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Abstract

This report presents an unusual event recognition approach in the field of traffic surveillance. Such

events are unusual traffic behaviour like traffic jams, accidents or ghost drivers. An interest-point

based tracking algorithm (KLT-tracker) is discussed which pursues features on vehicles through

a static camera scene. Tracking data can be collected by observing normal traffic. Then, this data

is used to learn a spatio-temporal model of normal traffic behaviour. Thereby, training samples

are generated in a learning space by the tracking data. Thus, the spherical probability density

function (p.d.f.) of the space can be estimated. We use a Growing Neural Gas in combination

with a MDL-based pruning algorithm for unsupervised learning. The former method belongs to

the class of soft-competitive algorithms which overcome the problems of ”stranded” reference

vectors. In contrast to other works, the number of reference vectors has not to be constant.

The algorithm finds an optimal codebook according to the MDL-principle. As the p.d.f. only

describes points and not trajectories of normal traffic behaviour, behaviour classes of normal

traffic have to be learnt additionally. This work presents a novel approach by using the topology

of the learning space which is created by Competitive Hebbian Learning. Beside the necessity of

recognizing unusual events, it can also be used to analyze the behaviour of drivers at traffic sites

like intersections or road works.
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Chapter 1

Introduction

In recent years, the volume of traffic has become a significant problem. Consequently,

accidents and traffic jams are far more likely than a century ago. Many of us living in

metropolitan areas got used to the every-day traffic news about congestions. Early so-

lutions attempted to lay more pavement to avoid jams, but adding more lanes is becom-

ing less and less feasible. Besides, reckless, confused (e.g. ghost drivers) or drunken

car drivers are more and more a source of danger and cause many terrible accidents and

jams. Most of them ignore traffic rules and drive prohibitively in wrong directions or

exceed speed limits. Instead of increasing the capacity of existing infrastructure, con-

temporary solutions of visual surveillance try to use roads more efficiently. Thereby,

more and better traffic information which is automatically gathered in real-time is em-

phasized. Such information can be traffic parameters like traffic volume, occupancy

and vehicle’s speed. Another group of more qualitative information are unusual events

(e.g. traffic jams, accidents, prohibitively driving cars, etc.). The subject of this report

is to recognize such unusual traffic events.

The quest for better traffic information and thus an increasing reliance on traffic

surveillance, has resulted in a need for better vehicle detection and traffic analysis

tools. Traditional sensor techniques like loop detectors based on induction or magnetic

field sensors are well known and used in many applications. The main drawbacks

are their impossibility to gather specific traffic information and their less flexibility.

For example, the analysis of traffic behaviour in an unknown scene is impossible to

perform with loop detectors. For that, wide area sensors are interesting. Cameras can

usually observe several lanes in parallel. Visual traffic surveillance based on video

images is capable of collecting traffic information. Though video technology has been

available for a number of years, decreasing computer and image processing hardware

costs have recently made solutions based on video analysis more and more attractive

(ITS decision report, http://www.path.berkeley.edu):

• Installation, operations and maintenance costs are now lower than for traditional

1
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methods.

• Video technology has been either decreasing in cost or gaining in efficiency and

this trend is continuing.

• Digital video, while still on the order of three times more expensive than analog

equipment, offers numerous additional benefits. This will make video surveil-

lance more attractive as prices for digital equipment fall.

Especially the last point should be emphasized. The following list shows the most

important benefits:

• Camera information is readily understandable by human operators.

• Unusual event recognition is done rapidly.

• It is possible to identify the incident type, the level of gravity and the type of

intervention needed. This is generally performed by human operators.

• It delivers images focusing on the detection point of unusual events, helping the

operator to rule out false alarms.

• Collection and potential analysis of traffic and incident data. Information pro-

vided in the video sequences immediately preceding an incident can be partic-

ularly valuable. Indeed, information analysis can provide an understanding of

accidents occurring on the network and can allow enhancement of infrastruc-

ture reliability. Surveillance data could be used not only for safety but also for

transportation administration, planning, operations and research.

• It can classify vehicles, monitor intersections, actuate signals and read license

plates (which can be used for enforcement and travel time estimation).

• Installation typically does not require lane closures. Traffic personnel safety is

enhanced and traffic disruptions are minimized. By repositioning cameras as

road geometry varies, visual traffic surveillance can be used during realignment

or resurfacing.

To sum up, perhaps the major handicap of traditional visual surveillance systems is

that they are designed to operate with data taken at a point rather than over space. This

information alone, typically volume and occupancy, has not proven to be sufficient for

effective and reliable unusual event recognition. The data is deficient because volume

is not a dynamic measurement, and because occupancy is an approximate rather than

true measurement of a spatial traffic flow variable, namely density.

Most of the commercial visual traffic surveillance systems available today are

tripwire systems (e.g. AUTOSCOPE, http://www.autoscope.com). Small localized re-

gions of the image mimic conventional sensors. Multiple sensors can be located within



3

the image and can be easily configured to suit the road geometry. Then, image process-

ing within these sensors delivers traffic parameters. Thus, vehicles are not identified

and are not considered as unique targets. This approach is computationally inexpen-

sive and can be implemented on off-the-self computers in real-time. The drawbacks

of this approach are that the unusual event recognition algorithms remain the same

as for traditional sensors, and that the accuracy of individual sensors depends on the

camera’s field of view.

Some commercial systems use feature tracking methods to pursue vehicles (e.g.

EVA). Visual feature tracking means pursuing image features (e.g. edges, corners, re-

gions, etc.) between two consecutive images. This is done over a long sequence of

images. These images are frames of a video or captured in real-time by an acquisi-

tion system. Generally, these systems use region tracking, i.e. regions of movement

are vehicles. Individual vehicles are detected and tracked through the camera scene.

This provides a microscopic description of vehicle movements which can reveal new

data on events such as sudden lane changes, vehicles driving in the wrong direction

and stationary vehicles (e.g. accidents). This increase in sophistication requires more

computing power, requires individual vehicles to be discernible and can be even more

restrictive in camera positioning. The latter dues to the fact, that regions are used for

tracking. Unfortunately, regions can merge if vehicles occlude each other.

The third approach, used in the Image Processing for Automatic Computer Traf-

fic Surveillance (e.g. IMPACTS) system, concentrates on spatially analyzing image

intensities. Instead of considering traffic on a vehicle by vehicle basis, the underlying

strategy is to describe how the visible road space is being utilized at a particular in-

stant in time. Disturbances in traffic flow can then be determined by analyzing how

these descriptions vary over time. Use of road space is divided into three categories:

no traffic present, moving traffic present, or stationary traffic. These are essentially

qualitative decisions.

All described commercial products are able to extract traffic parameters. Un-

usual event recognition is based on this information. Thereby, parameters are com-

bined to form a response of the system according to an event. A positive alarm takes

place, if a certain manually defined threshold is exceeded. However, the purpose of this

report is to develop a system which learns independently unusual events. No thresh-

olds are defined any more. Only video examples of normal traffic of a particular static

camera’s view are necessary. Once the system has learnt normal traffic behaviour, it

is able to recognize unusual traffic events within the same scene. Furthermore, the

system is able to analyze traffic behaviour in an unknown traffic environment. For

example, the spatio-temporal behaviour of car drivers heading to a road work or in-

tersection could be investigated. Thus, the system is highly flexible with less human

interactions needed.
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1.1 Structure of the report

The basis of unusual event recognition is tracking data. Chapter 2 describes a method

which generates this data. Section 2.1 introduces visual feature tracking and defines

the scope of the work. Section 2.2 gives the tracking requirements and presents a Shi-

Tomasi interest-point tracking approach. The results with different traffic scenes are

presented in section 2.3. Finally, the chapter finishes with a conclusion (section 2.4)

of the main drawbacks. It is shown that despite these disadvantages it can be used for

unusual event recognition.

Chapter 3 explains unusual events in section 3.1. They are indicated by interest-

points which are pursued by the tracker. To use especially these features has con-

sequences on the recognition which is described in section 3.2. Finally, section 3.3

describes the principle of unusual traffic event recognition using tracking data of nor-

mal traffic. The novelty of our approach is shown.

Chapter 4 treats the generation of training samples in the learning space from

measured feature trajectories. The former are used as training samples for successive

learning by clustering. First, it outlines several difficulties during this generation pro-

cess with respect to the learning space and problems with the tracking data which have

to be tackled to improve learning (section 4.1). Then, solutions for these problems are

discussed in sections 4.2 - 4.4.

Chapter 5 treats learning a spatio-temporal model of traffic behaviour. It is shown

that the latter is an approximation of the probability density function in the learning

space which is learnt by a density estimator. Section 5.1 introduces the learning prob-

lem in general and gives some definitions. Then, section 5.2 introduces the basic

learning paradigms and presents several solutions. Especially, unsupervised competi-

tive learning is treated in detail in section 5.3. Finally, section 5.4 presents the proposed

learning framework for this work.

Chapter 6 treats the classification of traffic behaviour within a traffic scene. Sec-

tion 6.1 motivates the need for classification and presents two previously used ap-

proaches. Both methods calculate explicitly the classification result by using a further

learning step or a co-occurrence matrix respectively. In contrast to them, section 6.2

discusses a new approach which only uses the topology of the training data. In fact,

the topology was calculated implicitly by the learning step.

Chapter 7 presents experiments with the spatio-temporal model and classifica-

tion algorithm. Section 7.1 treats the training and test data. Section 7.2 shows experi-

ments with the training sample generation process. It focuses on the ability of obvious

outlier detection and noise reduction. Section 7.3 evaluates the GNG pre-clustering

and the successive MDL-based pruning step. Section 7.4 shows the results of classi-

fication with respect to the training data. Performance issues are also treated. Finally,

the results of using the spatio-temporal model and classification on the test data are

shown in section 7.5. A summary is given in section 7.6.

Chapter 8 discusses the presented unusual event recognition approach and gives
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an outlook of future work.
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Chapter 2

Visual tracking of traffic

Contents

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 The Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 An appropriate motion model . . . . . . . . . . . . . . . . 11

2.2.2 Matching and state update algorithm . . . . . . . . . . . . . 12

2.2.3 Feature model . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Feature selection . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.2 Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

This chapter describes the tracking method for the traffic monitoring applica-

tion. Section 2.1 introduces into visual feature tracking and defines the scope of

the work. Section 2.2 gives the tracking requirements and presents a Kanade-Lucas-

Tomasi (KLT) interest-point tracking approach. The results with different traffic scenes

are presented in section 2.3. Finally, the chapter finishes with a conclusion (section 2.4)

of the main drawbacks of the method. It is shown that despite these disadvantages it

can be used for unusual event recognition.

7
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2.1 Overview

Visual feature tracking means pursuing image features or user-defined feature models

between two consecutive images. This is done over a long sequence. These images

are frames of a video or are captured in real-time by an acquisition system. The main

problem is to match the feature in the first frame to a collection of measurements taken

from the next. This matching problem is equal to the correspondence problem, which

is well known in 3D computer vision.

Traffic monitoring is an important application of visual feature tracking. Ve-

hicles are recognized and tracked through the camera view by a real-time computer

system. Data, like velocity, number of vehicles, type of vehicles, density of traffic,

etc., are stored. Traffic prediction and other high-level tasks like unusual event recog-

nition, which is the issue of this report, can then be build upon this low-level tracking

system. Many motion detection and tracking algorithms have been investigated for

traffic monitoring in the last years (Koller et al. [26], Ferrier et al. [10], Beymer et

al. [3], Stauffer and Grimson [41]). A discussion and comparison of tracking methods

can be found in Pflugfelder [34].

The simplest and by researchers and practioners mostly used detection algo-

rithms are based on background differencing (Ullman [45]). In the simplest case,

these methods subtract the actual image frame at time t, I(t), from the background

reference image. The frame difference is then segmented in areas with and without

motion. A shortcoming of all of these methods is the robustness against illumination

conditions and noise. Generally, the geometry of the scene can be assumed static, be-

cause the camera is fixed. However, intensity values cannot be assumed to be constant

for the background, because the lightning conditions change slowly due to day and

night or quickly due to reflections and noise. Therefore, the problems associated with

illumination and noise have to be addressed in an application like traffic monitoring.

One solution is an adaptive background estimation process. For example, Stauffer and

Grimson used a Gaussian mixture model of intensities for every pixel which represents

background colour. Then, foreground and background pixels can be distinguished to

find regions of motion which are basically vehicles, because they are the only allowed

objects within the scene. Beside background differencing, a second approach exists.

It is called frame differencing, because successive frames in a video sequence are sub-

tracted. Like in the background differencing case, the geometry of the scene and the

intensity values of the background are assumed to be static. In contrast to background

differencing with adaptive background estimation, it is sufficient to classify a pixel as

foreground if its intensity value changes in time. Unfortunately, a second problem also

arises with large homogenous moving objects. Pixel values within the object do not

change and are not recognized as object pixels although they are part of the object.

Thus, only the boundaries of the object can be found.

Generally, two different tracking approaches exist, namely calculation of optical

flow and feature tracking methods (Trucco and Verri [44]). The former ascertains

an approximation of the dense motion field where the letter tracks merely a feature
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from one to the next frame and therefore calculates a sparse motion field. Motion

detection like background differencing is then a prerequisite. Optical flow estimation is

computationally expensive and noise sensitive. Therefore, most of the researchers use

visual feature tracking methods for traffic monitoring. A detailed overview of feature

tracking is given in Pflugfelder [34] and in the introduction of Isard’s thesis [20].

The next section discusses a feature tracking method which is our second ap-

proach in the field of traffic monitoring. While our first work only dealt with cars

in tunnels (Pflugfelder and Bischof [35]), the proposed method is able to address the

problem of vehicle tracking in a more general setting. However, it is not necessary that

the tracker identifies vehicles to track them. Consequently, tracking data is information

about traffic flow which is sufficient to recognize traffic jams or many other unusual

events. Occluding vehicles are a problem in all traffic approaches which are based

on background differencing and thus region or blob tracking, because blobs merge to

larger ones which causes the tracker to fail. As the tracker has to pursue congested

vehicles, other features should be used.

2.2 The Approach

The aim of tracking in traffic monitoring is to pursue vehicles through a long sequence

of images. To reach this goal, the requirements of such a tracker have to be named:

(i) Reliability in detecting the vehicles,

(ii) Stability during tracking,

(iii) Accuracy in predicting the vehicle’s state (e.g. position, velocity in a specific

frame),

(iv) Real-time capability.

Reliability in detection means that every vehicle (e.g. car, bike, truck) should be de-

tected while the traffic is monitored by the system. If the trajectories of pursued vehi-

cles are continuous then we will speak about a stable tracker. Certainly, the stability is

connected with the accuracy of the predictions. If the tracker should be practicable for

real world applications, it has to run in real-time.

Furthermore, application specific requirements have to be considered. As it is

mentioned in Pflugfelder and Bischof [35], the following requirements arise in traffic

monitoring especially in the environment of tunnels:

(v) Robustness against different illumination conditions (e.g. reflections on vehi-

cles, tunnel walls and on the road)

(vi) Robustness against vehicle occlusions
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(vii) Usage of existing infrastructure (cameras, data network)

(viii) System must provide tracking data for further data processing (e.g. traffic un-

usual event recognition)

Day and night changes, car lights, sun light reflections, etc. lead to difficult illumina-

tion in the image. Besides, vehicles tend to occlude each other in case of congestions.

An appropriate tracking system has to tackle such problems. Interestingly, lots of

cameras have been installed at intersections, tunnels or streets. Unfortunately, many

of them are low cost cameras which introduce further noise. Certainly, the tracking

data (trajectories of vehicles) has to be properly stored that a successive processing

like unusual event recognition is possible.

It is a great challenge to fulfill requirements (i)-(viii) in one solution. Generally,

to build an appropriate tracker three design decisions have to be answered. First, well

suited features have to be defined to reliably detect the vehicles and then to guarantee

a stable tracking. Next, the right choice of a motion model should enable the tracker

to take new measurements of these features with high accuracy in an area of the next

image. This area has to be as small as possible as the tracker works in real-time.

Finally, a matching and state update algorithm has to be chosen with respect to the

application. For an overview of different models see Pflugfelder [34].

Our first attempt of tracking cars in tunnels used car lights as features. They

were detected as blobs in a detection window and then tracked by a Kalman filter

matching and state update algorithm. As the motion of cars was simple (e.g. linear,

because vehicles drive straight along the road) and the frame-rate of the test samples

was 15 frames/s, a linear motion model was sufficient. The developed tracking system

ran satisfactorily but the main drawback was that it handled only approaching cars.

The reason was that the back lights were to small and too weak in contrast. A second

problem was that neither bikes nor trucks were detected, because the feature detection

was not able to recognize the bigger lights of the trucks or the missing light pair on

bikes. Figure 2.1 shows a typical frame of a test tunnel scene which we used for the

tracker experiments. The car and its pursued right car light is illustrated. Table 2.1

shows the evaluation of the requirements mentioned above. The weakness in recog-

nizing different vehicles and the impossibility of occlusion tolerance results in the fact

that this approach is insufficient to support high-level tasks like traffic unusual event

recognition.

As a consequence the aim of the second approach is especially to meet these two

requirements. As mentioned in the last section, occlusion robustness and vehicle diver-

sity is a prerequisite of an unusual event recognition, i.e. traffic jams. In the following

three sections the feature model, namely Shi-Tomasi interest-points, are presented. It

was shown by Shi and Tomasi [39], that they are the best track-able features with re-

spect to a deterministic (SSD based) matching and state-update model. For example,

the aperture problem does not arise in contrast to edges. These interest points can also

be interpreted as corners. Beymer et al. [3] showed that corner features are an appro-

priate feature for handling occlusions during traffic monitoring. Besides, they occur on



2.2. THE APPROACH 11

0 100 200 300 400 500 600 700 800

0

50

100

150

200

250

300

Car Detection and Tracking

Figure 2.1: A typical frame of a tunnel scene video. The right car light of the visible

car is pursued through the images. Each position is shown by a cross. Positions form

together the trajectory.

Requirements Evaluation

reliability in detection - car lights are very different

stability in tracking + simple linear motion along road

accuracy in prediction + blobs are accurately detectable

real-time capability + Kalman filter and blob detection is simple

illumination and noise + blob detection is robust

occlusion robustness - impossible

usage of existing hardware + possible

provide tracking data - only approaching cars are tracked

Table 2.1: Requirements and their evaluation by testing the first tracking approach.

any type of vehicle. The motion model is a simple linear translation, because motion

of vehicles is linear with a frame-rate of 15 frames/s.

2.2.1 An appropriate motion model

Motion means the change of intensities in gray level patterns. These changes are highly

complex due to the motion of objects and noise. However, it can be used to describe

image motion as the following equation shows:

I(x; t+ �) = I(Æ(x); t) (2.1)

Every pixel in image I is moved during time � by a function Æ. Generally, Æ is nonlin-

ear and practically undefinable. In the application of traffic monitoring, vehicle move-

ments are restricted by the road. Under this assumption and an appropriate frame-rate
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which is given by 15 frames/s, function Æ is approximately linear and can be written as

Æ(x) = Ax+ d: (2.2)

This affine motion model is represented by six degrees of freedom. The 2�2 matrix A

defines rotation, scale and shear while the 1� 2 vector d represents translation. Given

two images I at time t and t+� and a window around pixel x at time t, tracking means

determining these parameters of the motion model. A window is necessary, because

the value of the pixel can both change due to noise and be confused with adjacent

pixels. The consequence is that it is impossible to determine where the pixel went in

the subsequent frame. More details can be found in Shi and Tomasi [39], Hager and

Toyama [19], Hager and Belhumeur [18].

The quality of tracking depends on the window size, the textureness of the win-

dow and the amount of motion between frames. However, smaller windows are prefer-

able because they are less likely to straddle a depth discontinuity. Unfortunately, A is

in that case harder to estimate. For this reason and that the frame-rate is sufficient, a

pure translational model

Æ(x) = d (2.3)

is chosen for tracking, where A is set to zero. The pure translational motion model for

each x in I with its successor image J can be summarized as

J(x+ d) = I(x) + �(x) (2.4)

where � is noise and the time difference � is set to one.

2.2.2 Matching and state update algorithm

Tracking in this case means estimating the translational vector d of the motion model.

This cannot be done exactly, because of image noise and because the motion model

does not fit perfectly. To find d, the residual

� =

X

W

(J(x + d)� I(x))

2 (2.5)

is minimized, where W is a given window around x. As an appropriate frame-rate is

assumed J(x + d) can be linearized by its first-order Taylor expansion J(x + d) =

I(x)+drI(x)+ I

t

(x)+h:o:t. I
t

(x) is the time derivative of I(x) and can be approx-

imated by a simple difference with the previous frame. The residual can be written

as

� �

X

W

(drI(x) + I

t

(x))

2 (2.6)

To solve this minimization task, the residual is differentiated with respect to d.
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Then the result is set to zero, obtaining the linear system

Cd = g (2.7)

C =

X

W

�

I

x

(x)

2

I

x

(x)I

y

(x)

I

y

(x)I

x

(x) I

y

(x)

2

�

(2.8)

g = �

X

W

I

t

(x)rI(x) (2.9)

(2.10)

The estimation of d is improved by a Newton-Raphson iteration scheme

d

k+1

= d

k

+ C

�1

g (2.11)

with d

0

= 0. The iteration is stopped if no further improvement d
k+1

= d

k

+ 


with k
k < T




happens, where T



is a user-defined threshold, or k exceeds a maximal

number of iterations.

Unfortunately, the whole motion estimation process is sensitive with respect to

the magnitude of motion between frames. During traffic monitoring, vehicles are pass-

ing the camera view with high speed. The amount of motion displacements of image

features can be larger than two or three pixels. Then, the estimation process fails.

Therefore, we used a multi-resolution estimation approach like the one of Birchfeld

(see http://robotics.stanford.edu/ birch/klt/ ). As it is shown in figure 2.2, a Gauss

pyramid is build for every successive frame J of the video sequence. Starting at the

top, with position x
i

of image I , the motion estimation process is performed for every

level of the pyramid. The resulting position x
k+d

k

j

is a new starting point in level k�1.

At the end the new position x
j

of a pixel can be written as

x

j

= x

i

+

n

X

i=0

d

i

: (2.12)

2.2.3 Feature model

Regardless of the matching and state-update model used for tracking, not all parts of an

image contain motion information. For example, along a straight edge only the motion

component orthogonal to the edge can be determined. This fact is called aperture

problem and is shown in figure 2.3. As a consequence, features for tracking should be

regions with a rich enough texture. In this spirit, researchers have proposed to track

corners or windows with a high spatial frequency content or regions where some mix

of second-order derivatives was sufficiently high.

All these definitions yield track-able features. However, people saw these interest-

points independently of the matching and state-update model. The resulting features

may be intuitive but come with no guarantee of being the best for the tracking model
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Figure 2.2: Multi-resolution Tracking: The last position x
i

of the feature is transformed

to the highest level (here 2) of the pyramid of successor Image J . Starting at level 2

with position x
i

the motion estimation process is performed. The resulting new position

in level 2 (dashed pixel) is then transformed to the next lower level (level 1). Now, the

motion estimation process is invoked once more. Transformation and motion estimation

are performed until full resolution of image J is reached. Lastly, the position x
j

is the

result of the multi-resolution tracking from frame I to J .

to produce good results. Shi and Tomasi [39] proposed a feature model that is opti-

mal by its construction. Features are windows which can be tracked well. They are

not good windows a priori, defined by above criteria. The definition is based on the

matching and state-update model. In fact, a feature can be tracked if (2.7) represents

good measurements and can be solved reliably. This means that C must be both above

the image noise level and well-conditioned. In turn, the noise requirement implies

that both eigenvalues of C must be large, while the conditioning requirement means

that they cannot differ by several orders of magnitude. Therefore, two large eigenval-

ues can represent corners, salt-and-pepper textures or any other pattern which can be

tracked reliably. In practice, when the smaller eigenvalue is sufficiently large to meet

the noise criterion, C is also well conditioned. This is due to the fact that intensity

variations in a window are bounded by the maximum allowable pixel value, so that

the greater eigenvalue cannot be arbitrarily large. As a consequence, every pixel and

its vicinity within a region of interest is investigated if it is an interest point or not. A

window is accepted as a feature if the two eigenvalues of C fulfill

min(�

1

; �

2

) > �; (2.13)

where � is a predefined threshold. The determination of � and the explanation why

such features mainly are on vehicles is described in the next chapter.
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(a) Edge (b) Corner

Figure 2.3: The aperture problem: (a) Only the motion component orthogonal to the

edge can be determined. (b) The motion of corners can always be determined.

2.3 Experiments

Three different video sequences were used for analyzing the behavior of the tracking

approach. Every sequence consists of 225 frames. 2 of them for every sequence are

shown in the following figures. Figure 2.4 shows an outdoor scene in the early morn-

ing. Both images are qualitatively bad. The reason is a bad camera and dust caused by

the Danube river beside the highway. Image 2.4(a) shows heavy traffic with growing

obstructions while in image 2.4(b) a truck changes the lane and occludes other vehi-

cles. In contrast to that, figure 2.5 shows a tunnel scene. Motion blur caused of the

small distance between vehicles and camera can be seen. As in all videos, noise and

light reflections are evident. In image 2.5(a) a bike appears while image 2.5(b) shows a

van. The last sequence 2.6 shows vehicles entering a gate. Here, the main problems are

the day/night change and the light reflections in the tunnel. All sequences have been

sampled by a rate of 15 frames/s from a VHS/PAL video stream. The resolution of

each frame amounts to 720� 270. Every second row is neglected to avoid interlacing

effects of the used CCD camera. Therefore, the column resolution is 270. All algo-

rithms, which are explained in the next two sections, were implemented as prototypes

with Matlab 5.3. They are not real-time capable. Furthermore, a real-time prototype

was also implemented with the Intel Image Processing Library (IPL). Critical parts

were also realized in Assembler. We achieved real-time tracking for up to 4 cameras

on an off-the-self Pentium computer.

2.3.1 Feature selection

The principal outline of the Shi-Tomasi interest-point detection is shown by algo-

rithm 2.1. Steps 1 and 2 are simple image processing. Information about smoothing
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(a) Heavy traffic

(b) Truck

Figure 2.4: K01 camera video sequence: (a) shows heavy traffic with growing obstruc-

tions (b) shows a truck changing the lane and therefore it occludes other vehicles.

(a) Bike

(b) Van

Figure 2.5: TV108 camera video sequence: (a) shows a bike (b) shows a van.
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Require: I , W , �
s

, �
g

, �

1: Smooth image by �
s

2: Compute gradients of the image by �
g

3: Compute matrix C
W

for every pixel of image (2.8)

4: Compute smaller eigenvalue of C
W

for every pixel

5: Do segmentation by �

6: Find locally the best interest-points (non-maximum suppression)

Algorithm 2.1: Algorithm of the Shi-Tomasi interest-point detector.

W �

s

�

g

�

K01

�

else

9 0.9 1.0 1000 5000

Table 2.2: The parameters of the Shi-Tomasi interest-point detector are summarized.

and gradient calculation can be found in Trucco and Verri [44]. After matrix C is cal-

culated in step 3 by simple convolutions its smaller eigenvalue, further called goodness

value, can be directly computed by trace and determinant of C. In step 5 all pixels are

ruled out which have a smaller eigenvalue than �. In step 6 non-maximum suppression

is performed. Only interest-points should survive which have the highest eigenvalue

within their vicinity.

The algorithm produces a list of interest-points with their goodness values within

an image. The higher the goodness value for a specific interest-point is, the better it is

track-able. Figure 2.7 shows three typical images for the camera video sequences 2.4,

2.5 and 2.6. All interest-points which were found are marked by crosses.

The parameters which produce these results are summarized in table 2.2. W

defines a W �W window around an interest-point. A smaller W increases the number

of interest-points and decreases their goodness values. Smaller windows are also more

sensitive to noise during tracking, as it was mentioned in section 2.2. To find interest-

points which are features to track, a trade-off has to be found for W . Interest-points

on road and on vehicles (! features) have to be distinguishable by their goodness

values. In the experiments values of 7, 9 or 13 for W were common. �
s

is the standard

deviation of the Gauss-kernel that is used to smooth the image. �
g

also is a standard

deviation of a Gauss-kernel for computing the gradients. Both are not critical for

feature detection. �, see (2.13), must be smaller than the goodness value of an interest-

point. Then, it is a feature.

To find �, consider the histograms in figure 2.8. They show that most interest-

points within the detection window have small goodness values. They are lying on

the static background which is in all cases the road or parts of the tunnel wall. Fea-

tures have significantly higher goodness values. Strong edges, strong textureness and

a lot of corners are the reason, why vehicles produce interest-points with higher good-

ness values within the detection window. A mathematical explanation can be found
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Require: I , J , L
F

, W , �
s

, �
g

, �, Det

min

, Disp

min

, Iter
max

, Res
max

, �
pyr

, S
range

1: Build pyramid P with P
n

levels for image J

2: for all Features F
i

in L
F

do

3: Pos

P

n

J

(F

i

)  Pos

P

n

I

(F

i

) {The starting position in level P
n

of J is the last

position in I}

4: for all levels P
i

of pyramid P , i n : 0 do

5: repeat

6: Compute matrix C (equation 2.8)

7: Compute vector g (equation 2.9)

8: Solve Cd = g for d

9: Pos

P

i

J

(F

i

) Pos

P

i

J

(F

i

) + d

10: until kdk < Disp

min

_ iteration exceeds Iter
max

{Newton-Raphson opti-

mization}

11: Transform Pos

P

i

J

(F

i

) in the next lower level P
i�1

12: end for

13: end for

Algorithm 2.2: Algorithm of the deterministic feature tracker.

in section 2.2. See figure 2.9 as an example for an interest-point on background and

a feature. The goodness values differ about 1000 times. By setting � to 1000 for the

camera video sequence 2.4 and to 5000 for the others, a segmentation can be reached

which delivers features. Another important assumption is a small detection window

where the static background guarantees features with small goodness values.

The results are shown in figure 2.10. The segmentation method gives good re-

sults. Sometimes, false features were detected or interest-points were not recognized.

To overcome this problem � has to be adaptively updated. This could be done by feed-

back of the tracker and a collection of statistics over a long period. False features can

also be ruled out during tracking.

2.3.2 Tracking

Algorithm 2.2 shows the implementation of the feature tracker. The tracker needs a

frame I and its successor J as input. Further, the features are stored in a feature-list

L

F

. First the Gauss pyramid P with P

n

levels is build (step 1). The starting position

Pos

P

n

J

(F

i

) of every feature F

i

2 L

F

in the highest level of P is equal to the last

known position in image I , namely PosPn
I

(F

i

) (step 3). The new position in a certain

level P
i

is evaluated by computing C (step 6), g (step 7) and finally d (step 8) which

is simply added to Pos

P

i

J

(F

i

) (step 9). The evaluation is stopped when the Newton-

Raphson optimization exceeds a iteration threshold Iter

max

or the new position does
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Det

min

Disp

min

Iter

max

Res

max

�

pyr

S

range

0.01 0.1 10 13 0.9 15

Table 2.3: The tracker specific parameters are summarized.

not change significantly any more (kdk < Disp

min

). PosPi
J

(F

i

) is then transformed to

Pos

P

i�1

J

(F

i

) (step 11) and the evaluation starts again until the new position PosP0
J

(F

i

)

in the original image resolution is determined.

The three parameters of the interest-point detector plus further 6 tracker specific

parameters have to be defined. Table 2.3 summarizes these parameters and their values

which were used for testing. Det

min

is the minimal allowable determinant of matrix

C. Its value is chosen in that way that mathematical solvability of (2.7) is given. If the

determinant drops belowDet

min

, the feature is eliminated from L

F

. Disp

min

gives the

minimal displacement and Iter

max

the maximal number of iterations to optimize the

position of the feature by a Newton-Raphson iteration scheme. If the difference of the

patterns in the first and actual frame exceeds Res
max

, the feature will also be removed

from L

F

. �

pyr

is the deviation of a Gauss-kernel to calculate the image pyramids.

S

range

defines the image pyramid itself. Its value is the number of pixels that a feature

can move from one image to the next. Consequently, a pyramid with an appropriate

number of levels will be created.

The results of the tracker can be seen in figures 2.11, 2.12 and 2.13. They show

tracked features as white crosses, pursued in 50 frames.

2.4 Conclusion

Four main problems arose from the experiments:

Motion is too big: If the displacements of feature positions are larger than S

range

,

the features cannot be tracked. (2.7) only holds if the frame-rate is high and

therefore the feature motion is small enough (2-3 pixels).

Features get caught: Sometimes, features get caught on the background, because al-

gorithm 2.2 only finds a local optimum of the displacement.

Features hop: Sometimes, features can hop from one vehicle to another if they come

close together.

Noisy feature positions: Due to reflections and the image noise, the position of the

features is influenced. For example, features which lie on the border between

vehicle and background are affected by the varying background from one frame

to the next. The perspective also influences the tracking of features. As vehicles

getting smaller and smaller, the feature windows are the same and more and

more background is inside the window. This also introduces errors.
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Requirements Evaluation

reliability in detection + features can lie on every type of vehicle

stability in tracking - feature positions are noisy

accuracy in prediction - depends on the illumination conditions

real-time capability + interest-point detection and tracking is cheap

illumination and noise - very sensible

occlusion robustness + great advantage

usage of existing hardware + possible

provide tracking data + different driving directions are possible

Table 2.4: Requirements and their evaluation by testing the used tracking approach.

The main drawback of the tracker is the sensibility according to noise and quickly

changing illumination conditions. Improvements can be made by using matching and

state update models which consider illumination and noise (Jin et al. [21]). Neverthe-

less, the problem will still be evident. We argument the use of this tracking method

by the fact, that we are only interested in pursuing traffic flow to learn a model of nor-

mal vehicle behaviour. The individual vehicle with its individual trajectory is not of

interest. We will show in chapter 4 that we can recognize caught or hopped features

as outliers and remove them from the training tracking data-set. Furthermore, a suffi-

cient frame-rate is guaranteed by the frame-grabber. Thus, multi-resolution tracking is

always possible.

To sum up, an evaluation of the requirements (table 2.4) which were given in

section 2.2 points out three big advantages with respect to the first approach. First, all

kinds of vehicles can be detected and tracked. Problems like different sizes of cars, the

perspective of the camera and approaching or leaving vehicles are handled. Second,

different driving directions are also track-able. Finally, occlusions of vehicles can be

handled, which is important for traffic jam recognition.
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(a)

(b)

Figure 2.6: TVS100 camera video sequence: Two typical frames are shown.
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(a) Image 2.4(b)

(b) Image 2.5(a)

(c) Image 2.6(a)

Figure 2.7: One frame of each of the three sequences is shown: All features were

selected within a detection of interest (DOI) area without segmentation. A 9� 9 search

window was used. The frames were smoothed by a Gaussian filter with �

s

= 0:9.

Gradients were also calculated by a Gaussian with a �

g

= 1:0.
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(a) Histogram of figure 2.4(b)
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(b) Histogram of figure 2.5(a)
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(c) Histogram of figure 2.6(a)

Figure 2.8: Histograms of the number of interest-points according to their goodness

values are shown for every camera video sequence. All interest-points lying on the

background have a small Goodness value (tall bar). Interest-points with Goodness val-

ues which are orders of magnitude larger (here � 10

3) are features on vehicles.
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(a) Feature: Goodness value of 11230

(b) Interest-point on background: Goodness value of 145

Figure 2.9: Two interest-points are compared. The gray-level pattern (left image) and

its surface (right image), where the intensity value corresponds to the height, are shown

for both points. (a) shows a point with high Goodness value. The corner is obvious.

However, (b) shows a point with low Goodness value. Neither a corner nor a strong

edge can be recognized.
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(a) Image 2.4(b)

(b) Image 2.5(a)

(c) Image 2.6(a)

Figure 2.10: Only interest-points on vehicles (features) have survived after segmen-

tation (crosses). Threshold � was set to 1000 in case of (a) and to 5000 in (b) and

(c).
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(a) Frame 1

(b) Frame 25

(c) Frame 50

Figure 2.11: K01 camera video sequence: The solid rectangle defines the Region Of

Interest (ROI), where features are tracked. The dashed rectangle is the Detection re-

gion Of Interest (DOI) where the interest-point detector works. (a) shows the detected

features in frame 1. (b) shows the feature positions in frame 25 and (c) in frame 50.

Although the weather conditions (fog) reduce the frame quality, vehicles can be suc-

cessfully pursued.
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(a) Frame 1

(b) Frame 25

(c) Frame 50

Figure 2.12: TV108 camera video sequence: The solid rectangle defines the Region

Of Interest (ROI), where features are tracked. The dashed rectangle is the Detection

region Of Interest (DOI) where the interest-point detector works. (a) shows the detected

features in frame 1. (b) shows the feature positions in frame 25 and (c) in frame 50.

This example shows that beside cars bikes can also be pursued.
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(a) Frame 1

(b) Frame 25

(c) Frame 50

Figure 2.13: TVS100 camera video sequence: The solid rectangle defines the Region

Of Interest (ROI), where features are tracked. The dashed rectangle is the Detection

region Of Interest (DOI) where the interest-point detector works. (a) shows the detected

features in frame 1. (b) shows the feature positions in frame 25 and (c) in frame 50. The

problem in the gate scene is the day/night lightning change. The example shows that

cars can successfully be pursued even under extreme light conditions.



Chapter 3

Unusual traffic event

recognition

Contents
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This chapter explains unusual events in section 3.1. They are indicated by

interest-points which are tracked by the tracker described in the previous chapter. To

use especially these features has consequences on the recognition which is described in

section 3.2. Finally, section 3.3 describes the principle of unusual traffic event recog-

nition using tracking data of normal traffic. The novelty of our approach is shown.

3.1 Unusual traffic events

Unusual traffic events are incidents caused by abnormal behaviour of vehicles in traf-

fic scenes. Unfortunately, the word ”abnormal” is a fuzzy description of a clear traffic

situation. Such traffic incidents can occur in spatial or temporal domain. The former

means in a local position of the image plane while the latter equals the time of appear-

ance of vehicles in the scene. Therefore abnormality can be understood as a deviation

in either one or both domains from a normal traffic behaviour.

29
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Unusual traffic events

spatial temporal

ghost-driver vehicle obstructions

prohibited U-turn traffic accident

one-way offence traffic signal offence

bus lane driving speeding

occupation lane driving traffic jam

dividing line offence driving too slowly

overtaking vehicle break-down

entering prohibited zones

prohibited stopping/parking

Table 3.1: This table gives some examples of unusual traffic events. Classification is

done by their occurrence in spatial, temporal or both domains.

Consider the examples in table 3.1 which shows an uncompleted list of possible

unusual events. For instance, a ghost-driver who is a person that drives on the wrong

side of a highway cannot be discerned by considering the temporal domain. The ab-

normal behaviour according normal traffic happens by driving in a prohibited direction

and therefore in the spatial domain. In contrast to this last example, a traffic jam can

only be recognized in time. To use one domain is sometimes not sufficient. Imagine

a parking area where parking is forbidden during daytime. An event like parking at

noon can only be seen if both domains are taken into account.

Beside the unusual events described in table 3.1, rare incidents can also happen

as part of normal traffic behaviour. For example, traffic signals or train crossings are

such events. The former change their state periodically where trains approach at known

times. Certainly, it could be useful to recognize such events. If we could learn a traffic

light cycle, we could detect that cars running the light are unusual, even though their

traffic behaviour was not unusual�. However, this is not part of our work and is not

considered in the report.

3.2 Features as traffic indicators

Chapter 2 dealt with a visual feature tracking implementation. Features are interest-

points which are detected on vehicles and then tracked through the observed scene.

Unlike other tracking methods, it does not detect the vehicles explicitly in the

scene. For example, Johnson and Hogg [22] used an adaptive background tracker to

�If the signal light is green, then the vehicles will go through.
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pursue the blobs of vehicles. Stauffer and Grimson [41] used an active shape model

as a feature. Both image features represent and identify vehicles. The assumption that

interest-points are on vehicles at detection, only guarantees a representation because

it is possible that more than one interest-point is on a vehicle. However, representa-

tion by an image feature is a more relaxed concept than identification, with several

consequences for the tracker and the unusual traffic event recognition:

(i) The avoidance of identifying vehicles reduces the complexity of the tracking

algorithm. Representation is guaranteed by the interest-point detection itself.

(ii) Features can represent different vehicles during tracking. For example, if two

cars come close together the feature can hop from one car to the other. They can

also represent background for a while or forever if they stuck anywhere. In both

cases the unusual event recognition has to handle these outliers.

(iii) Decisions about occurring unusual events cannot be made with one feature.

Despite these consequences, a feature does give a basic answer about the traffic. If the

feature behaves normally according to a model of normal traffic behaviour, no unusual

event can be concluded at this point in traffic. Otherwise, a traffic problem is evident

except the feature is an outlier. Features with this semantics can also be seen as traffic

indicators.

3.3 The principle

Unusual events are incidents of abnormal traffic situations. As it was shown in the

previous section, these events can happen in spatial, temporal or both domains. If it

would be possible to make a mathematical model of this domain behaviour, it would

be possible to recognize unusual events. Unfortunately, these incidents occur rarely

which makes it practically impossible to model them. Therefore, we model normal

traffic. The recognition system learns the patterns of normal traffic behaviour. One

ground assumption is that the camera is static. A model can only represent one traffic

scene. A further requirement is the availability of training tracking data of such normal

traffic. As normal traffic is easier to observe than abnormal traffic and is basically the

usual case, any adequate number of normally tracked features can be found.

Figure 3.1 shows the principle of an unusual event recognition system. Training

tracking data is delivered by the tracking algorithm. Unfortunately, the feature’s po-

sitions are noisy as described in chapter 2. In a first step, preprocessing reduces this

noise. Furthermore, outlier features are detected and removed from the training set.

Then, the features positions and the time instants when they were measured, generate

training samples in a learning space L. Thus, every sample represents normal traf-

fic behaviour in spatial and temporal domain. In contrast to our work, the works of

Johnson and Hogg and Stauffer respectively did not consider a temporal domain in L.
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Therefore, they were unable to detect unusual temporal events. If a sufficient number

of samples is given, the probability density function (p.d.f.) in L defines a spatio-

temporal model of normal traffic. Where the p.d.f. tends to be low, the likelihood of

abnormal traffic is high and vice versa.

Unsupervised learning is used to generate the spatio-temporal model. It pro-

duces a codebook of reference vectors which are representatives of the underlying

training samples. The process is generally called ”clustering”. All previous works de-

scribed the hard-competitive Kohonen Vector Quantization (Kohonen-VQ) algorithm

for learning the codebook. Vector Quantization means replacing a sample in L by

its nearest reference vector. This report proposes the Growing Neural Gas (GNG)

algorithm for this task. It is a member of soft-competitive cluster algorithms which

brings improvements against algorithms like Kohonen-VQ. It solves the problem of

”stranded” reference vectors and it calculates not only the codebook, but also a topol-

ogy of L.

Unfortunately, the spatio-temporal model is not sufficient to describe normal

traffic behaviour. Chapter 6 gives an example. It assesses the behaviour of a feature

only in a particular point in L. However, the feature’s trajectory is not considered.

Therefore, a classification of all possible traffic movements within the static scene is

also needed to assess if a feature indicates an unusual event. Johnson and Hogg used

the quantized training set in a further Vector Quantization step (re-clustering). The

resulting reference vectors represent classes of traffic movements. Stauffer accumu-

lated joint co-occurrence statistics over the codebook. These data is used to perform

hierarchical classification. This report presents a new approach. As mentioned, the

GNG algorithm generates a topology of L. This graph and the training set can now

be used for classification. Interestingly, this graph is created during learning. Only its

evaluation (! class generation) costs extra efforts.

After learning, a spatio-temporal model and behaviour classes of normal traffic

within a static traffic scene exists. Every new, incoming vehicle can now be tracked by

corresponding features. The normality of behaviour can now be assessed by comparing

the position and time with the spatio-temporal model. Furthermore, the described

feature trajectory will be classified. If the probability response of the model is low or

a classification could not be done, an unusual event is detected. As features can be

outliers, it will be better to trigger a response (e.g. alarm) of the recognition system,

if more features with the similar properties (e.g. proximity) indicate an unusual event.

This decision is out of scope and is not discussed in the report.



3.3. THE PRINCIPLE 33

Training tracking data

Codebook

Kohonen-VQ

Behaviour classes

Unsupervised learning

=

Recognition system response

Tracking data

Spatio-temporal model

Topology Re-clustering Co-occurence

Classification

GNG

Figure 3.1: The principle of unusual traffic event recognition: In a training phase, train-

ing tracking data of normal traffic is used to create a spatio-temporal model of traffic

behaviour and behaviour classes. The former is produced by unsupervised learning

while the latter is the result of classifying feature trajectories. The Growing Neural Gas

(GNG) as new approach (dashed box) is used to create beside a codebook also a topol-

ogy of the learning space. Then, the latter is used for classification. To recognize an

unusual event, the actual tracked features are compared to the model and are classi-

fied. If no classification was possible or the model’s probability is low, a corresponding

response of the system will happen (e.g. alarm).
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This chapter treats the generation of training samples in the learning space from

measured feature trajectories. The former are used as training samples for successive

learning by clustering, which is treated in chapter 5. The latter is produced from mea-

sured feature positions of normal traffic scenes by the tracking algorithm described

in chapter 3. First, it outlines several difficulties during this generation process with

respect to the learning space and problems with the tracking data which have to be

tackled to improve learning (section 4.1). Then, solutions for these problems are dis-

cussed in sections 4.2 - 4.4.

4.1 Problems

Chapter 3 introduced the notation of the tracking data respectively the learning space.

To sum up, the former is given by feature’s positions p
i

= (x

i

y

i

)

> which are measured

35
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at specific time instants t
i

. Together they form a temporal ordered set of measurements

of feature j,M
j

= f(p

1

; t

1

) : : : � (p

i

; t

i

) : : : � (p

n

j

; t

n

j

)gwith j = 1; : : : ; n

M

where

n

M

is the number of tracked features available for training samples generation. M
j

is called the measured trajectory of feature j. n
j

is the life-time which is the number

of frames for which feature j was tracked. The learning space L is defined as a five

dimensional vector space. s 2 L is called sample which is a vector (x y dx dy t)

>.

p = (x y)

> is a feature’s position, d = (dx dy)

> a direction and t a time instant. If s

is related to a feature’s measurement of the tracking data it is called training sample.

Consequently, for every trajectoryM
j

a path exists in L formed by training samples.

The aim of training samples generation is to define the relation between the train-

ing samples and its corresponding measurements.

Let M be a measured feature trajectory of further investigation. To improve

reading, measurements (p
i

; t

i

) belong toM and n

j

is written as n. In contrast toM,

consider a new trajectory

#(t

i

) = p

i

: (4.1)

# is a continuous, nonlinear vector curve which interpolates all measurements of a

feature. Figure 4.1(a) shows an example of tracked feature positions interpolated by #.

Thus, the direction a feature takes at (p
i

; t

i

) is given by

d

i

=

#

0

(t

i

)

k#

0

(t

i

)k

; (4.2)

which is a unit vector. It is clear that d
n

exists under (4.2). However, if d
i

would be

derived from M which is simply the normalized difference
p

i+1

�p

i

kp

i+1

�p

i

k

, d
n

would be

undefined.

Definition 1 The relation between a training sample s
i

and measurement (p
i

; t

i

) 2

M

j

is

s

i

:=

0

B

�

#(t

i

)

d

i

t

i

1

C

A

:

As a result, figures 4.1(b) and 4.1(c) show the generated training samples in sub-spaces

of the learning space according to the example trajectory in figure 4.1(a). Together

they form a path in the L. t is given by the time when the position of the feature was

determined. The squares indicate position respectively sample at t = 0.

Unfortunately, several difficulties arise with training samples generation given

by definition 1:

Spatial noise: Due to inaccuracies in the tracking algorithm and the quality of im-

age frames the positions of tracked features are noisy. Chapter 2 discussed the

reasons. It is clear that feature positions do not lie exactly on their trajectory.
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x
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(a) Example of #

y

x

t

(b) Path in x=y=t

dy

dx

t

(c) Path in dx=dy=t

Figure 4.1: The definition of training samples by measured feature positions is illus-

trated. Both are drawn by circles. The square indicates the first position respectively

sample.

Consequently, the directions are also noisy, because they relate per definition to

their corresponding positions given by equations (4.1) and (4.2). However, time

is not considered to be noisy, because it is derived from the number of frames

captured by the hardware device which is assumed to be constant�.

Illustration 4.2 depicts the consequences of noise in the learning space. Mea-

sured feature positions which lie on similar trajectories (4.2(a)) should be trans-

formed to samples which also lie on similar paths. However, noise results in a

sparse distribution of training samples, destroys the path’s similarities and in-

troduces outliers. Both can be seen in figures 4.2(b) and 4.2(c). It is clear that

the quality of successive learning will be worse by using the training samples

without noise reduction.

Learning-space density: The density of a sub-space of the learning space is defined

by the number of training samples within it. The more samples are found in

a sub-space the more dense it is. Furthermore, the probability of a vehicle oc-

currence in a certain sub-space is defined directly proportional to the density

within the space. The more vehicles are observed in a certain position, direction

and time, the more training samples are generated in a sub-space of the learning

space. Consequently, this results in higher density and therefore higher probabil-

ity of vehicle occurrence. Consider a feature on a fast and slow moving vehicle.

A feature in the former case will produce far more measured positions than in

the latter case, because the frame rate during tracking is constant. Furthermore,

if speed is high the training samples are sparsely distributed. On the other hand,

if speed is slow they are densely distributed.

However, this example shows that a slow vehicle produce higher probability

sub-spaces than a fast one. Illustration 4.3 depicts this fact. Figure 4.3(a) shows

three trajectories of fast vehicles and one trajectory of a very slowly moving car

�This real-time constraint can be fulfilled with proper hard- and software
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respectively. The parts of the learning space, where the three paths are lying,

is underrepresented by training samples (figure 4.3(b) and 4.3(c)). Although

in this example, a vehicle occurrence is three times more likely. Besides, all

trajectories show changing accelerations of vehicles. Especially, the distances

of the positions of one of the fast moving cars are conspicuously unequal. This

also influences the density of the learning space unintentionally.

These problems require appropriate solutions. Section 4.2 treats a linear regression

model for noise reduction where instead of interpolating all positions by # a ”smoother”

curve is used which only approximates the p
i

. Furthermore, the density problem can

be solved by using the idea of re-sampling the trajectories with a constant step size

(section 4.3).

Beside the above mentioned problems which lie in the generation of training

samples, two more problems arise with respect to the tracking data:

Outliers: It is assumed that the tracking data represents normal traffic. Unfortunately,

it is not possible to guarantee this assumption for every feature in the tracking

data. Such features are called obvious outliers. Several problems can happen

during tracking. For example, a feature can loose a vehicle and stuck for a

period of time on the background after it is finally taken out of the tracking area

by another vehicle. Furthermore, a feature can hop from one vehicle to another

during tracking. These problems can also happen with the same feature.

Therefore, obvious outliers which differ significantly in time from the rest of

the tracking data should be eliminated during generation of training samples to

improve successive learning. Certainly, this is only possible if the number of fea-

tures available as tracking data is large enough and the number of outliers within

the tracking data is statistically distinguishable. It is also clear, that some obvi-

ous outliers will still be represented in the training samples, because it cannot be

guaranteed to recognize all disturbed features.

Range of learning space: The values of x and y are by orders of magnitude larger

than dx respectively dy. While d is a unit vector and its elements have values

between [�1; 1℄, p lies in pixel range, for example x 2 [0; 383℄, y 2 [0; 287℄

which is half of the PAL� resolution. Time lies in all investigated scenes between

magnitudes of some seconds up to a minute. Certainly, this time range refers

to positions of tracked features which represent normal traffic and are used to

generate training samples.

The problem with different ranges of elements of samples is their unbalanced

relative contribution during learning. Most of the clustering algorithms use the

Euclidean distance. p would dominate the distance measure while e would be

neglectible, because the range of the values of x and y are orders of magnitude

larger than the range of the dx respectively dy.

�Phase Alterning Line is the dominating TV standard in europe.
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A solution for obvious outlier detection is given in section 4.4. Remaining outliers,

which are represented as training samples in the training set, are the topic of a robust

learning algorithm discussed in chapter 5. Finally, the mentioned range problem is

discussed in chapter 5, because it is a problem due to the used distance measure during

learning.

4.2 Spatial noise reduction via smoothing splines

As noise is introduced during the tracking process the n measured positions do not

longer lie exactly on the feature’s trajectory M. Equation (4.1) is no longer valid.

Consider the following more general linear regression model:

#(t

i

) + �

i

= p

i

: (4.3)

�

i

� N (0;�) models the noise in p
i

. All �
i

are independent random vectors.

# is a continuous, nonlinear vector curve like in (4.1), but is generally unknown.

Fortunately, various estimates ^

# can be given which approximates all measurements

within the given covariance �. Thereby, noise is reduced for all ^

#(t

i

). Such curves

are called smoothing curves. The statistical problem of estimating an optimal ^

# is

called ”variational” problem. It goes back to Iso Schoenberg’s work. He showed that
^

# is equal to the natural smoothing spline which is the solution for the noise reduction

problem in this work. Interestingly, it is not only an estimate of a variational problem.

If it is considered as a sample of a stochastic process, George Kimeldorf and Grace

Wahba showed in two classical works that it even is a Bayes estimate. This connection

of variational problems and Bayes estimation has its roots in the work of E. Parzen.

All this and more information can be found in [47].

4.2.1 Natural smoothing spline

The classical univariate regression spline is a piecewise interpolating polynomial func-

tion f
m

: [t

1

; t

n

℄! R

d. Each polynomial is defined in the intervals [x
1

; x

2

); : : : ; (x

i

; x

i+1

); : : : ; (x

k�1

; x

k

℄

The k points t
1

= x

1

< t

2

< : : : < x

k

= t

n

in which these functions are joint together

are called knots. f
m

fulfills the following four properties:

(i) The k � 1 polynomials are of degree 2m� 1

(ii) f

m

has 2(m� 1) continuous derivatives

(iii) f

m

has a (2m� 1)

st derivative that is a step function with jumps at [x
1

; x

k

℄

(iv) f

m

is a polynomial of degree m� 1 outside of [x
1

; x

k

℄
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Figure 4.2: Noise influences the training samples in the learning space seriously. Con-

sequently, the quality of learning is decreased. (a) shows sample trajectories which are

formed by noisy feature positions of tracked features. (b) and (c) show the correspond-

ing samples. Notice the outliers which are shown as squares. Trajectories respectively

paths are drawn by lines whereas circles are positions and samples.
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Figure 4.3: The consequence of slow and fast moving vehicles is shown. (a) depicts

four trajectories where one represents a very slow car. (b) and (c) shows the influence

on the learning space. Although a vehicle occurrence in the area of the slow car is less

likely, the learning space is overrepresented by training samples.
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It is clear, that a whole Hilbert space of such functions exists which is called Sobolev

spaceW
m

= ff

m

g.

Furthermore, consider a particular spline s 2 W

m

with boundary conditions

s

(i)

(x

1

) = s

(i)

(x

k

) = 0 for i = m; : : : ; 2m � 1. Thus, among all f
m

2 W

m

with

f

m

6= s, s minimize for n � m the squared integrated mth derivative

Z

x

k

x

1

s

(m)

(t)

2

dt �

Z

x

k

x

1

f

(m)

m

(t)

2

dt: (4.4)

As a proof, expand the square on the right hand side of the following un-equation

0 �

Z

x

k

x

1

(s

(m)

(t)� f

(m)

m

(t))

2

dt;

which is always satisfied and rearrange the terms in a useful manner. This leads to

0 �

Z

x

k

x

1

(f

(m)

m

(t)

2

� s

(m)

(t)

2

� 2s

(m)

(t)(f

(m)

m

(t)� s

(m)

(t)))dt:

It can be shown that the last term of the integral is zero which is the proof of (4.4).

Start by formulating it as an integration by parts, then use the fact that s(2m�1)

(t) is

piecewise constant with a fixed k
x

i

, the construction is as follows:

Z

x

k

x

1

s

(m)

(t)(f

(m)

m

(t)� s

(m)

(t))dt =

Z

x

k

x

1

s

(m)

(t)d(f

(m�1)

m

(t)� s

(m�1)

(t))

s

(m)

(t)(f

(m�1)

m

(t)� s

(m�1)

(t))j

x

k

x

1

�

Z

x

k

x

1

s

(m+1)

(t)(f

(m�1)

m

(t)� s

(m�1)

(t))dt

...

�

(2m�2)

X

i=m

s

(i)

(t)(f

(i�1)

m

(t)� s

(i�1)

(t))j

x
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1

�

k�1

X
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Z
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x

i

s

(2m�1)

(t)(f
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m

(t)� s

(m�1)
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�
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X

i=m

s
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(t)(f

(i�1)

m

(t)� s
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(t))j
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(f

(m�1)

m
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(t))j

x

i+1

x

i
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0

0

This unique regression function s is known under the name natural spline. The name

”spline” was observed by Iso Schoenberg in the ship industry. It comes from the

mechanical counterpart used by draftsmen. It was a thin strip that was used to draw

curves during the fabrication. Ducks or weights were placed on the strip to force it to

go through given points.
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As it was mentioned in the beginning of the chapter, a regression spline is not a

solution for the estimate ^

#, because it interpolates the data. Moreover, an approximat-

ing spline was proposed as an estimate of problem (4.3). Instead of (4.4), consider a

revised minimization criterion

1

n

n

X

i=1

(p

i

� f

m

(t

i

))

>

(p

i

� f

m

(t

i

)) + �

d

X

k=1

Z

x

k

x

1

(f

m

(t)

(m)

k

)

2

: (4.5)

The first term gives a measurement of the goodness-of-fit while the second term or

smoothing term penalizes the roughness of f
m

. Generally, both are two conflicting

goals to minimize, because the smoother a function the worse it fits the data. This

tradeoff is well known in approximation theory. On the one hand, the data should

be approximated as good as possible while on the other hand over-fitting should be

prevented by the introduction of a smoothing constraint. This process is called regu-

larization.

Regularization also has a Bayesian interpretation. If � in (4.3) is known the

first term is proportional to the log-likelihood. If we take a prior over functions f
m

,

minimizing a penalized sum of squares is equivalent to maximizing the posterior den-

sity over f
m

. More about Regularization can be found in Ripley [36]. The Bayesian

aspects are discussed in Wahba [47].

Certainly, the quality of smoothing depends mainly on the smoothing parameter

� which controls the influence of the regularization penalty. If � ! 1, one has a

simple linear regression function s(t) = �

0

+ �

1

(t�

1

2

). On the other hand, if �! 0,

s(t) is an interpolating spline but not necessarily the unique natural spline, because

(4.4) is not considered under (4.5) with � = 0.

Besides, the number of knots with respect to the number of measurements in-

fluences the result. In contrast to regression splines, if many knots are included, the

penalty prevents the smoothing spline from over-fitting. On the other hand, too few

knots may not be enough to represent the measurements and increase variance.

However, Schoenberg showed again that with a fixed � 2 (0;1)

s

�

(t) = argmin

f

m

1

n

n

X

i=1

(p

i

� f

m

(t

i

))

>

(p

i

� f

m

(t

i

)) + �

d

X

k=1

Z

x

k

x

1

(f

m

(t)

(m)

k

)

2 (4.6)

is a unique optimal minimizer. He called it natural smoothing spline. An optimal

tradeoff between goodness-of-fit and smoothness can only be given if an estimate of

the optimal smoothing parameter � = �

� can be determined by any objective method.

Section 4.2.3 shows some possible methods.

4.2.2 Calculation of natural smoothing splines

Remember, that splines were defined as piecewise polynomials which are joint to-

gether at given knots. Each polynomial contribute to the whole spline within an inter-
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val [x
i

; x

i+1

). Outside this interval it has no or a quickly vanishing influence respec-

tively.� Consequently, s can be defined as a linear combination of basis polynomials �
i

which are called blending functions. This basis spreads out a vector space of possible

splines where each s can be expressed by

s(t) =

l

X

i=1




i

�

i

(t): (4.7)

l is the total number of free parameters 

i

. Remember, that feature’s positions are

given in the two dimensional image plane, therefore d = 2. Thus, s is a vector spline

which approximates all p
i

. Then, the coefficients 

i

are two dimensional vectors and

can be interpreted as control points of s. Each position s(t) is a linear combination of

all control points which are interpolated by s.y

Consider the minimization criterion (4.5) with given feature measurements (p
1

; t

1

); : : : ; (p

n

; t

n

)

and spline s of form (4.7). Let

� =

0

B
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(t

1

) � � � �

l
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1

)

...
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1
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>

n

)

>

:

Then, (4.5) can be written as

(P � �
)

>

(P � �
) + �


>

M
; (4.8)

where the second term is the ”hard part” of this minimization result. It represents the

influence of the penalty term of (4.5). M is a l� l positive definite Hessian matrix with

elements

M

ij

=

Z

t

n

t

1

�

00

i

(t)�

00

j

(t)dt:

Consequently, the penalized least squares estimator for the natural smoothing spline is

s

�

(t) =

l

X

i=1


̂

i

�

i

(t)

with minimization constraint

(�

>

� + �M)
̂ = �

>

P: (4.9)

This estimator has a long history and goes back to the results of Reinsch, who has

given an explicit solution for cubic smoothing splines (m = 2). Further information

can be found in Hastie and Tibshirani [43]. It also shows improved estimators like

�As it is shown later, the regression spline forms an exception with respect to the latter while B-

splines satisfy this assumption.
yIn the later case of high order B-splines they are just approximated.
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Marquart’s method if (4.7) is nonlinear or ridge regression from Hoerl and Kennard

who provided a biased estimator to overcome collinearity.

There are several ways to define the l basis polynomials �
i

of (4.7). Each choice

has a significant influence on computation. For example, �
i

can be chosen as the

l = d + 1 + k basis polynomials of the very popular classical regression spline which

can be written as

s(t) =

d+1

X

i=1

�

i

t

i�1

+

k

X

i=1

�

i

max(0; t� x

i

)

3

: (4.10)

Consequently, the basis are the polynomials

�

1

(t) = 1

�

2

(t) = t

...

�

d+1

(t) = t

d

�

d+2

(t) = max(0; t� x

1

)

d

...

�

d+1+k

(t) = max(0; t� x

k

)

d

The polynomials �

i

(t), 1 � i � d + 1 define the spline outside the knot inter-

val [t
1

= x

1

; x

k

= t

n

℄ which was demanded per definition as property (iv) in sec-

tion 4.2.1. �

d+2

(t); : : : ;�

d+1+k

(t) are called truncated power functions and define

s within [x

1

; x

k

). Unfortunately, they span all intervals to the right which somehow

violates the assumption that each polynomial should only be defined over a certain

one. The consequence is that the matrix on the left hand side of (4.9) is not sparse

which results in higher computational complexity. Read chapter 3 of Lancaster and

Salkauskas [27] for more information.

An alternative of truncated power functions as basis polynomials is to use l =

k functions for every knot which are zero outside of its interval. For example, B-

splines have this property. Generally, B-splines are recursively defined by the indicator

functions

B

i;1

(t) =

�

1 : t 2 [x

i

; x

i+1

)

0 : t =2 [x

i

; x

i+1

)

with
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i;o

(t) =

t� x

i

x

i+o�1

� x

i

B

i;o�1

(t) +

x

i+o

� t

x

i+o

� x

i

B

i+1;o�1

(t):

Parameter o is the order of the B-splines. It defines the number of control points, given

by the knots, which have influence on a certain s(t). For every t there are l�o blending

functions B
i;k

(t) which are zero.
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Figure 4.4: Three smoothing functions s

0

(t) (dotted), s

2�10

4

(t) (solid) and s

1

(t)

(dashed) are shown. The black points are the measured feature positions, while the

circles are the corresponding smoothed ones.

Thus for example, the basis according to (4.7) can be written as

�

1

(t) = B

1;4

(t)

�

2

(t) = B

2;4

(t)

...

�

k

(t) = B

k;4

(t)

where the polynomials are cubic functions (o = 4) that span four intervals. B-splines

are nearly orthogonal which results in a numeric stable calculation. Furthermore, it

makes �

>

� almost diagonal (banded). This significantly reduces the computational

costs and results in fast algorithms. Chapter 11.2.3 in Foley [11] gives a good intro-

duction into B-splines. A classical book which shows the mathematical improvements

of the well conditioned B-spline basis against the regression spline basis is deBoor [8].

Generally, cubic (m = 2) polynomials are preferred as smoothing splines, be-

cause the representation capability is mostly satisfactory and at the same time effi-

ciency in calculation can be achieved.

4.2.3 Estimating the smoothing parameter �

A good noise reduction result depends mainly on parameter � which controls the in-

fluence of the smoothing penalty term. For example, figure 4.4 shows examples of

measurements p
i

and smoothing functions s
�

(t). Remember, ^#(t) was defined in the

beginning of section 4.2 by a natural smoothing spline or more precisely, the optimal

estimate s

�

�

(t) of smoothing splines. �

� is the optimal smoothing parameter. The

question is now: How can �� be found?
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Regularization and thus determining an estimate �� can also be seen as the clas-

sical problem of minimizing bias and variance of ^

# in (4.3). Therefore, the expected

prediction error for i measurements, 1 � i � n, is

E[(

^

#(t

i

)� p

i

)

2

℄ = (E[

^
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i

)℄� p

i

)

2
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2

+E[(
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#(t

i

)� E[

^

#(t

i

)℄)

2

℄

| {z }

varian
e

(4.11)

The bias measures the extent to which the average of the estimate ^

# differs from the

measurements, while the variance measures the sensitivity of ^

# with respect to the

measurements.

Consider the case where ^

# = s

1

(t) (figure 4.4, dashed curve). It is clear, that

the variance term in (4.11) will vanish, because E[

^

#(t

i

)℄ = s

1

(t) =

^

#(t

i

). How-

ever, the bias will be high, because no attention was paid to the measurements. On

the other hand, ^

# = s

0

(t) is the other extreme. All measurements are interpolated

which is shown in figure 4.4 as dotted curve. The bias term vanishes at the p
i

, be-

cause E[

^

#(t

i

)℄ = E[#(t

i

) + �

i

℄ = #(t

i

) =

^

#(t

i

). In their neighborhood the bias is

small. However, the variance can be significant, because E[(

^

#(t

i

) � E[

^

#(t

i

)℄)

2

℄ =

E[(

^

#(t

i

) � #(t

i

))

2

℄ = E[�

2

i

℄ = �. The bias-variance tradeoff is equivalent to the

goodness-of-fit versus smoothness tradeoff controlled by parameter �. If smoothness

is too large then the bias of the predicted trajectory is large. Otherwise, if every mea-

surement is interpolated the variance becomes large and thus also the prediction error.

Consequently, the smaller the prediction error is the better the noise reduction will be.

More about the bias-variance problem and its minimization can be read in chapter 9.1

of Bishop [7].

The determination of �� is a topic for its own. Several methods for estimating an

optimal �� in this spirit of minimizing the bias-variance were suggested in the litera-

ture. Especially Grace Wahba has intensively investigated this issue. A good source of

more information about it is chapter 4 of Wahba [47]. Basically, the choice of �� de-

pends on weather the covariance matrix � of the Gaussian noise process of model (4.3)

is given or is unknown.

Consider, � is known. For example, several authors have suggested for the one

dimensional case (d = 1) the so-called discrepancy method. Choose � = �

� so that

1

n

kP � S

�

k

2

� �

2 (4.12)

with kyk2 = y

>

y and

S

�

=

0

B

B
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s

�

(t

1

)

s

�

(t

2
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...

s

�

(t

n

)

1

C

C

C

A

:

Thereby, the left-hand side of (4.12) is a monotone nondecreasing function of �. To

generalize it to the d-dimensional case, �2 is replaced by �. (4.12) can now be written
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Figure 4.5 shows an illustration of (4.13). For � = 0!1 the entries of �
�

becomes

larger until a certain point where s
�

(t) is a linear regression.

Unfortunately, � is not always known. Then, �� must be determined by any ob-

jective method. For example, Wahba suggested cross-validation or also known under

the name ”leave-one-out”. The name reflects the idea of omitting a certain measure-

ment p
k

during calculation of s
�

(t). Consequently, (4.6) is replaced by

s

[k℄

�
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Thus, the cross-validation function is
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and an estimate of �� is the minimizer of (4.14).

Cross-validation has two disadvantages. First, it is computational expensive.

Fortunately, for univariate smoothing splines updating schemes are known (see chap-

ter 4.3 of Ripley [36]). Furthermore, it is not invariant under transformations of the

underlying data. To achieve this invariance property a ”generalized” version was pro-

posed where the generalized cross-validation function is

GCV (�) =

1

n

P

n

k=1

(p

k

� s

�

(t

k
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>
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� s
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A

�

is the so called influence matrix with A

�

P = S

�

which maps each position p
i

to

the fitted position s
�

(t

i

). Efficient algorithms for calculating Tr(I � A

�

) exist which

are based on several matrix decomposition methods (see chapter 11 of Wahba [47]).
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Illustration 4.6 shows the result of noise reduction. For everyM
j

an estimate ^

#

was calculated. m was set to 2 which gives cubic polynomials as basis functions. The

parameters �� were determined by the discrepancy method with assumed � = 9I

2

.

Then according definition 1, training samples were generated in L. While figure 4.6(a)

shows slightly improvements, figure 4.6(b) compared with 4.2(c) depicts the noise

reduction in the direction.

4.3 Density correction via re-sampling

Consider the learning space under definition 1. Unfortunately, the assumption that the

learning-space density correspond to the probability of vehicle occurrences can be vio-

lated by vehicle situations discussed in section 4.1. The reason is the parameterization

by t of # in (4.1) respectively (4.3). Equidistant time instants t
1

; t

2

; : : : can result in

different dense paths for several trajectories, correspondingly slow and fast moving

vehicles. Therefore, consider the following revised trajectory as regression model:

#(s

i

) + �

i

= p

i

(4.16)

with 1 � i � n. Instead of t, a normalized arc length parameterization s 2 [0; 1℄

is chosen which is defined by the Euclidean distance of two consecutive positions.

Therefore, all s
i

which correspond to p
i

are given by

s

1

= 0

s
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=

s

i�1

+ kp

i

� p

i�1

k

P
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kp

k

� p
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k
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Certainly, the direction of a feature changes, because it is given under the new trajec-

tory #(s
i

). (4.2) is replaced by

d

i

=

#

0

(s

i

)

k#

0

(s

i

)k

; (4.18)

Finally, t also is not longer part of definition 1. It only depends on parameter s and can

be written as function

�(s) =

�
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i
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with 1 � i � n. � interpolates t for all positions on # which lie between two measured

positions. Thus, a new definition of training samples can be given:

Definition 2 The relation between a training sample s
i

and measurement (p
i

; t

i

) 2

M

j

under learning-space density considerations is

s

i
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#(s
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)

d
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i

)

1

C

A

:
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Figure 4.6: The result of noise reduction is shown. While, compared with figure 4.2(b),

(a) shows a slightly difference of the training samples, the noise in (b) is reduced (com-

pare with figure 4.2(c)).
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ϑ

ρ

Figure 4.7: The maximum chordal deviation � is illustrated.

As the parameterization of # does not depend on t, # can be re-sampled with a

constant step size Æs. The word re-sampling is used, because # was sampled by the

tracking algorithm at equidistant time instants given by the frame-rate. Æs must be

constant for all trajectories. Otherwise the assumption about learning space density

would not be fulfilled. But which value should be chosen? In fact, it should be as

large as possible, because unnecessary training samples in the learning space do not

contribute to learning. However, they only increase computational costs. On the other

hand, the generation of too less data points will lead to a path representation where

details are lost.

A common recursive algorithm in computer graphics for determining Æs for one

trajectory # is to calculate the maximum distance from the curve to the line joining the

endpoints. Have a look into an article of the Graphics Gems written by Lindgren [28].

They called this maximum distance the chordal deviation � of # (figure 4.7). If � is

smaller than a threshold �, normally half a pixel, the line will be part of the path.

Otherwise, the curve is subdivided into two halves (0 � s � 0:5, respectively 0:5 �

s � 1). Each half is recursively subjected to the same chordal deviation analysis. An

upper bound that # is represented correctly by Æs is

Æs �

1

2

r

; (4.20)

where r is the recursion depth of the algorithm. As the distance of training samples

must be equal for every trajectory, Æs is equal for all #. For example, an overall con-

stant step size for training samples generation is

Æs = min

1�j�n

M

Æs

j

; (4.21)

where Æs

j

is the step size of #
j

. However, (4.20) is a rule of thumb. It can happen

that allM
j

are linear trajectories. For example, in highway scenes trajectories can be

straight lines. Then, Æs delivered by equation 4.21 can be too large. Then, another

possibility is to choose Æs by hand like it is done in Johnson and Hogg [22].

Illustration 4.8 shows the result of re-sampling all four trajectories of illustra-

tion 4.3. The analysis of the step size Æs delivered a value of 0:0625 with � =

1

2

.

Both figures 4.8(a) and 4.8(b) show now an equidistant distribution of training sam-

ples compared to figures 4.3(a) respectively 4.3(b). Certainly, noise reduction is also
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performed, because model 4.16 is an extension of model 4.3 discussed in the previous

section.

4.4 Obvious outliers

Obvious outliers are features in the tracking data which do not represent normal traffic.

Two cases can be distinguished:

1. features whose life-time differ significantly from the others.

2. features whose measured positions are disturbed due to tracking errors.

The former are in most of the cases tracked features which lost a vehicle during life

and stucked on the background for a period of time. It is clear, that no training samples

should be generated from such features, because they do not represent normal traffic.

Figure 4.9(a) shows training samples of normal features and obvious outliers. The

latter can be easily seen by their conspicuous distance from the rest of training samples.

Statistics can help to detect these temporal obvious outliers. However, the prob-

lem can also be seen as a selection of those features whose training samples represent

normal traffic. Consider figure 4.10 which illustrates the histogram of the life-time of

every feature. As it can be seen, most of the features are distributed around a certain

life-time, because all features take similar ways and therefore approximately the same

time from detection until they vanish outside of the tracking area. A feature should be

selected if at least � features have survived the same life-time. The ”same life-time”

means in this context within the same histogram bin. On the other hand, a feature is an

outlier if less than � features with the same life-time can be found in the training set.

Certainly, this feature selection can only be done if statistically more ”normal” tracked

features than outliers are available. Figure 4.9(b) depicts the result of feature selection.

All obvious outliers are removed.

Certainly, the outlier problem can also happen in the spatial domain of L. For

example, during collection of tracking data it can happen, that some vehicles behave

abnormal. They stop or drive in wrong directions. This are exactly those things which

this system should recognize. Unfortunately, such situations cannot be excluded during

the generation of tracking data. Furthermore, it is not possible to detect these outliers

in one domain, for instance in x. They can only be found in the spatial sub-space of

L, where they differ from the rest of the training samples. Therefore, outlier detection

cannot be done as a preprocessing step. It must be done during learning. How this is

done, is discussed in the next chapter 5.

The second case of obvious outliers are features whose measured positions are

disturbed as a result of tracking errors. Imagine a disturbed measurement (p
i

; t

i

) 2 M.

It is clear, that the whole trajectory does not represent normal traffic. Therefore, it must
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Figure 4.8: The result of re-sampling is shown. (a) depicts the training samples in a

subspace x=y=t of the learning space while (b) shows dx=dy=t. Compared to illustra-

tion 4.3 the training samples are equally distributed.
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Figure 4.9: The feature selection result is illustrated in sub-space x=y=t of L. (a)

shows obvious outliers. (b) shows the selected features.
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Figure 4.10: Histogramm of the life-time of tracked features.
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interval. Wahba [47] suggests a Bayesian confidence interval in the one dimensional

case with known �2 and thus estimated ��

[

^

#(s

i

)� u

�

2

p

�

2

a

ii

(�

�

);

^

#(s

i

) + u

�

2

p

�

2

a

ii

(�

�

)℄; (4.22)
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ii

(�

�

) is the (ii)

th entry of the influence matrix A
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� . u�
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2

point of the

normal distribution. � gives the probability that the true value #(t
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) and the measure-

ment (p
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) are covered by the interval.

A suggested confidence interval for the two dimensional (d = 2) case is the

ellipse
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with � the covariance of model (4.3). The left hand side of (4.23) is the Mahalanobis

distance of p
i

from ^

#(s

i

) and is chi-square distributed. The probability that the mea-

surement (p
i

; t

i

) is covered by the ellipse is (1 � �). Then, 
2 is the upper (100�)th

percentile of a chi-square distribution with two degrees of freedom. Generally, it has

d degrees of freedom. Figure 4.11 illustrates the usage of a confidence interval given

by (4.23) to detect an obvious outlier. True positions of a feature are shown as crosses,

while measurements are plus signs. Measurements were generated according to the

model (4.3) with � = 25I

2

from true given positions. The estimated trajectory ^

# is

shown by the curve. All values are listed in table 4.1.

For example, consider a measurement (145 132 4)

> which is shown as square.
^

#(4) has the value (140:89 176:1)

>. Under a probability of 0:95 of interval coverage,




2

= 5:991. Thus,
��

145

132

�

�

�

140:89

176:1

��

>

�

25 0

0 25

�

�1

��

145

132

�

�

�
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��

= 78:48

78:48 6� 5:991
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Figure 4.11: An outlier trajectory is illustrated.

time true positions measured positions estimated positions

[frame℄ x[pixel℄ y[pixel℄ x[pixel℄ y[pixel℄ x[pixel℄ y[pixel℄

1 79.81 259.08 80.75 259.53 74.70 255.52

2 76.87 215.65 74.84 219.38 79.03 218.14

3 95.51 186.79 93.99 171.88 100.63 184.27

4 146.67 178.59 141.33 177.49 140.88 176.10

5 212.75 173.64 218.52 177.11 215.86 168.98

6 261.70 137.38 255.57 139.15 249.23 138.28

7 269.14 80.66 257.16 76.57 260.94 79.15

8 256.11 33.71 262.17 38.89 263.01 39.56

Table 4.1: An example feature: True, measured and estimated positions are shown.
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is not fulfilled which leads to the conclusion that the measurement is wrong and the

whole feature is an outlier.
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Chapter 5

Learning spatio-temporal

traffic behaviour
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This chapter treats learning a spatio-temporal model of traffic behaviour. It is

shown that the latter is an approximation of the probability density function in the

learning space which is learnt by a density estimator. The training samples, which

are necessary for learning, are generated as discussed in chapter 4. Section 5.1 intro-

duces the learning problem in general and gives some definitions. Then, section 5.2

introduces the basic learning paradigms and gives solutions. Especially, unsupervised

59
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competitive learning is treated in detail in section 5.3. Finally, section 5.4 presents the

proposed learning framework for this work.

5.1 A definition of learning

What makes a machine a learning machine in particular? For example, Herbert Simon

tried to give a definition of machine learning:

Learning denotes changes in the system that are adaptive in the sense that
they enable the system to do the same task or tasks drawn from the same
population more effectively the next time.

(Herbert Simon, Carnegie Mellon University)

Consider, that this definition has a qualitative meaning. A change, which is triggered

by a learning step, leads always to a more effective system. However, imagine a mobile

robot which explores its environment in an empty room with one open door. Its task

is to find the door. Many learning steps will happen which will not bring the robot

closer to the door. Hence many changes of the robot’s behaviour are not effective but

certainly important, because they help the robot to explore the room. It can exclude

parts of the room where it can be sure that there is no door. In the end it will find its

goal and will exit the room. Consequently, the following more rational definition by

Nils Nilson gives a better understanding what machine learning does:

A learning machine is a device whose actions are influenced by past expe-
riences.

(Nils Nilson, Stanford University)

Thus, Nils Nilson suggests that learning is only driven by past experiences which ex-

plains the learning behaviour of the mobile robot. However, both definitions do not

assume any understanding of the problem domain or problem relations. Furthermore,

no implications to state change dependencies of the machine are done. For example,

a simple regression function of a finite data set of points in the plane is a learning

machine. Learning means in this context to find an optimal regression function by

minimizing an error measure, i.e., the sum of squares of the distance from data-points

to the function.

Consider now our problem of learning normal traffic behaviour. We suggest the

following definition:
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By learning traffic behaviour we denote the estimation of a probability
density function (p.d.f.) in the learning space which is generated by train-
ing samples of normal traffic. Thus, the p.d.f. is a spatio-temporal model
of normal traffic patterns.

Interestingly, the glamorous term ”learning” looses its fascination in this definition

and can be simply described by a rational optimization problem of model fitting. Sec-

tion 5.4 will discuss the proposed solution for traffic behaviour learning in detail.

Besides, a second question arise: ”How is learning done?”. Generally, two prin-

ciples of learning are conceivable, namely static and instantaneous learning (Fritzke[15]).

Traffic behaviour learning is an example of the former. Thereby, a given finite set of

training samples are available. The learning process derives a hypothesis of the data.

For example, the parameters of the regression function are estimated. The result is

then a knowledge about the structure of the training samples. Certainly, the number of

training samples is critical. Too few samples can lead to poor results. Otherwise, every

new sample would not dramatically influence the learning result. Human beings can

also show static learning behaviour. Many skills like walking, swimming or simply

grabbing a cup of coffee have to be learnt in a way of experience the same situation

many times. On the other hand, instantaneous learning is the ability to learn from

one single event. For example, most of us learnt the meaning of ”hot” and ”cold” by

associating these terms with unique experiences. Many babies learn what hot means

by touching a hot plate. Furthermore, face learning happens instantaneously in human

beings. We do not need to see people hundreds of times to be able to recognize them.

Indeed, one meeting with strange people is often enough for someone to recognize

them as at least seen or vague known the next time.

5.2 Learning paradigms

Learning can be driven by a teacher in a supervised manner or it is done unsupervised.

The choice either to learn by the former or latter paradigm depends strongly on the

application. Both paradigms and their resulting learning methods are discussed in the

following two sections.

Furthermore, learning methods can be performed in different ways:

Batch vs. incremental learning: In batch learning, every training sample is evalu-

ated after each other and then an adaption step is done. This learning process is

iteratively repeated. On the contrary, in an incremental learning process training

sample evaluation and adaption is performed after each sample. An intermediate

learning process is also possible where two or more but not all training samples

are evaluated and then an adaption step is done.

Off-line vs. On-line learning: In off-line learning, all the training samples are stored

and can be accessed repeatedly. Batch learning is always off-line. In on-line
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x

y

Figure 5.1: A supervised learning task is illustrated. Samples on a plane are given

which are either of class ”Æ” or ”�”. A linear decision function can be learnt to distinguish

between these two classes.

learning, each training sample is learnt immediately and discarded afterwards.

On-line learning is always incremental while incremental learning can be done

either on-line or off-line.

Adaptive learning: This paradigm refers to learning machines which can forget the

past when it is not longer relevant. Thus, they can track changing environments

(see adaptive vector quantization in Gersho and Gray [16]). Practically, this

means that the learnt data is completely discarded or adapted during learning

new training samples respectively.

Constructive vs. destructive learning: Learnt data is stored in fixed data structures

and is adapted by the learning algorithm. It is conceivable that these structures

dynamically grow or shrink during learning. The former is called constructive

learning while the latter is known as destructive learning or learning by pruning

in literature.

5.2.1 Supervised learning

For example, consider a classification task which is depicted in figure 5.1. Points in

the plane belong either to class ”Æ” or ”�”. The membership of every training sample

is known a priory which is called target. The aim of learning is to distinguish between

these two classes and classify each new point. The straight line (decision function) is

the learnt result which divides the plane in two parts accordingly the two classes. All

points that lie above the function are assigned to class ”�” and below to class ”Æ”. It

is clear, that this is a supervised learning paradigm.

Supervised learning and especially the application of classification has a major

relevance in machine learning. The development of neural networks (NN) has con-
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tributed to this importance. A neural network consists of simple processing elements

which are often called neurons. These neurons are connected to each other by a net-

work of links. Furthermore, they can calculate a single value by a predefined function

from their inputs and put them on their output connections. Thereby, a sample which

is put onto the input produces its target value on the final output of the NN. Each link

is associated with a weight. Learning means updating these weights as long as the

NN does not produce the given target value within a small deviation on its output for

every training sample. Although neural networks have increased the popularity of su-

pervised learning and leaded to the development of various applications in the last two

decades, they are not more powerful than statistical methods like discriminant analysis

or regression (Vapnik [46]). Their great success lies maybe in their better understand-

ability. More about neural networks can be read in Bishop [7].

Indeed, they are not the only supervised learning technique. Many other methods

exist like decision trees or version space learning. The choice also depends on the type

of data which can be numeric in the case of sensor values like a temperature sensor or

symbolic. An example for symbolic data is the gender of a person which can either be

male or female. A good introduction into the basics of supervised learning is Russell

and Norvig [37].

5.2.2 Unsupervised learning

Unsupervised learning allegedly involves no targets. Instead of learning a classifica-

tion of the data with apriori knowledge of each training sample’s classification, the

classes are determined by the distances between training samples. Typically, the Eu-

clidean distance is used as a distance measure. Although, other distance measures

can also be used. In unsupervised learning jargon classes are called clusters and the

so-called cluster analysis is a well known field in statistics which goes back to the six-

ties. Forgy [12] and MacQueen [29] have proposed solutions for clustering which are

known as k-means algorithms today. Thereby, k clusters L
i

; 1 � i � k are searched

in the learning space L. The number of clusters k is apriori given. Cluster centers

w

1

; : : : ;w

k

are assigned to each cluster which partition L into regions - the so-called

Voronoi� regions. Any sample s belongs to cluster L
i

if

i = argmin

j2f1;:::;kg

ks�w

j

k: (5.1)

In other words, any sample is assigned the cluster with its nearest cluster center. The

graph which connects all cluster centers is called Delaunayy triangulation. Figure 5.2

illustrates the Voronoi regions and the Delaunay triangulation.

�M. G. Voronoi, German mathematician
yBoris Delaunay, Russian mathematician
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(a) Voronoi regions

(b) Delaunay triangulation

Figure 5.2: An example of cluster analysis is shown. (a) depicts the Voronoi regions

defined by the cluster centers (b) depicts the corresponding Delaunay triangulation.
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The goal of k-means clustering is to minimize the error function

k

X

i=1

X

s2L

i

ks�w

i

k

2 (5.2)

under the given training samples. Consequently, the cluster centers are optimal posi-

tioned within L in a least squares sense. In fact, this constraint is not fulfilled after

a first initialization step where cluster centers can have any position in L. Now, the

idea of k-means clustering is to replace every cluster center by the mean of all samples

within its cluster. Thus, a k-means learning law is given by

w

i

 

1

jL

i

j

X

s2L

i

s: (5.3)

This learning law guarantees convergence of the k-means algorithm. However, the

optimum of the error function 5.2 is not necessarily a global optimum.

Forgy’s k-means variant assigns samples and update the cluster centers simulta-

neously. Thus, it is a batch and off-line learning algorithm. In contrast to that, Mac-

Queen’s incremental, on-line algorithm assigns each sample and updates the cluster

centers alternately. Unfortunately, k-means tend to stuck in local minima of the error

function. Furthermore, the cluster centers converge to the mean of their positions dur-

ing learning, because they are adapted by the mean of cluster samples. Therefore, the

k-means algorithm forms an approximation to the normal mixture model (McLachlan

and Basford [32]), assuming that the mixture components (clusters) all have spheri-

cal covariance matrices and equal sampling probabilities. Balakrishnan, Cooper, Ja-

cob and Lewis [1] found further that the k-means algorithm used as normal-mixture

approximation, recover cluster membership more accurately than Kohonen networks

which were developed by Teuvo Kohonen in the field of vector quantization and are

discussed in the next section.

Vector quantization is an important application of unsupervised learning algo-

rithms. It is a data compression technique which has gained relevance in the field of

signal processing (Gersho and Gray [16]). The task is to code given signal values

s 2 L by a codebook of reference vectors C = fw
1

; : : : ;w

m

g. To gain a compression

effect, m should be chosen smaller than n (m < n). These reference vectors should

now be positioned in a way, that the expected quantization error

Z

s2L

�(s; C)p(s)ds (5.4)

becomes minimal. Thereby, �(s; C) is the quantization error between s and a fixed

configuration of reference vectors in C. Normally, the quantization error is defined as

the Euclidean difference ks � w
i

k with w
i

2 C which is the nearest reference vector

in C. As mentioned in the beginning of this chapter, different distance measures are

possible. Furthermore, p is the probability density function of the data in L. Although
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p is generally not known except for the training samples, (5.4) can be approximated by

1

jLj

m

X

i=1

X

s2L

i

ks�w

i

k

2

: (5.5)

Consider, that the quantization error is squared, because this leads to better numerical

properties under minimization of (5.5). Indeed, the quantization error of the Vector

Quantization problem and the error function of cluster analysis only differ by 1

jLj

. It is

clear, that constants can be neglected if both error functions are minimized. Therefore,

the k-means algorithm can also be used in Vector Quantization to create an optimal

codebook.

Since the publications of Forgy and MacQueen many people have developed

variants of the above mentioned classical k-means algorithm (Ripley [36]). For exam-

ple, Ball [2] has developed a Forgy variant which he named ISO-DATA algorithm. It

allows additional splitting and merging of clusters. Bezdek [4] proposed a fuzzy k-

means variant where every sample is not clearly assigned to one cluster. Instead, it is

assigned in the spirit of fuzzy sets to all clusters by a fuzzy membership vector which

lead to a more general view of cluster membership.

5.3 Unsupervised competitive learning

Teuvo Kohonen, who has been one of the most famous researchers in Neurocomputing

in the past decades, invented several other unsupervised learning methods. All have

the same property. Reference vectors of a finite codebook compete for a single train-

ing sample. The one which is the nearest in its distance wins, the second closest is

the second and so on. Thus, a ranking of them can be given. During hard-competitive
learning only the winner is moved closer to the training sample while all other refer-

ence vectors of the codebook remain unchanged. This type of learning is also known

under the name winner-takes-all learning. On the contrary, if all reference vectors are

moved in a decaying manner of its rank, learning is called soft-competitive or winner-
takes-most. The latter has the advantage that it is more robust against local optima

during minimization of the quantization error. Thus, different initializations of the

codebook do lead to equal or similar results.

Unfortunately, most of Kohonen’s competitive learning methods are called ”Ko-

honen networks”, because they are realized in a neural network’s style. This often

leads to confusion by many people. Basically, Kohonen networks most often refers to

one of the following three networks:

Kohonen Vector Quantization (Kohonen-VQ): Actually, the name of this method

is ”learning vector quantization”. Unfortunately, variants of the learning vector

quantization methods are supervised methods. To avoid confusion, the unsuper-

vised, hard-competitive learning vector quantization is renamed Kohonen-VQ
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throughout this work. As Kohonen-VQ is part of our proposed solution, it is

discussed in section 5.3.1.

Self-Organizing Map (SOM): The idea of inventing SOMs was biological motivated

and came from the way in which various human sensory impressions are neuro-

logically mapped into the brain (Kohonen [25]). A SOM is a soft-competitive

network of reference vectors which are arranged in one or higher dimensional

maps. Furthermore, they exist in an grid space which is completely different

to the learning space where the dimension is smaller than the dimension of L.

A SOM provides a topological mapping from the learning space to the clus-

ters which it represents. Therefore, it is a specific type of clustering algorithm.

SOMs provide a solution for dimensional reduction of large spaces. Neverthe-

less, its main application is cluster analysis.

Learning Vector Quantization (LVQ): On the contrary to all so far mentioned Ko-

honen networks, LVQ is a supervised version of Kohonen-VQ (Kohonen [23],

Ripley [36]). Thus, it has nothing to do with unsupervised methods and only

shows the imprecision in the Neurocomputing field. However, the learning al-

gorithm is equal to Kohonen-VQ, but the LVQ learning law is quite different,

namely supervised.

A further competitive learning method is Competitive Hebbian learning (Mar-

tinez [30]) which is a variant of Hebbian learning (Oja [33]). In contrast to Kohonen

networks, the aim is not to learn a codebook. Instead it is an elegant method to provide

the codebook with topological structure which reflects the topology of the training set.

Competitive Hebbian learning is discussed in more detail in section 5.3.2.

A problem which arises in many unsupervised methods is the fixed number of

reference vectors. Thereby, this number depends on the distribution of the data. Most

methods have the problem that either too few or many reference vectors are given

apriori which leads to erroneous vector quantization. Fritzke [13] tried to avoid this

problem by introducing a growing network of reference vectors. The Growing Neural

Gas is a data-driven growing algorithm where new reference vectors are introduced in

the learning space. Remarkably, they are not introduced randomly. However, accu-

mulated statistics about the quantization error leads this insertions. As this learning

method is part of the learning solution of traffic behaviour, it is explicitly discussed in

section 5.3.3.

Certainly, those mentioned soft-competitive unsupervised methods are not the

only ones. Like SOMs with fixed network dimensionality, Growing Cell Structures and

Growing Grids (Fritzke [14]) have also been proposed. On the other hand, Martinetz

and Schulten [31] developed another soft-competitive learning method without fixed

network dimensionality which they called Neural Gas.
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5.3.1 Kohonen Vector Quantization

Kohonen-VQ is a hard-competitive learning method where the winner w
s

of the code-

book is moved a certain proportion of the distance between it and the corresponding

training sample s. This proportion is specified by a learning rate � and gives the Ko-

honen learning law which can be written as

w

s

 w

s

+ �(t)ks�w

s

k

w

i

 w

i

: i 6= s; 8i 2 f1; : : : ; mg: (5.6)

All other reference vectors remain the same. Consider, that �(t) decays over the num-

ber of learning steps. If it is fixed, Kohonen-VQ will not converge to an optimum of

the error function. As it is well known in approximation theory, convergence requires
P

�(t) > 1 and
P

�(t)

2

< 1 (Kohonen [25], page 35). Otherwise, convergence

is not necessarily guaranteed. Therefore, as time during learning goes to infinity, the

learning rate decays in a suitable manner.

Let t
i

be the number of times where w
i

was the winner according to the so far

presented training samples. Thus, the number of learning steps is

t =

m

X

i=1

t

i

: (5.7)

Furthermore, let w
j

(t

i

) be the position in the learning space of the j th reference vector

in C after its tth
i

adaption. The initialization of the codebook at t
i

= 0; 8i 2 f1; : : : ; mg

is always given by random before the first adaption or in the successive steps by pre-

vious adoptions.

At learning step t a training sample s is presented the algorithm. It determines

the nearest reference vector w
s

(t

s

) by evaluating

s = argmin

i2f1;:::;mg

ks�w

i

(t

i

)k: (5.8)

Remember, the learning law (5.6) describes the adaption of the winner w
s

(t

s

).

It is moved towards s where the learning rate �(t
i

) defines the amount of adaption. It

decays with the number of adoptions for each reference vector and is defined by

t

i

= t

i

+ 1

�(t

i

) =

1

t

i

(5.9)

as a harmonic sequence. In every time instant t the positions of the reference vectors

are quasi stationary. Thus, the resulting learning law is

w

s

(t

i

+ 1) = w

s

(t

i

) + �(t

i

+ 1)(s�w

s

(t

i

)): (5.10)

All other reference vectors remain unchanged.

The complete Kohonen-VQ algorithm can be summarized as follows:
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(a) (b) (c)

Figure 5.3: An illustration of Kohonen Vector Quantization. (a) shows training samples

(points) and reference vectors (dots) in R2, (b) the result after 100 learning steps, (c)

the result after 1000 learning steps.

Require: codebook C = fw
1

; : : : ;w

m

g

1: t
i

 0; 8i 2 f1; : : : ; mg

2: t 0

3: repeat

4: t t+ 1

5: Choose s randomly from the training set

6: Evaluate winner w
s

according (5.8)

7: t

s

 t

s

+ 1

8: Evaluate learning rate �(t
s

) according (5.9)

9: Adapt w
s

according (5.10)

10: until t = t

max

Let x
i

(t

i

) be the training sample s which adapts w
i

into position w
i

(t

i

). There-

fore, t
i

� 1 adoptions were done with w
i

:

w

i

(1) = w

i

(0) + �(1)(x

i

(1)�w

i

(0)) = x

i

(1)

w

i

(2) = w

i

(1) + �(2)(x

i

(2)�w

i

(1)) =

x

i

(1) + x

i

(2)

2

...

w

i

(t

i

) = w

i

(t

i

� 1) + �(t

i

)(x

i

(t

i

)�w

i

(t

i

� 1)) =

P

t

i

j=1

x

i

(j)

t

i

As it can be seen, w
i

is determined by the mean of all training samples for which it

was the nearest reference vector. Furthermore, the membership to a Voronoi region S
i

of some of the x
i

(t

i

) can change during learning. Figure 5.3 shows a demonstration of

the algorithm.

Kohonen emphasized Kohonen-VQ networks as density estimators of the un-

derlying data. This needs equi-probable clusters. However, Kohonen respectively

k-means learning laws do not produce equi-probable clusters in every case, because

the cluster assignment of training samples is usually not equal. An asymptotic result
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shows for a large number of clusters that the density of the codebook approximates

the (

d

d+r

)

th power of the true probability density in d dimensions (Ripley [36]). In

most cases, r = 2 which defines the power of the quantization error in (5.5). Thus

for d large and a large codebook, Kohonen-VQ networks respectively the k-means al-

gorithm code an approximation of the probability density of the data. Otherwise, De-

sieno’s conscience value (Densieno [9]) is a popular method to obtain equi-probability

which is added to each distance prior to the competition. The conscience value for

each cluster is adjusted during training so that clusters that win more often have larger

conscience values and are thus handicapped to even out the probabilities of winning in

later iterations.

5.3.2 Competitive Hebbian Learning

To generate a topology of the training data in L, we use Competitive Hebbian Learning

(CHL). Topology is represented by a graph. Nodes are reference vectors. Two nodes

are connected by an edge if the corresponding reference vectors lie close together in

L. Basis in CHL is Hebb’s learning rule:

w

ij

/ z

i

z

j

The weight w
ij

of an edge between two reference vectorsw
i

andw
j

is directly propor-

tional to the product of its activation by training samples. z
i

and z

j

are the activation

values. The smaller the distance ks � w

i

k between w
i

and a sample s is, the larger

becomes the result of its z
i

. The product z
i

z

j

is maximal,

z

r

z

s

� z

i

z

j

; 8i; j 2 f1; : : : ; mg;

if one of w
i

and w
j

is the nearest and one the second nearest reference vector to s

r = argmin

i2f1;:::;mg

ks�w

i

k (5.11)

s = argmin

i2f1;:::;mgnfrg

ks�w

i

k: (5.12)

Therefore, these two reference vectors are neighbors and are connected by an edge.

Let B = (b

ij

) be an adjacency matrix of reference vectors w
i

and w

j

with

elements b
ij

2 f0; 1g. The algorithm evaluates in every training step the winner w
r

and second w
s

and set the according element b
rs

= b

sr

= 1. Matrix B is symmetric

(b
ij

= b

ji

), because edges are undirected in the topology graph. The reference vectors

itself remain unchanged during training.

The complete algorithm can be summarized as follows:

Require: codebook C = fw
1

; : : : ;w

m

g

1: B  0

2: t 0

3: repeat
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(a) (b) (c)

Figure 5.4: An illustration of Competitive Hebbian Learning. (a) shows reference vec-

tors in R2, (b) four samples (crosses) and the learnt edges which form the induced

Delaunay triangulation, (c) Delaunay triangulation

4: Choose s randomly from the training set

5: Evaluate winner w
r

according (5.11)

6: Evaluate second w
s

according (5.12)

7: b

rs

 1

8: b

sr

 1

9: t t+ 1

10: until t = t

max

Martinez has shown, that every link in B corresponds to an edge in the Delaunay

triangulation. More specific, B is a sub-graph of the Delaunay triangulation and is

called induced Delaunay triangulation. Therefore, the Voronoi regions S
i

and S

j

are

neighboring if a training sample s exists with winner w
i

and second w
j

or vice versa.

Figure 5.4 shows the result of CHL with training samples after some CHL learning

steps.

5.3.3 Growing Neural Gas

Section 5.3 mentioned the Growing Neural Gas (GNG) algorithm as a constructive,

incremental and on-line variant of unsupervised learning methods. The algorithm itself

is a combination of Competitive Hebbian Learning and the Growing Cell Structures

model. A GNG state is represented by the following network:

• A codebook C with associated reference vectorsw 2 C where each w represents

the nodes of the network. The number of reference vectors jCj is not fixed. In

the beginning, C is initialized by two samples of the training set C = fw
1

;w

2

g.

• A set of links between these reference vectors which form a graph. LetB = (b

ij

)

be the symmetric (b
ij

= b

ji

) adjacency matrix with b

ij

2 f0; 1g. Its purpose is

to define the topological structure of the reference vectors.



72 CHAPTER 5. LEARNING SPATIO-TEMPORAL TRAFFIC BEHAVIOUR

The special characteristic of GNG is its data-driven growing nature. Starting

from a codebook with two reference vectors, new reference vectors are introduced

until a certain criterion is reached. For example, the accumulated, statistical network

quantization error E falls below a given error E
min

or a certain network size C
max

is

reached or a maximum number of learning steps t
max

is exceeded. Besides, the new

reference vectors are not added randomly. However, E is used to determine a position

in the learning space. Consider the following three assumptions:

• The accumulated, statistical network quantization error

E =

X

w

i

2C

E

i

should be minimized. If every reference vector accumulates the quantization

error E
i

of the training samples for which it has won, then E is the quantization

error of all so far processed training samples.

• The insertion of a reference vector w
r

decreases E,
X

w

i

2C

E

i

>

X

w

i

2C[fw

r

g

E

i

:

• The largest decay in E can be expected if reference vector w
r

with

r = argmax

w

i

2C

E

i

is inserted into the codebook.

These three properties are fulfilled by the goal of GNG learning, namely the network

quantization error’s reduction.

If w
s

is the nearest reference vector to training sample s,

s = argmin

i2f1;:::;jCjg

ks�w

i

k

2

; (5.13)

its accumulated quantization error is adapted by

E

s

= E

s

+ ks�w

s

k

2

;

where E
1

and E

2

are initially set to zero. To reduce E it makes sense to introduce a

new reference vector at a position where the local quantization error is maximal. This

is done at time � which is a multiple of the learning steps t. Therefore, the reference

vector w
q

with maximal E
q

is evaluated. Furthermore, w
f

which has the maximal

quantization error under the neighbors� of w
q

is determined. This can be written as

q = argmax

w

i

2C

E

i

(5.14)

f = argmax

w

i

2N

q

E

i

; (5.15)

�Neighboring reference vectorsw
i

are connected to w
q

by an edge (b
qi

= b

iq

= 1).
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where N
q

is the set of all neighbors of w
q

determined by B. A new reference vector

w

n

is now inserted between w
q

and w
f

with

w

n

=

w

q

+w

f

2

: (5.16)

The link between w
q

and w
f

is deleted and two new connections are generated which

can be written as

b

qf

= b

fq

= 0

b

qn

= b

nq

= 1

b

fn

= b

nf

= 1 (5.17)

As w
n

reduces the local quantization error in its neighborhood, the errors E
q

and E

f

can be reduced by a factor �. The aim is to adapt E
q

and E
f

in a way that both errors

correspond to the expected errors after insertion of w
n

,

E

q

= E

q

� �E

q

E

f

= E

f

� �E

f

: (5.18)

The error E
n

is evaluated from these corrected error terms by

E

n

=

E

q

+ E

f

2

: (5.19)

The topology B is learnt in every learning step t. Beside the winner, a second

nearest reference vector w
r

is determined with

r = argmin

i2f1;:::;jCjgnfsg

ks�w

i

k

2

: (5.20)

In the spirit of Hebbian learning, w
s

and w
r

are connected by an edge b
sr

= b

rs

= 1.

Unfortunately, one problem still remains: The reference vectors change its positions

during learning. Consequently, some edges could not be valid anymore. Therefore,

an age of every link A = (a

ij

) is introduced which is equal to the number of so far

done learning steps since its creation. If a certain a
ij

exceeds a maximal age a
max

, the

corresponding edge is removed (b
ij

= b

ji

= 0).

Another property of GNG is that adaption is only done for the winner w
s

and its

neighborhoodN
s

. The learning law can be written as

w

s

= w

s

+ �

b

(s�w

s

)

w

i

= w

i

+ �

n

(s�w

i

); 8i 2 N

s

; (5.21)

where �
b

and �

n

are defined learning rates. After adaption all errors are decreased by

a factor �.

The complete GNG algorithm is the following:
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1: Initialize the codebook with two reference vectors C = fw

1

;w

2

g which are as-

signed to two randomly chosen samples from the training set

2: B  0, A 0, t 0

3: repeat

4: Choose s randomly from the training set

5: Evaluate winner w
r

according (5.13)

6: Evaluate second w
s

according (5.20)

7: Increment the age of all edges emanating from w

r

:

a

ri

 a

ri

+ 1

a

ir

 a

ir

+ 1

8: Update the local error of the winner by

E

r

 E

r

+ ks�w

r

k

2

9: Move w
r

and its direct topological neighbors towards s according (5.21)

10: if b
rs

= b

sr

= 0 then {Create an edge}

11: b

rs

 1

12: b

sr

 1

13: else {”Refresh” the age of the edge}

14: a

rs

 0

15: a

sr

 0

16: end if

17: Remove all edges with an age a

ij

> a

max

; 8i; j 2 f1; : : : ; jCjg. If reference

vectors are not connected any more, remove them as well.

18: if t is a multiple of � then {Insert a new reference vector}

19: Determine w
q

according (5.14)

20: Determine w
f

according (5.15)

21: Insert w
n

into C according (5.16)

22: Insert edges w
q

w

n

and w
f

w

n

,

Delete the edge w
q

w

f

according (5.17)

23: Decrease E
q

and E
f

according (5.18)

24: Initialize E
r

according (5.19)

25: end if

26: Decrease all E
i

; 8i 2 f1; : : : ; jCjg by �

27: t t+ 1

28: until (t > t

max

) _ (E < E

min

) _ (jCj > C

max

)

Figure 5.5 illustrates the behaviour of the GNG. Seven normally distributed

classes of training samples were used as learning data. The parameters were set to:

� = 1000, �
b

= 0:05, �
n

= 0:0006, � = 0:5, � = 0:0005, a
max

= 88. The learning

was finished after t
max

= 40000 steps.
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(a) (b) (c)

(d) (e) (f)

Figure 5.5: An illustration of Growing Neural Gas. Simulation with seven normal

distributed (� = 2) classes in R2 are shown. (a) Initialization, (b)-(e) Intermediate

states, (c) final configuration after 40000 learning steps.

5.4 A learning solution

As it was outlined in section 5.1, learning in the context of traffic behaviour means

learning a spatio-temporal probability density model. Section 5.2.2 discussed several

unsupervised methods as possible density estimators. For example, the k-means al-

gorithm or Kohonen-VQ could be used. But how does this probability density model

look like in detail? Consider the codebook of reference vectors A = fw

1

; : : : ;w

m

g

which is learnt by any of these methods. Furthermore, let us assume that all samples s

within cluster S
i

are normally distributed according to s � N (w

i

; �

2

i

). The variance

�

2

i

is defined by

�

2

i

=

1

jS

i

j

X

s2S

i

ks�w

i

k

2

: (5.22)

Then, cluster S
i

’s contribution to the approximation of the probability density function

of normal traffic behaviour for every sample s 2 L is given by

p

S

i

(s) =

1

(2��

2

i

)

5

2

exp(�

(s�w

i

)

>

(s�w

i

)

2�

2

i

):

Thus, the approximated p.d.f. is a Gaussian mixture model of p
S

1

(s); : : : ; p

S

m

(s). This

leads to the following definition:
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Definition 3 The approximated probability density function of normal traffic behaviour

for any sample s 2 L is given by

p(s) =

1

m

m

X

i=1

p

S

i

(s):

So far we have discussed the estimation of the p.d.f. in L. However, we have not dis-

cussed how to use the p.d.f. to recognize unusual events. Let � 2 f00normal

00

;

00

abnormal

00

g

be the random variable which indicates normal or abnormal behaviour of a feature. Let

m 2 M be a taken measurement during tracking the feature. The probability that m

represents normal respectively abnormal traffic behaviour in a constant regionR is

Pr(� =

00

normal

00

) =

Z

R

p(m)dm (5.23)

Pr(� =

00

abnormal

00

) = 1�

Z

R

p(m)dm:

It was shown under the assumption of a continuous p.d.f. and a small variation of its

values withinR that (5.23) can be approximated by

Pr(� =

00

normal

00

) � p(s)V; 8s 2 R;

where V is the volume of R. Consequently, Pr(� =

00

normal

00

) is small where the

value of the p.d.f. is small in a sufficient small region R. For more information about

this interpretation have a look into chapter 2.5.2 of Bishop [7]. However, as a con-

sequence, a simple solution to recognize unusual events by using the p.d.f. and a

measurement taken from a particular feature would be to use a threshold P . If p(m)

is below this threshold (p(m) < P ) then the feature will indicate abnormal traffic

behaviour. Otherwise, it indicates normal traffic.

Johnson and Hogg [22] respectively Stauffer and Grimson [42] have used the

Kohonen-VQ method to determine the probability density function. Both had the fol-

lowing three problems:

1. To define the right number of reference vectors,

2. How to initialize the codebook,

3. How to avoid stranded reference vectors.

The problems (1) and (2) are inherent problems of Kohonen-VQ networks. The num-

ber of codebook vectors are fixed. Therefore, the codebook has to be large enough

which means that apriori knowledge about the complexity (number of clusters) of the

learning space is needed. Johnson and Hogg used a method of Kohonen [24] to deter-

mine the right number experimentally. Thereby, a reconstruction error is evaluated for

different numbers of reference vectors. A point is reached when increasing the code-

book does not significantly reduce the error. Stauffer and Grimson did not use any
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method at all. They defined the number by trial and error which they set to 400 refer-

ence vectors. Furthermore regarding problem (2), both groups initialized the codebook

randomly with reference vectors centered at existing training samples. Finally, they re-

ferred to the last problem as the difficulty that a reference vector may be too far from

any training data. Then, it will not win during learning and will not represent signifi-

cant data. Therefore, they called such a vector stranded vector. Remember, this prob-

lem was also mentioned in the last section as density estimation with Kohonen-VQ was

discussed. It was shown that one solution to this problem could be the introduction of

conscience values. Johnson and Hogg had the same idea and used a similar method

but named the penalty terms sensitivity values.

This work proposes a different strategy to overcome these three problems. In a

first step, the GNG algorithm is used as a constructive unsupervised method to find

parts of the learning space where there are a significant number of training samples.

Neither a fixed number of reference vectors is needed nor the codebook initialization

leads to problems where probably some parts of the learning space are not represented

by reference vectors. The problem of stranded reference vectors is also solved by the

GNG. Remarkably, the algorithm does not only update a codebook but also generate a

topology of the training samples in form of a graph. An edge connects two reference

vectors if both are close together in the learning space and samples lie in between

them. If reference vectors loose all their links in the graph, they do not represent

the underlying data and will be eliminated by the algorithm. Especially this fact that

beside the codebook a topology is learnt is used for a classification of traffic activity in

the next chapter 6. Instead of topology the term ”induced Delaunay triangulation” is

often used in literature. ”Induced” means in this context that two reference vectors w
i

and w
j

will be neighbors and linked together, if both are the nearest or second nearest

reference vectors to a sample respectively.

Certainly, the GNG also has disadvantages. The parameter settings of GNG are

crucial. Mostly, this will result in an over-segmentation of the learning space. In other

words, too many reference vectors are needed in some parts of the learning space. This

leads to two problems:

1. The number of clusters is unnecessarily high. Consequently, the more clusters

the bigger the problem of over-fitting the data.

2. The more reference vectors are in the codebook, the more complex the classifi-

cation task. If there are m reference vectors in the codebook, the amount of data

used in the classification is of order m2.

Therefore, a pruning unsupervised method reduces the codebook until an optimum

with respect to the training samples is reached based on the Minimum Description
Length - principle (MDL)-principle (Bischof and Leonardis [5]). A description length

codes the codebook and the quantization error by a binary model. After each reduction

step the codebook is adapted by Kohonen-VQ and then a MDL-criterion is evaluated

which indicates further reduction or the end of this iteration. Thus, it tries to find an
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optimal balance between the number of reference vectors and the quantization error

made by using this codebook. Principally, every unsupervised learning method could

be used for the adaption step. It is clear, that for large training sets an incremental,

on-line algorithm like Kohonen-VQ will perform more efficiently. Unfortunately, the

topology could become invalid by the reduction of reference vectors. The validation of

certain edges must be checked respectively new edges have to be introduced. There-

fore, Competitive Hebbian Learning relearns a new topology based on the reduced

codebook.

The use of such a MDL-framework (Bischof, Leonardis and Selb [6], Selb [38])

also offers another very important fact, namely outlier detection. As was discussed

in chapter 4, it is not possible that all training samples in the training set represent

normal traffic behaviour. For example, vehicle situations where a car drives in the

wrong direction can happen during capturing of tracking data for learning. Certainly,

these situations should be detected from the recognition system. Consequently, these

possible outliers should not be in the training set. Neither GNG nor Kohonen-VQ

methods are able to detect outliers in the training samples. The former tends to over-

fit the samples thus to represent also outliers as reference vectors. In Kohonen-VQ

outliers do influence the positions of the reference vectors which also leads to a wrong

codebook. Therefore, Johnson and Hogg and Stauffer and Grimson removed outliers

manually. Our approach can be seen as a robust density estimation method where

manually removal is not necessary any more as long as the number of outliers is small

compared to the total number of training samples.

5.4.1 Preprocessing

Chapter 4 discussed the problems of different measure-ranges in the sample elements.

To measure distances between samples, the Euclidean distance measure is used in the

proposed learning method:

d(s

1

; s

2

) = ks

1

� s

2

k =

p

(x
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� x

2
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2

)
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1
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2

)

2

+ (dy

1
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2

)

2

+ (t

1

� t

2

)

2(5.24)

Principally, other distance measures are also possible. As it can be seen, a balance of

the sample element’s relative contribution is important. Otherwise, certain elements

would dominate the distance measure and some would have little or no influence on

the result.

Remember, that the direction is a unit vector hence its elements x; y 2 [�1; 1℄.

Either the position nor the time is within this interval (section 4.1). One possibility is

to re-scale them into the interval [�1; 1℄. Then, all dimensions in the learning space

have the same range. Imagine, a finite training set of k training samples. Let x
i

be the positional x-element, y
i

the y-element and t

i

the time instant of sample s

i

.

Furthermore, the following is given:

x

max

= max(x

1

; : : : ; x

k

); y

max

= max(y

1

; : : : ; y

k

); t

max

= max(t

1

; : : : ; t

k

)
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Then, position and time of every sample can be rescaled to [�1; 1℄ by

~x

i

=

x

i

� x

mrange

1

2

x

range

~y

i

=

y
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1
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=

t

i

� t
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1

2

t
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: (5.25)

For example, figure 5.6(a) illustrates samples in the learning space before preprocess-

ing. Rescaling leads to samples which are shown in figure 5.6(b).

5.4.2 MDL framework

This section describes the heart of the learning algorithm which is used in this work.

Section 5.4 introduced the MDL-principle. It is explained that this principle can be

used to assess costs of a particular codebook with respect to its quantization error.

For example, imagine several codebooks containing different numbers of reference

vectors. All are a vector quantization solution and all are a result of equation’s (5.2)

minimization. Nevertheless, some codebooks will represent a better generalization of

the training samples than others. In fact, the MDL-principle can be used to measure

generalization capability and to distinguish between several codebooks.

The MDL-principle decides in the MDL-framework, if the number of reference

vectors and their positions in a codebook are enough general representative with re-

spect to the training samples. The MDL-framework can be described as follows: First,

a codebook with more reference vectors than necessary is initialized by the Growing

Neural Gas algorithm. Remarkably, the disadvantage of over-fitting by the GNG is

used in this step. Then, the algorithm selects and removes those reference vectors

which minimize the total description length by their elimination. Furthermore, out-

liers are detected by evaluating their contributing costs to the description length. They

are removed from the training data as well. Consequently, they have no influence on

the positions of the reference vectors in successive iterations. Finally, the algorithm
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Figure 5.6: The preprocessing of training samples is illustrated.
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training samples

GNG initialization

Adaption

Selection

Outlier detection

Convergence

spatiotemporal model

Figure 5.7: MDL-framework

checks if a minimum of the description length has been found. This is true if no ad-

ditional outliers are detected, no more reference vectors are removed or the successive

adaption by Kohonen-VQ leads to small changes in the reference vector’s positions.

The latter step closes the loop of the algorithm. Figure 5.7 shows an illustration of the

MDL-framework.

Remember once more the problem of Vector Quantization. A sample s is re-

placed by its nearest codebook reference vector w
s

. This quantization leads to a quan-

tization error �(s;w
s

). This relation can be written as

s = w

s

+ �(s;w

s

): (5.26)

Let the description length be the code-length of the codebook, the indexes which assign

each training sample to a reference vector and the quantization error. This requires

some thoughts about the necessary data structures. A codebook C = fw
1

; : : : ;w

m

g is

a (m�2) table. Each row corresponds to a reference vector. The first column represents

the indexes while the second column delivers the reference vector’s positions in the

learning space. To code (5.26) usefully, a second (n� 3) table is used where the rows

correspond to the training samples. The first column comprises their positions, the

second their corresponding reference vector index and the last column the quantization

error. Table 5.1 shows both data structures clearly. Let L(C) be the costs of coding

the codebook and L(I(C)) be the costs of coding the indexes where training set S is

indexed. Furthermore, let L(�(S; C)) be the costs of coding the quantization errors of

each sample s 2 S. Thus, the total description length is

L(S(C)) = L(C) + L(I(C)) + L(�(S; C)) (5.27)
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)

Indexes and quantization errors

Table 5.1: Two data-structures are shown which store the necessary information of

vector quantization.

bits. Up to now, no differentiation between inliers I and outliers O is done. Therefore,

(5.27) expresses a description length where the whole training set S = I + O only

consists of inliers (I = S;O = ;). Certainly, I and O are disjunct sets. Outliers

are training samples which do not match the probability density function of training

samples in the learning space, because they do not represent normal traffic behaviour.

Consequently, they should not be quantified by reference vectors and thus extra coded.

This considerations lead to a description length of

L(S(C)) = L(C) + L(I(C)) + L(�(S; C)) + L(O) (5.28)

bits.

To specify the coding in more detail, consider the following two assumptions:

1. The quantities like samples or reference vector positions in the learning space

are specified with a finite precision. Consequently, both are coded with K bits.

2. Each sample is identically and independently distributed.

Both assumptions rewrite (5.28) to

L(S(C)) = mK + L(I(C)) +

m

X

i=1

X

s2S

i

L(�(s;w

i

)) + jOjK (5.29)

bits, where S
i

is the Voronoi region of reference vectorw
i

. A proper coding of L(I(C))

and L(�(s;w

i

)) remains up to the user. Bischof, Leonardis and Selb [6] show typical

examples.

If the direct coding of sample s with K bits is cheaper than the coding of the

sample’s nearest reference vector and resulting quantization error then s is an out-

lier. Consequently, the index of the corresponding reference vector w
s

and the error

�(s;w

s

) are not coded. To summarize, a condition to mark s as an outlier is

K < L((I n fsg)(C)) + L(�(s;w

s

)); (5.30)
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where L((I n fsg)(C)) are the costs of coding the indexes, indexing S without s.

Furthermore, s is also an outlier if it is the only sample in a particular Voronoi region

S

i

. Then, S
i

is superfluous and w
s

can be removed from the codebook. This saves

K bits in the description length. The index of w
s

has also not to be coded any more.

However, there is no reduction of L(S(C)) by the quantization error, because if there

is only one sample in S
i

then �(s;w
s

) = 0. A second condition to mark s as an outlier

is

K < L((I n fsg)(C)) +K: (5.31)

The goal of the MDL-based algorithm is to minimize L(S(C)). Consequently, a

reference vector w
i

is temporarily removed and the resulting change in the description

length is computed. This is done for every reference vector w
1

; : : : ;w

m

separately. If

the removal of w
i

causes a decrease of the description length, thenw
i

can be definitely

removed from C. Otherwise it remains in C.
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Chapter 6

Classifying traffic behaviour

Contents

6.1 Why classification . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.2 The classification method . . . . . . . . . . . . . . . . . . . . . . 87

This chapter treats the classification of traffic behaviour within a traffic scene.

Section 6.1 motivates the need for classification and presents two previously used ap-

proaches. Both methods calculate explicitly the classification result by using a further

learning step or a co-occurrence matrix respectively. In contrast to them, section 6.2

discusses a new approach which only uses the topology of the training data. In fact,

the topology was calculated implicitly by the learning step.

85
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(a) Situation 1 (b) Situation 2 (c) Situation 3

Figure 6.1: Three traffic situations are shown. (a) and (b) show two different traffic flows

which intersect with each other. If the p.d.f. is used alone as spatio-temporal model,

situation (c) would also be recognized as normal traffic behaviour although traffic flow

in this direction is not allowed.

6.1 Why classification

The last chapter presented a spatio-temporal model which is used for unusual event

recognition. A codebook was generated by unsupervised learning and is used as a

density estimator of normal traffic within the learning space L. As described, a fea-

ture’s measurement generates a sample in L. The feature tends to indicate an unusual

event, if its value of the probability density function (p.d.f.) goes towards zero. Un-

fortunately, not all unusual traffic situations can be treated by the p.d.f.. Figure 6.1

illustrates such an example. Figures 6.1(a) and 6.1(b) show two particular directions

in which vehicles are driving. Consider a scene where both situations are simultane-

ously possible. Vehicles, which behave as illustrated, could be described as normal

traffic by a learnt p.d.f.. Consequently, all other situations would be recognized as un-

usual events. However, a vehicle behaviour like it is shown in figure 6.1(c) could not

be assessed as unusual, because problems arise in the area where vehicle trajectories of

both situations intersect with each other. The reason lies in the p.d.f. which is defined

for a particular point in L but does not consider the trajectory of a feature (i.e. from

where a feature comes and where it goes).

To overcome this problem, the spatio-temporal model has to be completed by

a set of possible classes of trajectories which are learnt from the training samples.

Beside a p.d.f. evaluation of the feature’s actual position in location and time, the

trajectory is also classified. If no class matches, the feature indicates an unusual event.

According to the above example, both particular driving directions would form two

classes. Hence, the situation in figure 6.1(c) could not be classified and an unusual

event would be detected.

Johnson and Hogg [22] proposed a further vector quantization approach to com-

plete the spatio-temporal model. They realized a new learning space where each sam-

ple corresponds to a sequence of reference vectors. These sequences are generated

from the training paths of the tracked features. Each training sample of each path is

quantized by the previous learnt codebook. Thus, vector quantization is done on basis

of feature’s measurements. Then, a second vector quantization is done on basis of fea-
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ture’s trajectories. Both steps were implemented with a neural network. They used a

layer of ”leaky” neurons in between these two networks for the representation of this

new training samples. Thereby, a leaky neuron is a single input-output unit. If it is

once activated by a greater input than output, its output value will decay over a certain

period of time. Thus, the p.d.f. of the resulting new codebook describes clusters of

similar trajectories.

Grimson and Stauffer [17] [40] [42] also developed a robust tracking system

which learnt patterns of activity in a particular road scene. For example, the system

can distinguish the different traffic activities at certain times in the image. Once the

codebook is learnt, every training sample is considered by its corresponding reference

vector. As in the previous approaches, each training path is replaced by a sequence

of reference vectors. A co-occurrence matrix C = (


ij

) can be generated where each

entry 


ij

is the estimated probability that a sequence from the training sequences will

contain an input represented by the ith reference vector and a separate input represented

by the jth reference vector. These joint co-occurrence statistics are then used to create

a hierarchical binary-tree classification of traffic behaviour. Thereby, two probability

mass functions across the reference vectors of the codebook are determined which best

explain C. Once these distributions are found, each distribution is treated as another

set of reference vectors and their co-occurrence matrix is determined. The process is

repeated to produce the binary-tree classification with predefined height.

The fixed number of reference vectors for the successive second vector quanti-

zation step is the most obvious disadvantage of the Johnson and Hogg approach. This

problem is solved by Grimson and Stauffer by using the hierarchical classification

idea. However, both approaches expect a second learning step. Grimson and Stauffer

used a greedy minimization to estimate C. In each learning step, its parameters are

updated by a simple learning rule which is based on the minimization of the current

and estimated co-occurrence matrix. Certainly, the most obvious drawback of this so-

lution is its sensitivity to stuck in a local minima. It is unclear, how this influences the

classification (i.e. the number and differences of classes). Indeed, the same training

data should always result in equal classifications.

A classification as realized by Grimson and Stauffer also offers other possibil-

ities of recognition. For example, a system mounted above a highway could auto-

matically detect the number of lanes on the road. Furthermore, such a system could

recognize areas in the scene with more or less traffic activity. Classification could help

in conjunction with knowledge about date and time, to take the right steps to defuse

traffic jams during road work. Furthermore, it could help to define the duration of sig-

nal lights more intelligently. Certainly, various other ideas of applications are possible.

6.2 The classification method

To find classes of traffic behaviour within a particular scene, the proposed method

compares the feature trajectories of the training data pairwise. More precisely, the se-
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quences which all contain the same number of reference vectors are compared. For

example, consider two sequences S
1

=< w

1

1;w

1

2 > and S

2

=< w

2

1;w

2

2 >. The

pairs of reference vectors which are compared are (w

1

1;w

2

1 >) and (w

1

2;w

2

2 >).

To be able to perform this comparison and in contrast to the previously mentioned

methods, the topology of the training samples is used. It was mentioned that the topol-

ogy is the induced Delaunay triangulation which is simply a graph. Nodes are refer-

ence vectors. They are connected by edges if they are neighbors (i.e. samples exist

for which two reference vectors are winner and second). If two features show similar

traffic behaviour (i.e. both represent vehicles which turn to the left at an intersection),

then their paths in the learning space are equal (i.e. the sequences of reference vectors,

where each reference vector occurs only once, are equal). Certainly, as the size of the

codebook can be large and the influence of a Voronoi region can be small, different se-

quences can in fact also belong to the same behaviour class. Therefore, the assumption
is that pairwise compared reference vectors have not necessarily to be equal. Instead

they have to be at least neighbors in the topology graph (i.e. an edge must exist be-

tween both reference vectors). A remark should be done at this point. Please note, the

topology is only used as similarity measure. It does not necessarily represent trajecto-

ries, i.e., generally not every trajectory from the training data has to be represented by

a path in the topology graph. The reason lies in the fact that the topology is generated

upon training samples which do not include any information about trajectories.

As in the approach of Grimson and Stauffer and in contrast to the work of John-

son and Hogg, the number of classes has not been given at the beginning of classifi-

cation. However, no further learning is done. Remember the used learning algorithms

which were discussed in the previous chapter. The Growing Neural Gas and Com-

petitive Hebbian Learning algorithm produce beside a codebook an induced Delaunay

triangulation which we have called topology. Two reference vectors of the codebook

are connected by an edge, if they were a winner or a second for a particular training

sample during learning respectively. Our algorithm finds the classification by using

only this topology graph.

Instead of considering paths of training samples within the learning space, we

consider sequences of reference vectors. Figure 6.2 shows an illustration. Each train-

ing sample is quantized to its nearest reference vector. All quantized training samples

of a path form together a sequence. All training paths except the outliers are quantized

and used for classification. In fact, each tracked feature runs through a certain number

of Voronoi regions depending on its behaviour. The easiest way of defining classes of

traffic behaviour is to combine all training paths which run-through the same Voronoi

regions or which have the same sequence.

Definition 4 Let S
i

=< w

i1

;w

i2

; : : : > and S
j

= fw

j1

;w

j2

; : : :g be two training se-

quences. Thew
ik

andw
jl

are reference vectors. Generally, sequences are smaller than

their corresponding paths (jSj � n), because consecutive training samples quantized

to the same reference vector occur only once in a sequence. If

8w

ik

2 S

i

9w

jl

2 S

j

: w

ik

= w

jl

;
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Figure 6.2: The reference vectors (dots) of the codebook within the training paths (dot-

ted lines) are shown in only two dimensions (x/y) of the learning space. A sample

sequence is illustrated by a thick line.

then sequences S
i

and S
j

will both belong to the same class and are equivalent.

For example, consider three sequences S
1

=< 1 2 5 7 10 >, S
2

=< 2 5 7 10 > and

S

3

=< 1 2 5 8 9 >. S
1

and S
2

are equivalent. S
3

is neither equivalent to S
1

nor to S
2

,

because reference vectors 8 and 9 are unique to S

3

. As the codebook contains many

reference vectors which lie close together, many similar classes are generated which

are actual equal in representing traffic behaviour. We call this form of class generation

incremental class generation, because far more classes than necessary are found.

Consider training sequences S
1

; : : : ; S

u

which are generated from training paths.

Generally, u is smaller than n
M

, because outliers are not used for sequence generation.

Each incrementally produced class C
1

; : : : ; C




is represented by its corresponding and

equivalent sequences. 
 is the total number of classes found. The representatives

C

R

1

; : : : ; C

R




are sets of all reference vectors which occur in their according sequences.

The incremental algorithm is shown in algorithm 6.1.

A first class C
1

is initialized by the first training sequence S
1

in step 1, 2 and 3.

Then all other u � 1 sequences are tested with the actual classification (steps 4 until

12). A sequence belongs to a class, if all class representatives are part of the sequence.

In fact, step 7 defines the condition CR

� S instead of S � C

R. Thus, we guarantee

that sub-sequences belong to the same classes and do not define a new one. This is the

case, if a sequence does not belong to any class (steps 13 until 17).

Figure 6.3 illustrates a few typical classes which were found by the incremental

algorithm. Three classes are shown in different gray colours with their corresponding

paths and representatives. The latter are linked together which illustrates the class’s

sequence. Reference vectors and training paths which do not belong to these three

classes are shown in black.

As it was discussed, the incremental step produces far more classes than neces-
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Require: Training sequences S
1

; : : : ; S

u

Ensure: Classes C
1

; : : : ; C




1: C
1

 fS

1

g

2: CR

1

 fw

11

;w

12

;w

13

; : : :g

3: 
 = 1

4: for i = 2 to u do

5: found false

6: for j = 1 to 
 do

7: if 8w 2 C

R

j

: w 2 S

i

then {All representatives of class C

j

are part of

sequence S
i

}

8: C

R

j

 C

R

j

[ fw

i1

;w

i2

;w

i3

; : : :g

9: found true

10: break

11: end if

12: end for

13: if found = false then {S
i

does not belong to any class}

14: 
 
 + 1

15: C




 fS

i

g

16: C

R




 fw

i1

;w

i2

;w

i3

; : : :g

17: end if

18: end for

Algorithm 6.1: The incremental algorithm

sary. Most of the classes represent the same traffic behaviour and differ only in their

representations CR from each other by a few reference vectors. Consider figure 6.4

to understand the equivalence of classes. Although, the representatives of both classes

are completely different, figure 6.4(a) shows two equivalent classes. All representa-

tives of both classes lie close together, because reference vectors are connected by an

edge. Therefore, both are candidates which could be merged together to a new class.

However, figure 6.4(b) shows two classes which are not similar, because most of the

reference vectors of one class are not linked to any reference vector of the other class.

Thus, the decision about equivalence of classes and the ability to merge them, depends

on the proximity of their reference vectors. The closer two reference vectors are in L,

the more similar the behaviour of two features will be which are both be represented by

these reference vectors. In fact, the proximity is expressed by an edge in the topology

graph.

Definition 5 Let C
i

andC
j

be two different classes which are found by the incremental

algorithm. Let R
j

= C

R

j

� C

R

i

be the reference vectors in C

R

j

which are not in C

R

i

.
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Figure 6.3: Three typical classes of the incremental step are shown in distinct gray

colours. Their corresponding training paths are drawn by solid lines. Each sequence is

shown by thick lines which connects the class’s representatives (dots).

(a) Equivalent classes (b) Distinct classes

Figure 6.4: The decision between equivalent and distinct classes which are repre-

sented by their reference vectors (dots respectively squares) lies in the topology (solid

lines). (a) shows two equivalent classes while (b) two distinct ones.

Furthermore, we also define R
i

= C

R

i

� C

R

j

. Let B = (b

ij

) be the topology matrix.

If an edge between reference vectors w
i

and w
j

exists, then b

ij

= 1. C
i

and C

j

are

equivalent (C
i

� C

j

), if

8r 2 R

j

9w 2 C

R

i

: B(r;w) = 1 ^ 8r 2 R

i

9w 2 C

R

j

: B(r;w) = 1:

All equivalent classes can now be merged to one new class. Let C
1

; : : : ; C




be all

classes found by the incremental step. C�

1

; C

�

2

; C

�

3

; : : : are the resulting merged classes,

generated by a merging algorithm which is depicted in algorithm 6.2.

In each run (steps 4 until 7) all classes are determined which are equivalent with

respect to definition 5. Thereby jM j�1 classes are tested with a chosen class C of M .

All equivalent classes form together a new class C�

1

which is removed from M . Then,

the next run takes place. The algorithm is repeated until M = ;.

This merging is repeated for all classes C�

1

; C

�

2

; C

�

3

; : : :. In each step the number

of classes decreases until a final set of classes, where all classes are unequal, is reached.
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Require: Classes C
1

; : : : ; C




, Topology B

Ensure: Classes C�

1

; C

�

2

; C

�

3

; : : :

1: M  fC
1

; : : : ; C




g

2: i 1

3: while M 6= ; do {Are there any classes to merge?}

4: Choose a C 2 M

5: C

�

i

 fC

k

2M : C

k

� Cg

6: M  M n C

�

i

7: i i + 1

8: end while

Algorithm 6.2: The merging algorithm

This convergence must exist, because only a finite number of traffic patterns exist

within a scene. Figure 6.5 illustrates the merging of classes. All classes found in

the incremental step are merged to five classes (figure 6.5(a)). A successive second

merging step, which is illustrated in figure 6.5(b), finally results in three classes. No

further merging of classes is possible.

Once the classes are evaluated from the training paths, every sample trajectory

can be classified. Thereby, every feature’s measurement is quantized and a sequence is

generated. Certainly, if the feature is currently tracked, also partial sequences can be

generated. Then, all reference vectors in the sequence are compared to the representa-

tives of each class. If the whole sequence matches a particular class, the classification

is successful. Otherwise, the feature indicates an unusual event. Summing up, the

spatio-temporal model looks as follows:

Definition 6 Let p(m) be the spatio-temporal probability density function of normal

traffic behaviour. Let C
1

; : : : ; C




be the final classes of the scene. Let m
1

;m

2

; : : :

be the measurements of a currently tracked feature. They are quantized to the partial

sequence fw
1

;w

2

; : : : ;w

n

g. The feature shows normal traffic behaviour if

(i) the p.d.f. is greater than a specific threshold P,

8m

i

; i � 1 : p(m

i

) > P:

(ii) the partial sequence is a subset of the representatives of a class,

9i; 1 � i � 
 : fw

1

;w

2

; : : : ;w

n

g � C

R

i

:

Certainly, partial sequences can belong to more than one class. However, full se-

quences must belong to only one class, because otherwise the classes would have been

merged.
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(a) 1st merging step

(b) 2nd merging step

Figure 6.5: Two consecutive merging steps are shown. Five classes are found after the

first merging step (a). Then, a second, final step finds the three classes according the

three lanes in the data (b).
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This chapter presents experiments with the spatio-temporal model and classifi-

cation algorithm. Section 7.1 treats the training and test tracking data. Section 7.2

shows experiments with the training sample generation process. It focuses on the abil-

ity of obvious outlier detection and noise reduction. Section 7.3 evaluates the GNG

pre-clustering and the successive MDL-based pruning step. Section 7.4 shows the re-

sults of classification with respect to the training data. Performance issues are also

treated. Finally, the results of using the spatio-temporal model and classification on

the test data are shown in section 7.5. A summary is given in section 7.6.

7.1 Tracking data

To gather real tracking data for training the proposed spatio-temporal model and testing

its usage for traffic recognition, we visited two different sceneries:

95
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Highway: The highway A2 in the south of Vienna is usually congested during peak

traffic in the morning and afternoon. Therefore, this place was appropriate to

film traffic jams. Furthermore, it gave the possibility to shoot vehicles with

speeds above 80 km/h. Thus, the real-time tracker could also be tested with

fast driving cars. We chose a position on a bridge at Eumiggasse/Wr. Neudorf

approximately 7 m above the ground. The camera was positioned frontally to the

south of the highway. Therefore, all three lanes plus the most right lane, which is

reserved for break-downs, were in the view of the camera and all vehicles were

filmed from the back. Figure 7.1(a) shows a typical image of this scene.

Car park: We chose the IKEA car park at the SCS shopping centre in the south of

Vienna as a second scenario, because of its more complex traffic situations com-

pared to the highway. Besides, it usually has a high volume of traffic every

Saturday. The camera was positioned on top of a building approximately 25 m

above the ground. It lay directly in front of the car park. The camera’s view was

orientated to an intersection. Most of the vehicles drove from top into it, left the

view to the bottom or drove vice versa. As most of the vehicles drove on this

road we name it ”main road” throughout this section. The perpendicular road

was rarely used. Figure 7.1(c) shows a typical image of this scene.

We used an ordinary S-VHS CCD-camera and a tripod for shooting. First, nor-

mal traffic situations were filmed for 30 minutes at both scenes. Normal meant flowing

traffic without any disturbances in case of the highway and no unusual traffic obstruc-

tions with parking or driving vehicles at the car park. Then, we took short video

sequences of unusual events. In case of the highway a traffic jam on the most left and

vehicles prohibitively driving on the most right reserved lane were shot. Figure 7.2(a)

depicts a typical frame of the former situation while figure 7.2(c) shows an example

of the latter. The car park showed itself as difficult place at this time to find unusual

events. Therefore, we pushed back our own car against the traffic. We did this on

the seldom used road and drove into the intersection, stopped and turned to the top.

Figure 7.3(a) depicts this situation. Furthermore, we filmed a second unusual situation

where we turned from the bottom to the left. We stopped our car for approximately

a minute on the road. Then we left the view of the camera. Figure 7.3(c) shows the

stopped car.

All six video sequences were digitized by a frame-grabber board. We used the

Genesis video board from Matrox. The video streams were sampled with 15 frames

per second. Each frame was a 8 bit gray-valued image with half of the PAL resolution

(384�288). Features were detected and then tracked in real-time within detection and

tracking regions. According the highway, one detection region on the bottom of the

image was defined which comprises all three lanes. Additionally, a second detection

region was set on the reserved lane, because the perspective in the images did not

allow for one region. Nearly the whole frame was defined as tracking region except

the opposite direction of the highway, the area below the detection region and the upper

part of the images where vehicles are too small for tracking. Two detection regions on

the top and the bottom of the intersection were used in the car park scene. Further,
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Feature detector

W �

s

�

g

� f

d

7 0.9 1 1:5 � 10

5 5

Feature tracker

Det

min

Disp

min

Iter

max

Res

max

�

pyr

S

range

0.01 0.1 10 1 0.9 15

Table 7.1: All chosen detection and tracking parameters are summarized.

we used a third region to the right of the intersection which should only produce the

unusual event with the back pushed car. The whole area around the detection regions

including parts of the rare used road were defined as tracking area.

Table 7.1 summarizes the chosen parameters of the feature detector and tracker.

The same parameter values were chosen as in section 2.3 except for � and Res

max

.

The former was set significantly larger with respect to the values in section 2.3.1 due

to the different histogram of the scene. A check of the residuals was neglected, because

the perspective makes a comparison of the detected and actually tracked patch useless.

Besides, a parameter f
d

, the detection frequency, was set to 5. Thus, features were

detected every 5

th frame. A feature was tracked successfully, if it was pursued without

any error from its detection within the detection region until it left the tracking region.

Then, the measured trajectory of the feature was saved as tracking data. The feature

was discarded in case of an error.

During tracking of normal traffic, 2698 measured feature trajectories were gath-

ered from the highway video. Training samples were generated which formed together

the training set. A smaller subset with 400 trajectories was chosen from the tracking

data. The reason of choosing such a relatively small subset is the possibility of an-

alyzing outlier detection and the necessity of trajectory visualization throughout this

section. 350 trajectories were the result of tracking normal features with an average

life-time of 70 frames. Nevertheless, some of these trajectories are either obvious

spatial or spatio-temporal outliers. They were chosen randomly from the tracking

data. The final 50 trajectories were deliberate, obvious temporal outliers. 25 of them

were features with life-times below 4 frames while the rest had life-times above 100

frames. Figure 7.1(b) depicts this subset of the tracking data which is used to inves-

tigate the behaviour of the training sample generation, the learning and the classifica-

tion. The whole tracking data is used in particular for the unusual event case studies.

Figure 7.2(b) shows 511 gathered trajectories which form the test set according to the

traffic jam. The test set of the prohibitively driving vehicles consists of 290 trajectories

which are depicted in figure 7.2(d).

In case of the car park, 1452 normal features were successfully tracked and saved

as tracking data. Equally to the highway case, 350 normal feature trajectories with

average life-times of 100 frames and 50 obvious temporal outliers were chosen as a

subset. Half of them were features with life-times below 15 frames while the other
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Training tracking data Test tracking data

Scene Trajectories Incident Trajectories

highway 2698/400 traffic jam 511

prohibitively driving 290

car park 1452/400 back pushed car 14

stopped car 12

Table 7.2: The number of trajectories which were gathered for training and testing are

summarized. 400 trajectories of each training tracking data set were chosen randomly

as subset.

half survived for more than 200 frames. Figure 7.1(d) shows this subset of the tracking

data. Figure 7.3(b) and 7.3(d) depicts the tracking data of the unusual events. The

former, which shows the back pushed car, contains 14 trajectories while the latter,

which corresponds to the stopped car scene, contains 12 trajectories.

Table 7.2 summarizes the number of gathered trajectories for training and testing.

7.2 Training samples

This section treats the training sample generation process with the previously described

highway and car park training tracking data. The two main objectives, which should be

investigated in the following, are the ability of obvious outlier detection in the spatial

and temporal domain and the expected noise reduction by using smoothing splines.

Obvious outlier detection: Obvious outliers were discussed in section 4.4. To sum

up, spatial obvious outliers are basically tracking errors. Furthermore, features

which are tracked for a significantly shorter or longer time than others were de-

fined as obvious temporal outliers. Let the variance � of noise during tracking

be 4 I

2

for all further experiments, because deviations of more than two pix-

els between the measured and the smoothed position should be the result of a

tracking error.

First, we examined the highway training subset. A histogram of the feature’s

life-time was generated which is shown in figure 7.4(a). The 350 normal trajec-

tories can be seen by two tall bars around frame 70. All other bars are repre-

senting the 50 temporal outliers. This obvious difference is caused by the fact,

that normal features need on average the same life-time, because all lanes are of

similar length within the tracking area and vehicles drive on average the same

speed. We did two experiments with two different thresholds � = f13; 74g to

illustrate temporal outlier detection. � = 13 let 25 outliers be included in the
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(a) Highway scene

(b) Highway tracking data

(c) Car park scene



100 CHAPTER 7. EXPERIMENTS AND EVALUATION

(a) Traffic jam

(b) Traffic jam tracking data

(c) Prohibitively driving
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(a) Back pushed car

(b) Back pushed car tracking data

(c) Stopped car
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training set while � = 74 removes all temporal outliers. These results can be

seen in figure 7.5(a). All rare and time-delayed feature trajectories were re-

moved by � = 13. They can be seen in the histogram by bars with a frequency

smaller than 3. The figure shows them as thin black lines. However, � = 74

removes further 25 outlier trajectories which consist of only two positions. They

are shown as thick black lines.

Besides, we examined the car park training subset. The histogram can be seen

in figure 7.4(c). Normal trajectory life-time is distributed around the mean of

100 frames. The scene is more difficult than the highway, because several paths

along the intersection are possible. � was set to 34. Thus, the most frequent

trajectories which have equal life-times within the training subset were chosen.

These features represent mostly vehicles which cross the intersection from top

to the bottom and vice versa. Therefore, trajectories which drive into the perpen-

dicular road are seldom in the subset which was necessary for testing. The result

can be seen in figure 7.5(b). All introduced 50 temporal outliers are eliminated.

Further 171 trajectories are also removed. Thus, the training subset consists of

179 trajectories after temporal outlier detection.

The latter fact shows that more trajectories are removed than necessary. This

only depends on the choice of �. Normal feature trajectories with similar life-

times will produce significantly taller bars than temporal unusual tracked fea-

tures. The more tracking data we have, the more obvious this difference will

be and the better � can be set. If features only remain in the training set after

the temporal outlier removal which partially have similar life-times and are rep-

resented by a significant large number within the original training set, then the

possibility of a temporal outlier’s occurrence will vanish.

Figure 7.4(b) shows the histogram of the whole highway training tracking data.

Normal tracking data is obviously Gaussian distributed around 70. We defined

� = 57 to eliminate approximately the same amount of trajectories (� 12%)

as in the sub-set case. Consequently, 329 trajectories were eliminated and 2369

remained in the training tracking data set. The same is also done with the car

park training tracking data. Figure 7.4(d) shows the histogram. We set � to 65

(� 35% eliminated). Thus like in the subset case, mainly trajectories from top

to the bottom of the intersection and vice versa are chosen. Unfortunately, many

trajectories with a few positions (tallest bar) are also in the resulting set. They

belong to features which are detected and then only tracked for a few frames

until they move out of the tracking area. The reason of this short life-times are

the positions of the two detection regions which cover both lanes of the main

road and lie in proximity of the tracking region’s border. Consequently, 519

trajectories were eliminated and 933 remained in the training tracking data set.

Spatial obvious outlier detection was also performed after obvious temporal out-

lier detection on both training subsets and sets respectively. The percentile 
 was

set to 5.991 which corresponds to a confidence interval probability of � = 0:95.

Figure 7.6(a) and 7.6(b) show the results on the highway/car park training sub-

set. All trajectories show the expected, obvious tracking errors. 28/20 spatial
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Highway Car park

Set Subset Set Subset

size 2698 400 1452 400

obvious temporal outliers 329 50 519 221

after removal 2369 350 933 179

obvious spatial outliers 57 28 61 20

final size 2312 322 872 159

Table 7.3: The results of obvious outlier detection are summarized.

obvious outliers were removed. Consequently, 322/159 trajectories remained in

the training subset. In case of the whole sets, 57/61 outliers were detected which

led to a final training set of 2312/872 trajectories.

Table 7.3 summarizes the results of obvious outlier detection.

Noise reduction: Consider figure 7.7 which shows a synthetic example of a trajectory

#(t

i

) which consists of 10 feature positions. If noise reduction is successful with

this data then we will expect the same with real data. Each feature’s position is

taken at particular time instants t
1

; : : : ; t

10

. They are unknown and not relevant

for our noise reduction investigation, because only spatial noise is considered.

Furthermore, 100 slightly different trajectoriesM
1

; : : : ;M

100

are generated us-

ing this ground-truth trajectory. M
1

; : : : ;M

10

are shown by gray lines in fig-

ure 7.7. Each generated position p

i

on these trajectories varies by a stochastic

process �
i

� N (0; I

2

). Consequently, �
i

is the introduced noise. #(t
i

), p
i

and �
i

correlate with each other by the presented noise regression model (4.3) in chap-

ter 5. These generated trajectories are then smoothed by a smoothing spline with

�

�

= 835. This leads to smoothed trajectories ^

#

1

(t

i

); : : : ;

^

#

100

(t

i

).

The example shows that for the average of all 100 trajectories noise is reduced

until a certain value of �. In fact, while � ! 1, the smoothing spline be-

comes more and more a linear regression function which increases the bias of

the smoothing spline and thus the noise. Remember the bias-variance tradeoff

discussed in section 4.2.3. Table 7.4 summarizes these results of mean noise

reduction in p
1

; : : : ; p

10

for different increasing values of �. The smoothing tra-

jectories with � = 0 are equal to their correspondingM
i

. Therefore, noise is not

reduced. For � = 10 and � = 100 noise is on average reduced in all positions of

allM
i

. Then, noise becomes larger instead of being reduced in some positions,

because the bias becomes larger.

To solve the optimal tradeoff between noise reduction and noise increase, sec-

tion 4.2.3 discussed some estimation methods for �. The discrepancy method

was used to determine �

� for every M
i

in this experiment. Then, an average

�

�

= 835 was calculated and all M
i

were smoothed once more. Figure 7.8

shows the amount of noise reduction with respect to �. For all � < 1000, only
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(a) Highway subset histogram
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(b) Car park

Figure 7.5: The results of obvious temporal outlier detection are shown. The experi-

ments are done with the highway and car park training subsets. (a) shows the results

with the former training set. While a threshold � = 13 removes all obvious time-delayed

feature trajectories (thin black lines), a larger threshold � = 76 also removes the short

erroneous trajectories (thick black lines). Consequently, the training subset is reduced

to the 350 trajectories (gray dotted lines). (b) shows the result for the car park training

set. � was set to 34. Thus, 171 trajectories were labelled as outliers (black lines) and

only 179 trajectories (gray dotted lines) remained in the training set.
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(a) Highway

(b) Car park

Figure 7.6: The results of the obvious spatial outlier detection are shown. (a) shows

28 outliers (black lines) in the highway training set. The remaining training set consists

of 322 trajectories (gray dotted lines). (b) shows 20 outliers (black lines) in the car park

training set. The remaining training set consists of 159 trajectories (gray dotted lines).
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Figure 7.7: The ground-truth trajectory #(t

i

) is shown by a black line. Each black circle

shows a true position p

i

of the feature. The most right and lowest position is taken at

t

1

. The most left and upper position corresponds to t

10

. M
1

; : : : ;M

10

are shown by

gray lines. Gray circles show M

1

’s positions while the positions of M
2

are drawn by

squares.

three of ten positions show an increase in noise. One position shows a declin-

ing decrease in noise reduction. Furthermore, noise is in sum on average more

reduced than increased for the whole trajectories (see table 7.4). However, con-

sider all � > 1000. The increase in noise becomes significantly larger in four

positions. Also the balance between the average decrease and increase of noise

becomes uneven. More noise is now introduced than reduced. Therefore, an

average �� = 835 < 1000 is a good estimate.

Figures 7.9 and 7.10 show the results of training sample generation with the

highway and car park training subset without any obvious outliers. Both fig-

ures show the training samples in sub-spaces x/y/t and dx/dy/t of the learning

space. Every training sample is the result of re-sampling the smoothing trajec-

tory. ds was estimated to 11.24/4.52 for the highway/car park subset case. Thus,

3940/4732 training samples were generated. In case of the whole sets ds was

estimated to 7.95/5�. 36988/15119 training samples were generated. Table 7.5

summarizes the results.

7.3 Learning

For our experiments a GNG run was made with the highway and the car park training

subsets. In both simulations the parameters were set to: �

max

= 40000, � = 300,

�

b

= 0:05, �
n

= 0:0006, � = 0:5, � = 0:0005, a
max

= 88. We chose the same values

�This value was chosen by hand. The estimated value was too small (0.07), because of the outliers.
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mean noise reduction

� p

1

p

2

p

3

p

4

p

5

p

6

p

7

p

8

p

9

p

10

0 0 0 0 0 0 0 0 0 0 0

10 0 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 0

10

2 0 -0.08 -0.08 -0.08 -0.04 -0.07 -0.1 -0.04 -0.07 -0.02

835 -0.03 -0.17 -0.18 -0.08 0.16 -0.17 -0.2 0.32 -0.16 0.04

10

3 -0.03 -0.17 -0.19 -0.07 0.2 -0.18 -0.21 0.41 -0.17 0.08

10

4 -0.03 -0.04 -0.11 -0.32 1.07 -0.22 0.55 2.49 -0.22 2.15

10

5 -0.17 0.91 0.58 -0.38 0.15 1.84 3.77 4.59 0.29 6.75

10

6 2.07 2.1 0.39 0.22 0.59 4.39 5.72 5.16 1.62 10.21

Table 7.4: The mean noise reduction in 10 positions of the 100 randomly generated

trajectories is shown. While the smoothing of the trajectories becomes larger (� !1),

the introduced bias also increases. Therefore, noise increases more and more in all

positions instead of being reduced.
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Figure 7.8: Noise reduction with respect to the choice of � is shown. Noise increase and

decrease in 10 positions is drawn by gray lines. The noise increase becomes significant

for all � > 1000. The mean of �� is estimated to 835.
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Figure 7.9: The learning space of the highway training subset is shown.
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Figure 7.10: The learning space of the car park training subset is shown.
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Highway Car park

Set Subset Set Subset

ds 7.95 11.24 5 4.52

training samples 36988 3940 15119 4732

Table 7.5: The results of training sample generation are shown.

as in Fritzke [15]. Thus, a codebook with 135 reference vectors was created for each

subset. Figure 7.13(a), 7.13(b), 7.14(a) and 7.14(b) show the highway and car park

results.

For the highway example, all three lanes are represented by the codebook. It

can be seen that 135 reference vectors are too much to represent the data. Thus, the

codebook over-represents the data which fulfills the goal that should be met by the

use of the GNG. Especially consider the sub-space < dx 2 [0:5; 1℄, dy 2 [0;�0:5℄,

t 2 [�0:5;�1℄ > in figure 7.13(b). It is obvious that this volume is over-represented.

Besides, only a few training samples can be found. Therefore, these samples are spatio-

temporal outliers.

According to the car park scene, two main directions can be recognized. These

directions are from top to the bottom of the intersection and vice versa. Consider the

two areas with a dense distribution of samples. We can also recognize these two sides

of the road going in opposite directions in figure 7.14(a). All other driving oppor-

tunities are weakly represented by the training subset. The GNG has well explored

the learning space. Most of the reference vectors lie within the two directions. Other

directions are weakly represented. Therefore, most of them will be marked as spatio-

temporal outliers in the successive MDL-based codebook pruning.

We used an instantiation of the MDL-based algorithm which is described in

Bischof, Leonardis and Selb [6]. They assumed that the indices of the codebook are

encoded with the optimal variable length according to the probability of occurrence.

The error term is encoded according to a spherical Gaussian distribution with a fixed

variance �. Selb [38] reported that this parameter is relatively robust with respect to

the final number of reference vectors which remain after pruning. In fact, he used

relatively well defined and distributed clusters of training samples. Unfortunately, our

learning space is not of this data distribution’s type. Clear clusters cannot be found

within both the highway and the car park training data.

Therefore, we did some experiments with � and observed its influence on the

final number of reference vectors and the number of outliers found after the MDL

step. We expected a steady decrease of the number of reference vectors by increasing

�. Furthermore, we expected that if � is small the spherical influence of a reference

vector is small and therefore a large number of outliers (spatio-temporal outliers plus

normal samples) must be the consequence. This number should decline until it is equal

to the number of spatio-temporal outliers in the learning space. It should stagnate for

a certain interval I , because all reference vectors represent normal training samples
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and � is still too small to include spatio-temporal outliers. Then, if a certain and large

enough amount of � is reached, all spatio-temporal outliers are represented by a few

reference vectors or even one. Thus, a good value of � could be the smallest value of I .

This value is the first one where the number of outliers start to stagnate. Furthermore,

the number of reference vectors regarding this particular � is the largest with respect

to all other values of � in I .

Figure 7.11(a) and 7.11(b) show the results of the experiments according to

the training subsets (highway/car park). 32/19 values of � were evaluated between

[10

�4

; 3 � 10

�3

℄ and [10

�4

; 4:6 � 10

�3

℄ respectively. In fact, the final number of refer-

ence vectors shows a steady decrease while � becomes larger. Now, consider both

outlier curves. Its values decay quickly from 60/68 to 17/25 within the intervals

I

prv

hway

= [5:7 �10

�4

; 8:5 �10

�4

℄ and I
prv


park

= [5 �10

�4

; 1:6 �10

�3

℄ respectively. In fact, the

number of outliers stagnates for the following interval I
hway

= [8:5 � 10

�4

; 9:3 � 10

�4

℄

and I


park

= [1:6 � 10

�3

; 2:5 � 10

�3

℄, before it decreases further. Although I

hway

is

equally large to its previous interval I
prv

hway

the values remain between 17 and 18. Sim-

ilarly in case of the car park training subset, the outlier values of I

park

vary between

21 and 26, although I

prv


park

is only 2 � 10

�4 larger. Consequently, these observations

confirm our previous expectations. Therefore, we set the value of � to 8:5 � 10

�4 in

case of the highway and 1:6 � 10

�3 in case of the car park training subset.

The final results of the learnt codebook can be seen in figure 7.13(c) and 7.13(d)

for the highway and 7.14(c) and 7.14(d) for the car park respectively. Beside spatio-

temporal outliers, which were found by the MDL-based algorithm, all training samples

which are part of the same path were also defined as outliers. Thus, the final number

of training samples were 3714/4240 and the final number of training paths 305/134.

Reference vectors which do not represent any training samples were also eliminated

and led from 83/67 to a final codebook size of 82/51.

Figure 7.13(d) confirms our hypothesis that all samples within < dx 2 [0:5; 1℄,

dy 2 [0;�0:5℄, t 2 [�0:5;�1℄ > are spatio-temporal outliers. The MDL pruning

has taken this into account and has removed all reference vectors within this volume.

Furthermore, the codebook distinguishes the three lane directions clearer than in fig-

ure 7.13(b). Reference vectors are more centered and those who represented training

samples in between the three main directions are removed. If figure 7.13(c) is com-

pared with 7.13(a), the same effect could also be seen.

In fact, a comparison of figure 7.14(b) and 7.14(d) shows the outlier detection

ability of the MDL-based algorithm clearly. Indeed, all directions beside the two main

directions are recognized as outliers. Reference vectors, which represent these samples

after the GNG step, are eliminated. The same can be seen in the sub-space x/y/t. Both

main roads of the intersection are well explored and represented. Beside these areas,

the reference vectors are removed.

The last question with respect to learning is its robustness. Four runs of the

learning algorithm with the highway training subset were done�. The parameters are

�Although the data-set is the same in all runs, the GNG algorithm chooses samples randomly.
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1 2 3 4

1 1 19

22

20

22

19

22

2 19

24

1 20

24

20

24

3 20

25

20

25

1 18

25

4 19

20

1 18

20

1

Table 7.6: The codebook’s (row) outlier paths are compared to the outlier paths all other

codebooks (columns). The percentage of identical outlier paths with respect to the total

number is shown.

equal to the settings which are previously discussed. The following table shows the

results for each run:

Run Codebook size Outlier paths

1 76 22

2 68 24

3 73 25

4 74 20

The final numbers of codebook vectors are similar. The difference can also be

seen in the number of outlier paths which were detected. Table 7.6 shows the percent-

age (1 � 100%) of identical outlier paths for a particular codebook (row) compared to

all other codebooks (columns). For example, compare codebook 1 with 2. 19 of 22

outlier paths are equal to outlier paths given by codebook 2.

The number of pairwise, equal outliers is approximately the same, namely be-

tween 18 and 20. The number of outliers according to a run of the learning algorithm is

of the same order of magnitude, namely between 20 and 25. In fact, this confirms that

the choice of � works well. Only a small amount of normal paths were falsely declared

as outliers. The small differences in the number of reference vectors due to the random

choice of training samples during learning. Fortunately, this will become less and less

a problem if the number of learning steps is increased. However, for these runs (40,000

steps), all four codebooks cover the same parts of the learning space which can be seen

in figure 7.12. The spatio-temporal models are different in particular samples but very

similar in parts of the learning space. We also did a successive classification with all

four codebooks and the results in terms of the number of classes and their coverage of

the learning space are equal.

Table 7.7 summarizes the learning results. We used the parameter settings from

the training subsets to learn the codebook for the training sets.
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Highway Car park

Set Subset Set Subset

training samples 36988 3940 15119 4732

training paths 2312 322 872 159

reference vectors after GNG 135 135 135 135

reference vectors after pruning 119 83 115 67

outlier samples 2254 226 1775 492

outlier paths 121 17 94 25

reference vectors after removal 119 82 100 51

final training samples 34734 3714 13344 4240

final training paths 2191 305 778 134

Table 7.7: The learning results are summarized.

7.4 Classification

The previously learnt codebooks of the highway and car park training subset and all

training paths except outliers were used for classification. First, every training sam-

ple was quantized to its corresponding reference vector. Thus, all paths were trans-

formed into sequences of codebook vectors. In case of the highway/car park, 305/134

sequences were generated. Then, the incremental classification algorithm produced

157/79 different classes. Seven representatives are shown in figure 7.15 and 7.16 re-

spectively. These classes were used by the successive merging algorithm which pro-

duced six classes for both training subsets in a first step. A second merging step led

then to the final result of 3/4 classes. Every further attempt of merging did not change

the result. The second and third column in both figures show these classes.

According to the highway scene, every class represents exactly one lane. We

expected this result, because these three lanes are well separated and represented by

reference vectors in the learning space. However, the car park scene classification

presented a surprise. Instead of the expected two classes which should represent the

heavy used main road in both directions, the classification resulted in four classes.

For example, compare the 3

rd and 4

th class in the third column of figure 7.16. Both

classes seem to be identical except the upper part of the scene where vehicles exit the

intersection. All trajectories of vehicles which turned to the right into the neighboring

street were summarized in one class. However, all other vehicles left the tracking area

by moving straight ahead. Indeed, this makes less difference in the image plane, but

an obvious one in larger sub-spaces of the learning space. Therefore, we considered

both classes in the sub-space dx/dy/t. Figure 7.17 compares both classes and shows

the differences in the direction. This fact will be even more clearly, if the first and the

second class is compared. First, no obvious difference can be recognized. However,

consider both classes in the sub-space x/y/t which are shown by figure 7.18. The
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n 50 100 200 300 400 500 600 700 1500 2005


 40 69.6 116.2 157.8 191.4 228.9 257.4 286.6 475.2 573

�




11 21.5 55.5 95.2 74.3 48.2 108.3 92.4 145.4 0

Table 7.8: The mean 
 and variance �




of 
 for specific n are summarized.

difference lies in time and not in the location. Interestingly, the first class summarize

all vehicles which were delayed by the traffic at the intersection. In contrast to that, the

second class shows vehicles driving exactly into the same direction and on the same

road but without any obstructions.

The classification of the whole training sets led to the expected equivalent results.

The training subset classes are also part of the classification. Nevertheless, the final

number of classes in the highway/car park case is higher (4/8). For example, consider

the highway classes which are depicted in figure 7.19. The first three classes also

represent the three lanes of the highway. In fact, the last class represents vehicles

which drove in between two lanes. Figure 7.20 shows all classes of the car park case.

While the 1

st and 3

th class, which both are depicted in the first row, are equivalent

to the 1

st and 3

th class of the training subset classification, the 2

nd class is a result

of merging the 3

th and 4

th class. All other classes due to outliers. For example, cars

which turn right at the intersection (7th class).

Certainly, the complexity is of particular interest during the analysis of both clas-

sification algorithms which are shown and discussed in detail in chapter 7. Consider

the incremental algorithm on page 90. The worst case effort to determine all 
 classes

from a set of n sequences is


(
+ 1)

2

+ (n� 
� 1)




2

=


n

2

:

During initialization, the first class is created by the first sequence. Then, n � 1 se-

quences are compared to the current classification. In the worst case, the first 
 se-

quences create all classes. Then, for the final n � 
 � 1 sequences 


2

comparisons are

needed on average. If every sequence forms its own class (
 = n), then the worst case

effort is n

2

2

. Thus, the complexity of the incremental algorithm is O(n

2

).

Generally, the number of classes should be smaller than the number of sequences

which are used for classification (
� n), because all sequences represent normal traf-

fic and arbitrary sequences (combinations) of reference vectors are impossible. To in-

vestigate this hypothesis, 25 sets of n = f50; 100; 200; 300; 400; 500; 600; 700; 1500g

sequences were randomly chosen from the highway training set. Then, 
 was evalu-

ated by the incremental algorithm for every set. Thus, the mean and the variance of


 for a specific n was calculated which is shown by table 7.8. All 225 chosen sets

and the whole training set showed a smaller 
 than n. Furthermore, an increase of 


with respect to n can be seen. In fact, an upper bound of 
 must exist, because the

codebook consists of m reference vectors which can create at most
P

m

i=1

�

m

i

�

classes.

Figure 7.21 shows the relation as function 
(n) which asymptotically approaches this



116 CHAPTER 7. EXPERIMENTS AND EVALUATION

upper bound. For n = 0; : : : ; 600, 
(n) can be approximated by 
(n) = 2:2n

2

3 . The

worst case effort of the incremental algorithm with respect to the highway training set,

the codebook which was learnt by the training subset and the former interval of n is

1:1n

1:67. Thus, the complexity for 
 < n is generally O(n

i

) with 1 < i < 2.

Finally, consider the merging algorithm on page 92. The algorithm is initialized

(run r=0) with a classification M
r

= M

0

delivered by the previously performed incre-

mentation step. Then, it randomly chooses a class C from M

r

and compares C with

all other classes within M

r

. Consequently, the effort is jM
r

j � 1 to find equivalent

classes of C. Finally, these classes are removed from M

r

which lead to M

r+1

. The

algorithm continues until r = r

max

with M

r

max

= ;. Thus, the effort of the merging

algorithm is
P

r

max

r=1

r(jM

r

j � 1). Consider now the worst case, where only one class is

removed from M

r

in run r. Then, the worst case effort is

(
�1)

2

with r
max

= 
. Thus,

the complexity of the merging algorithm is O(


2

).

Generally, only a few traffic patterns exist within a scene. Therefore, many

classes in M

0

are equivalent. The difference jM
r+1

j � jM

r

j between two runs is

large which reduces further comparisons significantly and the expected effort is much

smaller than the worst case one. In fact, this can be seen in figure 7.22 where we per-

formed the merging for the highway and car park training subsets. r
max

was 6. jM
r

j

decreased exponentially in both training cases.

7.5 Case studies

This section treats the results of the spatio-temporal model and the classification with

respect to the test tracking data described in section 7.1. As the latter represents un-

usual events, the p.d.f. value should be small or no classification is expected for the

measurements.

First like in the training case, test samples of particular trajectories are gen-

erated. We chose a representative trajectory from the traffic jam tracking data set

(figure 7.25(a)), a feature which pursues a van that changed onto the reserved lane

(figure 7.25(b)) and a trajectory which completely shows a prohibitively driving car

(figure 7.25(c)). According the car park case, we chose a feature on the stopped (fig-

ure 7.27(a)) and the back pushed car (figure 7.27(c)). Finally, a trajectory of an unob-

trusive car was also selected (figure 7.27(b)).

Exactly the same number of test samples than measurements are generated by

using an interpolating spline. We avoided to use the smoothing spline, because only

partial trajectories are known during tracking. Estimated samples could otherwise

become false if more and more about the trajectory is known. To be able to classify at

a certain time instant, the feature’s partial sequence is considered which includes all so

far visited reference vectors. The classification itself is simple. If all reference vectors

of the partial sequence are a subset of the reference vectors of a class, then the feature

will belong to this class. Certainly, a feature can be assigned to more than one class
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in the beginning of tracking. While more information of the trajectory is gained, this

number decreases until only one or no class remain in the classification.

Figure 7.23 shows the classification result for each test feature. For example,

consider the left upper figure. It shows the traffic jam feature as black thick line and

the codebook as gray graph in the x=y=t sub-space of the learning space. The corre-

sponding class, which is a sub-graph, is black highlighted and represents the left lane.

Indeed, we have expected this fact, because the feature is on a car which drives on

the left lane. The prohibitively driving vehicles are classified similarly. Instead of the

most left, the most right class is assigned. The second figure in the first row shows the

result for the van which changes the lane while the third figure shows the completely

prohibitive driving car. However, the second row shows the car park results where

two unclassified features are shown. The stopped and back pushed car show traffic

patterns which are not represented by the class models. Therefore, no sub-graphs are

highlighted in the first and third figure. In contrast to that, the second figure shows an

unobtrusive driving car. Consequently, it can be classified.

Beside the classification, the response of the spatio-temporal model with respect

to each test sample has to be evaluated. Figure 7.24 shows the results for the highway

case. The left upper figure depicts the p.d.f. values for a training path. The values are

normalized to 1. All values lie between 0.86 and 1. However, the next figure to the

right shows the consequences of a traffic jam. The p.d.f. values of the model decreases

to 0 within 50 frames and remain 0 with frame 100. Interestingly, it increases slightly

between frame 50 and 100. The reason is that people normally brake stronger than

necessary if they see a traffic obstruction in front of them. Therefore, they release

their brakes and accelerate a bit until they finally stop their vehicle. In contrast to

that, the first figure in the second row shows the lane changing van which produces a

steady decrease until 0. Only around frame 60 a slightly increase can be seen. The

test samples of the feature fit the model better in the end, because of the camera’s

perspective. The last figure shows the model response for the wrong driving car. P.d.f.

values lie between 1:4 � 10

�4 and 0.

Figure 7.26 depicts the p.d.f. values of the spatio-temporal model in case of the

car park. Values of a training path lie between 0.3 and 1. This relatively small values

due to the small training set. More complex scenes need far more training samples to

produce an appropriate model. The upper right figure shows the expected p.d.f. values

of the stopping car. As long as the car drives on the main road, the values are above 0.2.

Then, all values are zero, because the car shows an unusual traffic pattern by turning to

the left and stopping. The results of the normal driving car are shown in the first figure

of the second row. All values remain above 0.1. The alternating increase and decrease

of the values can be explained by the alternating proximity and distance to a reference

vector. Finally, the last figure shows the results of the back pushed car. It is most of

the time outside the spatio-temporal model except the frames where it turns from the

left of the intersection into the main road.
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7.6 Conclusion

To sum up, 2 training sample sets and 2 sub-sets were generated from two distinct

scenes, namely a highway and a car park. Besides, unusual events like a traffic jam or

a back-pushing car were used to test the capability of the spatio-temporal model and

the classification. We showed that obvious outlier detection principally works with the

given data during the generation. Threshold � was chosen by hand after investigating

the histograms. Manual threshold selection could be avoided by rejecting a fixed per-

centage (e.g. 15%) of the training trajectories. The next chapter will further discuss

this idea. Furthermore, noise reduction was demonstrated by a synthetic example.

Then, both training sample sets were used to create spatio-temporal models. All

lanes of the highway and the main road of the car park were represented. Spatio-

temporal outliers were found and the codebook could be minimized. The choice of

� is determined by an interval where the number of outliers stagnate. The robustness

of learning depends primary on the learning steps while the accuracy of the spatio-

temporal model depends mainly on the number of training samples.

Classification delivered the expected 3 classes in the highway case. 4 classes

were found in the car park scene. The algorithm recognized successfully the different

patterns of traffic behaviour in both scenes.

Finally, we evaluated for every unusual event the normalized p.d.f. value and the

class of the corresponding feature. The results met our expectations.
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Figure 7.11: The influence of � with respect to the final number of reference vectors in

the codebook (dotted line) and the number of spatio-temporal outliers (solid line), which

are detected by the MDL-based algorithm, are shown. Interval I is shown in between

dashed lines. (a) shows the results for the highway training subset, while (b) shows the

results for the car park training subset.
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Figure 7.12: Four codebooks of four runs with the car park training subset and equal

parameters are shown. The same parts of the learning space are covered. Neverthe-

less, reference vectors do not correspond.
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Figure 7.15: Three classes are the final result of classifying the highway scene with the

training subset. Every class exactly represents one lane. The first column shows the

classification result after the incremental step. The second and third column shows the

resulting classes after the first and second merging step.
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Figure 7.16: Four classes are the final result of classifying the car park scene with

the training subset. The first column shows the classification result after the incremental

step. The second and third column shows the resulting classes after the first and second

merging step. The first and last two classes seem to be identical after the second merge.

However, a further investigation shows that the former two classes differ in time and not

in the image plane. The difference of the third and fourth class can be seen in the upper

part of the scene where vehicles move straight ahead or turn to the right.
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Figure 7.17: The difference between the 3

rd and 4

th class depends on the feature’s

direction dx=dy. Both figures (a) and (b) show the classes feature paths of vehicles

which cross the intersection on the right lane of the main road. Both classes are identical

for t 2 [�1; 0℄. Then, the vehicles of the 4

th class turned to the right into the neighboring

street. This can be seen in (b) by the bend feature paths.
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Figure 7.18: The difference between the 1

st and 2

nd class lies in time t. Both figures

(a) and (b) show the classes feature paths of vehicles which crossed the intersection.

They drove on the left side of the main road in the same direction. (a) shows paths of

obstructed vehicles which had to slow down their speed or had to stop. The life-time

of these features lies between 0.2 and 0.6. (b) shows free flowing traffic with life-times

below 0.2.
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Figure 7.19: The classification result of the highway training set is shown. The result is

equivalent to the training subset classification except the 4

th class.
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Figure 7.20: The classification result of the car park training set is shown. The first three

classes represent all traffic patterns while all other classes are the result of outliers.
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2
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The variance in every point is also shown (intervals).
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Figure 7.22: The number of the remaining classes in M decreases exponentially with

every merging step. (a) shows the number of merged classes in the highway while (b)

depicts the car park case.
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Figure 7.23: The first and second row shows the classification results of three chosen

features from the traffic jam, reserved lane, stopped car and back pushed car tracking

data set. Trajectories are thick black lines. The codebook is shown as gray graph.

Corresponding classes are sub-graphs which are black highlighted.
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Figure 7.24: The results of the spatio-temporal model response with respect to the

test samples of the highway scene are shown. The upper left figure shows a randomly

chosen training path. The upper right figure depicts the p.d.f. values of the traffic jam

feature. The lower left figure shows the feature on a van which changes to the reserved

lane. The lower right figure shows a wrong driving car.
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Figure 7.25: The feature trajectories for testing are shown. (a) shows a feature in the

traffic jam. (b) shows a feature on a van which changes to the reserved lane. (c) shows

a feature trajectory of a car which drives wrongly.
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Figure 7.26: The results of the spatio-temporal model response with respect to the test

samples of the car park scene are shown. The upper left figure shows the p.d.f. values

of a randomly chosen training path. Then, the upper right figure shows the stopped car.

The lower left figure shows the unobtrusive car while the lower right figure depicts the

back pushed car.

(a) Stopping car (b) Unobtrusive car (c) Pushing-back car

Figure 7.27: The feature trajectories for testing are shown. (a) shows a feature on the

stopped car. (b) shows a feature on a an unobtrusive, normal driving car. (c) shows a

feature on the back pushed car.
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Chapter 8

Discussion

This report presented unusual traffic event recognition (e.g. traffic jams, prohibitively

driving vehicles) by using a spatio-temporal model of traffic behaviour. The latter is

the probability density function (p.d.f.) in a learning space which is build by training

samples of normal traffic. These samples are generated by tracking data which is col-

lected by a visual interest-point tracking algorithm (KLT-tracker). Interest-points are

features on vehicles which are detected in a user-defined detection region and pursued

within a tracking area in a static camera scene. In fact, features represent vehicles but

do not identify them. The way a feature takes through the image is called trajectory. It

only is a measured trajectory, because features positions are noisy due to the properties

of the tracker. A set of trajectories is then the tracking data.

The spatio-temporal model is learnt by unsupervised learning. In contrast to

other works, we used a Growing Neural Gas in combination with a MDL-based prun-

ing algorithm as p.d.f. estimator of the learning space. First, obvious outliers in the

tracking data are eliminated. Then, smoothing splines are used to approximate the

trajectories. The reasons are the reduction of noise and the possibility of re-sampling

the trajectory as the density of the learning space should only depend on the abode

probability of features. An advantage of the MDL-based pruning algorithm is that

spatio-temporal outliers are detected. Thus, they do not influence the codebook of ref-

erence vectors which is the result of unsupervised learning. Each sample is represented

by the nearest reference vector. Then, the sum of spheral Gaussians according to the

Euclidean distance is the spatio-temporal model.

We showed that it is not sufficient to recognize correctly unusual events. It only

describes normal traffic behaviour in a point of the learning space. In fact, the prop-

erties of trajectories are not considered. Therefore, we quantize every trajectory of

the training data into sequences of reference vectors. In a first incremental step, two

sequences belong to the same behaviour class if they are identical. Then, classes are

merged by an equivalence constraint. Two classes are equivalent, if either reference

vectors of one class also occur in the other class or at least an edge of the topology

133
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graph connects distinct reference vectors of both classes. The topology can be inter-

preted as neighborhood of reference vectors. This merging step is iteratively done until

the set of classes do not change any more.

The spatio-temporal model and the behaviour classes were then used to evaluate

some case studies. Examples of a traffic jam, vehicles on the reserved lane or a car

which stopped for an unusual time showed that the comparison of the actual traffic

behaviour with the spatio-temporal model is able to recognize unusual events.

To sum up, the tracker showed satisfying results in daylight under good illumi-

nation conditions. Our experiences correspond to the results of Beymer et al. who also

used a comparable tracking approach. They showed that it is even possible to group

features together. Thus, vehicles can be identified and counted. Other traffic param-

eters like speed were also evaluated. Unfortunately, under bad conditions like reflec-

tions in tunnels the tracker showed its weakness. As feature correspondence between

two frames is established by intensity values, the approach is inherently sensitive to

noise. Thus, features get lost or caught by other vehicles or the background. However,

features on vehicles allow tracking of heavily congested traffic. All other region or

blob based tracking methods fail in case of occluded vehicles.

In contrast to Johnson and Hogg, Stauffer and Grimson, we overcome the prob-

lem of ”stranded” reference vectors by using a soft-competitive unsupervised learning

algorithm. Furthermore, we do not define a fixed number of reference vectors. Instead,

an optimal number which depends on the training data is found by the MDL criterium.

Beside the pruning algorithm detects spatio-temporal outliers. Certainly, a weakness

of the current implementation is its off-line nature. Thus, a finite number of features

have to be tracked and stored to generate the codebook.

Interestingly, the learning alone produces behaviour classes, because the topol-

ogy graph is under closer consideration a forest. Each component represents one be-

haviour class. To use the topology, which is simultaneously learned with the codebook,

for classification is a novel approach and was not considered by previous works. To

have a grainer classification we developed an incremental and merging algorithm. We

showed successfully that traffic behaviour can be analyzed and classified. The only

drawback is the quadratic complexity of the algorithms. Nevertheless, the algorithms

are straight forward, because only comparisons have to be done. All other works pre-

sented algorithms which estimate the classes by a learning scheme. This is not only

more computational expensive, it also introduces further inaccuracies into the compu-

tation.

8.1 Future work

To improve the tracker with respect to illumination we could use improved KLT-

Trackers like it is discussed in Jin et al. [21]. Nevertheless, the problem illumination

and noise cannot be solved by this type of tracker, because the assumption of nearly
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static illumination further exists. Thus, new tracking concepts which probably have

only the assumption of static geometry have to be found. Robust tracking algorithms

under all conditions (reflections, weather conditions) which allow occlusions are still

an open question.

The obvious temporal outlier detection could also be improved. A threshold

could be neglected if the modes of the histogram could be found automatically. Then,

a corresponding number of features are chosen around this modes. This number re-

sults from the number of remaining temporal outliers which can be defined as a fixed

percentage of the tracking data (e.g. 15%).

As mentioned above, one of the weaknesses of learning and classification is its

off-line implementation. Future works should try to find on-line algorithms. They have

not to be real-time capable like the tracker, because features are used as their whole

trajectory is known. This time depends on the scene but is normally some seconds.

Certainly, then a couple of features could be available as tracking data. Also the ob-

vious temporal outlier detection has to be modified, because it bases on the statistics

of the life-time. A solution could be a first step of gathering statistical information by

collecting tracking data. Then, in a second step the generation of the training data and

the learning is done.

The decision about an unusual event was not answered at all by this report. Dur-

ing the use of this recognition system, the properties of every actual feature are com-

pared to the spatio-temporal model. Furthermore, the actual trajectories are classified

by the behaviour classes. If no classification is possible or the probability value of the

model drops below a certain threshold, the feature indicates an unusual event. Indeed,

it could also be an outlier. Therefore, a robust fusion of feature responses should be

performed to get reliability of the recognition system. Unfortunately, if we use only

such a threshold for the model’s probability we cannot differ between traffic jams or

other unusual events. Perhaps it is possible to interpret the probability values if we

consider them as time series. Then, symbolic traffic information could be collected

and stores in a database for further use.
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