the detected spot locationsL. The detected spot locations can therefore be assigned to
spot grid nodes(i, j) by investigating a rectangularML ×NL location window W(LR(i, j)) with
LR(i, j) in the window center:

LD(i, j) = W (LR(i, j)) ∩ L. (2.38)

The dimensionsML andNL of W correspond to the size of maximum search window as defined
in (2.20) and (2.21). The grid spanning with prior spot locations works reliable if the spot array
in the image is not too distorted. If, however, the spot array is stretched in one or two directions,
the transformed prior locations will not cover the whole array and some spots will never be
assigned to grid nodes. The following section describes an alternative grid spanning which is
able to cope with large distortions in the spot array.

2.4.2 Algorithm II: Initial Grid before Maximum Search

This section describes an alternative way which first constructs an initial spot grid and then
performs a local maximum search in the MF response image. The main idea of this approach
is based on the concept of the inverse Radon transform: Every point of a projection P(RM, θ)
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corresponds to a straight line with orientationθ in the imageRM. Approximate spot locations
are expected atintersectionsof straight lines going through the spot grid rows and spot grid
columns. Straight lines going through spot grid columns correspond to maximum values in the
projection PC = P(RM, θGC) (see Fig. 2.4b). In order to search straight lines going through the
spot gridrows it is necessary to compute a second projection PR = P(RM, θGR), with θGR ≈
θGC + π/2. It is a good idea to determineθGR with a second rotation estimation based on
projections through the grid rows. The Radon transform for this second rotation estimation
can be efficiently computed in a small neighborhood ofθGC + π/2. The straight lines for the
back-projection are represented in polar coordinates

x cos θ + y cos θ = p, (2.39)

with θ as the angle between thex-axis and the straight line normal andp as the position on the
projection. Two straight lines with parameters(θGC, pi ∈ PC) and(θGR, pj ∈ PR) intersect at the
pointχ(θGC,pi,θGR,pj ) = (xχ yχ), where(

cos θGC sin θGC

cos θGR sin θGR

) (
xχ

yχ

)
=

(
pi

pj

)
. (2.40)

Straight lines going through spot grid rows and columns will give rise to local maxima in the
corresponding projections. On the other hand, not all local maxima in the projections will
correspond to spot array rows or columns. Local maxima in the projections are therefore good
initial hypothesesfor the locations of the spot array rows and columns. False hypotheses are
removed by considering small rectangular areas W((xχ, yχ)) around the intersection points of
the back-projected straight lines. The small area W is used to be more robust in order to cope
with non-linearities of the spot grid. The dimensions of W depend on the image resolution and
the spot size and density. We formulate the removal of false straight line hypotheses as the
following optimization problem:∑

pi∈PC,pj∈PR

M1 [W(χ(pi, pj)] → max, (2.41)

where M1[.] is a brightness measure (typically the intensity mean) of the intersection window
W. The idea behind the maximization problem (2.41) is that the intersections of a false column
hypothesispi ∈ PC with the row hypothesespj ∈ PR will be no spot locations and therefore
will have low response values in the spot amplified image. We therefore want to enforce hy-
potheses which have high brightness measures M1 at the intersection points. Fig. 2.9 shows a
visualization of the intersection brightness measures M1 for 72 row hypotheses and72 column
hypotheses of a48× 48 spot grid. The optimization problem (2.41) is constrained in the sense
that two neighboring straight lines must have a minimum distance. Formally, we define for all
pm ∈ PC,PR the neighborhood operator N2(pm) = pn and have the constraint

|pm − pn| − S/2 ≥ 0, (2.42)

whereS is the theoretical spot size [pixels] which is expected from the imaging parameters.
The constrained optimization problem (2.41) could be solved with the help of Lagrange-

Multipliers [Bertsekas, 1999]. In practice, however, the search space for the general optimiza-
tion problem will be too large. The false hypotheses removal can be implemented as a greedy
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Figure 2.9. Spot location hypotheses. Intersection brightness of72 column hypotheses with72 row
hypotheses of a48× 48 spot grid. Wrong hypotheses a characterized as dark rows or columns.

search algorithm, where theJG correct column hypotheses of PC are selected in a single step
and theIG correct row hypotheses of PR are selected in a second step. The column hypothe-
sespi ∈ PC are indexed with regard to a weight M2, which is a measure of the intersection
intensities ofpi with all row hypothesespj ∈ PR. The rows and columns of the false hypothe-
ses in Fig. 2.9 mostly have significantly lower brightness measures than rows and columns of
true hypotheses. Nevertheless, some intersection points of false hypotheses have a very bright
intersection measure M1. The weight measure M2 must therefore be determined in a robust
manner. The weight M2 for a hypothesispi ∈ PC is chosen as theP% percentile of the inter-
section intensities M1(W(χ(pi, pj)) with the hypothesespj ∈ PR. The percentageP is given as
P = 50 + b((H − JG)/JG) ∗ 100, whereH is the total number of hypotheses andb is fraction
of the false hypotheses that is considered. If, for exampleb = 0.8, we do not consider the20%
brightest intersections.

After the false hypotheses have been removed, the spot locations are refined by looking for
maximum values in small windows of the MF response imageRM.

2.4.3 Spot Grid Parameterization

The algorithms for the determination of the initial spot grid in Sect. 2.4.1 and 2.4.2 try to mini-
mize the number of false positives and false negatives. Nevertheless, after the initialization it is
not guaranteed that all grid nodes are associated with the correct spot locations. One possible
approach to get a consistent spot grid is to robustly fit straight lines to every row and column of
the spot gridG and estimate a lacking location by the intersection of the straight line of rowi
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and and the straight line of columnj. We define a parameter setP for a gridG as

P = {((ari
, bri

), (acj
, bcj

)) | 1 ≤ i ≤ IG, 1 ≤ j ≤ JG}, (2.43)

with ari
andbri

as the parameters of a row straight line model

y(x) = y(x; ari
, bri

) = ari
+ bri

x (2.44)

andaci
andbci

as the parameters of a column straight line model (2.44).

2.4.4 Robust Straight Line Fitting

The algorithm for the fitting of a straight line belonging to rowi corresponds to the straight line
fitting for the first grid row already defined in Sect. 2.4.1. The main points are repeated here.

1. Initialization. Fit the parametersari andbri according to (2.31) ifK0 ≥ 2 , whereK0 is the
number of valid nodes in rowi. If K0 < 2 go to 5.

2. Large residual removal. Sort the residualsek of the initial fit and mark the nodes with theρ
highest residuals as invalid, whereρ is a percentageP1 of the valid spotsK0.

3. Refitting. Re-fit the parametersari andbri if still at least 2 nodes in the rowi are valid; if fewer
than 2 nodes are valid, go to 5.

4. Outlier removal. Sort the residualsek. If the largest residual is below a thresholdt [pixel], the
fitting is finished and the parameters are valid; otherwise mark the corresponding node as invalid.
If more than 50 % of the initial number of valid nodesK0 are valid, go to 3. Else go to 5.

5. Algorithm abortion. Mark theparametersas invalid and return.

2.4.5 Grid Parameter Correction

After fitting of the grid rows and columns, the parameters are checked:

1. ari
andbri

might be marked as invalid because of the failure of the straight line fitting
algorithm

2. the absolute value of the slopebri
might differ too much (0.5◦) from the absolute mean

value of all the valid slopes of the grid rows. This situation may occur since it is not
guaranteed that the node with the highest residual value must necessarily be the outlier.
Sometimes it is therefore possible that - even after the repeated refitting - false positives
do survive.

If 1) or 2) holds for the parametersari
andbri

of a row, they are estimated with the help of the
parameters of the nearest neighborhood rowarn andbrn. Since we do not expect large variation
between neighbored slopes we can setbri

= brn. The interceptari
can be estimated by setting

ari
= arn − (n− i)Sy, (2.45)

i.e. subtracting the theoretical spot distances from the neighbor depending on how far away the
neighbor on the grid is.
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2.4.6 Abortion Criterion

After the robust determination of the field parameter sets (2.43), the entire spot gridG is tested
for consistency. If – due to a very bad image quality – the final spot grid is not plausible, the
distance between the locations of at least two nodes must be too large. Formally, there must
exist at least one node(i, j) ∈ G for which the following condition holds:

||L((i, j))− L((i+ 1, j + 1))|| > t (2.46)

wheret is the residual threshold entity of Sect. 2.4.4. If (2.46) holds, the grid fitting is aborted
and the user is notified.

2.5 Background Estimation

The general framework for spot array image analysis assumes nonuniform, smoothly varying
background values. In order to obtain contiuously varying background values for the entire
image, the background is estimated in a global manner. In principle, the ideal output of the
background estimation would be abackground imageB comprising the spot array imageS
without the spots. However, initially after grid fitting the spots are not yet characterized. In order
to tackle this chicken-egg problem, the background is estimated in several (at least two) passes.
Firstly, the grid fitting procedure yields information about the spot locations. If one assumes
additive noise, one could subtract the pixels belonging to the spots from the spot array image.
In order to get smooth results, a hierarchical interpolation method basen on Gaussian image
pyramids [Jolion and Rosenfeld, 1994] is used. An image pyramid combines the advantages
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Figure 2.10: Background estimation.
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of high and low resolution. It is a collection of imagesS[l] of a single scene at exponentially
decreasing resolutionsl ∈ {0 . . . ltop}. The bottom level of the pyramid is the original image. In
the simplest case, each successive level of the pyramid is obtained from the previous level by
a filtering operation followed by a sampling operator [Haralick et al., 1991]. The image size of
the pyramid levels and the grey values are determined by the REDUCE function: In our case
the image size decreases by a factor of 4 with every pyramid level. We furthermore use a5× 5
reduction windowindicating that for the intensity of a pixel inS[l+1] the mean of a5×5 window
in S[l] with Gaussian weighting is computed. Figure 2.10 plots the principle of the background
estimation with image pyramids.

Pass 1 This pass is performed after grid fitting and before the spot characterization. A pyra-
midS[l] of the spot image and a pyramidG[l] of the synthetic spot image are built. The resolution
of the spot image decreases with increasing pyramid levelsl. At a certain levellmax the resolu-
tion of the image is so low such that the spot grid structure is no longer present in the image,
meaning that the spots are merged. The merging levellmax is chosen as the pyramid level where
the equation

min(Sx
l, Sy

l) < 0.5 (2.47)

holds (Sx
l is the theoretical spot width andSy

l is the theoretical spot height for pyramid levell).
At the merging levellmax we subtractG[lmax] from S[lmax] resulting in a low-resolution background
imageB[lmax]. In order to get a background image at the original resolution of the spot image,
the levels of the background pyramid are computed by the EXPAND function, which consists
of bicubic interpolation of the grey values [Press et al., 1992].

Pass 2 The background is estimated a second time after the spot fitting procedure has finished.
After spot characterization it is possible for every spot to reconstruct a complete synthetic spot
image. The pyramidG[lmax] in Fig. 2.10 is now the reconstructed synthetic spot image. The
subtraction and the expansion are performed the same way as in pass 1.
Supplementary passes will further increase accuracy: A more accurate background estimation
will increase spot fitting accuracy, leading itself to an improved background computation etc.
The trade-off between accurarcy and computation time will depend on the application.

2.6 Parametric Spot Fitting

A parametric fit on a set of intensities (pixels) belonging to a spot assumes a given analytic
model the unknown parameters of which have to be determined. The approximate initial lo-
cations of the spots are given by the grid fitting procedure. The extension of the pixel set
belonging to a spot is determined by the prior knowledge about the theoretical spot size and
equals theMMF × NMF matched filter. LetSij = {(pk, zk), pk ∈ R2, zk ∈ R} be a set of
N points (pixels) corresponding to a spot grid nodegij ∈ G, wherezk denotes the intensity
pixel intensity at locationpk. A parametric model Zij for a spotgij with locationp predicts a
functional relationship between the measured independent and dependent variables,

Zij(p) = Zij(p,q) (2.48)
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with the adjustable parameter vectorq ∈ RD. Given a particular data setSij, the question in
data modeling is: “Given a particular parameter vectorq, what is the probability that the data
setSij could have occurred?” If thezk take on continuous values, the probability will always be
zero unless the phrase “...plus or minus some fixed∆y on each data point” [Press et al., 1992].
If the probability of obtaining the data set is infinitesimally small, then one can conclude that
the parameters under consideration are unlikely to be right. On the other hand, the data set
should not be improbable for the correct choice of parameters.

In order to deal with overlapping spots, one can recompute the model Zij by using the
modified spot patch

S∗ij = Sij −
∑

k,l∈{−1,0,1},(k,l) 6=(0,0)

Zi+k j+l (2.49)

i.e. subtracting neighboring spot models. One can iterate this procedure for every spotgij over
the whole image. The results are gradually better models for every spot, where the iteration is
aborted when the parameters of the model for each spot stabilize.

2.6.1 Least Squares as a Maximum Likelihood (ML) Estimator

Maximum likelihood estimation is a form of parameter estimation whichmaximizesthe like-
lihood defined in the above way. One can suppose that each data pointzk has a measurement
error that is independently random and distributed as a normal (Gaussian) distribution around
the “true” model Zij(pk,q). If it is furthermore supposed that the standard deviationsσ of these
normal distributions are the same for all points, then the probability of the data set is the product
of the probabilities of each point:

P ∝
N∏

k=1

{
exp

[
−1

2

(
zk − Zij(pk,q)

σ

)2
]

∆y

}
. (2.50)

Maximizing (2.50) is equivalent to maximizing its logarithm, or minimizing the negative of its
logarithm: [

N∑
k=1

(zk − Zij(pk,q))2

2σ2

]
−N log ∆y → min . (2.51)

SinceN , σ, and∆y are all constants, minimizing this equation is equivalent to

n∑
k=1

(zk − Zij(pk,q))2 → min (2.52)

Minimizing the squared error between the model and the data is a maximum likelihood
estimation of the fitted parametersif the measurement errors are independent and normally
distributed with constant standard deviation. For real data, the normal distribution of the mea-
surement errors is often rather poorly realized. For example, contaminations in the spot array
image are regarded as outliers. Their probability of occurrence in the assumed Gaussian model
is so small that the maximum likelihood estimator is willing to distort the whole model to try to
bring them, mistakenly, into line.
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Least Squares Spot Fitting of Noordmans/Smeulders

Noordmans and Smeulders [Noordmans and Smeulders, 1998] introduce a spot model Z with
the parameters spot centerµ, spot intensitya, sizeσ, orientationφ and local background levelb.
The parameters are summarized in the parameter vectorq = [µ a σ φ b]T . In the spotdetection
phase, they already match spot models with a range of parameter values to each image position.
For each image position the best matching model is retained. The detection phase ends by
selecting positions where the spot match is locally optimal. In the characterization phase, the
remaining spots are one by one considered on the basis of the same model used to refine the
parameter vector. In the following, we describe the core least squares fitting approach in their
paper, where the notation has been adapted to be consistent with the symbols used in this work.

The error E between the intensity datazk and the spot model Z(pk, q) is computed as

E =

n∑
k=1

{
[zk − Z(pk,q)]2 W(pk,w)

}
n∑

k=1

W(pk,w)

→ min, (2.53)

where the squared error (2.52) is weighted by a function W(pk,w) with a parameter vectorw:
The weight function is maximal at the center of the spot and drops to zero at greater distances
to reduce distortions caused by other proximate image structures.

The definition of the error E in (2.53) has the advantage that the minimizing for spot intensity
a and local backgroundb can be calculated analytically. To prove this, they explicitly write
down the dependence of the model ona andb:

Z(p,q) = aG(p, r) + b, r = [σ φ]T , (2.54)

where G(p, r) depends only on the remaining elements of the parameter vector. Recall that in
the detection phase of the algorithm, a spot model is fitted ateverypixel position. Omitting the
need for subpixel accuracy, the spot centerµ is therefore not in parameter vectorr . Substitution
into (2.53) gives

E =
1

c0
{a2c2 + b2c0 + d1 + 2abc1 − 2ad2 − 2bd0}

whereci anddi have been defined as

c0 =
n∑

k=1

W(pk,w) d0 =
n∑

k=1

zkW(pk,w)

c1 =
n∑

k=1

G(p, r)W(pk,w) d1 =
n∑

k=1

z2
kW(pk,w) (2.55)

c2 =
n∑

k=1

G(p, r)2W(pk,w) d2 =
n∑

k=1

zkG(p, r)W(pk,w)
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The optimal amplitude and background values are found by minimizing E with respect to the
amplitudea and the backgroundb

∂E
∂a

= 0 ⇒ ac2 + bc1 − d2 = 0, (2.56)

∂E
∂b

= 0 ⇒ bc0 + ac1 − d0 = 0. (2.57)

Solving (2.56) and (2.57) gives

a =
d0c1 − d2c0
c12 − c0c2

(2.58)

b =
d2c1 − d0c2
c12 − c0c2

(2.59)

From (2.56) and (2.57) it is also possible to derive the expressions for optimala andb when one
of these is constant

a = a0 ⇒ b =
d0 − a0c1

c0
(2.60)

b = b0 ⇒ a =
d2 − b0c1

c2
(2.61)

As for the remaining elements of the parameter vectorr, the minimizing will generally not
be analytical.

ML-Estimators for Gaussian Spots

In this work, Gaussian Spots are used as a model for a broad range of spots. For Gaussian spot
models, the term G(p, r) in (2.54) is defined as

G(p, r) = G(p,µ,Σ) = exp

[
−1

2
(p− µ)′Σ−1(p− µ)

]
, (2.62)

(a)

a

xσ

(b)

a

yσ

(c)

Figure 2.11: Gaussian Spot Model.

34



2. General Framework

with µ as the mean of the Gaussian model corresponding to the center of the spot andΣ as the
2× 2 covariance (dispersion) matrix:

Σ =

(
σ2

x σxy

σxy σ2
y

)
. (2.63)

Figure 2.11 illustrates the shape of the Gaussian model. The definition of the general covariance
matrix (2.63) allows elliptical spot expansion with any orientation. In the following, we show
how the parameters of a Gaussian spot model can be fitted with ML-Estimators. For the general
framework of spot array image analysis, the following differences to the Noordmans/Smeulders
ML fitting described above are vital:

1. There is no need for a (further) spot detection phase – it has already been performed via
the grid fitting described in the sections above. There is already information about loca-
tions of spot centers. However, the information might be only approximate. Furthermore,
subpixel accuracy is required. It is therefore necessary to explicitly estimate the spot
centerµ.

2. Equations (2.59) and (2.61) show how to compute the background in an analytical matter.
The additive backgroundb competes with the amplitudea of the Gaussian, which is also
computed analytically. This is because there are infinite possibilities to combine the two
parameters to yield the observed intensity pixel. This may lead to heavily discontinuous
background values. If a smooth background is a required feature, the preferred way is
to estimate the background iteratively in a global manner as described in Sect. 2.5. With
this global approach, the intensity data is first corrected with the estimated background
valueb̂ as follows:

zk := max(I(pk)− b̂, 0). (2.64)

Since the background can be overestimated, – especially in the first background estima-
tion – negative values are corrected to zero.

The ML estimatêµ of the centerµ is computed as thesample averageof the coordinates
weighted by the corrected pixel intensities, which in turn can be weighted by a function W as
in (2.53)

µ̂ =
n∑

k=1

zkpkW(pk,w)

/
n∑

k=1

zkW(pk,w) . (2.65)

Similarly, the ML estimatêΣ of the covariance matrixΣ is given by the sample average of
the outer product(pk − µ̂)(pk − µ̂)T [Bishop, 1995] weighted by the pixel intensities and the
weight function:

Σ̂ =
n∑

k=1

zk(pk − µ̂)(pk − µ̂)T W(pk,w)2

/
n∑

k=1

zkW(pk,w) . (2.66)

The estimatêa for the amplitudea is given by (2.60): It is assumed that the background
b(pk) is slowly varying over the image – for the characterization of the background of a spot it
is sufficient to take one background sampleb(µ) at the spot centerµ. Hence one can assume
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a constantb and therefore employ (2.61) rather than (2.59). Since the background has already
been subtracted , one hasb0 = 0 and

â =
d2

c2
=

n∑
k=1

zkG(pk, µ̂, Σ̂)W(pk,w)

n∑
k=1

G(pk, µ̂, Σ̂)2W(pk,w)

. (2.67)

As mentioned above, the weight function W could be maximal at the center of the spot and
drop to zero at greater distances (for example a Gaussian). While this may reduce the influence
of distortions at the spot border, it does not cope with distortions in regions near the spot center.
The weight function ofrobust estimatorsis data-driven rather than topology-driven. In the next
sections, robust estimators are introduced and adapted to our needs of Gaussian models.

2.6.2 Robust M-Estimators

Parametric spot fitting is expected to yield consistent estimates of the unknown parameters at
the idealized model. If the fitting is robust, the parameters will not drift too far away if the
model is only approximately true. The theory of robust statistics is well researched in liter-
ature. One quality measure of a robust estimator is thebreakdown point. The breakdown
point ε∗ gives the limit to which the percentage of outliers can increase which the estimator
still can tolerate. We give a short introduction to robust estimation with M-estimators. Other
robust estimators include L-, R-, and MM-estimators and are discussed in [Jureckova, 1984] ,
[Jureckova and Sen, 1996] or [Huber, 1981]. In general, M-, L- and R-estimators are asymptoti-
cally equivalent under certain smoothness conditions [Jureckova, 1984]. However, M-estimators
are chosen in this work because they are the most flexible ones and they generalize straightfor-
wardly to multiparameter problems [Huber, 1981] needed to be solved in this work.

Let the differencezk − Z(pk,q) in (2.53) between thekth observation and its fitted value
be denoted as the residualrk. The ML estimator tries to minimize

∑
k r

2
k, which is unstable if

there are outliers present in the data. Outlying data give an effect so strong in the minimizing
that the parameters thus estimated are distorted. M-estimators try to reduce the effect of outliers
by replacing the squared residualsr2

k by a function of the residuals, yielding

n∑
k=1

ρ(rk) → min, (2.68)

whereρ is a symmetric, positive-definite function with a unique minimum at zero, and is chosen
to be less increasing than square. Instead of solving directly this problem, it can be implemented
as an iterated re-weighted least-squares one.

The M-estimator for the parameter vectorq based on the functionρ(rk) is the vectorq
which is the solution of the followingD equations:

n∑
k=1

ψ(rk)
∂rk

∂qj
= 0, for j = 1, . . . D, (2.69)
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where the derivativeψ(x) = dρ(x)/dx is called theinfluence function. If the weight function
W is defined as

W(x) =
ψ(x)

x
, (2.70)

then (2.69) becomes

n∑
k=1

W(rk)rk
∂rk

∂qj
= 0, for j = 1, . . . D. (2.71)

This is exactly the system of equations that are obtained is the following iterated re-weighted
least-squares problem is solved

n∑
k=1

W(ri−1
k )r2

k → min, (2.72)

where the superscripti indicates the iteration number. The weight W(ri−1
k ) should be recom-

puted after each iteration in order to be used in the next iteration.
The influence functionψ(x) measures the influence of a datum on the value of the parameter

estimate. For example, for the least-squares withρ(x) = x2/2, the influence function isψ(x) =
x. This means that the influence of a datum on the estimate increases linearly with the size
of its error, confirming the non-robustness of the ML estimate. When an estimator is robust,
it may be inferred that the influence of any single observation (datum) is insufficient to yield
any significant offset. A robust M-estimator must therefore have a bounded influence function.
Furthermore, a robust estimator should be unique.

Table 2.1 lists a few commonly used influence functions. They are graphically depicted in
Fig. 2.12:

• L2 (least squares) estimators are not robust because their influence function is not bounded.

• L1 (absolute value) estimators are not stable because theρ-function |x| is not strictly
convex inx. The second derivative atx = 0 is unbounded, and an indeterminate solution
may result.

• L1 estimators reduce the influence of large errors, but they still have an influence because
the influence function has no cut off point.

• L1−−L2 estimators take both the advantage of theL1 estimators to reduce the influence
of large errors and that ofL2 estimators to be convex.

• TheLp (least powers) function represents a family of functions. It isL2 with ν = 2
andL1 with ν = 1. The smaller theν, the smaller is the incidence of large errors in
the estimateq. The parameterν must be fairly moderate in order to provide a relatively
robust estimator. The selection of an optimalν has been investigated, and forν around
1.2, a good estimate may be expected [Zhang, 1995]. However, the computation results
in many difficulties when parameterν is in the range of interest1 < ν < 2, because zero
residuals are troublesome.
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Type ρ(x) ψ(x) W(x)
L2 x2/2 x 1

L1 |x| sgn(x) 1
|x|

L1 −−L2 2(
√

1 + x2/2− 1) x√
1 + x2/2

1√
1 + x2/2

Lp
|x|ν
ν sgn(x)|x|ν−1 |x|ν−2

“Fair” c2[
|x|
c − log(1 +

|x|
c )] x

1 + |x|/c
1

1 + |x|/c

Huber

{
if |x| ≤ k
if |x| ≥ k

{
x2/2
k(|x| − k/2)

{
x
ksgn(x)

{
1
k/|x|

Cauchy c2

2 log(1 + (x/c)2) x
1 + (x/c)2

1
1 + (x/c)2

Geman-McClure
x2/2

1 + x2
x

(1 + x2)2
1

(1 + x2)2

Welsch c2

2 [1− exp(−(x/c)2)] x exp(−(x/c)2) exp(−(x/c)2)

Tukey

{
if |x| ≤ c
if |x| > c

{
c2

6 (1− [1− (x/c)2]3)

(c2/6)

{
x[1− (x/c)2]2

0

{
[1− (x/c)2]2

0

Table 2.1: A few commonly used M-estimators

• The function “Fair” has everywhere defined continuous derivatives of first three orders,
and yields a unique solution. Asymptotic efficiency on the standard normal distribution
of 95 % is obtained with the tuning constantc = 1.3998 [Rissanen, 1987].

• Huber’s function [Huber, 1964] is a parabola in the vicinity of zero, and increases lin-
early at a given level|x| > k. The 95 % asymptotic efficiency on the standard normal
distribution is obtained with the tuning constantk = 1.345.

• Cauchy’function does not guarantee a unique solution. With a descending first derivative,
such a function has a tendency to yield erroneous solutions in a way which which can-
not be observed. The 95 % asymptotic efficiency on the standard normal distribution is
obtained with the tuning constantc = 2.3849 .

• The other remaining functions have the same problem as the Cauchy function. As can
be seen from the influence function, the influence of large errors only decreases linearly
with their size. The Geman-McClure and Welsh functions try to further reduce the effect
of large errors, an the Tukey’s biweight function even suppresses the outliers. The 95 %
asymptotic efficiency on the standard normal distribution of the Tukey’s biweight function
is obtained with the tuning constantc = 4.6851; That of the Welsch function withc =
2.9846.

It seems difficult to select aρ-function for general use without being rather arbitrary. For loca-
tion (or regression) problems, the best choice is theLp in spite of its theoretical non-robustness:
They are quasi-robust. However, it suffers from computational difficulties. The second best
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Figure 2.12: Graphic representation of a few common M-estimators [Zhang, 1995].
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function is “Fair”, which can yield nicely converging computational procedures. All these func-
tions and Huber’s function do not eliminate completely the influence of large gross errors. The
four last functions do not guarantee unicity, but reduce considerably, or even eliminate com-
pletely, the influence of large gross errors.

Scale Invariance

The solution to (2.69) is not scale-invariant, since in generalψ(cx) 6= cψ(x). In practice it
means that an M-estimator should be supplemented by anestimator of scaleσ. The scale
invariant version of the M-estimator is defined by the solution to the equation:

n∑
k=1

W(rk/σ)rk
∂(rk/σ)

∂qj
= 0, for j = 1, . . . D. (2.73)

This procedure is also called studentizing. Sinceσ is usually unknown it is replaced by a robust
estimator of the scale. For univariate estimators of location, one usually takes the MAD (median
absolute deviation) divided by 0.6745:

σ̃ =
median|xk −median(xk)|

0.6745
, (2.74)

wherex1, x2, . . . , xk is a sequence of identically independently distributed (i.i.d.) observations.
The MAD is a robust estimator foru0.75 ·σ = 0.6745σ (u0.75 is the 0.75 quantile of the standard
normal distribution ). So MAD/0.6745 is a robust estimator forσ.) The breakdown point of this
estimator isε∗ = 0.5.

M-Estimators for Gaussian Spots

The theory of robust M-estimators for multivariate distributions with elliptically symmetric
density function (a Gaussian, for example) has been studied by Maronna [Maronna, 1976]. The
elliptically symmetric density function can be written as

f(p) = |Σ|−1/2h{[(p− µ)′Σ−1(p− µ)]−1/2} (2.75)

whereh is a density function inRm, for p ∈ Rm. Let p1,p2, . . . ,pk be a sequence of i.i.d
observations with density stated in (2.75). Maronna’s estimators for locationµ̂ and covariance
matrix Σ̂ are computed as solutions of the equations:

µ̂ =
n∑

k=1

pkW(ek)

/
n∑

k=1

W(ek) (2.76)

and

Σ̂ =
1

n

n∑
k=1

(pk − µ̂)(pk − µ̂)T (W(ek
2))2, (2.77)

where
ek

2 = (pk − µ̂)TΣ−1(pk − µ̂) (2.78)
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Sufficient conditions on the weight functions for which solutions to (2.76) and (2.77) is given
in [Maronna, 1976]. Ifpk has the distribution (2.75), then̂µ estimatesµ consistently and
Σ̂ estimatesc · Σ, where the constantc depends on onW(·) and the probability distribution
function.

We use Maronna’s M-estimators forµ andΣ in order to compute the corresponding param-
eters of the Gaussian spot model (2.62). We use a weighting scheme based on the deviation
from Gaussian model which is more suitable for spot overlap and outlier handling. In order to
estimate the parameters altogether efficiently, we introduce a joint estimation for the meanµ,
the covariance matrixΣ and amplitudea:

µ̂ =
n∑

k=1

zkpkW(ek)

/
n∑

k=1

zkW(ek) (2.79)

Σ̂ =
1

T

n∑
k=1

zk(pk − µ̂)(pk − µ̂)T (W(ek))
2. (2.80)

â =
n∑

k=1

zkG(pk, µ̂, Σ̂)W(ek)

/
n∑

k=1

G(pk, µ̂, Σ̂)2W(ek) , (2.81)

whereT is the total sum of the intensities of the patch:

T =
n∑

k=1

zk (2.82)

and the studentized errorek between the data and the model for each point is

ek := ek(â, b̂, µ̂, Σ̂) :=
(zk − â G(pk, µ̂, Σ̂))

σ
(2.83)

with unknown spreadσ.
The equations for̂µ (2.79), Σ̂ (2.80) andâ (2.81) can be solved by the weighted least

squares iteration:

µ̂i+1 =
n∑

k=1

zkpkW(eki)

/
n∑

k=1

zkW(eki) (2.84)

Σ̂i+1 =
1

T

n∑
k=1

zk(pk − µ̂)(pk − µ̂)T (W(eki))
2. (2.85)

âi+1 =
n∑

k=1

zkG(pk, µ̂, Σ̂)W(eki)

/
n∑

k=1

G(pk, µ̂, Σ̂)2W(eki) (2.86)

with

eki := ek(â, b̂, µ̂, Σ̂) :=
(zk − â G(pk, µ̂i, Σ̂i))

σi

(2.87)

and

σj = mediank∈I
|zk − ai G(pk,µi,Σi)|

0.6745
, (2.88)
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Figure 2.13. Overlapping Syntehtic Gaussian Spots.The right spot has the double intensity of the left
spot.

where the scale is estimated in analogy to (2.74). Not all data points are used for the scale esti-
mation, because the estimator should not fit the points far from the spot center and classifying
the center to be an outlier. This may happen when a bigger portion of background is visible.
Only points ’inside’ the ellipse defined by the covariance matrixΣ̂i are considered. The region
I in (2.88) is defined as

I = {k | (pk − µ̂i)Σ̂
−1
i (pk − µ̂i)

T ) < c} (2.89)

.
The thresholdc for the Mahalanobis distance can be chosen such that ’inside’ means the

0.95 percentile of the elliptical regions. An univariate standard normal distribution has its 0.95
percentile at 1.6449 (=Eucledian distance from 0). For the bivariate Gaussian distribution one
chosesc = (1.6449)2). For the initial valueŝµ0, Σ̂0 and â0 one can use the ML-estimators
(2.65) – (2.67). Alternatively one could take the median or the spot center forµ̂0 and a matrix
with the squared MAD in the diagonal and zero covariance forΣ̂0 and computêa0 with this
newµ̂0 andΣ̂0.

Fig. 2.13 shows two synthetic Gaussian spots, where the right spot has twice the intensity of
the left spot. It can be seen in Fig. 2.14a and b that the non-robust fit biases the the spot model
towards the neighbor. Figures 2.14c and d shows the weights W(ek) for every pixelpk as used
in Eqns (2.84)– (2.86). The weights are between0 and1 , where ’good’ data points receive
weight close to1 while ’bad’ data points which cause too high residuals receive weight close
to 0. As expected, the data points corrupted by overlap are downweighted. Figures 2.14e and f
show the robust Gaussian fit after six iterations of (2.84)– (2.86).
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Figure 2.14: Robust Spot Fitting for the Synthetic Data in Fig. 2.13.
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2.6.3 Relative Error and Goodness-of-Fit

In order to quantitatively assess how well a model assumption holds for a given set ofn inten-
sitieszk belonging to a spot we introduce a measure for the error. We apply an approach also
used in linear regression analysis as in [Hartung, 1989] by comparing the model to a “standard
model Z0”:

T1 :=
1

n

n∑
k=1

(zk − Z(pk))
2

/
1

n

n∑
k=1

(zk − z0)
2 (2.90)

with z0 := 1
n

∑
zk as the mean of the given intensity values. The standard model Z0 in this case

is a plane parallel to the image plane at the heightz0, i.e. Z0 ≡ z0. T1 relates the mean squared
error between the standard model and the data to the mean squared error between a constant
model and the data.T1 can also be regarded as the mean squared error between the spot model
and data normalized by the variance of the error. We will callT1 the relative squared erroror
for shortrelative error. In the literature1− T1 is called thegoodness-of-fit.

2.6.4 Quantification

The brightnessV of the spot is quantified as the volume under the fitted Gaussian function:

V̂ = â (2π)

√
det(Σ̂). (2.91)

A derivation of the Gaussian integral (2.91) can be found in [Bishop, 1995].

2.7 Semi-parametric and non-parametric spot fitting

A semi-parametric approach can describe the spot shape more accurately in the case of devia-
tions from the model assumptions. However, overlap handling will be difficult, because a semi
parametric fit will lack an intrinsic declension of the tails of a parametric model.

The basic idea of this method is to reduce dimensionality of given data using prior knowl-
edge. Assuming that the spot has elliptically symmetric shape the fit is computed in the follow-
ing steps:

A. Find the spot center We first perform a Gaussian fit computing M-estimators forµ and
Σ as described in (2.79) and (2.80). The estimateµ̂ is the spot center. Since the M-estimator
of the location is robust it will also deal with spots with uncommon shapes. Passing a line
perpendicular to thex, y-plane througĥµ gives us an axisa.

B. Transform the points The estimated dispersion matrix̂Σ gives us an ellipse in thex, y-
plane. Lete1 ande2 be the two eigenvalues of̂Σ, (without loss of generalitye1 ≥ e2), v1 andv2

the corresponding eigenvectors andε be the half-plane spanned byλ1a + λ2v1; λ1 ∈ R, λ2 ∈
R+

0 . Consider the one parametric family of ellipses with the principle axis directionsv1 and
v2, diametersλe1 andλe2, λ ∈ R+

0 and centerµ. The family covers thex, y-plane without
intersection, each point in thex, y-plane lies exactly on one ellipse. We “rotate” the given
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Figure 2.15: Semi-parametric Spot Fitting

intensity points(pk, zi) following the path corresponding topk into the half-planeε yielding a
point cloudqi in 2-space (see Fig. 2.15a. The first coordinate can be easily computed by:

e1 · |p|2/
√
e21(p · v1)2 + e22(1− (p · v1)2) (2.92)

and the second coordinate is the unchangedz-coordinate.

C. Compute a profile We introduce a simplified, efficient and robust version of curve approx-
imation for scattered points suited to our purpose. First we computem pointsci = (xi, yi), i =
1, . . . ,m well describing the shape of curve to be computed. Consider the vertical parallel strip
with y-axis andx ≡ maxxi as borders. We then segment the strip intom commensurate par-
allel strips and computeci = mediankrki, whererki are those pointsqk lying in the ith strip,
see Fig. 2.15b. We further cut off tails of the profile by gradually lowering the profile points
down to zero in the last quarter, because 1) especially at the tail there may be some overlapping
situation and 2) generally there are fewer points at the tail. For our purpose it is enough to inter-
polate the pointsci by a polygon and to perform a smoothing scheme on the profile points, e.g.
by replacing each point with a weighted sum of its neighbors. Alternatively one can compute a
spline interpolating the pointsci for the profile curve.

D. Compute Volume The profile curve is rotated following the elliptical paths as in step B.
The brightnessV of the spot is then estimated by taking

V̂ =
e2
e1
· 1

3

m∑
i=2

(x2
i−1 + xi−1xi + x2

i )π(yi − yi−1). (2.93)

Non-parametric quantification does not use any parameter in the desciption of the intensity
distribution of the spot. An overview of non-parametric methods like the Parzen window ap-
proach can be found in [Bishop, 1995] or [Duda et al., 2000]. It will also have difficulties in
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dealing with spot overlap. We also count the segmentation methods introducted in Sect. 1.3.2
to the class of non-parametric methods.

2.8 Chapter Summary

The proposed approach for spot array image analysis is composed of a set of robust tools ar-
ranged in a general framework (see Fig. 2.16). The image analysis starts with an amplification
of the spot locations with the help of matched filters built by averaging a number of representa-
tive tranining spots. The matched filter response is expected to have maximum values at the spot
locations. The grid rotation is estimated with the help of projections of matched filter responses
along different directions. The projection at the correct rotation angle is expected to have maxi-
mum projection values. Two alternative grid spanning modules enable to span a consistent grid
with the help of the matched filter response and the estimated rotation angle. The first grid span-
ning method transforms a prior spot grid according to the grid corner locations. The grid corner
locations are estimated by robustly fitting straight lines to the first and last row and column of
the grid. If the spot distances are too irregular, an alternative grid spanning projects intersects

Spot Detection and Grid Fitting

Spot Array Image Prior knowledge

Rotation Estimation

Grid Spanning

Spot Amplification

Spot Characterization

Spot Fitting

Background Estimation

Postprocessing

Matched Filtering

Radon Transform

Line Fitting Inverse Radon Transform

Image Pyramids

Parametric Semi-Parametric Non-Parametric

Figure 2.16. General Image Analysis Framework.Overview of the general approach for the image
analysis of spot array images.
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back-projected straight lines based on the inverse Radon transform. The spot characterization
step consists of the interdependent background estimation and spot fitting. The background
estimation uses a hierarchical pyramidal approach in order to yield smooth backgrounds. At a
high pyramid level with low resolution, a synthetic image based on spot fitting is subtracted and
the result is interpolated to the original spot image resolution.

The core spot fitting approach in our framework is based on statistical spot models. The pa-
rameters of the statistical model describe the observed distribution of pixel intensities and must
be fitted to the observed data. Maximum Likelihood (ML) estimators find the parameters that
best desribe the observed data based on the squared error between the data and the model. The
parameters of a Gaussian model constist of an overall height (amplitude), two parameters for the
spot center (mean) and three parameters for the dispersion of the spot (covariance matrix). The
squared error of the ML estimator is non-robust against outliers. Robust M-estimators weight
the contribution of a data point according to the residual error between the data and the model:
A large residual will be scaled down or even be truncated in order not to bias the estimator. The
semi-parametric approache is based on the robust parametric fit and then performs a dimension
reduction by rotating a plane around the spot center. A robustly fitted curve in the plane then
allows to model deviation the Gaussian form, e.g. a volcano spot. Non-parametric approaches
include the classical segmentation methods to segregate signal and background.

The proposed approach has two main characteristics: 1. The tools do not need critical
thresholds provided by users. The only user-information is the array configuration. 2. The
spot characterization is based on the original image data. No information is lost by a geometric
compensating rotation transform with its unavoidable interpolation.
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Chapter 3

DNA Array Technology

In the domain of biotechnology, the past few years have witnessed an extraordinary surge of
interest in the DNA array technology. This technology offers a great hope for providing a
systematic way to explore the genome, which is defined as the full set of genetic information
that an individual organism inherits from its parents. It permits very rapid analysis of thousands
of genes for the purposes of gene discovery, sequencing, mapping and expression. The massive
data generated by experiments based on DNA arrays need to be managed by powerful tools
capable of rational analysis. This chapter outlines the basic principles of DNA array technology.
It starts with a description of the biological knowledge indispensible for understanding DNA
array technology (Sect. 3.1. This section can be skipped by readers familiar with fundamental
knowledge about molecular biology. Section 3.2 introduces the different types of DNA arrays.
A list of possible applications of DNA array technology can be found in Sect. 3.3. Section 3.4
describes the main step of a DNA array experiment.

3.1 Fundamentals of Molecular Biology

Inherited characteristics of an organism are defined by their ability to be passed from one gen-
eration to the next in a predictable manner. It is important to realize the distinction between the
appearance of the organism (what we observe) and the underlying genetic constitution (which
we must infer). Visible or otherwise measurable properties are called thephenotype, while the
genetic factors responsible for creating the phenotype are called thegenotype. The gene is the
unit of inheritance. Each gene is a nucleic acid sequence that carries the information. A gene is
a stable entity, but can suffer a change in sequence. Such a change is called amutation. When
a mutation occurs, the new form of the gene is inherited in a stable manner, just like the previ-
ous form. The basic paradigm in the science of genetics is that genes encode proteins, which
in turn are responsible for the synthesis of other types of structures. The sequence of a gene
specifies the sequence of a protein, and therefore its molecular structure. Each protein consists
of a unique sequence of amino acids. Twenty amino acids are used to synthesize proteins. An
extensive overview of Genetics an be found in [Lewin, 1997]
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3. DNA Array Technology

Figure 3.1. DNA. DNA consists of a chemically linked sequence of subunits. Each subunit contains a
nitrogenous base (A, G, C, T), a sugar and a phosphate group. G can hydrogen bond specifically only
with C, while A can bond specifically only with T. [Lewin, 1997]

3.1.1 DNA as the Genetic Material

The genetic material of all known organism and many viruses isdeoxyribonucleic acid (DNA).
Some viruses use an alternative nucleic acid –ribonucleic acid – (RNA)as the genetic material.
The general principle of the nature of genetic material is that it is always nucleic acid.

A nucleic acid like DNA consists of a chemically linked sequence of subunits. Each subunit
contains anitrogenous base, a sugar and a phosphate group. The nitrogenous bases fall into
two typespyrimidinesandpurines. Each nucleic acid contains 4 types of base. The same two
purines, adenine and guanine, are present in both DNA and RNA. The two pyrimidines in DNA
are cytosine and thymine; in RNA uracil is found instead of thymine. The bases are usually
referred to by their initial letters; so DNA contains A, G, C, T, while RNA contains A, G, C,
U. Watson and Crick [Watson and Crick, 1953] proposed the double helix model for DNA, in
which two polynucleotide chains in the double helix associate byhydrogen (weak) bonding
between the nitrogenous bases. Figure 3.1 demonstrates that G can hydrogen bond specifically
only with C, while A can bond specifically only with T. These reactions are described asbase
pairing, and the paired bases (G with C, or A with T) are said to becomplementary.

49



3. DNA Array Technology

3.1.2 Central Dogma

The central dogmadefines the paradigm of molecular biology: genes areperpetuated as se-
quences of nucleic acid, but function by beingexpressedin the form of proteins. Three types of
processes are responsible for the inheritance of genetic information and for its conversion from
one form to another:

• Information is perpetuated byreplication; a double-stranded nucleic acid is duplicated to
give identical copies.

Information is expressed by a two stage process:

• Transcription generates a single-stranded RNA identical in sequence with one of the
strands of the duplex DNA. Several different types of RNA are generated by transcription.
The three principal classes involved in the synthesis of proteins aremessenger RNA
(mRNA), transfer RNA (tRNA) andribosomal RNA (rRNA) .

• Translation converts the nucleotide sequence of RNA into the sequence of amino acids
comprising a protein. An mRNA is translated into a protein sequence; tRNA and rRNA
provide other components of the apparatus for protein synthesis. The entire length of
an mRNA is not translated, but each mRNA contains at least onecoding region that is
related to a protein sequence by the genetic code: each group of three nucleotides (codon)
of the coding region represents one amino acid.

Only one strand of a DNA duplex is transcribed into a messenger RNA. The strand of DNA
that directs synthesis of the mRNA via complementary base pairing is called thetemplate
strand. The other DNA strand bears thesamesequence as the mRNA (except for possessing
T instead of U) and is called thecoding strand. Figure 3.2 illustrates the roles of replication,
transcription and translation:

• The perpetuation of nucleic acid may involve either DNA or RNA as the genetic material.
Cells use only DNA. Some viruses use RNA, and replication of viral RNA occurs in the
infected cell.

• The expression of cellular genetic information is usually unidirectional. Transcription
of DNA generates RNA molecules that can be used further only to generate protein se-
quences. Generally they cannot be retrieved for use as genetic information. Translation
of RNA into protein is always irreversible.

The restriction to unidirectional transfer from DNA to RNA is not absolute. It is overcome
by theretroviruses, whose genomes consist of single-stranded RNA molecules. During infec-
tion, the RNA is converted by the process ofreverse transcription into a single-stranded DNA,
which in turn is converted into a double-stranded DNA. This duplex DNA becomes part of the
genome of the cell, and is inherited like any other gene. Reverse transcription therefore allows
a sequence of RNA to be retrieved and used as genetic information.
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DNA

RNA

Protein

TranscriptionReverse
Transcription
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Replication

Template Strand

Coding Strand

Figure 3.2. Central Dogma of Molecular Biology.Transcription generates an RNA which is comple-
mentary to the DNA template strand and has the same sequence as the DNA coding strand. Translation
reads each triplet of bases into one amino acid. The central dogma states that information in nucleic acid
can be perpetuated or transferred, but the transfer of information into protein is irreversible.

3.1.3 Hybridization

The same features that allow DNA to fulfill its biological role make it possible to manipulate the
nucleic acidin vitro, and ultimately to isolate the segment of DNA that represents a particular
protein. The hydrogen bonds that stabilize the double helix are disrupted by heating or by
exposure to low salt concentration. The two strands of a double helix separate entirely when
all the hydrogen bonds between them are broken. The process of strand separation is called
denaturation.

Nucleic acid sequences can be assessed in terms of either similarity or complementarity.
Similarity between two sequences is given in principle by the proportion of bases or base pairs
that is identical. However, without determining the actual sequences, there is no direct way
to measure similarity.Complementarityis determined by the rules for base pairing between
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Figure 3.3. Denaturation and Renaturation.(a) Denatured single strands of DNA can renature to give
the duplex form. (b) Filter hybridization establishes whether a solution of denatured DNA (or RNA)
contains sequences complementary to the strands immobilized on the filter. [Lewin, 1997]

A ↔ T and G↔ C . In a perfect duplex of DNA, the strands are precisely complementary.
By comparing different but related double-stranded molecules, each strand of the first molecule
will be similar to one strand of the second molecule and will be (partly) complementary to the
other strand of the second molecule. Complementarity can be measured directly by the ability
of two single-stranded nucleic acids to base pair with each other. If double-stranded molecules
are denatured into single strands, the complementarity between the single strands can be used
to indicate the similarity between the original molecules.
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It is possible to measure complementarity because the denaturation of DNA is reversible
under appropriate conditions. The ability of the two separated complementary strands to reform
into a double helix is calledrenaturation (Fig. 3.3). Renaturation depends on specific base
pairing between the complementary strands. The reaction takes place in two stages. First,
single strands of DNA in the solution encounter one another by chance. If their sequences are
complementary, the two strands base pair to generate a short double-helical region. Then the
region of base pairing extends along the molecule by a zipper-like effect to form a long duplex
molecule. Renaturation of the double helix restores the original properties that were lost when
the DNA was denatured.

Renaturation describes the reaction between two complementary sequences that were sepa-
rated by denaturation. However, the technique can be extended to allow any two complementary
nucleic acid sequences toanneal with each other to form a duplex structure. The reaction is
generally described ashybridization when nucleic acids from different sources are involved,
as in the case when one preparation consists of DNA and the other consists of RNA. The ability
of two nucleic acid preparations to hybridize constitutes a precise test for their complementarity
since only complementary sequences can form a duplex structure.

The principle of the hybridization reaction is to expose two single-stranded nucleic acid
preparations to each other and then to measure the amount of double-stranded material that
forms. Filter hybridization uses the nitrocellulose filter property of adsorbing single strands
of DNA but not RNA. Once a filter has been used to adsorb DNA, it can be treated to prevent
any further adsorption of single strands. Figure 3.3b illustrates the resulting procedure in which
a DNA preparation is denatured and the single strands are adsorbed to the filter. Then a second
denatured DNA (or RNA) preparation is added. This material adsorbs to the filter only if it is
able to base pair with the DNA that was originally adsorbed. The usual form of the experimental
procedure is to add a radioactively labeled RNA or DNA preparation to the filter. This allows
to measure the extent of reaction as the amount of radioactive label retained by the filter.

The extent of hybridization between two single-stranded nucleic acids can be taken in prin-
ciple to represent their degree of complementarity. Two sequences need not be perfectly com-
plementary to hybridize. If they are closely related but not identical, in imperfect duplex is
formed in which base pairing is interrupted at positions where the two single strands do not
correspond.

3.1.4 mRNA Extraction and Reverse Transcription

If mRNA is required for use in hybridization experiments, it must be purified from total cel-
lular contents: mRNA accounts for only about 3 % of all RNA in a cell – the rest is tRNA
and ribosomal RNA. Thus isolating it in sufficient quantity for an experiment can be a chal-
lenge. Common mRNA isolation methods take advantage of the fact that most mRNA’s have
a poly-adenine (poly(A)) tail. These poly(A)+ mRNA’s can be purified by capturing them us-
ing complementary oligo(dT) molecules bound to a solid support. Captured mRNA’s are still
difficult to work with because they are prone to being destroyed. In order to prevent the ex-
perimental samples from being lost, they arereverse-transcribedback into more stable DNA
form. The products of this reaction are calledcomplementary DNA’s (cDNA’s) because their
sequences are the complements of the original mRNA sequences [Lewin, 1997].
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3.2 DNA Array Types

DNA arrays consist of large numbers of DNA molecules spotted in a systemic order on a sub-
strate (such as a nylon membrane, glass slides, or silicon chip).

3.2.1 Mechanical Spotting

In a mechanical spotting approach, a prepared DNA sample (e.g. cDNA) is loaded into a spot-
ting pin by capillary action, and a small volume is transferred to a solid surface by physical
contact between the pin and the solid substrate. Fig. 3.4a). After the first spotting cycle, the pin
is washed and a second sample is loaded and deposited to an adjacent address. Robotic control

Touch Surface Move Pins Repeat

DNA Array

DNA Array

DNA Array

Deliver Drop Move Jets Repeat

Shine Light Couple Repeat

a)

b)

c)

Figure 3.4. DNA Array Technologies. (a) In mechanical spotting approaches, a prepared DNA sample
is loaded into a spotting pin by capillary action, and a small volume is transferred to a solid surface by
physical contact between the pin and the solid substrate. (b) In ink jetting approaches, a DNA sample is
loaded into a miniature nozzle equipped with a piezoelectric part which is used to expel a precise amount
of liquid from the jet onto the substrate. (c) In the photolithographic process, a glass wafer modified
with photolabile protecting groups is selectively activated for DNA synthesis by shining light through a
photo-mask.
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(a) (b)

(c) (d)

Figure 3.5. DNA Array Robot. The key component of the arrayer is the print-head containing pins
witch a pitch of 4.5 mm (b and d). Samples are prepared and arrayed from micro-titer plates (c and d)

.

systems and multiplexed print heads allow automated DNA array fabrication (see Fig. 3.5). Me-
chanical spotting is easy to use, has low costs and is versatile. One disadvantage of mechanical
spotting is that each sample must be synthesized, purified and stored prior to DNA array fabri-
cation. The arrays currently manufactured contain 80.000 and more spots on the solid support.
Nylon has a maximum resolution of 20µm, where glass has a minimum resolution of 5µm.

3.2.2 Ink Jetting

In this approach, a DNA sample is loaded into a miniature nozzle equipped with a piezoelectric
part which is used to expel a precise amount of liquid from the jet onto the substrate (Fig. 3.4b).
After the first jetting step, the jet is washed and a second sample is loaded and deposited to
an adjacent address. A repeated series of cycles with multiple jets enables rapid microarray
production. Ink-jetting technology has been used to prepare microarrays of single cDNA at a
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density of 10,000 spots/cm2.

3.2.3 Photolithography

The photolitography synthesis technology, developed by Fodor et al. [Fodor et al., 1991] and
Pease et al. [Pease et al., 1994], combines photolithography technology from the semiconduc-
tor industry with DNA-synthetic chemistry to enable high-density oligonucleotide-microarray
manufacture. In the process, a glass wafer modified with photolabile protecting group is selec-
tively activated for DNA synthesis by shining light through a photomask (Fig. 3.4c). The wafer
is then flooded with a photo-protected DNA base, resulting in spatially defined coupling on
the chip surface. A second photomask is used to deprotect defined regions of wafer. Repeated
deprotection and coupling cycles enable the preparation of high-density oligonucleotide DNA
arrays.

A key advantage of this approach is that photo-protected versions of the four DNA building
blocks allows chips to be manufactured directly from sequence databases, thereby removing the
uncertain and burdensome aspects of sample handling and tracking. Another advantage of this
technology is that the use of synthetic regents minimizes chip to chip variation by ensuring a
high degree of precision in each coupling cycle. One disadvantage of this approach is, however
the need for photomasks, which are expensive and time-consuming to design and build. At
presence microarrays prepared by this approach contain as many as 400,000 groups of oligonu-
cleotides or features in an area of around 1.6 cm2, with each feature containing approximately
ten million oligonucleotides of a given sequence.

3.3 Applications of DNA Arrays

3.3.1 Gene Expression Studies

DNA microarrays are perfectly suited forcomparinggene expression in different populations
of cells. The goal of comparative cDNA hybridization is to compare gene transcription in two
or more different kinds of cells. The following experiments are of particular interest.

Tissue-specific Genes

Cells from two different tissues (e.g. cardiac muscle and neuron) are specialized for performing
different functions in an organism. Although we can recognize cells from different tissues by
their phenotypes, it is not known just what makes one cell function as smooth muscle, another
as a neuron, and still another as prostate. Ultimately, a cell’s role is determined by the proteins it
produces, which in turn depend on its expressed genes. Comparative hybridization experiments
can reveal genes which are preferentially expressed in specific tissues. Some of these genes
implement the behaviors that distinguish the cell’s tissue type, while other controlling genes
make sure that the cellonlyperforms the functions for its type.
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Regulatory Gene Defects in Cancer

Genetic disease is often caused by genes which are inappropriately transcribed – either too much
or too little – or which are missing altogether. Such defects are especially common in cancers,
which can occur when regulatory genes are deleted, inactivated or become permanently active
[Levine, 1993]. Unlike genetic diseases in which a single defective gene is always responsible,
cancers which appear clinically similar can be genetically heterogeneous. For example, prostate
cancer may be caused by several different, independent regulatory gene defects even in a single
patient. In a group of prostate cancer patients, every one may have different set of missing or
damaged genes, with differing implications for prognosis and treatment of the disease.

Comparative hybridization can serve two purposes in studying cancer: it can reveal the
transcription differences responsible for the change from normal to cancerous cells, and it can
distinguish different patterns of abnormal transcription in heterogeneous cancers. Understand-
ing the diverse basis of a cancer is crucial for inventing therapies targeted to the different vari-
eties of the disease, so that each patient receives the most appropriate and effective treatment
[DeRisi et al., 1996] .

Cellular Responses to the Environment

Cells survive in the face of changes in temperature and pH, changing nutrient availability and the
presence of environmental toxins. Usually, a change in environment requires that expression of
some genes be turned up or down so that the organism can respond appropriately. Comparative
hybridization experiments can point out genes whose transcription changes in response to an
environmental stimulus. In the simplest experiment, a population of cells is subjected to the
stimulus and allowed to reach a steady state of transcription. Transcription levels in the altered
cells can then be compared to those in a control population. A more informative experiment
subjects cells to a change, then takes samples of the cell population at successive points in time.
In this way, the experimenter can watch as the gene transcription patterns change from the old to
the new steady state. Thisexpression profilingcan identify not only genes whose transcription
changes but also the order of the changes, providing evidence about which genes control the
response directly and which are only indirectly affected by it [Duggan et al., 1999].

3.3.2 Genomic Studies

The applications of arrays to genomic studies primarily involve identification and genotyping
of genetic variations. Photolithographic oligonucleotide microarrays have largely been used for
identification of novel DNA variants ([Chee et al., 1996].) With the ability to perform custom
synthesis at high density, one can construct a tiling array to scan a target sequence for muta-
tions. Each overlapping molecule consisting of 25 bases in the sequence is covered by four
complementary oligonucleotide probes that differ only by having A, T, C or G substituted at
the central position. An amplified product containing the expected sequence will hybridize
best to the expect probe, whereas a sequence variation will typically alter the hybridization pat-
tern. Such tiling arrays have been used to detect variants in such targets as the HIV genome
[Kozal et al., 1996].
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3.3.3 Protein Arrays

Protein Arrays containing spotted proteins (instead of DNA molecules) are the latest technical
development. The objective is a functional study of thousands of proteins in parallel. MacBeath
and Schreiber [MacBeath and Schreiber, 2000] printed more than 10.000 protein spots on a
glass slide. The chip was used to identify protein-protein and protein-drug interactions.

3.4 Main Steps in a DNA Array Experiment

Typically, there are three steps in performing a DNA microarray experiment: Array Preparation,
Array Experiment, and Array Analysis.

3.4.1 Array Preparation

DNA arrays are made from a collection of purified DNA’s. DNA samples are prepared from
the cells or tissues of interest. A drop of each type of DNA in solution (probe) is placed
onto a specially-prepared glass slide or nylon array by the arraying machine. The choice of
DNA’s to be used in the spots on a DNA array determines which genes can be detected in a
comparative hybridization experiment. For organisms whose genomes have been completely
sequenced, including several bacteria, the yeast S. cerevisiae [Goffeau et al., 1996] and the hu-
man genome [Venter et al., 2001], [Lander, 2001],[Deloukas et al., 2001], it is possible to array
genomic DNA from every known gene in the organism. Each gene is amplified from total
genomic DNA by polymerase chain reaction (PCR) [Lewin, 1997], [Mullis, 1987], producing
enough DNA to make unlimited numbers of arrays.

Another way to produce arrayable DNA even for unknown genes is to use amplified clones
from cDNA libraries. Aclone is defined as large number of cells or molecules all identical
with an original ancestral cell or molecule. Alternatively, one can synthesize oligonucleotides
directly from known expressed sequence information such as expressed sequence tags (EST’s)
[Boguski et al., 1993]. While neither of these methods will produce DNA’s for every (human)
gene, both can yield enough different expressed sequences to make substantial arrays.

3.4.2 Array Experiment

The array approach is based on the hybridization of the DNA probe sequences (cDNA or
oligonucleotides) to a complextarget of reversely transcribed cDNA representations of total
RNA pools from test and reference cells. Once the cDNA probes have been hybridized to the
array and any loose probe has been washed off, the array must be scanned to determine how
much of each probe is bound to each spot. In order to detect hybridized cDNA’s bound to the
DNA array, one mustlabel them with a reporter molecule that identifies their presence. Possible
reporters include fluorescent dyes and radioactive phosphorus.

Fluorescent Labels

If light is shined on fluorescent reporter molecules, one observes light of adifferent coloremit-
ted from that molecule. The molecules adsorb high energy light (blue, for example). This
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mRNA
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cDNA Labeling
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Figure 3.6. Comparative DNA experiment schema.Templates for genes of interest are obtained and
amplified by Polymerase Chain Reaction (PCR) [Lewin, 1997]. The clones are printed on a solid support
like glass or nylon using a computer-controlled, high-speed robot. RNA from both the test and reference
sample is fluorescently labelled (green and red). The fluorescent targets are pooled and allowed to hy-
bridize to the clones on the array. Laser excitation of the targets yields an emission with a characteristic
spectrum, which is measured using a scanning confocal laser microscope. The monochrome images
can be pseudo-colored and merged. Data from a single comparative hybridization experiment is viewed
as a normalized ratio (green/red) in which significant deviations from 1 (no change) are indicative of
increased (> 1) or decreased (< 1) levels of gene expression relative to the reference sample.
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Figure 3.7. Itensifying screen for radioactive labels. Intensifying screens convert the radioactive
emissions which pass through the film to visible light. Phosphors are compounds which adsorb radiation
and emit visible light.

increases the energy of the molecules, and some of the energy from the blue photon is lost in-
ternally. The molecules then emit a photon with less energy, green, for example. The color of
light emitted is material dependent, and likewise the excitation light wavelength depends on the
material. The emitted light is captured by a detector, either a charge-coupled device (CCD) or a
confocal microscope, which records its intensity. Spots with more bound probe will have more
reporters and will therefore fluoresce more intensely. The advantage of fluorescent scanning is
that more than one type of dye can be used. By changing the excitation light, one can cause
one type of dye to fluoresce, and then another, in order to distinguish two different parts of the
sample. This allows the determination of the relative amount of transcript present in the pool by
the intensities of fluorescent signals generated. Relative message abundance is inherently based
on a direct comparison between a test cell state and a reference cell state. Figure 3.6 illustrates
the principles of a comparative hybridization experiment.

Radioactive Labels

Hybridized radioactively labeled cDNA’s form spots on X-ray film or more sensitive intensify-
ing screens (phosphorimager, Fig. 3.7). Intensifying screens convert the radioactive emissions
which pass through the film to visible light. This increases speed and sensitivity of the devel-
opment process. Phosphors are the substances which make intensifying screens work. They
are compounds which adsorb radiation and emit visible light. Radioactivity labeling is be-
ing used in conjunction with nylon arrays. The scheme of the experiment is very similar to
the one depicted in Fig. 3.6, but it is not possible to carry out simultaneous hybridization of
test and reference samples. In such cases, serial or parallel hybridization is required and the
probability of variability in comparisons of expression level is higher [Duggan et al., 1999].
An alternative approach to comparative gene expression analysis with radioactive labeling is
oligonucleotide fingerprinting: Here, short oligonucleotide probes (octamers or decamers) are
hybridized to the probes in order to derive a sequence dependent ’fingerprint’. This fingerprint
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can identify new genes, as well as analyze their exact level of expression in different tissues
[Meier-Ewert et al., 1993], [Meier-Ewert et al., 1998].

3.4.3 Array Analysis

The end product of a hybridization experiment is a scanned DNA array image. The spots pro-
vided by the array image must be correctly addressed (grid fitting) and quantified. From a
computational point of view, the initial problem is to correctly map the pixel matrix of the spot
array imageS to a matrix of quantified fluorescent or radioactive spot intensies I(gij), where
gij belongs to the gridG. In a two-color comparative hybridization experiment with a green
channel G and a red channel R, the ratio

rij = IG(gij) /IR(gij) (3.1)

of fluorescent intensities for a spotgij is interpreted as the ratio of concentrations for its corre-
sponding mRNA in the two cell populations. Significant deviation fromrij = 1 (no change) are
indicative of increased (rij > 1) or decreased (rij < 1) levels of relative gene expression. Typ-
ically, the interpreted array data will highlight a relatively small number of spots representing
very differentially-expressed mRNA’s whose genes deserve further investigation.

Another way of looking at expression data from DNA arrays is to track expression levels of
each gene across discrete time pointst1, t2, . . . , tk, so that there areK measurements I(gij, tk)
corresponding to each genegij. The aim is to group together genes whose expression levels
exhibit similar behavior through time. Similarity indicates possible co-regulation. The obser-
vations (quantified intensity for genegij at timetk) can be expressed as a vector of numerical
features. Each object can be represented as a point in a feature (vector) space. Statistical tech-
niques are used to decompose the feature space into clusters. There are many publications
about cluster analysis, for example [Kaufman and Rousseeuw, 1990], [Duda et al., 2000] and
[Jain et al., 2000]. Recent publications about clustering techniques for gene expression patterns
include [Herrero et al., 2001] and [Lukashin and Fuchs, 2001].

Interpreting the data from a DNA array experiment is challenging. Quantification of the
intensities on each spot is subject to noise from irregular spots, dust on the solid support, and
non-specific hybridization. Arrays printed on a stiff matrix, such as glass, render grid fitting a
relatively easy task. In contrast, extraction of data from film or phosphor-image representations
of radioactive hybridizations presents many difficulties for image analysis. If the array is on
a membrane, there is frequently non-linear warping of the matrix on nylon membranes, which
means that the observed array will not have the strict geometric regularity of an array printed
on a stiff matrix, such as glass. This introduces difficulty in developing highly accurate grids to
specify target locations [Duggan et al., 1999]. The following chapter describes how the general
framework of spot array image analysis introduced in Chapter 2 can be adapted to DNA array
images.

3.5 Chapter Summary

Alterations in gene expression pattern or in a DNA sequence can have profound effects on bi-
ological functions. These variations in gene expression are at the core of altered physiologic
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and pathologic processes. DNA array technology provides rapid and cost-effective methods
of identifying gene expression and genetic variations. Robotic technology is employed in the
preparation of most arrays. The DNA sequences are bound to a surface such as a nylon mem-
brane or glass slide at precisely defined locations on a grid. Using an alternative method, some
arrays are produced using laser lithographic processes. DNA samples are prepared from the
cells or tissue of interest. For expression analysis, the sample is cDNA, DNA copies of RNA.
The DNA samples are tagged with a radioactive or fluorescent label and applied to the array.
Single stranded DNA will bind to a complementary strand of DNA. At positions on the ar-
ray where the immobilized DNA recognizes a complementary DNA in the sample, binding or
hybridization occurs. The labeled sample DNA marks the exact positions on the array where
binding occurs, allowing automatic detection. The output consists of a list of hybridization
events, indicating the presence or the relative abundance of specific DNA sequences that are
present in the sample.
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Chapter 4

Case Study: DNA Array Image Analysis

This chapter deals with the adaption of the general framework for spot array image analysis
developed in Chapter 2 to DNA array analysis. In order to cope with a broad class of DNA
array images, one should take into account the following aspects of DNA array fabrication:

• As mentioned in Sect. 3.2, the pin resolution of a multiplexed print head (Fig. 3.5) is often
increased on the DNA array by different spotting cycles: After one spotting cycle, the pin
matrix is washed and further samples are loaded from a micro-titer plate and deposited
at an adjacent location (shifted horizontally or vertically). The resulting sub-array which
results from a single pin address is denoted here as ablock. The DNA array image in
Fig. 4.1 was produced by shifting the pin matrix5 times in the horizontal direction and
5 times in the vertical direction, resulting in5 × 5 block. Since it is possible that single
pins are broken or bent, the blocks should be adequately represented.

• A DNA array is often divided into sub-units denoted here asfields. One field is spotted
after the other and it may occur that the individual fields are not exactly aligned but shifted
against each other. Fig. 4.1 contains a total of6 fields, arranged in two columns and three
rows. In order to successfully cope with field shifts, on should model them separately.

• If a DNA array is expected to have few hybridization events, one may introduce a sub-
grid of reliable spots which should be guaranteed to always give a strong hybridization
signal. Such spots are denoted asguide spots. The DNA array in Fig. 4.1 has a guide spot
in every block center. If guide spots are present, the grid fitting should be performed first
on the guide spot grid.

Further aspects of DNA array image analysis are discussed in the following section, which
gives an overview of the state of the art. The general framework introduced in Chapter 2 is then
adapted to the DNA array images. Section 4.2 describes the robust grid fitting and Sect. 4.3
described the robust spot fitting.

4.1 State of the Art

Several DNA microarray image analysis implementations have been described, both on rigid
slides and on flexible membranes. Below, we review some essential features of these image
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Figure 4.1. Oligonucleotide Fingerprint (ONF) Image. The intensity of every spot corresponds to
the amount of radioactive label remaining after hybridizing a liquid containing the labeled targets and
subsequently washing off targets not bound to the spotted probes. The ultimate image analysis goal
is to automatically assign a quantity to every spot giving information about the hybridization signal
(quantification). For a successful quantification of the hybridization signals it is necessary to assign to
every grid node an image location (grid fitting).

analysis algorithms. Other implementations may be found in commercial array analysis pack-
ages but have not been publicly documented.

4.1.1 Semi-Automatic Spot Detection and Grid Fitting

The semi-automatic grid fitting method requires some level of user interaction. This approach
typically uses algorithms for automatically adjusting the location of the grid lines or individual
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grid points after the user has specified the approximate location of the grid. What the user needs
to do is to tell the program where the outline of the grid is in the image. For example, the user
may need to put down a grid and adjust the size of it to fit on the array of the spots, or to tell the
program the location of the corners of the fields in the images. Then the spot finding algorithm
adjusts the location of the grid lines, or grid points, to locate the arrayed spots in the image.
User interface tools are usually provided by the software to allow for manual adjustment of the
grid points if the automatic spot finding method has not correctly identified each spot. This
section only reviews methods that include at least some sort of spot detection decoupled from
spot characterization. Spot characterization methods will be reviewd in Sect. 4.1.3.

Granjeaud et al. implemented the HDG program [Granjeaud et al., 1996] to quantify radio-
labeled arrays spotted on nylon membranes. HDG identifies candidate spots by tracing their
edges. HDG does not use the geometry of the array to direct its search for spots; candidate
spots may be found anywhere on the image in any arrangement. Only after this search are spots
filtered based on a template of their expected positions, which may be warped interactively by
the user to fit the image. Clearly, the edge-based segmentation will have problems to cope with
artifacts and overlapping spots.

The DeArray package, described by Appel et al. [Appel et al., 1997], was developed for
arrays on rigid glass slides. These slides do not suffer the distortions of membranes, so the
program can safely divide an array image into rectilinear local target regions containing one
spot and process each target region separately.

The Dapple technique described in [Buhler et al., 2000] adjusts initial grid locations by the
center of intensity of the target regions, a mean value of all intensities above the median of the
target region weighted by the image coordinates. The spots are then detected by convolving the
image with a Laplacian (second derivative) filter detecting spot edges. No information about
the indexing is given, it is therefore assumed that the grid is not distorted.

Hartelius [Hartelius, 1996] describes the spot array image generation process with the help
of three mathematical models. First, apoint processdescribes the relative spot location on the
solid support as a Markov Random Field (MRF) [Winkler, 1995]. This means that the coordi-
nates of every spot location are random variables which depend statistically on the coordinates
of the neighbored locations. The deviation of an expected mean distance between grid nodes
is given by a normal distribution with a given variance. Second, aline processdescribes the
random deviation of the mean node distance in a local area of the solid support from a constant
value. The line process can model nonlinear shrinking of a membrane an discontinuous node
distances at field borders. The distance between two nodes is described as a random variable
and assigned to a line connecting the node (hence the term line process). Since neighbored vari-
ables are considered statistically dependent, the line process is a MRF as well. Finally, Hartelius
uses aobservational modelto describe the image intensity given the node location. The prob-
ability of the realization of the intensity (quantification) in a small neighborhood (e.g.3 × 3
pixel) depends on the mean intensity of this neighborhood. The likelihood values of the point
process, the line process and the observational model are combined in a global target function
and the maximum with respect to the parameters is found with the help of Simulated Annealing
[Winkler, 1995]. The found optimal parameters define the grid position of the given image and
the intensity of the spots. The grid model of Hartelius is suited for problems in which the object
is described by many statistically dependent variables, where no information about the analyt-
ical dependence is available. The parameters of the probability distribution must therefore be
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empirically estimated. For grid fitting it is necessary to optimize a cost function with respect to
all variables, where the optimization problem may become very complicated. For grid models
in microarray images, however, knowledge about analytical correlation between different model
parameters is availabe and should be taken into account.

4.1.2 Automatic Spot Detection and Grid Fitting

An automatic grid fitting algorithm with no user interaction is given in the description of the
GLEAMS package [Zhou et al., 2001]. The authors do not take into account prior knowledge
about expected pixel distance and estimate the inter-node distance with the help of the auto-
correlation function of the spot array image. The auto-correlation function has a maximum
value at the image center which shows that (obviously) an image is most similar to itself when
it has not been shifted. For periodic functions like (full) spot arrays, further maxima appear for
a multiple of this period. The distance from the image center to the first peak in the correlation
function corresponds to the (constant) inter-node distance inx-direction. A template image
containing a grid of Gaussian spots with the computed distance is then correlated with the
original spot image. They place the origin of the template at its geometric center, then each
local maximum points represents a possible location for the geometrical center of the array.
The number of such possible locations can be significantly reduced if maxima are discarded
which are not the abolute maximum in an area of a few grid nodes around. This automatic
grid fitting approach has the drawback of not taking into the account the rotation of the grid.
The rotation could be theoretically extracted from the discrete Fourier transform of the spot
array images. The authors have, however, not found a reliable way of uniquely identifying the
peak in the frequency spectrum resulting from the grid nodes. Furthermore, the computational
costs of the algorithm appear to be relatively high due to the autoccorrelation and the template
matching with a template as large as the spot array itself. Finally, the algorithm still needs
prior knowledge about the dimensions of the spot array. Information about pin distance and
scanner resolution are normally stored at the same place as the grid dimension, and it appears
questionable that the grid distance computed by auto-correlation will significantly differ from
the pre-comuted distance.

Bergemann et al. [Bergemann et al., 2001] finds a grid based on robust marginal distribu-
tions of the image, similar to the projections described in Sect. 2.3 (they use the median of the
image rows and columns). The first projection value above the 65% percentile of the projec-
tions is defined as the upper left hand corner, and the remaining locations are searched with the
prior knowlage about the spot distance. Their approach has some similarities with the approach
described in this work, but clearly fails to cope with rotated grids.

Steinfath et al. [Steinfath et al., 2001] describe an automatic grid fitting algorithm divided
into three steps. The preprocessing step convolves the spot array image with a matched filter and
sets the matched filter responseC to zero ifC < 0.6 and to2NC otherwise, whereN is the ra-
diometric resolution in bits. The preprocessing step also includes a rotation estimation which is
selected as the median of four angles between the image coordinates and four estimated straight
lines representing the filter borders. The image is then rotated by the negative rotation angle to
reverse the filter rotation. The automatic corner detection step uses the intersection points of the
four estimated straight lines and shifts them half a block size. The final spot finding step first
transforms the rotated matched filter output to a unit square by the inverse perspective trans-
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formation defined by the quadriliteral of the four estimated straight lines representing the filter
borders. The unit square is discretized into small rectangles the intensities of which are deter-
mined by their shape and intensities in the original quadriliteral. The rows and colums are then
further coarsened by an empiciral value in order to compute horizontal and vertical projection
values. They then find a consistent set of local maxima and fit straight lines to the grid nodes in
order to be able to assign locations of lacking spots. They report that the algorithm performed
successfully on a set of 2000 images. While their grid fitting approach apparently works, the
following points are problematic with their method, especially with regard to the subsequent
spot quantification. Transforming the spot array to a rectangular grid might facilitate subse-
quent grid finding and quantification algorithms, but also means loss of information. In general,
any image transform requires intensityinterpolationin order to determine the intensity values
of the pixels. This will unnecessarily affect the accuracy of the spot quantification. They even
transform the image twice, where the parameters do not seem to be well-founded. The choice of
the median of the four angles to the image border seems arbitary. Even more problematic seems
to be to assume a perspective transform of a scanned image, involving significant orientations
into the third dimension.

4.1.3 Segmentation Methods

After the spot location is determined in the image, a small patch around that location (target
region) can be used to quantify the spot intensity level. Many approaches segment the target
region into signal and background. At this stage, size and shape irregularities of the spots and
any artifact problem in the images are the major concerns to the algorithm design. A number
of solutions have been provided with different levels of sophistication. Their advantages and
disadvantages are described below.

Circle and Ellipse segmentation

Fixed circle segmentation fits a circle with a constant diameter to all the spots in the image,
in order to refine the regular grid positions of the grid provided by the user. In adaptive circle
segmentation, the circle’s diameter is estimated separately for each spot. The fitted circular
masks separate the signal from background. It is assumed that the pixels inside the circle are
due to the true signal and that those outside are background. Spot intensity measurements
are then performed on these classified pixels. These types of methods are optimal when the
spot shapes are close to perfect circles and no contamination is present. However, when shape
irregularities occur, the accuracy of the measurements is largely compromised. In addition, spot
contamination is still an issue in many DNA array images. An example is shown in Fig. 4.2a,
where a small bright contamination heavily affects the measurements of the spot intensity and
background. In addition to quantification inaccuracies generated due to the presence of artifacts,
problems arise due to variation in shapes of the spots. There are two broad classes of spot
shapes that will cause problems with pure space-based circle segmentation (Fig. 4.2b). First,
doughnut-shaped spots, which are often seen with many arraying systems, contain many non-
hybridized pixels within the circular spot area. These pixels will be mistakenly classified as
signal pixels. Second, non-circular spots (e.g. more elliptical spots) cannot be fit perfectly with
a round circle, thus causing some signal pixels to be considered as background and vice versa.
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(a) Artifacts (b) Irregular Shapes

Figure 4.2. Circle segmentation.All the pixels inside the circles are considered signal according to this
method. When contaminants exist (smallest circle), measurement errors are introduced into both signal
and background values.

The circle segmentation method is implemented in many spot array image analysis software
packages (e.g. [Eisen, 1999], GenePix[Axon Instruments, 1999]), where information about the
used circle fitting algorithms is not available. Only Kegelmeyer et al. [Kegelmeyer et al., 2001]
state that they use a circular Hough transform to find the best fit circle.

Bergemann et al. [Bergemann et al., 2001] describe a method for ellipse fitting based on
the marginal distributions of the target regions. It is the same marginal distribution as used
in their grid fitting step, i.e. the median value of the pixel rows and columns. The values of
the marginal distributions above an empirically chosen threshold define the principal axes of
an ellipse aligned with the image coordinates. While this method increases flexibility in of the
spot shape, elliptical spots not oriented with the image coordinates will still lead to inaccurate
results.

Purely intensity-based histogram segmentation

This type of method uses a target mask which is chosen to be larger than any spot. For each
spot, foreground and background intensity estimates are determined in some fashion from the
histogram of pixel values for pixels within the masked area: It is assumed that the brightness
intensities of pixels are statistically higher than that of the background pixels.

Kaifel et al. [Kaifel et al., 2000] provide a purely intensity based segmentation approach
in which the histogram of the target mask is approximated by step functions with different
step widths, resulting in a quantization of the histogram at different scales. The different ap-
proximating step functions are checked for stable minima, rated by the width and depth of the
surrounding minimum region. The set of stable minima is reduced by minima that appear to be
caused by noise within (rather than between) background and foreground. Therefore, they em-
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pirically set the background to 20% of the width of the histogram and remove all stable minima
in this area. The same procedure is performed for the high end of the histogram. Of the re-
maining minima, the one with the best score is chosen as the histogram threshold. Kegelmeyer
et al. [Kegelmeyer et al., 2001] find the low-intensity peak of the histogram representing the
background values and fit a line to the falling slope on the right side, forming a triangle with
they-axis [Ballard, 1981]. The intensity threshold is where the line crosses thex-axis.

When the signal intensity is low, the intensity distribution of the signal overlaps largely with
background. The signal and background pixels are not separable based on their intensity values
alone. Applying purely intensity-based histogram methods will produce biased estimates of the
signal and background intensity values. This shortcoming can be remedied by exploiting spatial
information.

Histogram Segmentation with Spatial Information

Chen et al. [Chen et al., 1997] use a nonparametric statistical method, the Mann-Whitney test,
to segment out signal pixels from target regions. After the grid fitting, a circle is placed in the
target region to demarcate the spatial region from the spot. Because the pixels outside the circle
are assumed to be background, the statistical properties of these background pixels can be used
to determine which pixels inside the circle are signal pixels. The Mann-Whitney test is the
method used to obtain a threshold intensity level. Pixels inside the circle that exceed the thresh-
old intensity are identified as signal. This method works well when the spot location is found
correctly and when there is no contamination in the image. However, when contaminated pixels
exist inside of the circle, they are incorrectly scored as signal pixels. If there are contaminated
pixels outside the circle or if the spot location is not found correctly such that some of the signal
pixels are outside the circle, these high-intensity pixels will raise the intensity threshold level.
Signal pixels with intensities lower than the threshold will be incorrectly scored as background.
This method also has its limitations when dealing with weak signals and noisy images. When
the intensity distribution functions of the signal and background are largely overlapping, clas-
sification of pixels based on an intensity threshold is prone to errors, resulting in measurement
biases. The Mann-Whitney test was also used in [Appel et al., 1997].

Trimmed measurement [Zhou et al., 2000] is another method that combines both spatial and
intensity information in segmenting signal pixels from background. The logic of this method
proceeds as follows: After the spot is localized and a target circle is placed in the target region,
mostof the pixels inside the circle are signal pixels, andmostof the background pixels are
outside the circle. Due to shape irregularities, some signal pixels may lie outside the circle, and
some background pixels may lie inside the circle. These pixels are considered outliers in the
sampling of the signal and background pixels. Similarly, contaminant pixels can also be consid-
ered outliers in the intensity domain. These outlier will severely change the measurement of the
mean and total signal intensity. To remove the impact of the outliers on these measurements,
one may simply trim off a certain percentage of signal and background pixels. Typically, a
certain percentage of pixels from the high end of the intensity distribution, for example 10%, is
trimmed off from the pixels inside the circle, due to the high possibility that such pixels may
be contaminants. A certain percentage of pixels at the low end of the intensity distribution, for
example 20%, is trimmed off from the pixels inside the circle, due to the high possibility that
such pixels may be background. Whatever remains inside of the circle after trimming is used
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for quantification. The exact amount to be trimmed depends on the effectiveness of the grid
fitting process and the quality of the image, such as the extent of size and shape of irregularities.
A good estimate for these thresholds is determined empirically. This method is effective as
long as the image quality does not significantly change. The major advantage of the trimmed
measurement method is the robustness of the measurement against outliers, at the expense of
accuracy: When there are no outliers, trimming will reduce the measurement accuracy by re-
ducing the number of pixels used in the calculation of the mean signal value. However, if there
is a significant number of pixels per spot and only a small percentage of the pixels are removed,
this method can yield highly accurate values.

The GLEAMS approach [Zhou et al., 2001] computes a threshold which is constrained to
fall within a range determined from an estimate of the local background’s mean and variance
[Otsu, 1979]. The background estimation uses pixels that fall outside fitted circles within an
area of5 × 5 target masks centered around the target mask in question. Clearly, a Gaussian
distribution of the background is assumed, which may not be the case, especially for spots with
low intensity.

Adaptive shape segmentation

Segmentations of this class include region-based segmentation methods like watersheds and
Seeded Region Growing (SRG), which both have been introduced in Sect. 1.3.2. As for SRG,
the seed locations for the spots are provided are by the grid fitting procedure. Yang et al.
[Yang et al., 2000] choose a spot seed location from the intersections of the horizontal and ver-
tical grid lines of the fitted spot grid. It is possible, particularly when the spot is small, that this
intersection location may not be inside the spot because of local irregularities or errors in the
grid fitting. To overcome this problem, they chose a squared seed region centered at the local
maximum pixel in a small neighborhood. Background seeds are cross-shaped regions from the
fitted background grid. A drawback of SRG is that is cannot cope with overlapping spots, since
two overlapping spots will be merged into a single region.

4.1.4 Data Quantification

On a single DNA array for expression profiling, the expression levels of many genes are in
parallel. Under the proper conditions, the total fluorescence intensity or radioactive intensity
of a spot is proportional to the expression level of a gene. These conditions are as follows
[Zhou et al., 2000]:

1. The preparation of the probe cDNA (through reverse transcription of the extracted mRNA)
solution is performed such that the probe cDNA concentration in the solution is propor-
tional to the mRNA in the tissue.

2. The hybridization experiment is performed such that the amount of cDNA binding to
each spot is proportional to the partial concentration of each cDNA species in the probe
solution.

3. The amount of cDNA target deposited at each spot during the array fabrication is constant
and in approximately 10-fold excess relative to the most abundant species in the probe
solution.
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4. There is no contamination on the spots.

5. The signal pixels are correctly identified by the grid fitting.

In the following discussion of existing quantification methods, it is assumed that conditions
1 and 2 are satisfied. Whether these two conditions are truly satisfied is determined through the
design of the experiments. For the quantification measurements, the more closely conditions 1
to 5 are followed the better. Often, conditions 3,4, and 5 are violated to varying degrees. The
DNA concentrations in the spotting procedure may vary from time to time and spot to spot.
Higher or lower concentrations may result in altered signals. When adjacent spots overlap, the
signal intensity corresponding to the contaminated region is not measurable in a direct manner.
The grid fitting may not correctly identify all the signal pixels; The quantification methods
should therefore be designed to address these problems. The commonly used methods are total,
mean, median, mode, volumen, intensity ratio and the correlation ratio across two channels.

Total

The total signal intensity is the sum of the intensity values of all the pixels in the signal region.
Total intensity is sensitive to variations in the amount of DNA deposited on the surface and the
existence of contamination. Because these problems occur frequently, this measurement may
not be accurate.

Mean

The mean signal intensity is the average intensity of the signal pixels. This method has certain
advantages over the total. The spot size correlates very often with the samples and pins used
in the arraying step. Measuring the mean will reduce the error caused by the variation of the
amount of DNA deposited on the spot.

Median

The median of the signal intensity is the intensity value that splits the distribution of the signal
pixels such that the number of pixels above the median intensity is the same as the number below
the median intensity. The advantage of choosing this measurements derives from the resistance
of the median value to outliers. An alternative to the median measurement is to use a trimmed,
as was discussed in the section above. The trimmed mean estimate is obtained by trimming a
certain percentage of pixels from the high- and low-intensity sides of the distribution.

Mode

The mode of the signal intensity is the “most likely” intensity value and can be measured as
the intensity level corresponding to the peak of the intensity histogram. It enjoys the same
robustness against outliers as the median. The tradeoff is that the mode will be more unstable
than the median when the distribution is multimodal. This is because the mode value will be
equal to one of the modals in the distribution, depending on which is the highest.
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Volume

The volume of signal intensity is the sum of the signal intensity above the background intensity.
It may be computed as:
(signal mean - background mean)× signal area. This method is based on the argument that the
measured signal intensity has an additive component due to the nonspecific binding, and this
additive compoment is the same as that of the background.

Intensity Ratio

If the hybridization is two-color and the scanning measurements are taken in two channels, then
the intensity ratio between the channels is often an important quantified value of interest. This
value will be insensitive to variations in the exact amount DNA spotted since the ratio between
the two channels is being measured. This ratio can be obtained from the mean, median, or mode
of the intensity measurement, obtained as discussed above, for each channel.

4.2 Robust Grid Fitting

This section adapts the grid fitting tools developed in Chapter 2 to DNA array images according
to the aspects outlined in the beginning of this chapter.

4.2.1 DNA Array Representation

In addition to the general grid representation defined Sect. 2.1.2, we formally divide the gridG
into subunits to represent the nature of the spotting cycles.

A field Fpq ⊂ G is a subunit of a gridG and is a set of nodes in{1 . . . IF} × {1 . . . JF} with
IF as the number of field rows andJF as the number of field columns. A gridG is partitioned
into FI ∗ FJ fields such that

FI⋃
p=1

FJ⋃
q=1

L(Fpq,S) = L(G,S) (4.1)

and
L(Fpq,S) ∩ L(F rs,S) = ∅, ∀(p, q) 6= (r, s). (4.2)

The row extraction and column extraction relations RF and CF are defined similarly to (2.2)
and (2.3). AblockBij ⊂ F is a subunit of a fieldF and is a set of nodes in{1 . . . IB}×{1 . . . JB}
with IB as the number of block rows andJB as the number of block columns. A fieldF is
partitioned intoIW ∗ JW blocks such that

IW⋃
i=1

JW⋃
j=1

L(Bij,S) = L(F ,S) (4.3)

and
L(Bij,S) ∩ L(Bkl,S) = ∅ ∀(i, j) 6= (k, l). (4.4)

The dimensions of a field counted in blocks corresponds to the dimensions of the micro-titer
plate. The following equations hold:
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Figure 4.3. An example grid and its subunits: The grid consists ofIG × JG = 36 × 36 spots and
FI × FJ = 3 × 2 fields. One field consists ofIF × JF = 12 × 18 spots and ofIW × JW = 4 × 6 blocks.
One block consists ofIB × JB = 3 × 3 spots. Guide spots are centered in the blocks and marked black.
The guide spots define aIGS× JGS = 12× 12 guide spot grid.

IF = IW ∗ IB and JF = JW ∗ JB. (4.5)

A guide spot gridG? is a set of nodes in{1 . . . IGS} × {1 . . . JGS}, with IGS as the number of
guide spot grid rows andJGS as the number of guide spot grid columns, where

IGS = FI ∗ IW and JGS = FJ ∗ JW (4.6)

The row extraction and column extraction relations RG? and CG? are defined similarly to (2.2)
and (2.3).
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Not. Description Not. Description
IB # block rows JB # block columns
IW # micro-titer plate rows JW # micro-titer plate columns

# guide spot field rows # guide spot field columns
IF # field rows JF # field columns

IF = IW ∗ IB JF = JW ∗ JB

FI # fields in vertical direction FJ # fields in horizontal direction
IG # grid rows JG # grid columns

IG = FI ∗ IF JG = FJ ∗ JF

IGS # guide spot grid rows JGS # guide spot grid columns
IGS = FI ∗ IW JGS = FJ ∗ JW

∆y vertical scanner resolution ∆x horizontal scanner resolution
Ny vertical spot distance [mm] Nx horizontal spot distance [mm]
Sy vertical spot distance Sx horizontal spot distance

(theoretical) [pixel] (theoretical) [pixel]
Sy = Ny/∆y Sx = Nx/∆x

By vertical block distance Bx horizontal block distance
(theoretical) [pixel] (theoretical) [pixel]
By = Sy ∗ IB Bx = Sx ∗ JB

M vertical spot array image size N horizontal spot array image size

Table 4.1. Notation.Overview of the notation of the spot array image and the spot array. The left part
of the table describes “vertical” entities, the right part of the table contains “horizontal” entities.

Prior knowledge

In addition to the theoretical horizontal and vertical spot distanceSx andSy (2.4), we introduce
the theoretical horizontal block distanceBx ∈ R and thetheoretical vertical block distance
By ∈ R. They are the distances in pixels between two adjacent block in the horizontal and
vertical direction computed as

Bx = Sx ∗ JB and By = Sy ∗ IB (4.7)

Table 4.1 provides an overview of the notation. The different dimensions of a DNA array are
illustrated in Fig. 4.3

4.2.2 Spot Amplification

The first step of DNA array image analysis is the spot amplification with a matched filter as
described in Sect. 2.2. Figure 4.4b is the matched filter response imageRM of the image in
Figure 4.4a.

If a guide spot grid is present, one can first try to amplify the guide spot locations in order to
subsequently span a guide spot grid. The main idea to amplify the locations of potential guide
spots is to consider the matched filter response values at the theoretical guide spot neighborhood
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Figure 4.4. Filtering with a matched filter. A high pixel value at the matched filter response image (b)
indicates a high similarity to the matched filter of the guide spots and is proportional to the probability of
a guide spot location in (a). Responses of regular spots can be stronger than the guide spots responses.
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Figure 4.5. Example for guide spot location amplification (GSLA):The black pixels are considered
in the computation of the GSLA response value for the center black pixel (assuming theoretical block
distances of 15 pixels). The median of the intensities at the 9 locations is taken as the response value of
the center pixel. If the center black pixel is a guide spot location, the grid neighborhood locations will
have high response values and the median of the response values will be high.

locations. Since a guide spot location is part of a grid, its grid neighborhood locations must also
have high matched filter response values. If this is not the case, it is likely that the location is
not a guide spot.

We formally define the setT[m,n] which includes the response valueRM[m,n] and the re-
sponse values of the theoretical guide spot neighborhood locations of(m,n) in RM as

T[m,n] = {RM[m+ k, n+ l] | k ∈ {0, ◦(By), ◦(−By}) ∧ l ∈ {0, ◦(Bx), ◦(−Bx})}. (4.8)

with By andBx as the theoretical block distances defined in (4.7). Figure 4.5 illustrates the
neighborhood setT[m,n] for the center black pixel assuming theoretical block distancesBy =
Bx = 15. The GSLA response valueRA[m,n] is determined as

RA[m,n] = median(T[m,n]). (4.9)

If a MF response value at a location(m,n) and all the response values in the theoretical neigh-
borhood are high it is likely that(m,n) is a guide spot location. This is not the case for locations
where the neighborhood response values are low. Note that the median value is more robust for
the guide spot location amplification than the mean value. In case of a regular spot (or an ar-
tifact) with a very high MF impulse response compared to the theoretical neighbors, the mean
value measure would propagate high values to the theoretical grid neighbors and generate new
local grid structures. Fig. 4.6 shows the GSLA response image of the matched filter response
image in Fig. 4.4b.

4.2.3 Rotation Estimation

The rotation estimation described in Sect. 2.3 can be directly applied to DNA array images.
In the presence of guide spots, the only adaption one has to make refers to the setMr in the
median computation of (2.19): After the application of GSLA filter the number of bright spots
in a row should correspond to the numberJGS of guide spots belonging to a row. The number
JG of spots in a row for the computation ofMr is therefore replaced by replaced byJGS.
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Figure 4.6. Guide spot location amplification (GSLA)filtered reponse image of the matched filter
response image in Fig. 4.4b. High intensity values indicate that locations of the theoretical guide spot
neighborhood also have high intensities. The guide spot location at the upper left grid corner is missing
because the median of 8 neighborhood positions is computed. A corner location only has 3 guide spot
neighbors.

4.2.4 Grid Spanning

In the following, the grid spanning algorithms described in Sect. 2.4 are adapted to DNA arrays,
taking into account the additional subgrids.

Initial Grid after Maximum Search

If a guide spot grid is present and the GSLA filter has been applied, two adaptions to the methods
described in Sect. 2.4.1 are necessary. First, the windows size for the maximum search is now
the next smaller number of the theoreticalblock distanceBy rather than the theoretical spot
distanceSy. This is because the regular spot locations are attenuated in the GSLA image. The
second change if guide spots are present is of course the definition of a prior guide spot grid
rather than a prior spot grid. The prior guide spot grid is transformed in the same way as
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in (2.23).

Initial Grid before Maximum Search

If the initial grid is computed by the inverse Radon transform and the input is a GSLA image
highlighting guide spot locations, the hypotheses as shown in Fig. 2.9 must be based onguide
spot rows and column.

Spot Grid Parameterization

As described in Sect. 2.4.3, grid parameterization deals with fitting straight lines to every row
and column of the grid. If a DNA array is divided into different fields, there might be a signifi-
cant shift between adjacent fields. In order not to bias the fitted straight lines towards the field
shift, we define parameter setsPpq for every (guide) spot fieldFpq as

Ppq = {((ari
, bri

), (acj
, bcj

)) | 1 ≤ i ≤ IF, 1 ≤ j ≤ JF}, (4.10)

with ari
andbri

as the parameters of a row straight line model (2.44) .

Initialization of regular spots

If guide spots are present in the image, the following principle is used to initialize the locations
of regular non-guide spots. Their exact positions is estimated in the quantification step. Loca-
tions belonging to regular spots in a blockB are inferred from the guide spot location with the
help of the prior knowledge of the theoretical spot distancesSx andSy and the block rotation.
The rotationθB of a blockB in row i of a fieldF is given by the slopebri

of the field grid
parameter set (2.43) as follows:

θB = arctan(bri
). (4.11)

Given the guide spot(i, j) ∈ B and its location L((i, j)) = [xG yG]
T , the regular spot locations

L((m,n)) with (m,n) ∈ B and(m,n) 6= (i, j) are initialized as follows:

L((m,n)) =

[
xG

yG

]
+

[
cos θB sin θB

− sin θB cos θB

] [
(m− i)Sx

(n− j)Sy

]
∀(m,n) 6= (i, j). (4.12)

Equation (4.12) is valid for blocks with guide spots residing at an arbitrary position of the block.
The regular spot locations (4.12) are used as initial estimates of of the center of a parametric
spot model.

4.2.5 Experimental Results

The quality of the grid fitting cannot be assessed for the high-density test images with a simple
location distance measure, sinceno ground-truth datais available for the spot array images. We
haven chosen two other ways to demonstrate the effectiveness of the grid fitting presented in
this work. We first show five examples of image types originating from different hybridization
experiments, having different quality, resolution and size. We then show that the grid fitting
success is correlated with the image quality.
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Visual Examples

We present five examples of images for which the grid fitting was successful. In order to demon-
strate the different scanning resolutions of the images, the image parts in Fig. 4.7- 4.11 are of
the same size and in scale, meaning that the spots of a high-resolution image are displayed
larger than the spots of a low-resolution image.

Figure 4.7a shows a part of a1596×1482 ONF image which has been scanned at a resolution
of 175µm at the Max Planck Institute for Molecular Biology (MPIMG) Berlin. The guide spots
at the center of the5×5 blocks in Fig. 4.7a are bright and clearly identifiable. Figure 4.7b shows
the same image with the computed guide spot locations superimposed as cross-hairs. For the
sake of overview, the initialized locations of the regular spots are not shown – they are simply
derived from the guide spot locations as demonstrated in (4.12). Please note that the locations
need not necessarily be right in the center of the (guide) spot: They are just the initializations
for the center of a parametric spot model.

Figure 4.8a shows a part of a1300×1200 ONF image which has been scanned at a resolution
of 200µm at the Novartis Forschungsinstitut (NFI) Vienna. The signals of the hybridization
signals of the guide spots at the center of the5× 5 blocks are relatively low in comparison with
the signals of the hybridized regular spots, for example at the lower right corner of the filter.
Furthermore, there are regions in which the signal-to-noise ratio is very low. It can be seen in
Fig. 4.8b that our algorithm is able to restore the guide spot grid. In this example, the border
between two fields can be noticed by comparing guide spot columns4 and5 of Fig. 4.8b: There
is a leap in they-coordinates indicating a field shift and therefore justifying the parameterization
(2.43) of the fields.

Figure 4.9a shows a part of a1300×1586 image originating from hybridizations of complex
cDNA samples. It has been scanned at a resolution of200µm at the NFI Vienna. The grid is
nearly full, but the guide spots at the center of the5× 5 blocks are brighter than the majority of
the regular spots. Note the visible vertical field shift in pixel row800 of the image. The correct
grid fitting output can be seen in Fig. 4.9b.

Figure 4.10a shows a part of a1300× 1486 image originating from colony filter hybridiza-
tions. The image has been scanned at a resolution of200µm at the NFI Vienna. The upper left
field is clearly noticeable. The intensities of the of the guide spots at the center of the5 × 5
blocks differ significantly: They are very high at the first row and first column of the guide spot
grid and are partly not distinguishable from the regular spots in regions within the field. The
dark rectangular region around pixel(375, 250) in the image indicates that a needle was lacking
(broken) on the needle matrix (Fig. 3.5a). Due to the parameterization (2.43) of the fields, such
lacking guide spot grid information can be easily restored, as is demonstrated in Fig. 4.10b.

Fig. 4.11a shows a part of a2400× 3544 image originating from hybridizations of complex
cDNA samples. If was scanned at a resolution of100µm at the NFI Vienna. It is an example
for a low signal-to-noise ratio hybridization image. Due to the high resolution of the image,
Fig. 4.11b also shows the computed locations of the regular spots superimposed as dots.
Table 4.2.5 summarizes the image information and indicates the names of the image files.
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Figure 4.7: Part of a1596× 1482 ONF Image with175µm resolution scanned at MPIMG Berlin.
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Figure 4.8: Part of a1300× 1286 ONF Image with200µm resolution scanned at NFI Vienna.
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Figure 4.9. Part of a1300× 1586 ComplexHyb Image with200µm resolution scanned at NFI Vienna.
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Figure 4.10.Part of a1300× 1486 ColonyHyb Image with200µm resolution scanned at NFI Vienna.
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Figure 4.11.Part of a2400× 3544 ComplexHyb Image with100µm resolution scanned at NFI Vienna.
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Figure 4.12. Box plots of image qualities versus grid fitting success.The grid fitting is successful for
images with good quality. The algorithm can also cope with some images the quality of which was rated
as very bad. Most of the images for which the grid fitting fails are rated as bad. There are, however,
some outliers of images with good quality which do not meet the expectations. Applying Algorithm II
of Sect. 2.4.2 completeley solved this problem.
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Figure Image Name Experiment Resolution [µm] Size
4.7 o16304260A1 ONF 175 1596× 1482
4.8 o100295107y1 ONF 200 1300× 1286
4.9 coctail2c64102y1 ComplexHyb 200 1300× 1586
4.10 990401ptaab111dky1 ColonyHyb 200 1300× 1486
4.11 u266-1-99031c64120x1 ComplexHyb 100 2400× 3544

Table 4.2: Overview of the image examples demonstrated in Fig. 4.7–4.11.

4.2.6 Evaluation of Image Quality versus Grid Fitting Success

The largest test set consisted of ONF images from two cDNA-libraries namedw08 (855 images)
andw09 (885 images). These ONF images had been scanned at the Novartis Research Institute
Vienna at a resolution of∆x = ∆y = 200µm. The image quality of every image inw08 and
w09 had been rated by a human with numbers between 1 (very good) and 5 (very bad). Hence
it is at least possible to investigate the correlation between the image quality and the success of
the grid fitting (abortion criterion (2.46)). Figure 4.12 shows both forw08 andw09 images the
Box plot of image qualities for which the grid fitting fails (left hand side) and the Box plot of
image qualities for which the grid fitting was successful (right hand side) - the initial grid was
defined after maximum search (Algorithm I in Sect. 2.4.1. Figure 4.12 can be interpreted as
follows:

• As expected, the grid fitting is successful for images with good quality. However, the
algorithm can also cope with some images the quality of which was rated as very bad.

• Most of the images for which the grid fitting fails are rated as bad. There are, however,
some outliers of images with good quality which do not meet the expectations.

The quality of images was rated by humans only with respect to the level of noise and the shape
of the spots. Some apparently good quality images failed in the grid fitting process, because
the spot distances have been too irregular. This was due to non-linearities in the step-motor
of the scanner and therefore led to problems with the prior guide spot grid covering the whole
spot area. Applying the second grid spanning spanning algorithm (Sect. 2.4.2)led to satifactory
results.

4.3 Experimental Results of Robust Spot Fitting

This section shows the results of applying the robust parametric spot fitting developed in Sect. 2.6
to DNA array images. Statistical models have been chosen in order to cope with the heavy spot
overlap. The spot intensities are quantified as the volume of the Gaussian spot shape according
to (2.91).

4.3.1 Artifacts

Consider the image patch of a5 × 5 blockB in Fig. 4.13a. The initial spot locations after grid
fitting are shown in Fig. 4.13b. The spot(3, 3) in the block center is distorted by an artifact.
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Figure 4.13: Spot Fitting for a Spot with an Artifact.

As can be seen in Fig. 4.13c, a simple non-robust Gaussian fit will fail, because the location
is biased towards the location of the artifact. The robust Gaussian fit can overcome the outlier
(Fig. 4.13d).

4.3.2 Spot Overlap

Figure 4.14 demonstrates how the robust Gaussian fit works on image data with overlapping
spots. Figure 4.14a shows a5 × 5 block originating from an ONF image with low resolution,
together with the initial spot locations after grid fitting. Figure 4.14b shows the image data
as a 3D-meshgrid. Spots(1, 3), (2, 5) and(3, 3) have up to three overlapping neighbors, here
the robust estimator can recover the original spot location quite well, especially for(1, 3) and
(3, 3). Spot(1, 3) is plotted in Fig. 4.14c. The non-robust Gaussian fit is biased towards the
neighboring spots, whereas the location of robustly fitted Gaussian spot is more plausible. Spots
(1, 4), (2, 3) and(2, 4) have over four overlapping neighbors and are therefore difficult cases, but
still some improvements can be achieved by robust fitting. The non-robust and robust Gaussian
fit of spot (2,3) are plotted in Fig. 4.14d. After the first robust Gauss fit we refit on every
location with subtracted neighborhood models. The centers computed during the first fit are
taken as the initial centers for the second fit. When taking a look at the new patches with
subtracted neighbors (see Fig. 4.14e) one will notice that the patches are now less distorted than
the previous patch and are more “spot like” – an indication that the situation has improved.

When investigating the goodness of fit and the patch shapes, the first robust fitting resolved
the overlaps at spots(1, 3) (see Fig. 4.14e) and(3, 3) very well. The results for the spots (1,4)
and (2,5) are good, the results for (2,3) (see Fig. 4.14f) are acceptable, and the results for (2,4)
are not good enough. Generally, on can say that the robust estimation will perform well up to
four overlapping neighbors while more than four will make problems. This is can be explained
by the fact that highest possible breakdown point of a robust estimator isε∗ = 0.5. If more than
50% of the input data are false the situation cannot be recovered directly by a robust estimator.
An overview of the fitted models can be seen in Fig. 4.14g.

Figures 4.15a and b show a volcano spot with an overlap from the right hand side. An
ordinary Gaussian fit would be biased to the right neighbor, but a robust estimator recovers the
location easily (Fig. 4.15c). After performing a robust Gaussian fit on both sides, we subtract
the neighborhood spot model from the patch receiving the corrected data (see Fig. 4.15d). The
initial volume estimation after a Gaussian refit can be observed in Fig. 4.15e, but the estimated
volume is not very reliable due to the high relative error rate. Using the center and dispersion we
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1

2

3

4

5

6

71

2

3

4

5

6

7

0

1000

2000

3000

Gauss fit at Location (2,3)

vol.: 63847.3

Int
en

sit
y

1

2

3

4

5

6

71

2

3

4

5

6

7

0

1000

2000

3000

Robust Gauss fit at Location (2,3)

15 iterations
vol.: 57870.5

Int
en

sit
y

(d) Initial Spot Fitting for Spot (2,3)
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Figure 4.14: Spot Fitting of Overlapping Spots.

performed a semi parametric fit (see Fig. 4.15f). We smoothed the profile points by replacing
each point (except at the border) with the weighted sum over the left, the point itself and right
neighbor with the weights 3,6, and 2. The left neighbor received higher weights, because the
points on the left hand side are more reliable since they are closer to the center. The goodness
of fit improved and a more reliable quantification is done.

Figure 4.16a shows of a part of an ONF image as a 3D-surface. The fitted Gaussian models
after three neighborhood subtraction iterations are shown in Fig. 4.16b. Overlapping spots are
well-separated (the individual contributions of the neighborhood models to an image location
are not added in Fig. 4.16b). Some spots do not have a Gaussian shape, so a semi-parametric fit
would eventually be more appropriate.

4.3.3 Complexity

Table 4.3.3 shows the CPU-time costs for each method per fit in flops (the methods have been
implemented in MatlabTM). The values should be interpreted as follows:

1. A (non robust) Gaussian fit in low resolution requires approximately 10.000 flops.
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Figure 4.15: Volcano Spot with Overlapping Neighbor.

(a) Image Data (b) Fitted Gaussian Models

Figure 4.16: Three-dimensional Illustration of Parametric Spot Fitting.
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4. Case Study: DNA Array Image Analysis

Resolution→ Low Res. 7x7 High Res. 16x16
Method↓ flops/per fit flops/per fit

Gaussian Fit 10.000 47.000
Semi-param. Fit 2.000 15.000

Table 4.3: CPU-time in Flops

2. A robust Gaussian fit withk iterations requires approximately(k + 1) × 10.000 flops (1
fit for the initial guess andk remaining fits for each iteration).

3. A semi-parametric fit with 5 “profile points” costs 2.000 flops in low resolution, while in
high resolution 14 “profile points” are computed requiring 15.000 flops.

4. A single semi-parametric fit is approximately four times faster than a Gaussian fit in
low and high resolution. However, one should keep in mind that a semi-parametric fit
in general can not be performed directly without any preceding center search by a M-
estimator of location.

5. Letn× n be the dimension of the input patch, i.e.n = 7/n = 16 for low/high resolution.
While the computing time for the Gaussian fit will increase withO(n2), the computing
time for a semi-parametric fit will increase withO(n2 · log(n)). The reason is that a
Gaussian fit basically sums over all data points while sorting algorithms are needed for a
semi-parametric fit.

6. An implemented C-version (KHOROS toolbox ) of the non-robust spot fitting with sub-
tracting neighbors for all spots needs about four minutes on the same machine (including
the grid fitting).

4.3.4 Comparison to Existing Approach

We have compared the performance of the parametric spot fitting with Gaussian models (in
the following denoted as SPOTFIT) to an approach which simply averages a rectangular pixel
area around the spot center. Such a simple quantification is used by Hartelius [Hartelius, 1996],
where the whole image analysis including grid fitting is denoted as hybridization fingerprint
analysis (HFA). Our results stem from a test image with 200µm resolution for which the HFA
quantification is the mean pixel intensity of a3× 3 rectangular window around the spot center.
Fig. 4.17a and b show the histograms of the log-intensities of the quantified spots with HFA
and SPOTFIT, respectively. The HFA intensities are lower since the spots for the test image
have a theoretical (mean) expansion ofSy × Sx = 4.5 × 4.5 pixels according to (2.4). This
expansion is not covered by the3 × 3 pixel HFA approach and therefore leads to lower quan-
tifications. Furthermore, as opposed to the Gaussian-shaped intensity distribution of Fig. 4.17b,
the distribution in Fig. 4.17a shows a tail in the direction of higher intensities. This imbalance is
also illustrated in Fig. 4.18a, where the spot intensities of both methods are plotted: The scatter
shows that there is a tendency of HFA spot intensities – especially darker ones –to have lower
quantification values in SPOTFIT.
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4. Case Study: DNA Array Image Analysis

(a) (b)

Figure 4.17. Intensity comparisonof parametric spot fitting (SPOTFIT) with simple quantification by
averaging (HFA).

This phenomenon can be explained by looking at the the spotting pattern of a blockB of the
investigated microarray image: In order to increase the reliability of the hybridization signals,
every probe was spotted twice within a5× 5 block, except of the guide spot at the block center.
The spotting pattern matrix is

1(a) 2(g) 3(i) 4(a) 5(b)

6(e) 7(h) 8(f) 9(j) 10(f)

11(i) 12(k) 13(−) 14(d) 15(l)

16(d) 17(c) 18(g) 19(k) 20(b)

21(h) 22(e) 23(j) 24(i) 25(c)

 ,

where the superscripts of the probe numbers denote the duplicate to which to probe belongs.
For example, the probe pairs(1, 4), (2, 18) and(8, 10) form duplicates (Fig. 4.18b). Fig. 4.18c
shows the box plots of the quantified HFA intensities, where the horizontal numbers1–25 indi-
cate the pattern position in the block according to Fig. 4.18a. The box plots show an intensity
imbalance of those duplicates which include a neighbor of the guide spot (which has always a
high hybridization signal). For example, the spot intensity of block position18 is significantly
higher than the spot intensity of position2, because the pixel intensity data of position18 also
contain parts of the bright upper guide spot neighbor13 (Fig. 4.18b). In contrast, the HFA inten-
sities of duplicate(1, 4) are balanced, since neither position is a neighbor of the guide spot. The
box plots of the SPOTFIT intesnties in Fig. 4.18d show that this imbalance problem is relaxed.
This is mainly due to the robust estimation and the subtraction of neighborhood models.

4.4 Chapter Summary

DNA array image analysis serves as a case study for applying the general framework developed
in Chapter 2. The grid fitting of existing published and commercial methods can be divided
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(a) (b)

(c) (d)

Figure 4.18. Positional intensity bias.(a) Many high spot intensities in HFA have a lower intensity
value in SPOTFIT. This can be explained by regarding the spotting pattern. (b) The spotting pattern for
a 5× 5 block consists of 12 spot duplicates and a guide spot in the center. The guide spots have always
a high intensity and therefore have an influence to the adjacent neigbhors. (c) When quantifying with a
simple mean value like in HFA, the spot intensities for duplicates with an adjacent guide spot neighbor
are imbalanced. (d) When using robust statistical models, the situation is relaxed.

into semi-automatic and automatic grid fitting. The semi-automatic grid fitting methods require
some level of user interaction. The user needs to tell the program where the outline of the grid is
in the image. Automatic grid fitting algorithms do not need user interaction and can be used for
batch processing. If an existing automatic grid fitting method takes into account grid rotation,
the whole spot image is rotated back in order to facilitate grid spanning. This generally means
a loss of information and impacts the quantification of the spot intensities.

Current quantification methods for DNA arrays are based on trying to segment the signal
area from the background area. The simplest approaches fit a circle with a certain diameter to all
the spots in the image in order to refine the regular grid positions of the grid provided by the user.
More advanced methods base the segmentation on the histogram of the intensities belonging to

92



4. Case Study: DNA Array Image Analysis

a spot and may take into account spatial information. Adaptive shape segmentation includes
region-based segmentation methods like watersheds and Seeded Region Growing. Based on
the segmentation, the intensity of the spots representing the amount of bound DNA or mRNA
can be estimated with the following methods: Total intensity, mean intensity, median intensity,
the mode of the intensity histogram and the volume. If the hybridization is two-color and the
scanning measurements are taken in two channels, then the intensity ratio between the channels
is a possible alternative.

We applied the framework described in Chapter 2 to the analysis of DNA array images.
Some minor adaptions for the grid fitting have to be made in order to cope with a possible spot
field shift and the subgrid called guide spot grid. Due to the heavy spot overlap we used a
Gaussian parametric spot model as described in Sect. 2.6. The quantified intensities are defined
as the volume under the Gaussian model. The approach proved to be successful on thousands of
images. The grid fitting success correlates with the quality of the images (which was assessed by
a human). The robust quantification was demonstrated to be superior to a simple quantification
by the means of spot duplicates. This led to more plausible and reliable data for subsequent
array analysis steps like clustering and expression profiling.
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Chapter 5

Conclusion and Outlook

This work described a novel general framework for the analysis of spot array images. DNA ar-
ray images – an increasingly important tool in biotechnology – served as an example to demon-
strate that the approach can deal with high spot density and possibly multiple overlapping spots.
Furthermore, the approach is able to cope with lacking spots in the array and contaminations in
the spot array image.

The proposed general framework for spot array image analysis is composed of a set of robust
tools. The analysis starts with an amplification of the spot locations with the help of matched
filters built by averaging a number of representative training spots. The matched filter response
is expected to have maximum values at the spot locations. The grid rotation is estimated with
the help of projections of matched filter responses along different directions. The projection at
the correct rotation angle is expected to have maximum projection values. Two alternative grid
spanning modules enable to span a consistent grid with the help of the matched filter response
and the estimated rotation angle. The first grid spanning method transforms a prior spot grid ac-
cording to the grid corner locations. The grid corner locations are estimated by robustly fitting
straight lines to the first and last row and column of the grid. If the spot distances are too irreg-
ular, an alternative grid spanning projects intersects back-projected straight lines based on the
inverse Radon transform. The spot characterization step consists of the interdependent back-
ground estimation and spot fitting. The background estimation uses a hierarchical pyramidal
approach in order to yield smooth backgrounds. At a high pyramid level with low resolution, a
synthetic image based on spot fitting is subtracted and the result is interpolated to the original
spot image resolution.

The core spot fitting approach in the framework is based on statistical spot models. The
parameters of the statistical model describe the observed distribution of pixel intensities and
must be fitted to the observed data. Maximum Likelihood (ML) estimators find the parameters
that best describe the observed data based on the squared error between the data and the model.
The parameters of a Gaussian model consist of an overall height (amplitude), two parameters for
the spot center (mean) and three parameters for the dispersion of the spot (covariance matrix).
The squared error of the ML estimator is non-robust against outliers. Robust M-estimators
weight the contribution of a data point according to the residual error between the data and
the model: A large residual will be scaled down or even be truncated in order not to bias the
estimator. The semi-parametric approach is based on the robust parametric fit and then performs
a dimension reduction by rotating a plane around the spot center. A robustly fitted curve in the
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plane then allows to model deviation the Gaussian form, e.g. a volcano spot. Non-parametric
approaches include the classical segmentation methods to segregate signal and background.

The general framework has two main characteristics: Firstly, the tools do not need critical
thresholds provided by human users. The only user-information is the array configuration.
Secondly, for the quantification step, the approach keeps as much information as possible. We
avoid, for example, rotating the spot array image since this would mean an information loss
caused by gray level interpolation.

The approach was demonstrated to work on challenging DNA array images containing up
to 57.600 spots. The Gaussian spot model proofed to be useful for the images in the test set.
However, evolving technology will yield spot array images with increasing resolution. Increas-
ing resolution images contain more and more volcano spot shapes: Owing to the impact of the
robot finger on the solid support, a spot has a small inner core that is not illuminated. One the
other hand, the increased input data will allow for statistical models with more parameters than
the Gaussian. Note, however, that for two-color hybridization images the key information is
the ratio between the two color channels. One can observe that when immediately dividing the
green channel image by the red channel image, the volcano shape vanishes. Nevertheless, more
sophisticated models might be necessary in order to characterize the underlying data. Bettens
et al. [Bettens et al., 1996] provided a spot model for electrophoresis gels based on diffusion
principles. They assume two main direction of diffusion, with different diffusion properties for
each direction. Furthermore, the initial distribution is not concentrated in one point but occupies
a finite region. Balagurunathan et al. [Balagurunathan et al., 2001] provide a random model for
the generation of fluorescent cDNA array images. They model the inner core of a spot by an
ellipse with random horizontal and vertical axes. Since on glass slides the liquid placed on the
spot tends to accumulate towards the outer edge, the edge is randomly enhanced. The contami-
nations occurring due to various physical effects at the hybridization step, chords are randomly
cut from the circular spots. The number of chords follows a Poisson distribution. Their overall
spot model contains over twenty parameters.

Another extension to the current approach would be to employ machine learning techniques
[Cherkassky and Mulier, 1998]. When analyzing sets of spot array images, the computer per-
forms millions of fits. It would be possible to learn to assess the goodness-of-fit, to discriminate
between spots and non-spots. If a spot model does not reflect the underlying distribution of the
spot intensities, the machine could develop heuristics that quantify systematic deviations from
the true spot intensity
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Appendix

Hierarchical Radon transform It is useful to computeRT in a hierarchical manner with
increasing angle resolutions∆θ:

1. Start at the initial resolution, for example∆θ0 = 1.0◦, and compute a Radon transform
for the maximum rotation angle between−θM and+θM in order go get a coarse rotation
estimateθG0.

2. Double the angle resolution to∆θ1 = ∆θ0/2 = 0.5◦. As the accuracy of the initial angle
estimateθG0 is ±∆θ0, or±1◦, it is sufficient to compute 5 projections for the angle set
{θG0 − 2∆θ1, θG0 −∆θ1, θG0 , θG0 + ∆θ1, θG0 + 2∆θ1}.

3. Repeat step 2 until the desired angle resolution∆θ is reached. Every step except of the
first one only requires the computation of 5 projections.

Table 5 illustrates the speedup that can be gained using the hierarchical approach.

Maximum Rotation Angle. For some spot array images it is feasible to compute a a maxi-
mum possible rotation which depends on the size of the physical filter and the size of the digital
spot array image. However, the pixel dimensions of some spot array images are much larger
than the pixel dimensions of the physical filter they comprise. As a consequence, a filter could

Non-Hierarchical Radon transform
Iteration ∆θ θG Projections

0 0.125◦ 1.625◦ 54

Total number of projections: 54

Hierarchical Radon transform
Iteration ∆θ θG Projections

0 1.0◦ 2◦ 9
1 0.5◦ 1.5◦ 5
2 0.25◦ 1.75◦ 5
3 0.125◦ 1.625◦ 5

Total number of projections: 24

Table 5.1. Speedup for the hierarchical Radon transform with am maximum rotation angle ofθM = 4◦.
For an angle resolution of∆θ = 0.125◦, the non-hierarchical Radon transform needs 54 projections
according to (2.16). the hierarchical approach gradually refines an initially coarse angle resolution (θG
shows the intermediate results for the grid rotation angle). Every refinement of the initial results only
needs 5 projections, the total number of projections for the desired angle resolution therefore sums up to
only 24 projections.
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have theoretically any rotationθG in the digital image. We found empirically that no filter was
rotated more than3◦. In order to have an additional tolerance we setθM = 4◦.

Angle Resolution. The necessary angle resolution∆θ depends on the size of theM ×N spot
array imageS. The bigger the image, the more orientations a straight line can have in the digital
image. In the central coordinate system with the origin at the image center, the straight line with
the minimal possible rotation has a∆x of N/2 pixels and a∆y of 1 pixel. Since we are dealing
with digital images withM > 1000 andN > 1000, there is barely a difference between a
straight lines with∆y = 1 and a straight line with∆y = 2. We therefore fix the minimal∆y to
2 pixels and have

∆θ =
180

π
arctan

(
2

N/2

)
=

180

π
arctan

(
4

N

)
. (5.1)

Applying the estimated rotationθG to the set of prior guide spot locations LP(G?) yields a set
Lθ(G?) of rotated prior guide spot locations.
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[Batista et al., 1999] Batista, J., Araùjo, H., and de Almeida, A. T. (1999). Iterative Multistep
Explicit Camera Calibration.IEEE Trans. on Robotics and Automation, 15(5). 10

[Bayer and Mogg-Schneider, 1997] Bayer, T. A. and Mogg-Schneider, H. U. (1997). A Generic
System for Processing Invoices. In IEEE, editor,Proc. Fourth International Conference on
Document Analysis and Recognition, volume 2. 1

[Bergemann et al., 2001] Bergemann, T., Quiaoit, F., Delrow, J., and Zhao, L. P. (2001). Sta-
tistical Issues in Signal Extraction from Microarrays. InMicroarrays: Optical Technologies

98



Bibliography

and Informatics, volume 4266 ofProceedings of SPIE - Progress in Biomedial Optics and
Imaging, pages 24–34. SPIE, International Society for Optical Engineering. 11, 66, 68

[Bertsekas, 1999] Bertsekas, D. P. (1999).Nonlinear Programming. Athena Scientific. 27

[Bettens et al., 1996] Bettens, E., Scheunders, P., Sijbers, J., Van Dyck, D., and Moens, L.
(1996). Automatic Segmentation and Modelling of Two-Dimensional Electrophoresis Gels.
In Proceedings IEEE International Conference on Image Processing, September 1996, Lau-
sanne Switzerland, Vol. II, pages 665–668. 95

[Beucher and Meyer, 1993] Beucher, S. and Meyer, F. (1993). The morphological approach
to segmentation: the watershed transformation. InMathematical morphology in image pro-
cessing, volume 34 ofOptical Engineering, chapter 12, pages 433–481. Marcel Dekker, New
York. 10

[Bishop, 1995] Bishop, C. M. (1995).Neural Networks for Pattern Recognition. Clarendon
Press. 35, 44, 45

[Blanford and Tanimoto, 1988] Blanford, R. and Tanimoto, S. (1988). Bright-Spot Detection
in Pyramids.Computer Vision, Graphics and Image Processing, 43(2):133–149. 2, 8

[Boccignone et al., 2000] Boccignone, G., Chianese, A., and Picariello, A. (2000). Multires-
olution spot detection by means of entropy thresholding.Journal of the Optical Society of
America, 17(7):1160–1171. 3, 8

[Boguski et al., 1993] Boguski, M. S., Lowe, T. M., and Tolstoshev, C. M. (1993). dbEST-
databse for ”expressed sequence tags”.Nature Genetics, 4:332–333. 58
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[Chen et al., 2000] Chen, H.-Y., Brändle, N., Bischof, H., and Lapp, H. (2000). Robust spot
fitting for genetic spot array images. In Society, I. S. P., editor,ICIP-2000 Intl. Conference
on Image Processing, volume 3, pages 412–415, Vancouver, Canada.

[Chen et al., 1997] Chen, Y., Dougherty, E. R., and Bittner, M. L. (1997). Ratio-Based Deci-
cions and the Quantitative Analysis of cDNA Microarray Images.Journal of Biomedical
Optics, 2(4):364–374. 69

[Cherkassky and Mulier, 1998] Cherkassky, V. S. and Mulier, F. M. (1998).Learning from
Data : Concepts, Theory, and Methods. John Wiley and Sons. 24, 95

[Collins and Schneider, 1998] Collins, S. and Schneider, J. (1998).Braille for the Sighted.
Garlic Press. 4

[Cooper, 1979] Cooper, D. (1979). Maximum Likelihood Estimation of Markov-Process Blob
Boundaries in Noisy Images.IEEE Trans. Pattern Analysis and Machine Intelligence,
1(4):372–384. 9

[Danker and Rosenfeld, 1981] Danker, A. and Rosenfeld, A. (1981). Blob Detection by Relax-
ation. IEEE Trans. Pattern Analysis and Machine Intelligence, 3(1):79–92. 2, 9

[Deloukas et al., 2001] Deloukas, P., Matthews, L., and Ashurst, J. (2001). The DNA sequence
and comparative analysis of human chromosome 20.Nature, 414(20):865–872. 58

[DeRisi et al., 1996] DeRisi, J. L., Penland, L., Brown, P. O., Bittner, M. L., Meltzer, P. S.,
Ray, M., Chen, Y., Su, Y. A., and Trent, J. M. (1996). Use of a cDNA Microarray to Analyse
Gene Expression Patterns in Human Cancer.Nature Genetics, 14(4):457–460. 57

[Duda et al., 2000] Duda, R., Hart, P., and Stork, D. (2000).Pattern Classification and Scene
Analysis. John Wiley and Sons. 45, 61

100



Bibliography

[Duggan et al., 1999] Duggan, D. J., Bittner, M., Chen, Y., Meltzer, P., and Trent, J. M. (1999).
Expression profiling using cDNA microarrays.Nature Genetics Supplement, 21:10–14. 57,
60, 61

[Eisen, 1999] Eisen, M. B. (1999). ScanAnalyze documentation.
http://rana.Standford.edu/software. 68

[Eye Institute, 1996] Eye Institute, N. (1996). Haptic Display of Computer Graphics for the
Blind. Health and Human Services grant:SBIR 5-R44-EY0S166-04. 4

[Faugeras, 1993] Faugeras, O. (1993).Three-Dimensional Computer Vision. A Geometric
Viewpoint. MIT Press. 10

[Fodor et al., 1991] Fodor, S. P. A., Read, J. L., Pirrung, M. C., Stryer, L., Lu, A. T., and Solas,
D. (1991). Light-Directed, Spatially Addressable Parallel Chemical Synthesis.Science,
(251):767–773. 56

[Gennery, 1979] Gennery, D. (1979). Stereo-camera calibration. InProc. 10th Image Under-
standing Workshop, pages 101–108. 10

[Goffeau et al., 1996] Goffeau, A., Barrell, B. G., and Bussey, H. (1996). Live with 6000
Genes.Science, 274:546–567. 58

[Granjeaud et al., 1996] Granjeaud, S., Nguyen, C., Rocha, D., Luton, R., and Jordan, B. R.
(1996). From hybridization image to numerical values: a practical, high throughput quan-
tification system for high density filter hybridization.Genetic Analysis: Biomolecular Engi-
neering, 12:151–162. 65

[Halousek, 1999] Halousek, J. (1999). Embossed Braille Advancements: Automatic ”Read-
ing” by a New Optical Braille Recognition System ”OBR” and Objective Dot and Paper
Quality Evaluation. InCSUN’99 Technology and Persons with Disabilities, Los Angeles,
March 15–20. http://www.dinf.org/csun99/csun99.htm. 4

[Haralick et al., 1991] Haralick, R. M., , and Shapiro, L. G. (1991). Glossary of computer
vision terms.Pattern Recognition, 24:69–93. 8, 31

[Haralick and Shapiro, 1992] Haralick, R. M. and Shapiro, L. G. (1992).Computer and Robot
Vision, volume 1. Addison Wesley. 10

[Hartelius, 1996] Hartelius, K. (1996).Analysis of Irregularly Distributed Points. PhD thesis,
Institute of Mathematical Modelling, Technical University of Denmark. 11, 65, 90

[Hartung, 1989] Hartung, J. (1989).Multivariate Statistik. R. Oldenburg Verlag M̈unchen
Wien. 42
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