
Technical Report Pattern Recognition and Image Processing Group
Institute of Computer Aided Automation
Vienna University of Technology
Favoritenstr. 9/1832
A-1040 Vienna AUSTRIA
Phone: +43 (1) 58801-18351
Fax: +43 (1) 58801-18392
E-mail: jm@prip.tuwien.ac.at
URL: http://www.prip.tuwien.ac.at/

PRIP-TR-76 August 4, 2003

Functional Graphical Models

Jocelyn Marchadier

Abstract

Functional models are frequently used in computer vision and photogrammetry, as they
enable the mathematical formulation of several problems such as pose computation and
more generally the parameter estimation problem. However, the structural properties of
such models have only seldom been studied. This contribution is dedicated to the analysis
of such properties. We propose a new formalism that enables the analysis and design of
functional models.

Figure 1: Orthogonal lines

1 Introduction and related work

In this contribution, we use a hypergraph representation of implicit systems for char-
acterizing structural properties of such systems, designing and proving algorithms that
decompose the systems into subsystems, and that construct compact codes representing
entire systems.

This work is linked with the work of Michelena and Papalambros, for example, who
have studied the so called design problem for calculating decomposition of large systems
by the means of hypergraphs [9]. The design problem consists of finding a solution such
that an equation system is satisfied. They use partitioning techniques for finding sub-
sets of variables achieving a minimum cost decomposition of the system. They are not
interested in finding a decomposition into subsystems that can be solved, and do not
propose a general framework for analysis of systems. Other related works exist in the
computer vision field such as [3][5][8], where functional models are used to code different
image primitives, as well as more complicated 3D models. Function-described Graphs [1]
are graphs of random variables describing a set of attributed graphs. Only graphs are
considered, and arcs labelled with a random variable do not describe functional relations
between vertices.

Let us first state informally the definition of functional models. Consider Fig. 1,
representing two orthogonal lines L1 and L2 crossing at point P3, such that L1 is passing
through two other points P1 and P2 and L2 is passing through the points P4 and P5.

The following implicit system describes completely figure “Orthogonal lines” (Fig. 1).

relations equations
P1 ∈ L1 f(X1, Y1, θ1, d1) = 0
P2 ∈ L1 f(X2, Y2, θ1, d1) = 0
P3 ∈ L1 f(X3, Y3, θ1, d1) = 0
P3 ∈ L2 f(X3, Y3, θ2, d2) = 0
P4 ∈ L2 f(X4, Y4, θ2, d2) = 0
P5 ∈ L2 f(X5, Y5, θ2, d2) = 0
� (L1, L2) g(θ1, θ2) = 0

(1)

where Xi and Yi are the coordinates of the point Pi, θj and dj are the parameters of the
line Lj , f(Xi, Yi, θj, dj) = Xi cos(θj) + Yi sin(θj)− dj and g(θi, θj) = sin(θi − θj).

We associate to each relation of the system the set of the variables involved in the rela-
tion. We obtain the following tuple : F1 = (f, X1, Y1, θ1, d1), F2 = (f, X2, Y2, θ1, d1), F3 =
(f, X3, Y3, θ1, d1), F4 = (f, X3, Y3, θ2, d2), F5 = (f, X4, Y4, θ2, d2), F6 = (f, X5, Y5, θ2, d2),

1

Figure 2: Hypergraph representation of “Orthogonal lines”

and G1 = (g, θ1, θ2). We can relate the variables of the implicit system into a graphical
form displayed in Fig. 2.

The graph structure depicted as a bi-colored graph on Figure 1 is in fact a hypergraph
with two kinds of elements, i.e. the vertex of the hypergraph (the white vertices of the
bi-colored graph), which are the variables of the implicit system, and the n-ary relations
of the hypergraph, each describing one implicit equation of the system (depicted as black
vertices).

Such a structure can be used to derive interesting structural properties of the implicit
system. For example, by giving values of some variables of the problem, we derive a
simple testing procedure for knowing if the system admits from a purely structural (and
not analytical) point of view a unique solution. Another proposed algorithm can quickly
decompose a model into models that can be optimized in an independent manner without
altering the solution of the initial problem. We also propose an algorithm that decomposes
a model with unknown variables into a family of simple models that can be solved or
optimized in a certain order.

We derive a simple way to find the minimal code of a given model, which is the sub-
model containing the information needed to retrieve all the relations and variables of a
complex model.

Section 2 introduces the definition of a new structure, the functional graphical model
(FGM), based on hypergraphs that can be used to describe complex concrete problems.
Some basic properties of this structure are demonstrated. In section 3, we characterize
determined FGMs, i.e. FGMs for which a solution may be calculated from a structural
point of view. Section 4 introduces the decomposition of functional graphical models.
Section 5 gives perspectives of the presented work.

2 Functional Graphical Model

Functional dependencies of an implicit equation system may be described by a hypergraph.
The vertices of the hypergraph represent the variables of the system, and the hyperedges
represent the equations of the system. With functional graphical models, we intend to
define a formalism which exploits the underlying graph of a functional model.

In this section, we give some definitions and basic results (section 2.1) needed for
defining functional graphical models, and to establish some of its properties (section 2.2).
We illustrate the definitions on examples (section 2.3).

2

2.1 Variables and implicit relations

The basic construction blocks of functional graphical models are outlined here. We also
demonstrate some basic results.

We define a variable as follows :

Definition 1. A (real-valued) variable V is a symbol representing a point in D ⊂ IRd. D
is the domain of V and represents the admissible values of V .

For convenience, we use the vectorial notation V = (C1 ... Cd)
t. C1, ..., Cd are variables

of dimension 1, referred in the following text as components of the variable V . The
dimension of V is the number of components of V , noted dim(V) = d.

Definition 2. An instance of a variable V is a constant vector v ∈ D.

A variable describes a set of admissible parameters associated to a primitive without
specifying them. A variable may be viewed as a means to identify a specific primitive. In
the following text, we do not distinguish between the terms primitive and variable.

A real-valued function f in IRm of variables V1, ..., Vn, is the relation defined as :

f : D1 × ...×Dn → IRm

(v1, ..., vn) �→ f(v1, ..., vn)

where Di is the domain of Vi and vi is an instance of Vi. Note that the domain of f is of
dimension

∑n
i=1 dim(Vi).

Definition 3. A functional constraint F is an n-ary relation characterized by the (n+1)-
tuple F = (f, V1, ..., Vn), where f is a function and V1, ..., Vn are variables. We say that
F is satisfied for (v1, ..., vn) ∈ D1 × ... × Dn, with Di the domain of the variable Vi, iff
f(v1, ..., vn) = 0. The domain set of the functional constraint F = (f, V1, ..., Vn) is the set
Dom(F) = {V1, ..., Vn}.

For convenience, a functional constraint F = (f, V1, ..., Vn) is denoted F = [f(V1, ..., Vn) =
0]. We will note dim(F) = d, the dimension of the range of function f , and we will note
abusively |F | = n, the cardinal of the domain set of F .

Example : For example, we define a variable P = (x y)t that encodes a point in
the plane. Let x and y be the cartesian coordinates of P . Let us define another variable
L = (θ d)t encoding a line in the plane, where its components are the angle θ between the
x axis of the coordinate system and the distance d of the origin to the line. The relation
specifying that a line encoded by L passes through a point encoded by P is written as :

F1 = [f(P, L) = 0] = [x cos θ + y sin θ − d = 0] (2)

Its domain set is then Dom(F1) = {P, L}, and its dimension is dim(F1) = 1 as the range
of f is of dimension 1.

Definition 4. The restriction of a functional constraint F = [f(V1, ..., Vn) = 0] to a set of
variables P ⊂ Dom(F) is the functional constraint (F |P) such that the variables V /∈ P
are constants.

3

(F |P) is a relation of the form (F |P) = [g(V ′
1 , ..., V

′
n′) = 0] such that Dom(F |P) =

P = {V ′
1 , ..., V

′
n′} ⊂ Dom(F).

Example : For illustration, by considering the relation F1 of equation 2 above,
(F1|{L}) would be the relation [x cos θ + y sin θ − d = 0] with x and y constants.

Note that the restriction operation does not change the dimension of the function in-
volved in the equation, i.e. dim(F |P) = dim(F). It is clear that the restriction operation
is commutative, as we have ((F |P)|P ′) = (F |P ∩ P ′) = ((F |P ′)|P).

Definition 5. Let F = [f(V1, ..., Vn) = 0] be a functional constraint with :

f(V1, ..., Vn) =


 f1(V1, ..., Vn)

...
fm(V1, ..., Vn)




where fi is a function which range is of dimension 1. such that its derivative is also
continuous.

Given instances (v1, ..., vn) of the variables from Dom(F) for which F is satisfied, a
functional constraint F is well-formed iff each function fi :

5.a is continuous,

5.b has a continuous derivative around (v1, ..., vn),

5.c its partial derivatives according to each component of the variables involved in the
relation are not equal to zero around (v1, ..., vn).

F is well-formed if it fulfills the conditions of application of the implicit function
theorem (see appendix C) for each of the components of the variables involved. The
instances of V1, ..., Vn for which F is satisfied, describe a C1 manifold of dimension exactly
equal to

∑n
j=1 dim(Vj)−dim(F) in IR

∑n
j=1 dim(Vj). For a well formed functional constraint

F , its domain set includes variables, the component of which are actually involved in the
function.

Example : The constraint F1 defined in equation 2 is well-formed. The constraint
F2 = (f2, P, L) = [d(x − y) = 0] is not well-formed, as θ can take any value without

modifying the instances of P for which F2 holds (and δ(d(x−y))
δθ

= 0, contradicting condition
5.c).

Theorem 1. The restriction of a well-formed functional constraint is a well-formed func-
tional constraint.

Proof. The proof of the preceding theorem derives simply from the definitions :
Let F = [f(V1, ..., Vn) = 0] be a well-formed functional constraint. Each monodimen-

sional function of f is of class C1 and its partial derivatives are not zero arround one
solution. Then, its restriction will have the same properties.

4

2.2 Functional Graphical Model : definitions and properties

In this section, we give the basic definitions and results associated to functional graphical
models.

Definition 6. A functional graphical model M is a couple M = (V,F) with :

6.a V a set of primitives Vi ∈ V,

6.b F a set of functional constraints Fj ∈ F of form Fj = [fj(Vj1, ..., Vjnj
) = 0], where

j1, ..., jnj
is a permutation, Vji

∈ V and fj is a function, the range of which is of
dimension dj.

The induced hypergraph structure of a fuctional graphical model M = (V,F) is the
hypergraph (V, {Dom(Fi)|Fi ∈ F}).

The definition of an hypergraph can be found in the appendix A. In the rest of this
report we will use the acronym FGM standing for functional graphical model. An FGM
may be viewed as the explicit graphical description of a system of implicit equation . The
main motivations for the graphical description are :

• to analyze the dependencies of the domains of functions involved in such systems, i.e.
their structural properties meaningful for estimation, optimization and consistent
model construction,

• to construct a symbolic description of the objects that are involved in such models.

The notion of FGM’s instance is given below :

Definition 7. Let M = (V,F) be an FGM, with V = {V1, ..., V|V|},F = {F1, ..., F|F|} and
Fj = [fj(Vj1, ..., Vjnj

) = 0]. An instance (M,V = v) of M is the attributed hypergraph

(v,G, r) with :

7.a a set of instances v = {v1, ..., v|V|} with vi ∈ Vi,

7.b a set of hyperedges G = {G1, ..., G|F|} with Gj = {vj1, ..., vjnj
},

7.c The function r(Gj) = −fj(vj1 , ..., vjnj
) giving for each hyperedge Gj the residuals of

its associated constraint.

In [1], Function-Described graphs represent an ensemble of attributed graphs, while
FGMs represent an ensemble of their instances.

A condition that will be used for demonstrating certain properties extends the “well-
formmedness” property from functional constraints to FGMs :

Definition 8. An FGM M is said to be well-formed iff all its functional constraints are
well-formed.

The following two definitions restrict the analysis of FMGs to sub-models, for which
some variables are relaxed (considered as constant), and to partial models, for which some
constraints are relaxed.

An FGM such that the values of certain of its primitives are considered known (data)
is sub-model :

5

Definition 9. The sub-model (M |P) of an FGM M = (V,F) generated by a subset of
primitives P ⊂ V is an FGM M ′ = (P,FP), excluding constraints not involving primitives
of P : FP = {(Fi|P)|Fi ∈ F ∧Dom(Fi) ∩ P �= ∅}.

If M ′ = (V ′,F ′) is a sub-model of an FGM M = (V,F), then (V ′, {Dom(Fi)|Fi ∈ F ′})
is a sub-hypergraph of (V, {Dom(Fi)|Fi ∈ F}) (see appendix A).

Theorem 2. Let M = (V,F) be an FGM, and let us consider one of its sub-models
M ′ = (M |P ′). A sub-model M ′′ = (M ′|P ′′) of M ′ is the sub-model (M |P ′′) of M .

Proof. Consider the sets FP ′ and FP ′′ of relations of M ′ and M ′′. We have FP ′ =
{(Fi|P ′)|Fi ∈ F ∧Dom(Fi)∩P ′ �= ∅} and FP ′′ = {(Fi|P ′′)|Fi ∈ FP ′∧Dom(Fi)∩P ′′ �= ∅}.
As P ′′ ⊂ P ′, we have Dom(Fi) ∩ P ′′ �= ∅ ⇒ Dom(Fi) ∩ P ′ �= ∅, and ((Fi|P ′)|P ′′) =
(Fi|P ′ ∩P ′′) = (Fi|P ′′). Then, FP ′′ = {(Fi|P ′′)|Fi ∈ F ∧Dom(Fi)∩P ′′ �= ∅}, and we can
write M ′′ = (M |P ′′).

We have shown how to define sub-models that are generated by a subsset of primitives.
The following definition shows how to define partial models, which are models defined by
a set of constraints.

Definition 10. The partial FGM of an FGM M = (V,F) generated by a family E ⊂ F
is an FGM (VE , E) where VE = ∪Fi∈EDom(Fi), i.e. VE is the set composed of all the
variables involved in the constraints included in E .

A partial model is thus constituted by a subset of constraints of the original model.
The link with the hypergraph theory is straightforward. If M ′ = (V ′,F ′) is a partial

FGM of an FGM M = (V,F), then (V ′, {Dom(Fi)|Fi ∈ F ′) is a partial hypergraph of
(V, {Dom(Fi)|Fi ∈ F}) (see appendix A).

Thus, a well-formed FGM is an FGM involving only well-formed functional constraints.
The following two theorems come straightforwardly from the preceding definitions.

Theorem 3. The sub-model (M |P) of a well-formed FGM M is a well-formed FGM.

Proof. The restriction of a well-formed implicit equation is a well-formed implicit equation
(theorem 1). Given a well-formed FGM M = (V,F) and a set of variables P ⊂ V, it
comes that the set FP = {(Fi|P)|Fi ∈ F ∧Dom(Fi)∩P �= ∅} is composed of well-formed
implicit equations. Thus (M |P) is well-formed.

Theorem 4. The partial model of a well-formed FGM M = (V,F) generated by a family
E ⊂ F is a well-formed FGM.

Proof. The proof is straightforward. F being composed of well-formed functional con-
straints, E is composed of well-formed functional constraints.

We will also need in the following text to characterize the union of two FGMs.

Definition 11. The union of two FGMs M1 = (V1,F1) and M2 = (V2,F2) is the FGM
M = (V1 ∪ V2,F1 ∪ F2).

6

Figure 3: M1 : three aligned points

Two FGMs M1 = (V1,F1) and M2 = (V2,F2) are disjoint iff they don’t have con-
straints in common : F1 ∩ F2 = ∅. Two FGMs are independent iff they don’t have
primitives in common : V1 ∩ V2 = ∅. Remark that two independent FGMs are also
disjoint.

For FGMs which are not well-formed, it is sometimes difficult to characterize some of
their properties, as their relations are not necessarily well-formed. We introduce the notion
of simple FGM, which enables one to proceed to the analysis component by component.

Definition 12. A simple FGM M = (V,F) is an FGM such that all the variables of V
are scalars (∀Vi ∈ V, dim(Vi) = 1) and all the constraints of F involve functions in IR
(∀Fj ∈ F , dim(Fi) = 1).

The simple FGM M ′ = (V ′,F ′) derived from an FGM M = (V,F) is the FGM such
that :

• V ′ is constructed by concatenation of the components of each vector of V
• F ′ is the set of all the equations involved in the implicit system described by M .

2.3 Examples

The preceding definitions are illustrated on the following examples.
Fig. 3 presents three aligned points (Fig. 3.a), the hypergraph structure of the FGM

M1 encoding the alignement constraint (Fig. 3.b) and its simple derived FGM (Fig. 3.c).
The primitives of M1 are the three points P1 = (X1 Y1)

t,P2 = (X2 Y2)
t, and P3 = (X3 Y3)

t.
The function associated to the alignment constraint H1 = [h(P1, P2, P3) = 0] has the form
h(P1, P2, P3) = (X2 −X1)(Y3 − Y1)− (X3 −X1)(Y2 − Y1). The relation is well-formed.

We can also explicitly represent the parameters of the line L1. Then, the preceding
FGM is turned into the FGM (and its simple derived FGM) M2, the induced hypergraph
structures of which are depicted in Fig. 4 . The points P1, P2, and P3 are vectors
of the form Pi = (Xi Yi)

t. The primitive representing the line is a vector of the form
Lj = (θj dj)

t. The constraints F1, F2, and F3 are well-formed functional constraints of
the form Fk = [f(Pi, Lj) = 0] = [Xi cos(θj) + Yi sin(θj)− dj = 0].

The two preceding models can be gathered into a single model M3, which reinforces
the property of alignment (Fig. 5).

We can add a line L2 orthogonal to L1 to the preceding model (Fig. 6.a). We obtain the
FGM M4, the induced hypergrah structure of which is drawn in Fig. 7. The orthogonality

7

Figure 4: M2 : three points on a line

Figure 5: M3 : three points aligned on a line

Figure 6: Two instances of the FGM M4

8

Figure 7: M4 : three points aligned on a line orthogonal to another line

Figure 8: M5 : 2 orthogonal lines, 5 points and 7 relations

constraint G1 = [g(Li, Lj) = 0] = [cos(θi − θj) = 0]. As such, the constraint is not well-
formed since the parameters di and dj of the lines Li and Lj can be arbitrarily fixed,
giving the same result for the equation G1. However, the simple FGM drawn on Fig. 7.b
is well-formed when omitting the variable d2 which is unconstrainted. Fig. 6.a illustrate
an instance satisfying the constraints of the model, whereas the instance of M4 drawn on
Fig. 6.b does not statisfy the constraints.

The last proposed model is the FGM M5 drawn in Fig. 8 that represents two orthog-
onal lines L1 and L2, crossing at a point P3, each line passing threw two other interest
points. The simple derived FGM of M5 is given in Fig. 2. An instance of M5 is drawn in
Fig. 1.

3 Redundancy and determinability

The redundancy r of a functional model is the difference r = n−m between the number
of equations n and the number of parameters m of the model. The quality of an estimate
calculated thanks to traditional adjustment procedures depends on the redundancy of a
functional model [6] :

undetermined If r < 0 (i.e. there are more parameters than equations in the functional
model), and if there exists a set of parameters satisfying the model, then there exists
in general an infinity of sets of parameters satisfying the model. The set of solutions
describes generally a manifold, and the functional model is underdetermined.

determined If r = 0, then the only analysis that can be achieved is a sensitivity analysis
on the parameters resulting from an adjustment. The observational gross errors
committed on the data and on the relations of the model can not be put in evidence.

9

If there is a solution to the functional model, it is generally unique, and the system
is said to be uniquely determined.

overdetermined If r > 0, there exists in general no solution to the underlying equation
system, and a “close” solution can be found by approximation. The functional
model is said to be overdetermined.

1. If r = 1, it is possible to test the validity of the model with a single gross error,
but this error cannot be localized.

2. If r = 2, it is possible to localize a single observational gross error. Deficien-
cies provoked by double gross errors may be detected but the errors can not
necessarily be localized [6].

3. If the redundancy r > 2, then r − 1 gross errors can be localized, and r gross
errors are detectable.

If the redundancy of a functional model is not sufficient to guarantee the existence
and uniqueness of a solution to the underlying system, it can be used to deduce from a
structural point of view the multiplicity of solutions to a system, and to have an indicator
on the resistance of a model to gross errors. It is a useful indicator for functional model
design.

However, the traditional definition of the redundancy of a functional model is not
sufficient for analyzing structural conception problems of the design of functional models.
Conception problems may appear by considering subsets of parameters. For example,
let’s consider the following model (where data are not shown) :

f1(V1, V2, V3, V4) = 0
f2(V3, V4) = 0
f3(V3, V4) = 0
f4(V3, V4) = 0

(3)

The redundancy of this model is null. However, if f1, f2, f3, and f4, are smooth
functions, and if that system admits a solution (v1, v2, v3, v4) such that δf1

δV4
(v1, v2, v3, v4) �=

0, then according to the implicit function theorem, the system will have an infinite number
of solutions. This design problem can be revealed by noticing that the set of variables
{V1, V2} appears in a single equation. If V3 and V4 are known, and if the equations where
V1 and V2 do not appear are removed from the model, the redundancy of the new model
is negative.

The hypergraph structure of an FGM enables the analysis of such discrepancies.

Definition 13. The redundancy of a well-formed FGM M = (V,F) is defined by :

r(M) =
∑
Fj∈F

dim(Fi)−
∑
Vi∈V

dim(Vi)

The following theorem relates the redundancies of a sub-model (M |P) with those of
the FGM M and the complamentary partial model defined with its relations included in
(V \ P).

10

Theorem 5. Let M = (V,F) be a well-formed FGM, P be a subset of V, and M ′ =
(V \ P,F ′) be the complementary partial model of M generated by the set of relations
F ′ = F \ F ′

P , with F ′
P the subset of F involving at least one variable from P (F ′

P =
{Fj|Fj ∈ F ∧Dom(Fj) ∩ P �= ∅}). Then r(M) = r(M |P) + r(M ′).

Proof. Let M = (V,F) be a well-formed FGM, and P and D be a partition of V, i.e. V =
P∪D and P∩D = ∅. Let F ′ and F ′

P be the two subsets partitionnning F : F ′ = {Fj , Fj ∈
F ∧Dom(Fj) ⊂ D} and F ′

P = {Fj, Fj ∈ F ∧Dom(Fj) ∩ P �= ∅}. Let us consider the set
FP = {(Fj|P)|Fj ∈ F ∧Dom(Fj)∩P �= ∅}. As the restriction operation does not change
the dimension of equations, we have

∑
Fj∈F ′

P
dim(Fj) =

∑
Fj∈FP dim(Fj). Remember also

that a sub-model of a well-formed FGM is a well-formed FGM (c.f. theorem 3), and that
a partial model of a well-formed FGM is also a well-formed FGM. Hence :

r(M)− r(M ′) =
∑
Fj∈F

dim(Fj)−
∑
Vi∈V

dim(Vj)−
∑

Fj∈F ′
dim(Fj) +

∑
Vi∈D

dim(Vi)

=


∑

Fj∈F
dim(Fj)−

∑
Fj∈F ′

dim(Fj)


−

(∑
Vi∈V

dim(Vi)−
∑
Vi∈D

dim(Vi)

)

=
∑

Fj∈F ′
P

dim(Fj)−
∑
Vi∈P

dim(Vi)

=
∑

Fj∈FP

dim(Fj)−
∑
Vi∈P

dim(Vi)

= r(M |P)

For simple well-formed FGMs, we have the following obvious result :

Theorem 6. The redundancy of a simple well-formed FGM M = (V,F) is r(M) =
|F| − |V|.
Proof. The proof comes directly from the definitions.

In order to detect the model defects previously outlined, we want to test if the redun-
dancies of all possible non-empty sub-models are positive. We introduce the following two
definitions which generalize this property.

Definition 14. Let M = (V,F) be an FGM. The set P ⊂ V of primitives is said to be
determined by M iff r(M |P) ≥ 0 (the sub-model (M |P) has a positive redundancy).

Definition 15. An FGM M = (V,F) is determinable iff all the non-empty subsets of V
are determined by M .

If M is not determinable, then there exist in general an infinity of instances of the
variables exactly satisfying the model. If M is composed of linear equations, the preceding
statement is turned into an implication.

Example : To illustrate the preceding definitions, let’s consider the model M5 de-
picted in Fig. 8. Considering its derived simple FGM (Fig. 2), we can calculate the
redundancies of the following sub-models :

11

• (M5|{L1}), determinable (r(M5|{L1}) = 4− 2 = 2),

• (M5|{L2}), determinable (r(M5|{L2}) = 4− 2 = 2),

• (M5|{L1, L2}), determinable (r(M5|{L1, L2}) = 7− 4 = 3),

• (M5|{P2}), non determinable (r(M5|{P2}) = 1− 2 = −1),

• (M5|{L1, L2.P2}), non determinable ((M5|{L1, L2.P2}) = 7 − 6 = 1but {P2} is not
determined by M5 as r(M5|{P2}) = −1),

• (M5|{L1, L2.P3}), determinable,

• M is not determinable.

We now derive some properties characterizing determinable FGM.

Theorem 7. Let M = (V,F) be a determinable FGM. Then, ∀P ⊂ V, the sub-model
(M |P) is determinable.

Proof. As all subsets of V are determined by M , all the subsets of P are determined by
M , and thus by (M |P).

Theorem 8. Let M = (V,F) be a well-formed model such that r(M) ≥ 0. If for all subset
V ′ of V, the partial model generated by {Fi|Fi ∈ F ∧Dom(Fi) ⊂ V ′} is not determined,
then M is determinable.

Proof. Let M = (V,F) be a well-formed model such that r(M) ≥ 0. Suppose that M
is not determinable, i.e. there exists a subset P of V such that r(M |P) < 0. We have
r(M) = r(M |P) + r(M ′) (theorem 5), M ′ = (V ′,F ′) being the partial model generated
by F ′ = F \ F ′

P , with V ′ = V \ P and F ′
P = {Fj|Fj ∈ F ∧ Dom(Fj) ∩ P �= ∅}. Thus

F ′ = {Fi|Fi ∈ F ∧Dom(Fi) ⊂ V ′}, and r(M ′) ≥ −r(M |P) > 0. Thus M ′ is determined,
and the modus ponens rule leads to the theorem statement.

Theorem 9. Let M1 = (V1,F1) and M2 = (V2,F2) be two independant well-formed FGMs
(V1 ∩ V2 = ∅). The FGM M = (V1 ∪ V2,F1 ∪ F2) is determinable iff the models M1 and
M2 are determinable.

Proof. The proof is straightforward.

4 Decomposition

The adjustment procedures of functional models with numerous parameters and con-
straints are in practice a heavy burden. When the optimization criterion is the least
squares criterion, then each iteration of the adjustment necessitates to compute the solu-
tion of a linear system. So each iteration is then done in O(n3) where n is the number of
unknown components. Moreover, when one tries to compute predicted variances of the
parameters and the relations, then the entire matrix of size O(n2) has to be inverted. A
solution for accelerating the overall procedures involved in the calculation of estimates

12

Figure 9: Example of decomposition of a simple FGM

would be to decompose a functional into smaller models which can be solved in a given
order. Such a decomposition can be calculated when using an FGM.

The first part of this section is dedicated to the definition of the decomposition problem
(section 4.1). In the second part of this section, we introduce a class of algorithms
constructing a decomposition in an incremental way (section 4.2). We also prove that
one of the algorithms computes, if it exists, a determinable decomposition in polynomial
time. This algorithm can be used to test if a given FGM is determinable.

4.1 The decomposition problem

Let’s begin by defining what a decomposition of a FGM is.

Definition 16. A decomposition of a well-formed FGM M = (V,F) is a family of well-
formed sub-models (Mi|Ei)i≥1 with :

• E1, ..., En are disjoint sets of primitives of M partitioning V = ∪n
k=1Ek

• M1, ..., Mn are disjoint partial models of M defined as Mi = (∪i
j=1Ej ,∪i

j=1FMj
),

where FMj
is a subset of F such as the domain set of each constraint Fk ∈ FMj

is
included in ∪i

j=1Ej and contains variables of Ei : FMi
= {Fj |Fj ∈ F∧Dom(Fj)∩Ei �=

∅ ∧Dom(Fj) ⊂ ∪i
j=1Ej}.

A decomposition of a FGM can be seen as a nested set of partial models. As the
sets of primitives E1, ..., En are disjoint, a decomposition forms a hierarchy of models.
Example : Fig. 9 illustrates the previous definition. On that figure, a simple FGM
is depicted. The sets E1, FM1, E2, FM2, E3 and FM3 form the decomposition. The FGMs
forming the decomposition are M1 = (E1, FM1), M2 = (E1 ∪ E2, FM1 ∪ FM2) and M3 =
(E1 ∪ E2 ∪E3, FM1 ∪ FM2 ∪ FM3).

Definition 17. A determinable decomposition (Mi|Ei)i≥1 of a well-formed FGM M is a
decomposition such that each (well-formed) submodel (Mi|Ei) is determinable.

The previous definition leads to the following theorem, which relates determinable
decompositions to determinable FGMs :

Theorem 10. If there exists a determinable decomposition (Mi|Ei)i≥1 of a FGM M then
M is determinable.

13

Proof. We consider a decomposition (Mi|Ei)i≥1 of an FGM M = (V,F). We will show
that if M is not determinable, then there exists i such that (Mi|Ei) is not determinable.

If M is not determinable, then there exists, according to the definition, a non empty
subset P of V such that P is not determined by M . According to the definition of a
decomposition of an FGM, there exists i such that P is included in the variables of Mi,
i.e. P ⊂ ∪i

k=1Ek. As Mi contains only a subset of the relations of M , P is not determined
by Mi. Let’s decompose P into two disjoint sets P ′ = P ∩ Ei and P ′′ = P \ P ′. Let us
consider that P ′′ is determined by a model Mj with j < i, i.e. r(Mj|P ′′) ≥ 0 (if it is not
the case, we can recursively take P ′′ and Mj in place of P and Mi).

According to the theorem 5, we calculate the redundancies : r(Mi|P) = r((Mi|P)|P ′)+
r((Mi|P)′) < 0 (1), with (Mi|P)′ = (P ′′,F ′′) being the partial model generated by F ′′ the
set of all the relations of (Mi|P) included in P ′′ = P \ P ′.

Note that by construction, ∪Fj∩P�=∅Dom(Fj|P) ⊂ P. Then, ∪Fj⊂FMj
Dom(Fj|P) ⊂

P ′′, and consequently r((Mi|P)′) ≥ r(Mj|P ′′) ≥ 0 (2).
The relations (1) and (2) above lead to r((Mi|P)|P ′) = r(Mi|P ′) < 0, and P ′ is not

determined by Mi. (Mi|Pi) is not determinable (as a subset P ′ of Pi is not determined by
(Mi|P)) and thus (Mi|Ei) is not determinable. The theorem holds by applying the modus
ponens rule.

4.2 A decomposition algorithm

In this section, we present an algorithm computing a determinable decomposition of an
FGM. Section 4.2.1 describes the algorithm. Section 4.2.2 gives a concrete example.
Section 4.2.3 details the complexity of the decomposition algorithm.

4.2.1 The algorithm

Decompositions of an FGM can be computed by the algorithm decomposition(M, M1)
(procedure 1). It constructs a decomposition of an FGM M = (V,F) iteratively from a
given partial model M1 = (E1,F1) generated by F1 ⊂ F .

CM(D,P) is the set containing all the relations of M involving variables from the set
D and P.

H is an oriented inclusion graph (c.f. appendix B) that is used in that case for storing
functional constraints. To each vertex s of H , we associate a couple (E[s], F [s]) where
E[s] ⊂ V is a subset of variables of M , and F [s] ⊂ F is a subset of constraints of M
satisfying ∀Fi ∈ F [s], Dom(Fi) = E[s] (the domain set of each constraint stored in F [s]
should be equal to the set E[s] associated with the same vertex). The successors s′ of a
vertex s in H are associated with the biggest sets E[s′] included in E[s]. H is used to
retrieve in a convenient way sub-models that have required properties, thanks to one of
the function choose model described below.

H may be used to retrieved all the different partial models of an FGM. It can be done
by considering the coverings of a vertex s of H , which are composed of a subset of the
covering of maximum size of s (c.f. appendix B, section B.3).

The function choose model(H) (function 2) is a possible candidate for choosing dif-
ferent models that form a determinable decomposition. It selects thanks to H the sets Ei

14

Procedure 1 decomposition(M = (V,F), M1 = (E1,F1))

1: P ← V \ E1
2: D ← E1
3: i← 2
4: while Ei−1 �= ∅ and P �= ∅ do
5: E ← ∅
6: for all Fj ∈ CM(D,P) do
7: E ← E ∪ (Dom(Fj) ∩ P)
8: insert(H, (Fj |P))
9: end for

10: for all Fj , Dom(Fj) ⊂ E do
11: insert(H, Fj)
12: end for
13: (Ei,FMi

)← choose model(H)
14: D ← D ∪ Ei

15: P ← V \ D
16: empty(H)
17: end while

and FMi
needed to define the new model (Mi|Ei) of a decomposition.

Function 2 choose model(H)

1: compute partial models(root[H])
2: E ← ∅
3: F ← ∅
4: simplify inclusions(root[H], E ,F)
5: return (E ,F)

The procedure compute partial models(s) (procedure 3) replaces the relations F [s]
associated to a set E[s] of variables stored in H by the set consisting of all the rela-
tions involving the variables E[s] inserted in H . Thus it calculates the partial mod-
els M [s] = (E[s], F [s]) generated by the set F [s] of relations included in each E[s].
This is done by a modified depth first traversal algorithm. The entries of the array
V isited must be initialized to False before the first call of the procedure. The function
r[s] = compute redundancy(E[s], F [s]) computes the redundancy of the model M [s] =
(E[s], F [s]).

The procedure simplify inclusions(s, E ,F) (procedure 4) function erases from H
vertices associated to non determined partial models with no determined partial models.
The determined models M [s] without determined partial model (which correspond to the
vertices s without successor) are added to the constructed model (E ,F). According to the
theorem 8, such models are determinable FGMs. According to theorem 9, the constructed
model (E ,F) is determinable.

With such a strategy, the procedure decomposition constructs a determinable decom-
position if it exists (i.e. if the model is determinable) and if all the variables of the model

15

Procedure 3 compute partial models(s)

1: if V isited[s] = False then
2: V isited[s]← True
3: for all s′ ∈ Succ[s] do
4: compute partial model(s′)
5: F [s]← F [s] ∪ F [s′]
6: end for
7: r[s] = compute redundancy(E[s], F [s])
8: end if

Procedure 4 simplify inclusions(s, E ,F)

1: if V isited[s] = False then
2: V isited[s]← True
3: for all s′ ∈ Succ[s] do
4: simplify inclusions(s′, E ,F)
5: end for
6: if Succ[s] = ∅ then
7: if r[s] < 0 then
8: delete(s)
9: else

10: E ← E ∪ E[s]
11: F ← F ∪ F [s]
12: end if
13: end if
14: end if

16

Figure 10: Hypergraph structure of a simple FGM

can be accessed from the variables of M1. That statement can be proved by remarking that
the function choose model constructs the set of determinable partial models containing
the smallest set of variables.

If M is not determinable, then the algorithm ends with P �= ∅, i.e. there exists subsets
of undetermined variables.

4.2.2 Example

We illustrate the behavior of the algorithm on the simple FGM whose hypergraph struc-
ture is depicted in Fig. 10. In this figure, we also present the first model of the decom-
position, noted M1. In this example, the variables V1 and V2 of M1 can be viewed as
data of a concrete problem. Thus, the example illustrates how to compute a determinable
decomposition either from a determinable partial model of a FGM, or from a subset of
its primitives.

The successive iterations of the decomposition algorithm are depicted in Fig. 11. This
figure shows the different inclusion graphs constructed during the first two For loops of
the algorithm.

During the first iteration, the cut between the variables V1 and V2 and the other
variables of the model consists of the relations F1, F2, F7, and F8, which are included in
the inclusion graph by the first For loop (line 6). The second For (line 10) loop treats
the relation F9. The non-determined variables that are treated in that iteration are V3,
V4, and V6. The models corresponding to the vertices C and D represent determined
models, and are selected for constituting the second model of the decomposition (the
model (E2, FM2)).

Two more iterations are computed before the algorithm ends. The final decomposition
is depicted in Fig. 12.

Note that the relation F9 does not appear in the decomposition. Such a relation can
be added by using a modified version of the function choose model.

The advantages of computing a decomposition of an FGM can be illustrated on this
example. The computation of instances of the variables of the FGM can be done by com-

17

Figure 11: Iterations of the decomposition algorithm

Figure 12: Calculated decomposition of the FGM in Fig. 10

18

puting successively the instances of the FGMs (M1|E1), (M2|E2), (M3|E3) and (M4|E4).
Considering that the computation time for computing instances of the variables of a de-
terminable FGM is of order n3, with n being the number of variables of the FGM, on this
concrete example, we compute the approximation in a time order 23 + 23 + 1 + 23 = 25
per iteration with the decomposition. The resolution of the whole problem by a brute
force method would be of order 73 = 343 per iteration without taking into account the
complexity of the building of the matrix of the linear system solved by each iteration
(performed in O(nm2), with m the number of equations).

4.2.3 Upper bound of the time complexity for computing a decomposition

In this section, we discuss the time complexity of the algorithm.
The insertion in the inclusion graph is realized in O(ns), where ns is the number of

vertices of the graph. The cut can contain in the worse case all the relations of the graph.
The complexity of the function choose model does not exceed O(m2) where m = |F| (ns

vertices explored, for which the redundancy of the associated model has to be calculated).
In each iteration, at least one variable is removed from P (if no variable is removed,

then the function stops). Thus the algorithm is in O(nm2) in the worse case, with n = |V|.
This upper bound is coarse and the true complexity is in fact smaller, using results of
[10], in which the inclusion graph has been proven to have a subquadratic complexity.
Moreover, the worse case of the algorithm is very unlikely to happen.

Note also that the decomposition can be performed off-line as a pre-treatment when
one wants to fit several data sets.

5 Perspectives

We give two perspectives of the present work. In section 5.1, we are interested in coding
FGMs with the smallest possible code. In section 5.2, we introduce a stochastic model on
an FGM, extending the use of such model to real world applications.

5.1 Codes of FGMs

In this section, we are interested in coding FGMs, and more specifically in the sizes of such
codes. Some applications require the derivation of a code of minimum size permitting to
compute a given set of primitives of the model. This code can be used for example in
applications involving the calculation of the so called MDL criterion [11][7]. This code
can thus be used to calculate compressed models, which can then be used to compress
data.

Moreover, the reduction operations that are presented here can also be used to reduce
the number of parameters of FGMs, which can then be optimized with less operations.

A code of an instance of a simple and well-formed FGM can be decomposed into a list
of instances of variables of the model, and a list of constraints involved in the described
model. The instance of some variables can be deduced from the instance of other variables
and constraints (with associated smooth functions) of the model. This statement is based
on an argument that derives from the implicit function theorem (see appendix C).

19

Let us consider a simple well-formed FGM M = (V, F), and an instance (M |V = v)
satisfying each constraint of the model. Each constraint Fi ∈ F can be put, considering
that the hypotheses of the implicit equation theorem hold, under the following form :

Vi = gj(Vi−j1, ..., Vi−jnj−1)

Note that, according to the implicit function theorem, the expression of gj depends on
the instance of the model.

With these explicit forms, an ordered sequence of variables of M can be constructed.
Thus, by giving the instances v1, ..., vk of the first k variables V1, ..., Vk of the sequence,
and by using the given explicit forms of the relations of the model, we can compute the
instances of the remaining variables Vk+1, ..., V|V| of the sequence.

A valid ordered sequence can be constructed from a determinable decomposition
(Mi|Ei)i≥1 of M (c.f. section 4), such that :

• E1 = V1, ..., Vk,

• ∀i > 1, ∀Fj ∈ FMi
, |Dom(Fi|Ei)| = 1. Thus, each relation of a given model Mi, i > 1

of the decomposition involves at most one variable of Ei.

A sequence can be constructed by concatenation of the sets Ei. The set E1 is called in the
following text a generating set of the simple FGM.

Definition 18. Let M = (V,F) be a simple well-formed FGM. The set G ⊂ V is a
generating set of M iff there exists an order V1, ..., V|G|, V|G|+1..., V|V| of all the variables of
V such that :

• G = {V1, ..., V|G|},
• ∀k > |G|, ∃Fj ∈ F such that Vk ∈ Dom(Fj) and Dom(Fj) ∩ {Vk+1, ..., V|V|} = ∅.

G is said to be minimal if there exists no generating set smaller than G.
Every subset of variables of M is a generating set, leading to a decomposition that

verifies the above properties. The set composed of all the variables of a simple FGM M
is a generating set of M , and thus that at least this generating set exists.

Given the instances of all the variables of a generating set of a simple well-formed
FGM M , the instances of the other variables can be computed in principle. If both a
coder and a decoder of a model know a given simple and well-formed FGM M , then the
code of minimal size coding an instance of the model satisfying exactly its constraints is
one of its minimal generating set, i.e. the smallest possible generating set of M . This one
compresses at most an instance of a model satisfying its constraints.

The problem treated in the following paragraphs is to determine a generating set of
a simple and well-composed FGM M . It can be obtained thanks to the following two
algorithms that are briefly described.

The first one iteratively removes a variable and relations linked to that variable from
M . Ultimately, when no relation remains, we obtain a set of isolated vertices that is a
generating set of M . Relations removed in an iteration of the algorithm can be stored, as

20

they can be used in order to effectively calculate the decomposition. By choosing at each
iteration the variable with the minimum number of relations involving different variables,
then in simple cases such as tree structures, it is easy to show that the remaining isolated
variables constitute a minimal generating set.

The second algorithm works differently. It substitutes variables in the relations by
choosing at each iteration a relation giving an explicit form of the variable Vi, and then
by replacing the variable by the explicit form in all the relations where Vi is involved.
The algorithm is re-iterated until no more substitution can been computed on the FGM,
i.e. until the FGM is composed of independent constraints (each variable participating
in a unique relation). The ultimate FGM constructed that way can be used to retrieve a
minimal generating set of the previous FGM, by choosing a variable that is determined
by each of the constructed relations (the remaining variables form the generating set).
The main advantage of this algorithm is to compute a model with less variables that can
be effectively used instead of the complex model it derives from. Such a model is called
a substituted model.

Some problems are not treated here. For example, for most applications, we can be
interested in encoding a subset of primitives of an FGM that are directly measured (the
data) with a partial FGM such that the size of its generating set is minimum. To put it
in another way, we want to delete relations and variables of an FGM that are not relevant
or are redundant for coding the data.

5.2 Stochastic FGMs

Practical applications need to model the errors of variables and relations, especially when
a model is confronted with real world measurements. The uncertainty on variables can
be explicitly taken into account in the model by associating probability laws to vertices
and hyperedges of the functional model, which leads to the following definition.

Definition 19. A stochastic FGM is a FGM M = (V,F) where random variables of
known distribution are attributed to the elements of V and F .

When not otherwise specified, the distribution of the variables and the residuals of a
stochastic FGM are considered to be normal distributions N(vi,

∑
vi

) (for the variables)
and N(0,

∑
Rj

) (for the functional constraints’ residual), vi being the nominal value of vi.
We are interested in calculating the propagation of variances on a FGM given an

instance (M |V = v) and either variances of certain primitives of M , or variances of the
relations of M .

We can associate a cost function denoted c(M |V = v) with values in IR+ to instances
(M |V = v) of an FGM. According to its definition, this function can be used to compare
different instances of one or many FGMs. We consider, in order to simplify the subsequent
problems, that this function depends only on the residuals of the relations of the model.
Classical examples of cost functions defined on stochastic FGMs are :

• the goodness-of-fit of a stochastic FGM (M |P), which measures the a posteriori
probability that the model relations are satisfied given instances (M |V = v) of the
model.

21

• a general model selection function realizing a compromise between a model com-
plexity and the adaptation of a parametric model to its data.

We can also study in that context the error propagation problem. This problem can
be formulated in two ways.

1. The first formulation is to calculate the error in variables given the error in relation.

2. The second formulation is to calculate all the errors in an instance of an FGM when
certain variables have been measured and the other variable instances have been
estimated.

6 Conclusion

In this technical report, we introduced the notion of a functional graphical model (FGM).
FGMs may be viewed as system of constraints that can be used to model and encode
various problems, from geometry, stereovision, to radiometry, etc.

We have characterized some new properties, such as the determinability (definition 14
and 15) of a model, that justify the usefulness of this representation.

We also introduced a class of algorithms that can be used to drastically reduce the
computing cost of optimization of variables of functional models. On a simple example
in section 4.2.2, a decomposition has been shown to reduce by a factor of 10 the time to
optimize parameters’ model.

The perspectives of this work are various from the theoretical point of view as well
as from the practical one. The coding issues and the extension to stochastic FGMs have
been outlined in section 5.2. Further extensions of this work should cover:

1. compression issues,

2. cost for model selection definition,

3. model construction by (combinatorial) optimization,

4. (robust) estimation of parameters and variances,

5. ...

A Hypergraphs

We recall here some definitions of [2].
A hypergraph is a couple M = (V,F), where V is a set of objects called the vertices

of the hypergraph, and F is a set of subsets of V, called hyperedges of the hypergraph.
A covering of the vertices of a hypergraph M = (V,F) is a family E ⊂ F such that

∪Fi∈EFi = V. A covering of a subset V ′ of vertices of a hypergraph M = (V,F) is a family
E ⊂ F such that ∪Fi∈EFi = V.

The partial hypergraph of M = (V, E) generated by a family E ⊂ F is an hypergraph
(VE ,F) where VE = ∪Fi∈EFi.

22

Figure 13: An example of hypergraph

Figure 14: An example of a cut CM(V ′, V ′′) of an hypergraph

The sub-hypergraph of M = (V,F) generated by the set A ⊂ V is the hypergraph
(A,FA) where FA = {Fi ∩ A|Fi ∈ F ∧ Fi ∩A �= ∅}.

Fig. 13 represents the hypergraph M = ({A, B, C, D, E}, {F1, F2, F3, F4}) with F1 =
{A, B, C}, F2 = {B, C}, F3 = {B, D}, and F4 = {B, D, E}. The family {F1, F4} is a cov-
ering of the hypergraph. The sub-hypergraph generated by {A, B, C} is the hypergraph
({A, B, C}, {F1, F2}). The partial hypergraph generated by {F2, F3} is the hypergraph
({B, C, D}, {F2, F3}).

Let M = (V,F), and let V ′ and V ′′ be two subsets of V such that V ′ ∪ V ′′ = V.
The cut CM(V ′,V ′′) of M is the set of hyperedges CM(V ′,V ′′) = {Fj |Fj ∈ F , Fj ∩ V ′ �=
∅ ∧ Fj ∩ V ′′ �= ∅}. We can notice that CM(V ′,V ′′) = FV ′ ∩ FV ′′ = FV ′∩V ′′ with FA =
{Fi|Fi ∈ F ∧ Fi ∩ A �= ∅} and F∅ = ∅. Fig. 14 demonstrates the definition of a cut of a
hypergraph. In that figure, CM(V ′, V ′′) is the cut of the subsets V ′ and V ′′ of vertices.

B Oriented Inclusion Graph

The data structure described in this section can be used to store an hypergraph and to
efficiently compute numerous operations.

In the first section, we describe the structure (section B.1). In the second section, we
propose a simple algorithm for incremental construction of the structure (section B.2).
Finally, we show how the structure can be used to enumerate all the coverings of a
hypergraph (section B.3).

B.1 Properties of an oriented inclusion graphs

Let’s consider a set V of vertices and a set F of subsets of V. An oriented inclusion graph
H = (S, A) stores the oriented Hasse diagram of the inclusion relation of the sets Fi ∈ F .

23

a) An hypergraph b) Its oriented inclusion graph

Figure 15: An hypergraph and its inclusion graph

In [10] it is called the subset graph. Each vertex s ∈ S of H is a couple (E[s], F [s]), where
E[s] is a part of V, and F [s] is a subset of F , such that ∀Fi ∈ F [s], Fi = E[s]. Fig. 15.a
represents an hypergraphand and Fig. 15.b its associated inclusion graph.

The edges are defined thanks to the predecessors Pred[s] and the successors Succ[s]
of a vertex s. The set of predecessors Pred[s] of s is composed by the vertices s′ whose
associated sets E[s′] are the smallest non equal sets containing E[s]. The set of successors
Succ[s] is composed by the vertices s′ whose associated sets E[s′] are the biggest non
equal sets included in E[s].

Considering an inclusion oriented graph H = (S, A) of a hypergraph M = (V,F), the
following properties must be satisfied :

1. the only vertex s = root[H] without predecessor is defined such that E[s] = V ,

2. ∀s ∈ S, ∀Fi ∈ F , Fi = E[s]⇒ Fi ∈ F [s],

3. ∀s, s′ ∈ S, E[s] = E[s′]⇒ s = s′ (the vertices represent different sets of V),

4. ∀s ∈ S, ∀s′ ∈ Pred[s], E[s] ⊂ E[s′] (the predecessors s′ of a vertex s are associated
to sets E[s′] containing E[s]),

5. ∀s, s′ ∈ S, ∀s′′ ∈ Pred[s], E[s′′] ⊂ E[s′] ⇒ s′ /∈ Pred[s] (E[s′′] is one of the smallest
sets containing E[s]),

The following two properties show explicitly how to construct edges of H :

• ∀s, s′ ∈ S, (s, s′) ∈ A⇒ s ∈ Pred[s′].

• ∀s, s′ ∈ S, s ∈ Pred[s′]⇒ s′ ∈ Succ[s].

The following properties hold when all the previous ones hold:

• ∀s ∈ S, ∀s′ ∈ Succ[s], E[s′] ⊂ E[s] (the successors s′ of a vertex s are associated to
sets E[s′] contained by E[s]), which comes from property 4.

• ∀s, s′ ∈ S, ∀s′′ ∈ Succ[s], E[s′] ⊂ E[s′′] ⇒ s′ /∈ Succ[s] (E[s′′] is one of the biggest
sets contained by E[s]), which comes from property 5.

24

B.2 Insertion of a set in an inclusion oriented graph

An oriented inclusion graph H of a hypergraph M = (V,F) can be constructed by an
incremental algorithm. The first step consists of initializing the root vertex root(H) of
H with the associated sets E[root(H)] = V and F [root(H)] = ∅. Then, each hyperedge
Fi ∈ F can be inserted incrementally in H by the algorithm 5.

Procedure 5 insert(H, Fi)

1: EnsPred← predecessors(root(H), Fi)
2: if |Pred| = 1andF [EnsPred[0]] = Fi then
3: E[EnsPred[0]]← E[EnsPred[0]] ∪ {Fi}
4: else
5: s← NewV ertex(Fi)
6: Pred[s]← EnsPred
7: Succ[s]← ∅
8: for all s′ ∈ Pred[s] do
9: for all s′′ ∈ Succ[s′] do

10: if F [s′′] ⊂ Fi then
11: replace− predecessor(s′, s, s′′)
12: Succ[s]← Succ[s] ∪ {s′′}
13: else
14: Succ[s]← Succ[s] ∪ successors(s′′, Fi)
15: end if
16: end for
17: end for
18: end if

The function predecessors(s, Fi) (algorithm 6) returns the smallest non equal sets
E[s′] containing Fi associated to vertices s′ accessible from s. If there exists a vertex s′

such that E[s′] = Fi then predecessors(s, Fi) returns the set {s}.
The boolean array V isited avoids several explorations of a vertex. Every vertex s with

associated set containing Fi is visited once, and every vertex of the graph is visited at
most once. By considering that the sizes of the sets Fi are bounded by a constant value
(which is true for practical applications), the function is linear in the number of vertices
and arcs of the graph.

The function successors(s, Fi) (algorithm 7) returns the vertices s′ accessible from s
such that E[s′] are the biggest sets included in Fi. If there exists a vertex s′ such that
E[s′] = Fi then successors(s, Fi) returns the set {s}.

B.3 Coverings of an hypergraph

All the coverings of an hypergraph can be easily retrieved thanks to the oriented inclusion
graph. Let M = (V,F) be an hypergraph. The covering E of a set V ′ ⊂ V of the vertices
of M is of minimum (resp. maximum) size iff, for every covering E ′ of V ′, |E ′| ≥ |E| (resp.
|E ′| ≤ |E|). The coverings of minimum size of the sets Fi ∈ F are the sets Fi.

25

Function 6 predecessors(s, Fi)

1: P ← ∅
2: if V isited[s] = False then
3: V isited[s]← True
4: if Fi ⊂ E[s] then
5: for all s′ ∈ Succ[s] do
6: if Fi ⊂ E[s′] then
7: P ← P ∪ predecessors(s′, Fi)
8: end if
9: end for

10: if P = ∅ then
11: P ← {s}
12: end if
13: end if
14: end if
15: return P

Function 7 successors(s, Fi)

1: P ← ∅
2: if V isited[s] = False then
3: V isited[s]← True
4: if E[s] ⊂ Fi then
5: return {s}
6: else
7: for all s′ ∈ Succ[s] do
8: if Fi ⊂ E[s′] then
9: P ← P ∪ successors(s′, Fi)

10: end if
11: end for
12: end if
13: end if
14: return P

26

Let H be the inclusion oriented graph of the hyperedges of M . The covering of
maximum size of any vertex s is given by a simple traversal of the graph from s (algorithm
8).

Function 8 maximum − covering(s)

1: C ← ∅
2: if V isited[s] = False then
3: V isited[s]← True
4: for all s′ ∈ Succ[s] do
5: C ← C ∪maximum − covering(s′)
6: end for
7: end if
8: return C

The covering F ′ of maximum size of a subset V ′ of vertices of a hypergraph can be
determined very easily. The vertices s of the inclusion graph H of the hypergraph such
that E[s] ⊂ V ′ are first determined by the function successors(root[H],V ′). Then the
union of the maximum covering of all the vertices found by the previous algorithm can
be found.

If no covering of V ′ exists, then ∪Fi∈F ′Fi �= V ′.

C Implicit Function Theorem

We recall here one form of the implicit function theorem that links an implicit function
with its explicit form.

Theorem 11. (Implicit Function Theorem)[4] Let U ⊂ IRn+m be an open set and f a Ci

function defined as :
f : U → IRm

(x, p) �→ f(x, p)

Suppose that (x0, p0) is a point of U such that f(x0, p0) = 0 and det(δf
δp

(x0, p0)) �= 0.
Then there exists a neighborhood U ′ ⊂ IRn containing x0 and a unique C∞ function
g : IRn ← IRm such that the two relations f(x0, p0) = 0 and g(p0) = x0 are equivalent.

The definition of a (sub)manifold is

Definition 20. Let V be a subset of IRn. V is a d-dimensional Cp submanifold if, for
every x ∈ V , there exists an open neighborhood U ⊂ IRn of x and a function f : U → IRn

such that f(U) ⊂ IRn is open, f is a Cp diffeomorphism (f is a bijection, and f and f−1

are of class Cp) onto its image and f(U ∩ V) = f(U) ∩ IRn.

In particular, if U ⊂ IRn+m be an open set and f a Ci function defined as f : U → IRm,
then V = {u ∈ U, f(u) = 0} is a n-dimensional Ci manifold.

27

References

[1] Alquézar R., Serratosa F., Sanfeliu A., “Distance between Attributed Graphs and
Function-Described Graphs Relaxing 2nd Order Restrictions”, SSPR2000&SPR 2000,
FJ. Ferri & al. eds, Lecture Notes in Computer Science vol. 1876, 2000, 277–286

[2] Berge C., “Hypergraphs, Combinatorics of Finitite Sets”, North-Holland Mathemati-
cal Library, vol. 45, 1989, 255 pages

[3] Baker S., Nayar S. K.,Murase H., “Parametric Feature Detection”, International Jour-
nal of Computer Vision, vol. 27(1), 1998, 27–50

[4] Faugeras O., “Three-Dimensional Computer Vision, A Geometric Viewpoint”, The
MIT Press, Cambridge, Massachusetts, 1999, 663 pages

[5] Förstner W., “Reliability Analysis of Parameter Estimation in Linear Models with
Application to the Mensuration Problems in Computer Vision”, Computer Vision,
Graphics and Image Processing, vol. 40, 1987, 273–310

[6] Förstner W., “Generic Estimation Procedures for Orientation with Minimum Redun-
dant Information”, 2nd Course of Digital Photogrammetry, 1999

[7] Grünwald P., “Model Selection Based on Minimum Description Length”, Journal of
Mathematical Psychology vol. 44, 2000, 133–152.

[8] Lowe D. G., “Fitting Parametrized Three-Dimensional Models to Images”, IEEE
Trans. on Pattern Analysis and Machine Intelligence, vol. 13(5). 1991, 441–450

[9] Michelena N. and Papalambros P., “A Hypergraph Framework for Optimal Model-
Based Decomposition of Design Problems”, Journal of Computational Optimization
and Applications, vol. 8(2), 1997, 173–196.

[10] Pritchard P., “On Computing the Subset Graph of a Collection of Sets”, Journal of
Algorithms, vol. 33, 1999, 187–203.

[11] Rissanen J., “A Universal Prior For Integers and Estimation by Minimum Description
Length”, The Annals of Statistics, vol. 11(2), 1983, 416–431.

28

