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Abstract

The study of visual object recognition is often motivated by the problem of recognizing
3-d objects given that we receive 2-d patterns of light on our retinae. Recent findings from
human psychophysics, neurophysiology and computational vision provide converging evi-
dence for a view-based recognition framework in which objects and scenes are represented
as collections of viewpoint-specific local features rather than 2-d templates or 3-d mod-
els. Hence the recent decade saw a gradual shift away from the 3-d object reconstruction
approach pioneered by Marr toward view-based approaches. This report summarizes our
contributions to this problem where we focus on the shape as recognition feature and apply
these findings in the area of Machine Vision. The first part presents an overview of the
framework, motivates the view-based recognition strategy, and introduces the hierachical
matching concept. Next, a short summary of a collection of six representative publications
of our work carried out in this field, and a discussion of how this fits into the framework is
given. The second part consists of the six papers themselves, where we start with a paper
on the general framework which is followed by three different applications of the framework
in Visual Inspection, Archaeology and Art History. The remaining two papers describe re-
cent work performed in 3-d vision as part of the object-based recognition concept. The first
paper is on the registration of range data, in which we propose a novel technique for range
image registration. The collection ends with a work on combining different 3-d acquisition
techniques within the hierarchical framework.

1 This work was partly supported by the Austrian Science Foundation (FWF) under grant
P13385-INF, the European Union under grant IST-1999-20273 and the Austrian Federal Min-
istry of Education, Science and Culture.
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Chapter 1

Overview

In nature, vision systems are of paramount importance to survival. The eye-brain com-
bination makes it possible to absorb, process and react to large amounts of information
about the surroundings, all without any physical contact [117]. The human visual system
as a functional unit including the eyes, the nervous system, and the corresponding parts
of the brain certainly ranks among the most important means of information processing.
Typical vision tasks that humans perform nearly without any conscious effort are:

• recognition of “interesting” details in a complex scene (e.g. a good friend on a busy
street);

• fast interpretation of local changes and appropriate reaction (e.g. driving a car);

• visual comparison (e.g. identification of a known human face);

• storing and retrieving of pictures (e.g. the local environment where one lives, a
mountain scenery, etc.);

The efficiency of the biological systems in such areas are beyond the capabilities of today’s
technical systems even with the fastest available computer systems. Nevertheless, it has
now been well over 30 years since several individuals and groups made concerted efforts to
automate visual perception in the research discipline of Computer Vision [65]. Computer
Vision, sometimes also called image understanding or scene analysis, describes the auto-
matic deduction of the structure and properties of a possibly dynamic three-dimensional
(3-d) world from either a single or multiple two-dimensional (2-d) images of the world as a
combination of image processing, pattern recognition, and artificial intelligence technolo-
gies [28]. Computer Vision describes a process that tries to recognize and locate position
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and orientation, as well as to describe imaged objects in a 3-d environment like the human
visual system does. An object is globally defined as something mental or physical toward
which thought, feeling, or action is directed. In our restricted view for human vision, an
object is something tangible and towards which an action can be directed. Therefore,
subsequent discussions will not treat spatiotemporal variations of amorphous material
distributions with diffuse borders such as clouds of smoke, objects are supposed to have
a (at least visually) well defined surface.

Since the description of the state of the physical world from inherently noisy and ambigu-
ous images of the world is a complicated goal to be accomplished in a reliable, robust,
and efficient manner, there have been attempts to solve this problem in its full generality;
however, there is no common solution available.

This habilitation thesis is a collection of different papers, each describing a vision or
recognition task for a specific type of application. Let us first have a closer look into
Machine Vision and Shape properties, then shortly summarize the view-based recognition
approach (Section 1.2) and which strategies can be used to perform the matching in
recognition (Section 1.3). Section 1.4 briefly summarizes the papers and Section 1.5
discusses how they fit into the framework presented.

1.1 Machine Vision and Shape Definition

From the early stages in computer vision researchers tried to convert the results achieved
in basic research into applications to prove that their algorithms work. The pattern
recognition and more generally the computer vision field has the potential and promise
to provide the technology to develop a variety of automated systems that are capable
of operating under diverse conditions, delivering consistent results, working in environ-
ments not suitable for humans, and situations where human workers have to perform a
repetitive, tiring and error prone task [11]. Many different (often called ”real-world”)
applications of computer vision were introduced, making work easier in the fields of nav-
igation, manufacturing, quality control, remote sensing, cartography, target recognition
and tracking, medical image analysis, document analysis, archaeology and art, to name a
few. Generally, these applications are multidisciplinary and require a combination of sci-
ence, engineering, and art, resulting in a challenging task to develop a successful computer
vision solution [11].

Historically, the first industrial application area was in the manufacturing industry, be-
cause there was a strong desire to automate the production process and to control the
final product. This application of computer vision is therefore called machine vision; the
relationship between machine automation and computer vision is also represented in the
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choice of the term. The term was introduced in the mid 80s; Batchelor, one of the pioneers
in this field, first used the expression ”practical pattern recognition” [7] and changed it
to Machine Vision in 1985 [9]. Haralick defines a machine vision system as ”a system
capable of acquiring one or more images of an object, capable of processing, analyzing
and measuring various characteristics of the acquired images, and interpreting the results
of measuring in such a way that some useful decision can be made about the object” [28].
This global definition shows that there are various different applications in industry in
general, however, there is no unique definition that can be found in the literature (see for
instance [9, 8, 28, 11, 28, 60, 117, 88, 81]).

Figure 1.1 shows the hierarchy of vision terms in a simplified diagram, all terms are em-
bedded in pattern recognition, since all use its methods. Other image analysis tasks are
not mentioned explicitly, other computer vision research areas are shown in an exemplary
manner only. There is no clear boundary between the tasks, the proposed subdivision
is structured hierarchically - from low machine vision tasks, like locating, to more so-
phisticated tasks like guidance and control. Motion estimation applications for instance
may also use recognition and identification techniques, measurement operations will often
result in an accept/reject decision, which can be considered as inspection. However, there
are applications that use only a limited number of pattern recognition techniques.

Figure 1.1: Hierarchical taxonomy of vision terms (simplified).

4



A priori knowledge about the object is used implicitly or explicitly by all machine vision
systems, visual inspection for example can only be performed by matching the object
under inspection with a set of predefined conditions of acceptability. The a priori known
specifications are described by an explicit object model (a system of assumptions, data,
and inferences, that describe the object), where all relevant object features are described.
A typical method to build the object model consists of defining the radiometric and
geometric features of the object [91]. Since the radiometric features of an object vary
under different illumination conditions, geometric features, also called shape features, are
preferred (shape features however also vary due to different viewing directions).

This work refers to shape based machine vision, so it is necessary to consider what is
meant by ”shape”. Most people undoubtedly have an intuitive feeling for the meaning of
the term, sensing its relatedness to such concepts as form and structure. Nevertheless,
a precise definition of shape has proved elusive. Instead, researchers have adopted the
working definition that shape is an aspect of a stimulus that remains invariant despite
changes in size, position, and orientation [106]. For example, 2-d visual stimuli have
the same shape if there exists a transformation of spatial scale (e.g., magnification) or
a rotation in the picture plane that renders them identical [107]. Similarly, 3-d objects
have the same shape if their volumes can be equated by size changes or a combination of
rotations about three spatial axes.

In our view the term shape is used for the description of the geometric form of the object
generated by its surfaces. The object can be characterized in this sense by a set of surface
normals (shape) and a set of intensity values like surface texture, color, and reflection.
The shape geometry can be characterized at any time as a topologically connected set
of points, which is topologically compact (closed and bounded) and which is invariant to
Euclidian geometric mappings [49, 54]. This means that shape in three dimensions is a
volume or, more generally a surface. Note that every volume is bounded by a surface, but
not every surface bounds a volume, the surface may not even be extendible to another
surface that encloses the volume (for example a Möbius strip [27]). The reconstruction
of three-dimensional object surfaces based on two dimensional visual mappings is only
possible for visible object surfaces [22, 114]. An object is entirely visible from outside, if
there exists a ray to each point of the surface that intersects the object only at this point.

Apart from our shape definition, other shape definitions also play an important role
in the Gestalt theory of psychology [50, 48, 72] (for instance visual grouping of point
patterns) and the shape theory of mathematical analysis [70] (for instance characterization
of mathematical surfaces in different dimensions).
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1.2 View Based Recognition

The study of visual object recognition is motivated by the problem of recognizing 3-d
objects given that we only receive 2-d patterns of light on our sensor. Marr stated that
the goal of vision is to reconstruct the scene [58]. Reconstruction assumes that visual per-
ception is a hierarchical process which starts with local features that are combined into
more complex descriptions [71]. At the endpoint of the reconstruction process Marr as-
sumed that viewer- centered descriptions (sketches) are remapped into 3-d object centered
representations [59]. This back-mapping is necessary to have a stable and invariant (over
changes in the sensor) representation of the image. Object representations should there-
fore be object-centered rather than viewer-centered. Based on this theory machine vision
researchers tried to implement reconstruction algorithms with only marginal success [65].
Thus, one strong argument for the view-based1 approach is that it does not require recon-
struction. This follows also the human vision theory since there viewer-centered images
are also taken as input for recognition [111].

Critics of the reconstructionist school favor in contrast the theory of Purposive Vision, a
paradigm also known as Behavioral Vision. In simple terms, this approach suggests that
vision has a purpose, a goal. Often this goal is action; it can be theoretical, practical or
aesthetic. When vision is considered in conjunction with action, it becomes easier.The
reason is that the descriptions of space-time, that the system needs to derive, are not
general purpose, but are purposive [4]. Thus, vision is more readily understood in the
context of the behaviors in which the system is engaged [5]. Consequently, vision attempts
to explore the aspects of the world that are important for the system at a given point in
time, instead of aiming at a general representation of the environment which, besides being
extremely difficult to extract, is probably not needed either. The interest in purposive
vision is largely motivated by the fact that all biological vision systems are highly active
and purposive [14]. The purposiveness of visual processes enables the formulation and
the solution of simpler problems that have a relatively small number of possible solutions
and can be treated in a qualitative manner[3]. This means that these descriptions are
good for restricted sets of tasks, such as tasks related to navigation, manipulation and
recognition. In our view, however, global recognition of objects does not always have a
specific purpose.

Object recognition and classification research are both concerned with the question ”what
is the object?”. To recognize an object as a car is not very different to putting the ob-
ject into the class ”car”. Thus both object classification and object recognition research
have to solve common problems, although these two research areas have evolved sepa-
rately [104]. One reason for this is the difference of focus of these two research areas:

1We use the term view-based, other common terms for this theory are exemplar-based, appearance-
based, and image-based
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typical classification studies have investigated the rules for the formation of classes, while
recognition research has mostly explored the perceptual characteristics of the recognition
process [6]. However, recent developments show that the principals governing the forma-
tion of classes are now coupled with the perceptual aspects of recognition [105]. Therefore,
classification and recognition are closely related research areas which enable us to use a
common research base and see the classification task as a more general recognition task
(if we want to classify an object as car or vehicle we can also recognize it as a Ferrari or
as the Ferrari of a specific person).

The image of an object changes as a function of viewpoint, lighting, size or location,
but we are nevertheless able to interpret these images correctly. In Figure 1.2 one can
recognize all the different chairs without difficulty despite the fact that the images of the
chairs differ in shape and scale [16]. One can also distinguish easily between cast shadows
and paintings of chairs although they have exactly the same shape. Furthermore, it is
clear that the chair on the desk is a model chair that one can hold in the hand, whereas
the chair in the next room is large enough to sit on, although they have exactly the same
size in the image. Thus the information of the surroundings is essential to interpret the
scene correctly.

Figure 1.2: A set of chairs that differ in size and shape (from [16]).
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From the example given, it is evident that images from the same objects are highly vari-
able, depending on the point of view and the acquisition technique used to get these
representations [108]. Human object recognition experiments showed that if two views of
unfamiliar objects were learned, recognition performance was better for views spanned by
the training views than for any other views [15]. This is quite surprising since different
views of an object are often more different than views of even different object categories. It
is not yet clear how the human visual system builds a common representation of a partic-
ular object or object category (like the chairs in Figure 1.2). Wallis and Bülthoff conclude
that this is possible due to the temporal contiguity of the visual input [118]. When we
see a novel object we usually walk around or turn the object in our hand so that the
image distance between consecutive views is usually small and the temporal contiguity
serves to associate all these views with a single object. Therefore, object recognition in
human psychophysics turned away from the structural description approaches [12] toward
view-based recognition. These recent findings from human psychophysics, neurophysiol-
ogy and computational vision provide converging evidence for a view-based recognition
framework in which objects and scenes are represented as collections of viewpoint-specific
local features rather than 2-d templates or 3-d models [66]. So the recent decade saw a
gradual shift away from the 3-d object reconstruction approach pioneered by Marr [59]
toward view-based approaches [17]. To deal with the variability of single images, one
general approach has been to move away from the single pictorial level and generate more
abstract and view-independent representations [116].

The view-based approach relies on the fact that the variability in the set of views belonging
to a single object is still governed by regularities that can be captured at the pictorial
level. More generally, the shape of the object is described via the view based approach,
where the different views, possibly taken with different acquisition systems, form a non-
explicit model of the object. The views compromising the representation of a single object
are not merely a collection of independent 2-d object views.

1.3 Hierarchical Matching

In order for view-based representations to generalize between exemplars or between views,
robust matching algorithms must be specified. In general, the term robust describes a
system that has demonstrated an ability to recover from the whole range of exceptional
inputs and situations in a given environment. A vision procedure is said to be robust if
small changes in the assumed model on which the procedure or technique was developed,
produce only small changes in the result [28]. Data which do not fit the assumed model
and which in fact are very far from fitting the assumed model, constitute a small change in
the assumed model. Robustness thus guarantees that the assumed and the actual model
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can be matched even if the assumed model deviates from the correct model, or if the
model is an idealized approximation to reality.

Thus, there must be some mechanism to measure the perceptual similarity between an
object within the input image and the set of known objects [57]. One possibility would
be to simply measure the intensity values (local pixel brightness) as similarity between
images, but such representations are not robust enough since brightness is highly unstable
over image transformations. To have a more robust representation at this step, either local
or global shape features are used to allow a robust matching across images. This approach
is again deduced from human psychophysics since our perception of an object’s shape is
closely correlated with its identity. This effect, also called shape constancy, is a property of
objects that people usually perceive as constant despite changes in viewing perspective.
It has been shown that we perceive the same object as having the same shape when
observed from different viewpoints [68]. Shape constancy may occur because we are able
to recognize the same object from different perspective views by using different features.
For example, we recognize a known person’s face both from a front view and a profile
view of his or her head. In addition, the facial expressions of the face do not influence
the recognition. If one recognizes different views and expressions as the same person, its
general shape must also be the same (deviations of the assumed model for recognition
by facial expressions prove that human recognition is robust, small changes of the shape
do not influence recognition). On the other hand it would be much more complicated to
solve the same task on a complete stranger’s face or of some unknown object.

To recognize unknown objects from different viewing directions, it is necessary to distin-
guish some particular parts of the shape like ”front” and ”back” and the presence of axes
of symmetry allowing us to perceive the object shape relative to these axes, and allowing
the object to be perceived constant despite different viewpoints [109, 30]. Although it is
not yet clear how the visual system is able to overcome perspective differences in perceiv-
ing object shapes, there is no doubt that it attempts to do so, since otherwise we would
see the same object from different viewpoints as completely different and classify them as
different objects.

So far we have investigated the view-based recognition process that uses shape features
as matching strategy. But to match features, we need a model to which the features can
be matched. Most of the view-based models incorporate what is referred to as implicit
structural information [111]. The term implicit denotes the fact that this type of structural
information does not provide a global description of object shape, but instead simply
codes relations between local features (or local shape features). Therefore, a suitable
model holds implicit structural information regarding the spatial relations between local
features [63]. The form of the structural information is not a global description of an
object in term of parts, but is a relatively local description that captures the positional
certainty between image measurements [23].
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To perform recognition one has to match the actual image with the a priori given or
learned model. There exist two different basic strategies for the matching process:

• Bottom-Up processing or more descriptively called data-driven processing refers
to processes that take a ”lower-level” representation as input and create or modify
a ”higher-level” representation as output. A bottom-up design provides a quick
solution for a specific problem by solving it case-by-case, in an ad-hoc way. This
solves the specific problem with a diagnostic method: First there is an interactive
experimentation stage, during which given datasets are tested with existing tools.
In this stage all parameters are evaluated and adjusted in order to solve the given
task in the best way and then the program code is adapted based on trial and error.
The advantage of this strategy is that the solution is compact and simple, just
sufficient to solve the specific problem. The central problem of this quick solution
lies in solving a very specific case. For each application all possible techniques and
existing tools have to be explored to find the most optimal solution that solves the
problem. The analysis process gained in the specific case can rarely be re-used.

• Top-down processing, also called hypothesis-driven or expectation driven process-
ing, refers to processes that operate in the opposite direction of bottom-up pro-
cessing, taking a ”higher-level” representation as input and verifying, producing, or
modifying a ”lower-level” representation as output. A top-down design starts with
the definition of the problem space in which the specific problem is embedded. ’Le-
gal’ changes in the input data are only specific aspects of the problem space. This
can be seen as a development of a general algorithm for a restricted domain, which
needs to deal with a variety of possible different problems. The problem space can
be described by an abstract language which covers both the possible inputs and the
possible outputs. The analysis successively refines the abstraction until operators
can be applied to data. As a result such systems can get very complex, since they
usually have many different algorithms with a tremendous number of parameters,
that need to be tailored to solve each specific problem.

An analogy for these processing techniques can also be found in the human visual system.
A naive intuition would state that vision is essentially a bottom-up process. It begins with
the sensory input of the retinal images and goes ”upward” to perceptual and then concep-
tual interpretations [68]. However, the perception of the present state of affairs produces
expectations about the future and these expectations imply a top-down component to
visual processing, because prior high-level interpretations influence current processing at
lower lever. For example, if one is reading, one expects already ”meaningful” words and
reads them much faster than meaningless letter- or word strings. As we see, vision (and
in this respect recognition) is a mixture between bottom-up and top-down strategies in
order to maximize performance.
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We can define this mixture in strategies also from the recognition point of view by the
kind of information represented in the hierarchical recognition scheme. Doing so we can
determine 4 levels or stages of recognition [68]:

• Image-based2,

• surface-based,

• object-based, and

• class-based

levels of perception or recognition.

Figure 1.3 shows the hierarchical recognition scheme together with the top-down and
bottom-up approaches. Light is projected onto the retina which generates the retinal
image. The retinal image is then processed within the 4 layers and provides the final
recognition (bottom-up) in combination with the knowledge incorporated to perform the
matching for recognition (top-down). Each of the perception levels contributes to the
final recognition based on the retinal image:

Image-based recognition: The output of the first level is called primal sketch [58]
which is the result of the elementary detection process and includes edges, bars,
blobs, and lines and global grouping among the local image features. The structure
of such a representation is defined by:

• image-primitives: they represent information about the 2-d structure of the
luminance image, such as edges, corners, lines, or other shape primitives,

• 2-d geometry: the geometry of the spatial information among primitives,

• and the reference frame: the coordinate system in which the 2-d shape features
are located.

Surface-based recognition: This second level of the recognition scheme is concerned
with recovering the intrinsic properties of visible surfaces in the external world,
that might have produced the shape features discovered in the image-based stage.
Here the 2-d projections are matched within a 3-d coordinate system. Again we
have surface-shape-primitives representing the 3-d shape and the 3-d geometry as
structure of the representation. Within this stage we have of course only a 2.5-d
representation of the primitives.

2Here the term image-based describes the first stage of vision, i.e. the image on the sensor and the
image preprocessing operations such as edge detection and linking.
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Figure 1.3: Different levels of perception of recognition.

Object-based recognition: In the third level the real 3-d model is matched with the
surface-primitives produced in the second stage. Unseen surfaces are included
to form a real 3-d object, the structure that holds the information is formed by
volumetric-shape-primitives, 3-d geometry and object-based reference frames, which
is the coordinate system within which the relations among the shape primitives is
given.

Class-based recognition: The highest recognition level is concerned with recovering
the functional properties of objects which are accessed through a process of clas-
sification. The three previous stages classify an object as being a member of one
of a large number of known classes. This identification allows then access to all
information about this type of object, including its function and expectations about
its future behavior.
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As already mentioned, recognition is not organized strictly in a bottom-up manner, but
all different levels interact with each other to enhance the result of recognition. If many
shape-primitives for instance indicate that the object might be a chair, the knowledge
about the class chairs tells us that it might be a chair we can sit on or it might also be an
image of a chair on which we cannot sit. To decide this, the information is down-projected
and it is checked whether the image-shape features produce a 2-d or 3-d representation of
the chair (that is checking the disparity within the 2 retinal images). This example shows
that the shape-features within the different levels are extremely important to perform
recognition. Furthermore, the hierarchical structure is necessary to separate relevant
information and to check hypotheses [91]. All different levels have to adapt to changes in
the representation and the visual input to robustly recognize all classes of objects.

We conclude that the desirable features of a shape-based machine vision system are:

• view-based,

• hierarchically structured,

• modular, and

• robust.

This habilitation thesis is a collection of different papers, each describing a vision or
recognition task for a specific type of application which fulfill most of the above mentioned
properties.

1.4 Summary of Papers

The papers in this collection have been chosen as representative papers for the work
conducted in the area of shape based machine vision, where two main areas can be identi-
fied: hierarchical recognition and classification and 3-d data acquisition and computation,
which have been the main focus of my recent research work. All of them are either book,
journal or IEEE proceedings publications. Four papers deal with the level based recog-
nition structure, based on the General ANAlysis Graph (GANAG). The remaining two
papers describe recent work performed in 3-d vision as part of level 3 (object based
recognition). The collection starts with the paper on the GANAG and continues with 3
applications of the GANAG on three real word problems in industrial visual inspection,
archaeology, and art history. For visual inspection and archaeology the application of
the GANAG is shown in 2-d whereas in art history the applicability of the concept to
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3-d is shown. The range image analysis continues with a paper on registration of range
data where we proposed a novel technique for range image registration. The collection
ends with a work on combining different 3-d acquisition techniques within the hierarchical
framework.

All papers were chosen because they represent an overview on the specific research or
application area and do not focus on details of the complete framework. The paper
on art history, for example, is an invited paper for a mixed machine vision and art
history audience, the paper on inspection is written for people working on machine vision
applications, and the archaeology application paper for both, the archaeology and machine
vision community. Let us now briefly summarize the content of the 6 papers, each denoted
by a name to be referred to in the discussion in the following section.

GANAG framework: In the first paper [78] the framework of the General ANAlysis
Graph (GANAG) is presented. The paper discusses how the hierarchical, shape-
based graph is built and used in order to recognize and verify objects. It shows how
the shape based analysis can be integrated for specific machine vision applications.
This paper concentrates on the GANAG within a systematic automated visual in-
spection concept that speeds up the development of such systems by increasing the
flexibility. The detection of primitives is separated from the analysis process. The
paper describes a novel strategy for detection, recognition and inspection of objects
by introducing the primitives concept where every primitive has a priori known pa-
rameters: shape, relative position and size. Based on the shape of the primitives,
pattern recognition algorithms are selected to detect the primitives in intensity im-
ages. Together with an object-specific shape based description, the analysis graph is
instantiated to perform the inspection. The analysis graph can be seen as a ”recipe”
for solving industrial applications, stating which kind of decisions have to be made
at which stage. It is shown that this novel systematic approach also permits a high
degree of flexibility since application specific and application independent parts are
separated.

Inspection: The paper [87] deals with the problem of application constraints in the
design of machine vision systems. In the example of a successful application in
the field of visual inspection, the automatic calibration of analog display measuring
instruments using the GANAG concept is presented. In this paper the general
recognition theory for many different types of measuring instruments is extended and
described, considering both industrial constraints and the fact that no redesign of the
working process should be necessary if, for example, another measuring instrument
is used, or if the pointers have different colors, or if the illumination conditions
differ, or if the measuring instrument is rotated or if other changes occur. The
focus of the paper lies in the discussion of specific constraints of the application and
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the industrial environment in order to refine the general design to an applicable and
efficient device by modifying both hardware and software configuration depending on
given constraints. The paper shows how the design of the analysis process refines the
coarse analysis process by adding constraints generated by the specific application
and the industrial environment, which are: speed, cost, accuracy and reliability.

Archaeology: The paper [40] deals with a shape-based classification based on primitives.
This time the GANAG is applied to 2-d projections of 3-d objects in the field of
Archaeology. Classification and reconstruction of archaeological fragments is based
on the profile, which is the cross-section of the fragment in the direction of the
rotational axis of symmetry. This 2-d representation of the former 3-d objects
allows the extraction of the general shape properties of the object also from its
parts. The complete reconstruction can be performed correctly since the objects
are rotationally symmetric, as they have been manufactured on a turntable. In
our approach this profile line is segmented into shape-primitives that are again
encoded in the analysis graph used for reconstruction. We present a hierarchical
segmentation of the profile into rim, wall, and base by providing segmentation rules
based on expert knowledge of archaeologists and the curvature of the profile. The
profile primitives in this specific application are represented by spline functions, in
order to use shape parameters for classification and recognition.

Art history: The extension of the GANAG into the 3-d domain is shown in [84]. In
this paper, the hierarchical classification is applied in the field of art history. A
hierarchically structured classification scheme is introduced, which separates the
classification into three different levels of information: color, shape of region and
structure of brush strokes. To compare different regions in painted portraits, it is
necessary to project them into a 3-d reference coordinate system, since the faces
usually look into different directions and have thus to be normalized into a stan-
dard direction via a 3-d face model. The classification scheme allows a mixture
between a global top-down classification and a local bottom-up verification in each
classification step encoded in the analysis graph. The 3-d head shape information
is inevitable to relate different face regions of different portraits to one another.

Registration: In [86] a solution to the problem of 3-d registration of surfaces without
corresponding points is presented. The typical 3-d scanner output are range images
of objects from one direction at a time. These range images have to be registered
to one another in order to reconstruct the complete object in 3-d. The geometric
alignment of two three-dimensional surfaces is performed using a modified Iterative
Closest Point algorithm, which needs an initial estimate of the relative pose. This
initial estimate is computed by taking into account the shape properties of the orig-
inal object. In this paper we propose a pre-alignment algorithm for registering the
front- and back-view of rotationally symmetric objects from range data. For this
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kind of object, the surfaces to be registered have to be pre-aligned carefully because
otherwise pair-wise registration techniques fail, since there are no corresponding
points in the range images. We show a novel model-based technique that com-
putes and uses the axis of rotation of fragments belonging to the same rotationally
symmetric object to bring two views of a scene into alignment.

Combination: In [101] a novel technique for combining two different, shape based 3-d
acquisition techniques, Shape from Silhouette and Shape from Structured Light is
presented. This method solves the problem of acquiring the 3-d shape of objects with
handles or similar hole building shape properties. The 3-d reconstruction is based
on a sequence of images of the object taken from different viewpoints with shape
from silhouette and shape from structured light. The output of both algorithms are
then used to construct a single 3-d model. The paper focuses on the 3-d modeling
of objects using a voxel based representation. The algorithm proposed employs only
simple matrix operations for all the transformations and it is fast since the model
generation is faster than the acquisition time. It is shown that the shape of an
object cannot be represented exactly using only one acquisition method, since every
acquisition method acquires only some properties of the shape whereas others can
only be acquired using other acquisition techniques.

The six papers selected represent one specific aspect of shape based machine vision. On
the subject of every representative, other papers were also published. They focus on
specific aspects of the topic, and cannot be included in this habilitation thesis since they
either do not focus on shape or machine vision or describe specific details instead of an
overview. Details on the six main topics can be found in:

• GANAG framework: [74, 90, 91, 76, 89, 92, 77, 96].

• Inspection: [88, 73, 75, 81, 79].

• Archaeology: [98, 99, 93, 94, 61, 95, 100, 34, 41, 35, 36, 34, 41, 38, 29, 18, 56, 42,
37, 1, 39, 56, 43, 43].

• Art History: [80, 82, 112, 103, 83, 31].

• Registration: [85, 97, 33, 32].

• Combination: [102, 44, 113, 114, 45, 46, 46, 47, 115].
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1.5 Discussion of the Papers

The papers I have selected for the habilitation thesis are related to each other in var-
ious aspects. First of all, all papers deal with recognition issues within the 4 different
recognition levels. Table 1.1 shows which recognition level is covered in which paper
concisely.

Recognition GANAG Inspection Archae- Art Regis- Combination
level framework ology history tration

Image-based X X X X
Surface-based X X X X X
Object-based X X X X
Class-based X X X

Table 1.1: Levels of recognition described by papers (the “X” marks the level discussed
in the paper).

The “GANAG framework” paper shows how all levels of the recognition framework in-
teract with one another and how the different levels can be modeled in order to allow an
adaptive representation of the objects to be modeled. However, the results shown use only
the first two levels and the top one since only 2-d objects are recognized and modeled.

The “inspection” paper tackles mainly the image-based recognition problem, since it
describes the recognition of primitives for a real application and how these primitives
are recognized in order to read the value the instrument is displaying. The shape of the
image-primitives guides the recognition process, which is limited in this application to the
second recognition level since an a priori known boundary condition limits the recognition,
which is necessary for machine vision applications.

The “archaeology”paper can be categorized as image-based recognition because shape
primitives have to be segmented from one another. A 3-d scanner produces data for this
segmentation. They are then reduced to 2-d profiles in order to represent the 3-d data.
This can be regarded as back-projection from level 2 and 3 into the first level, where
primitives must be found in order to perform classification and therefore recognition. The
exact classification is only possible if the data collected in level 1 and 2 is correctly seg-
mented and correctly linked to already existing descriptions. Eliminating one dimension
while preserving the 3-d shape ensures a more efficient description and matching, because
only necessary information is kept to describe the object.

The “art history” paper uses all 4 recognition levels since the heads and faces are 3-d
objects. Furthermore, it shows that the extension of the analysis graph into 3-d is possible.
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The “registration” and “combination” papers fit into the area of model generation, which
is the main task of level 3, the object-based level. 3-d part data is combined in order to
form the complete 3-d description. The “combination” paper shows how different image-
based levels and acquisition techniques can be fused in the surface-based level in order
to provide more accurate and robust data for level 3, the object-based representation.
Here it is shown that full 3-d information for the model generation can be acquired and
combined.

Thus, all selected papers fulfill either completely or partly recognition tasks. Let us now
discuss their significance within the research community. Two of the papers (inspection
and art history) where published in 1994 and 1998 respectively, thus these papers have
already influenced other researchers. In the visual inspection research area, most of the
work is unpublished since companies prefer that their algorithms remain confidential, so
some of the companies used the framework (like ENEL, the Italian power company for
example), but have not reported these applications. Recently Correa Alegria and Cruz
Serra [2] reported one application for analog and digital display instruments based on the
“inspection” and “GANAG framework” paper. In art history, only a few publications
deal with the specific area of artist authentication based on brush strokes [55], where our
approach is reported by Maitre et. al. (a previous version of the “art history” paper).

The other three papers are quite recent, but there are some previous versions cited by other
researchers. For the “archaeology” paper a previous version [100] was cited by researchers
like Leymarie et.al. [51], Papaioannou et.al. [69], Cooper et.al. [25], and da Gama Leitao
and Stolfi [20], all working in the area of virtually classifying and assembling archaeological
fragments. Our approach in this area is significantly different since we mimic the strategy
archaeologists use to classify pottery and are thus able to find matching pieces via the
classification scheme, whereas others have to match the outline (broken edge) of every
fragment with every fragment. As basis for the classification we use the profile line as
archaeologists do. Therefore we need the axis of rotation, which is computed via the novel
method proposed in the “registration” paper, where earlier work (like [32]) is cited for
instance by El-Hakim [24] and Papaioannou et.al. [69].

To our knowledge, the volume-based combination of shape from structured light and
shape from silhouette (“combination” paper) is a novel approach in this area. All other
approaches to shape from silhouette reported show that the technique is only feasible
for convex objects, our extension allows the acquisition of arbitrary objects with this
combination.

Let us now discuss how these papers fulfill the properties we have required from recognition
systems, i.e.,

• view-based,
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• hierarchically structured,

• modular, and

• robust.

View-based: This property is fulfilled by all papers since all of them use single images
that are then used either for recognition or to build a model upon. The GANAG
is generated using a high number of different views of the same object all devised
from different images. We have shown that using these multiple views the repre-
sentation is robust enough to perform recognition for industrial applications in the
“inspection” paper and in [75, 79]. The same strategy has been used in the “art
history” paper, here a 3-d model was constructed out of different 2-d images of
faces. In the “archaeology” paper we show that multiple views of the same object
give the same, consistent representation in the third recognition level, which is the
condition needed for subsequent classification [41, 56]. The level 3 papers, “reg-
istration” and “combination” inherently use properties of different views in order
to generate the model using shape dependent and shape independent techniques to
perform this task. We also showed that the number of views taken can be limited
using a next-view planing technique [53].

Hierarchically structured: All the methods based on the GANAG concept use the
hierarchical structure to perform recognition and classification. The four recognition
levels are not present in all of them, however. If applications have a very narrow
application field it is not necessary to use all of them, since boundary conditions (like
limited number of objects) already provide a priori hypotheses which are normally
generated by the fourth level of recognition. So the “inspection”, “archaeology”, “art
history” papers and of course the “GANAG framework” paper use the hierarchical
model representation and recognition strategy. The “registration” paper also uses
hierarchical information since the complete process is model-based. The underlying
hypothesis is the rotational symmetry of the objects that can use this technique of
registering views without corresponding points in different views. The computation
of the axis of rotation can be seen as extracting the global shape information of
the surface in order to represent the surface by a single vector and a 2-d function.
So the surfaces are first generalized and this generalization is then used to perform
registration on the actual data. The hierarchical structure in the “combination”
paper is given by the data structure used to describe the final model. The coarse
octree model produced in the first level is consequently refined until the final model is
derived using both of the input data. Here we have a coarse to fine model generation,
where the search and refinement hierarchy is given by the model graph [47].
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Modularity: Since all papers are within the level-based recognition strategy, the modu-
larity is inherently given. The intention for the development of the GANAG frame-
work was the adaptivity of the concept in order to guarantee its applicability. This
property is reached by separating the detection of primitives from the model-based
analysis process. Together with an object-specific description, defined in a so-called
description language, the analysis graph is instantiated [96, 100]. Existing software
is re-used in the detection stage and therefore the use of any detection algorithm
is possible without changing the analysis. The modular concept is based on
a systematic approach using generic detection algorithms. Again the “registration”
and “combination” papers have to be considered separately. The “registration”
paper shows the technique as a module itself, which consists of further modules,
namely the axis of rotation determination and the ICP-based registration, which
can also be used separately. The technique is part of the third recognition level
and can be seen as a module that gets view-based data, computes the underlying
structure and the registered model as a result [97]. For the “combination” technique
we have shown the modularity by using two different acquisition techniques with
the same model. The modularity lies in this extendibility since the first attempt
was performed with shape from structured light only [52] and was extended to in-
corporate the silhouette module. Furthermore, an additional technique, the shape
from stereo method could be integrated into the same framework [21, 62].

Robustness: The GANAG method has been explicitly designed to improve the robust-
ness of detection and recognition. Robustness is introduced using a library of differ-
ent detection algorithms, parameter adjustment algorithms and the analysis graph
instantiation, the series of test images and evaluating the results. For analogue dis-
play instruments the method proved to be robust since the reliability was more than
99%. This means that 99% of the images where automatically and correctly read.
The remaining 1% was left for manual inspection due to distortions and occlusions.
The manual inspection was possible in 60% of the cases, the rest had to be left
unreadable. Thus the robustness required in the design was reached. In the “art
history” paper, the robustness of the general analysis graph framework was extended
using further features of the object (not only shape), namely color and stroke posi-
tions. For the profile classification in the “archaeology” paper, the robustness of the
shape (profile) computation is given by the spline based representation of the profile
and the subsequent matching criteria that allow tolerances. The robustness of the
registration method can be shown by using a robust method for axis determination
(up to 15% of the surface normals can be wrong) and the modified ICP algorithm.
The combination of shape from silhouette and shape from structured light (“com-
bination” paper) ensures a robust surface shape computation since surface points
are measured by two different acquisition techniques and multiple views, so that
outliers and wrong surface points can be detected.
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The six papers selected for this habilitation thesis show, as representatives for the six
main areas of my research work, that all methods proposed fulfill the required properties
of shape-based machine vision and recognition methods. They have been chosen because
they give a good overview on the research area on the one hand, on the other hand they
show that the shape of the object is the key-attribute to perform recognition and classi-
fication. Furthermore, the application areas show that the theory given in the GANAG
framework and the 3-d data acquisition and registration is applicable to real-world prob-
lems like visual inspection, archaeology and art history.

Doing research in the application domain not only gives interesting insights into inter-
disciplinary working aspects (the vocabulary of scientists of different subject areas like
vision and archaeology is significantly different), but also raises interest in both subject
areas and influences other vision scientists to work in this specific field. Thus, the re-
search work is growing into a new field, like the cultural heritage field on the example
of archaeology, where the work on archaeological fragments has led to an EU project
[18] and motivated other researchers to work in the same field (like Leymarie et.al. [51],
Papaioannou et.al. [69], Cooper et.al. [25], and da Gama Leitao and Stolfi [20]). This
trend can also be made out at major conferences like CVPR and 3DIM, where special
workshops on the application of computer vision in archaeology and cultural heritage are
introduced (I have the pleasure to be in the program committees).

In the Machine Vision area there is a great demand for new concepts, since in industry
vision tasks improve automation. The GANAG approach ensures that costs are reduced
due to re-usable systems. At present, complete systems are not available; there are only
prototypes in use and almost no new concepts can be found in the literature. The main
reason for that is company politics; developments made by so-called Machine Vision
Companies are not reported in the literature, since competitors in the market could use
these concepts and sell them for a better price. In the academic field only a few researchers
are working on systematic AVI, the majority is trying to adapt computer vision algorithms
to machine vision applications (see [67]), struggling with system engineering problems [10].
Therefore, work on this research topic helps to advance progress in Machine Vision.

There also exist many publications in the field of shape-based registration techniques,
which indicates that it is an important research area and necessary for every scanning
software. Users want to have a final “nice looking” 3-d model of the scanned object and do
not want to revise these models manually (which is up to now not possible). There are two
main classes of approach to fusing multiple 3-d datasets with no clearly superior approach
so far. The two main classes are based on fusing surface-based representations (such as
triangulation) [110], or fusing multiple point sets into volumes [19], or fusing volumes
created from multiple point sets individually [119]. Many approaches do registration first
and then fuse the data as a final step, but iterative registration and fusion processes
should be investigated in the future [13].
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As we see from the registration example, in order to really reach the competence of
biological vision and recognition systems a great deal of work remains to be done. The
work done so far in the GANAG framework helps to solve some specific tasks, however
there are many more to be solved. To be fully acceptable in the inspection area, concepts
must be developed that make the implementation of applications easier. For the GANAG
framework, the extension to 3-d primitives could open a large field of applications of the
concept in the robot vision area. Since the generic detection can handle sparse and dense
data, the concept is applicable to grasping and the hand eye problem of robots by defining
primitives in range images. Another interesting challenge would be to solve the problem
of automatic detection algorithm selection and parameter adjustment using knowledge
based decision strategies in the first level of recognition.

Up to now, the GANAG framework handles only still images. For a biologically moti-
vated machine vision system, however, it is necessary to enhance the framework to image
streams and motion which is important in the area of navigation and robot control. This
extension of the GANAG can also be considered as a movement into the research area
of Cognitive Vision, which describes computational processes transforming a video signal
into a natural language text describing the spatiotemporal development within a recorded
scene [64]. A Cognitive Vision System comprises not only a numerical (shape-based) de-
scription of the scene state, but in addition a conceptual description, together with an
algorithmic inference engine which allows the manipulation of this conceptual description
based on logic operations [64]. Since Cognitive Vision is not necessarily active (only in
the learning phase) [26], the GANAG framework can be modified in order to handle also
image streams. Therefore, future work will also be directed to the development of the
conceptual description.

There are many more properties that need to be considered, e.g., texture, color, temporal
aspects, etc. The four proposed levels of recognition represent the current best guess about
the overall structure of visual perception. It is conceivable that someday we will attain
a full enough understanding of the human visual recognition system, and discover and
understand the biological mechanisms to some significant extent, so that these findings
can further influence the development of fast and reliable machine vision systems that
can work in unconstrained environments.
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Schriftenreihe, pages 225–233. Oldenbourg Wien, München, 1999.

24



[22] N. Duta, A.K. Jain, and M.P. Dubuisson-Jolly. Automatic construction of 2d shape
models. IEEE Trans. on Pattern Analysis and Machine Intelligence, 23(5):433–446,
May 2001.

[23] S. Edelman and D. Weinshall. A self-organizing multiple-view representation of 3d
objects. Biological Cybernetics, 64:209–219, 1991.

[24] S. El-Hakim. A practical approach to creating precise and detailed 3d models from
single and multiple views. In International Archives of Photogrammetry and Remote
Sensing, volume 33, pages 122–129, 2000.

[25] D. B. Cooper et al. Bayesian virtual pot-assembly from fragments as problems in
perceptual-grouping and geometric-learning. In R. Kasturi, D. Laurendeau, and
C. Suen, editors, Proc. of 16th International Conference on Pattern Recognition,
Quebec City, volume 3, pages 297–302. IEEE Computer Society, 2002.

[26] G.H. Granlund. Does vision inevitably have to be active? In Proc. of Scandinavian
Conference on Image Analysis, volume I, pages 138–146, 1999.
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208. Oldenbourg Wien, München, 1997.

[62] C. Menard and R. Sablatnig. Adaptive area-based stereo matching. In Proc. of the
IS&T/SPIE Symposium on Three-Dimensional Image Capture and Applications,
volume SPIE-Vol.3313, pages 14–24, Jan. 1998.

[63] T. Messer. Model-based synthesis of vision routines. In C. Archibald and E. Petriu,
editors, Advances in Machine Vision: Strategies and Applications, pages 79–97.
World Scientific, 1992.

[64] H.H. Nagel. Image sequence evaluation: 30 years and still going strong. In A. San-
feliu, J.J. Villanueva, M. Vanrell, R. Alquezar, J.O. Eklundh, and Y. Aloimonos,

28



editors, Proc. of 15th International Conference on Pattern Recognition, Barcelona,
volume I. IEEE Computer Society, 2000.

[65] V.S. Nalwa. A Guided Tour of Computer Vision. Addison-Wesley Publishing Com-
pany, Bonn, Muenchen, New York, Sidney, Tokyo, 1993.

[66] F.N. Newell and H.H. Bülthoff. Categorical perception of familiar objects. Cogni-
tion, 85:113–143, 2002.

[67] T.S. Newman and A.K. Jain. A survey of automated visual inspection. Computer
Vision, Graphics, Image Processing, 61(2):231–262, 1995.

[68] Stephen E. Palmer. Vision Science: Photons to Phenomenology. MIT Press, Cam-
bridge, MA, 1999.

[69] G. Papaioannou, E.A. Karabassi, and T. Theoharis. Virtual archaeologist: Assem-
bling the past. IEEE Computer Graphics, 21(2):53–59, March-April 2001.

[70] M. Pavel. An invitation to shape theory. Pattern Recognition Letters, 1(1):31–35,
1982.

[71] S. Pinker. Visual cognition: An introduction. Cognition, 18:1–63, 1984.

[72] M.I. Posner, editor. Foundations of cognitive science. MIT Press, Cambridge, MA,
1990.

[73] R. Sablatnig. Automatische Ablesung von Wasserzählern zur Qualitätssicherung
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Abstract. The continuing development of machine vision is
initiating a change from human to machine vision for inspec-
tion purposes. This paper concentrates on a general analysis
graph within a systematic automated visual inspection con-
cept that speeds up the development of such systems by
increasing the flexibility. The detection of primitives is sep-
arated from the model-based analysis process. Together with
an object-specific description, the analysis graph is instan-
tiated to perform the inspection. The analysis graph can be
seen as a “recipe” for solving industrial applications, stating
which kind of decisions have to be made at which stage.

Key words: Automatic visual inspection – Inspection system
generation – Directed graphs – Analogue display instruments

1 Introduction

It hasnow beenwell over 30 yearssinceseveralindivid-
uals and groupsmadeconcertedefforts to automatevisual
perceptionin the researchdisciplineof machinevision [24].
From the beginningsresearcherstried to convertthe results
achievedin basic researchinto applicationsto prove that
their algorithmswork. Historically, thefirst industrialappli-
cationareawasin themanufacturingindustry,becausethere
wasa strongdesireto automatethe productionprocessand
to control the final product.With an emerging requirement
for improvedqualitycontrolwithin themanufacturingindus-
try, theuseof visual inspectionof themanufacturedproduct
becomesa necessity,especiallyto fulfill the ISO 9000 in-
dustrialquality standard[18,27]. While visual inspectionis
high in potential,at presentthe designand implementation
of automaticvisual inspection(AVI) systemsis labor inten-
sive.In addition,mostof thevisual inspectionsystemshave
beendevelopedin isolation with no systematicapproach,
which has led to the designof inflexible customizedsolu-
tions involving very high systemengineeringcostsover the
last 20 years[4,5,25].

The major drawbacksof existinginspectionsystemsare
high set-up costs, resulting from extensivepre-inspection

set-upby experiencedoperators,hard- and softwaredevel-
opmentcosts, labor, and maintenancecosts.The solution
to cost reductionis to increasethe flexibility of AVI sys-
tems,which makesit possibleto amortizethe development
costsby a high numberof installedunits for different ap-
plications.The AVI systemdesigncosthasalreadybeenre-
ducedby the developmentof libraries of image-processing
algorithms(e.g. Matrox ImageLibrary [21]) or interactive
image-processingsystems(like KhorosandCantata[19,34],
KBVision [1], andMatrox Inspector[20]), whichallow rapid
prototypingand the re-useof algorithmsusedwithin these
systems.However,it is unlikely that thecommonuserof an
inspectionsystemwill have the relevantimage-processing
expertiseto be able to setup an inspectionsystemby him-
self. If image-processingsystemsareto beadoptedandused
for inspectionof a variety of applications,it is essentialto
reducethe expertiserequiredin the configurationof the in-
spectionsystem[3].

This papershowsthattheuseof a generalanalysisgraph
that separatesthe detectionfrom the analysisallows a flexi-
ble adaptationof the inspectionsystemdiscussedin Sect.2.
The inspectionmodel is representedin a descriptionlan-
guage,shown in Sect.3. Following the modeling of the
application-dependentanalysisin Sect.4 the applicationof
the generalanalysisgraph for the inspectionof analogue
display instrumentsis shownexemplary(Sect.5). The use
of the analysisgraphfor analoguedisplayinstrumentin the
applicationof calibrating watermetersshowsthat the gen-
eral analysisgraph can be successfullyused in industrial
applications(Sect.6). The paperconcludeswith resultsand
a discussionof the flexibility of the analysisgraph.

2 General inspection concept

Onesolutionin designinga flexible visual inspectionsystem
lies in the separationof the application-independentfeature
detectionfrom the application-dependentanalysis,forming
the model-basedAVI system[29]. The conceptof the sepa-
rationhasto beintegratedinto a completeinspectionsystem
thatallowsaninteractiveset-upby theuser.This interaction
is valuablesincethespecificapplicationknowledgecanonly
beprovidedby theuser,who is familiar with thespecificin-
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Fig. 1. Inspection system concept (off-line)

spection problem and the inspection hardware available. Fig-
ure 1 shows the off-line part of the proposed general inspec-
tion system concept (rectangles indicate processes, rounded
rectangles data). This part is called off-line since it is not
performed at the speed of the production line, there is no
explicit time limit to complete the inspection system set-up
(except economical set-up time limits). It is supposed that
the system set-up takes place at the final working site with
the illumination and hardware that should be used in the
final system.

The illumination and imaging geometry should be
worked out carefully to increase the quality of the source
data, influencing the quality of the result. To provide useful
source data for the inspection process, the image acquisi-
tion properties should not be changed after the set-up. A
particularly common error is the tendency to concentrate
on the image processing to the detriment of the image ac-
quisition (i.e., pose of the object being inspected, lighting,
optics and sensor) [2]. A well-designed sensing system re-
duces noise, prevents blur, stops object motion, optimizes
the contrast between the part and the background, for in-
stance, has a resolution that ensures defect detection in the
desired size and emphasizes all features relevant for inspec-
tion. Since the success of an inspection system is critically
dependent upon the correct engineering of the front end com-
ponent illumination, presentation device and image capture
hardware [10,23], we assume the image acquisition step as
carefully designed.

The generated executable inspection system is used on-
line, i.e., it works within the production line flow. The off-
line inspection system set-up consists of four general pro-
cesses.

– Inspection model generation. Generic algorithms are
used to detect inspection features (the so-called primi-
tives) and (possibly together with an a priori model) the
inspection model of the object (the so-called description)
is supplied.

– Detection. The detection algorithms (like edge detectors,
edge-linking algorithms, segmentation algorithms) to de-
tect primitives are selected in this stage. Existing, stan-
dard detection algorithms like line detection, circle detec-
tion, or ellipse detection can be used, which means that
no specific detection software (often also called image-
processing software) has to be developed for a specific
problem.

Fig. 2. On-line inspection system components

– Analysis. The parameters of the detection algorithms are
adjusted, detection order and search space are selected in
the analysis stage. Several algorithms are adapted, tested
for the given inspection task, and used if they achieve a
certain pre-defined detection rate. This step can be seen
as the pattern recognition step since it analyses the de-
tected primitives in order to recognize patterns (i.e., the
inspection model) defined in the description language.

– Inspection system generation. The preliminary inspec-
tion system is tested. If it turns out that, for instance, a
specific feature detection algorithm does not adhere to
the desired recognition rate in the test set because of
lighting conditions or alignment, it can be replaced by
another algorithm which attains the recognition rate. Fur-
thermore, industrial constraints are checked and balanced
before the final inspection system test takes place.

Since the analysis is separated from the detection, the
concept allows a flexible adaptation of the inspection system
too, because a change of the object layout results only in the
requirement of a new description, while the detection and
the analysis remains the same. However, if substantial layout
changes occur, analysis and detection have to be re-adjusted.
If the test confirms that the inspection system attains the
intrinsic constraints of the inspection task, the executable
inspection system for on-line inspection is ready.

Figure 2 shows the components of the on-line inspection
system. The image taken under the same acquisition con-
ditions as in the off-line set-up phase, is the input for the
detection. The defined feature detection algorithms are used
in the detection order given by the analysis and the generic
parameters provided by the description. In the analysis, the
features are checked whether they are within the tolerances
defined in the description. The inspection result is provided,
which states why the object is accepted or rejected.

3 Description language

The object structure (shape primitives and properties) has
to be represented in a description language consisting of a
graph structure in which nodes represent the primitives and
arcs the relations between primitives [28]. A priori informa-
tion concerning the quality standard (e.g., manufacturing tol-
erances and detection tolerances) are also part of the model.
From the description language point of view, the modeling
can be interpreted as a syntactic pattern recognition approach
in which the primitives are transformed into the vocabulary
and the relations are transformed into a grammar [15].
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Fig. 3. Description language graph

The proposed approach makes use of the idea of shape
decomposition, it divides complex shapes into simple ele-
mentary units, i.e., primitives. This concept can be seen as
an application of semantic networks [12], since semantic
networks are labeled, directed graphs where nodes represent
objects, sub-objects, or shape primitives and arcs represent
relations between them. A set of attributes that describe dif-
ferent object features is attached to each node; a set of at-
tributes that describe different properties is attached to each
arc. Once the object is transformed to this representation, all
operations for recognition, verification, and inspection can
be executed on this graph structure. The advantage of a de-
scription language lies in the uniqueness of representation,
different objects result in different descriptions.

Formally, the description language is a graphG =
< O,R >, where O = {m | 1 ≤ m ≤ n} denotes
the set of nodes andR = {< c, d > | c, d ∈ O} the set
of arcs. A nodeO consists of different sub-objects or prim-
itives. Each node has different attributesa, with weightsw,
and a toleranceT (a) defined as

T (a) =




1, if |a mod− a img| ≤ c, and
1

|a mod− a img|
otherwise (1)

wherec is the allowed tolerance,amod denotes the value of
attributea in the model, andaimg the value of the attribute
a in the image

Two nodes are in relation according toR. Each relation
< c, d > is decomposed intok sub-relations between the
same nodes, each with a weightv and a toleranceT (r) de-
fined analogue as for weights and tolerances of attributes.
Figure 3 shows the graph and the inner structure of nodes
and arcs. Note that all attributes and relations contain nu-
merical values.

The weightsw andv are necessary for the model veri-
fication. Each of the geometrical, positional, and relational
properties has a certain weight in order to verify the corre-
sponding description to a given image. Since these weights
are influenced by the data and therefore application depen-
dent, they have to be fixed during the set-up procedure.
The verification of image to description consists of verifying
whether the number and type of features and primitives are
the same. Next, attributes and relations are checked whether
they match within given tolerances. The verification process
is carried out by comparing all attributes of a node and its

successors with the model. The confidence for a node can
be computed based on the result of the comparison:

conf(p) =
n∑

g=1

wg ∗ T (ag) +
m∑

<p,q>∈R

v<p,q> ∗ conf(q), (2)

wherewg are the weights of the attributes of the nodes and
v<p,q> the weights of the sub-relations of the arcs. Observe
thatn, the number of attribute values, andm, the number of
arcs, depend on the nodep. Moreover, for leaves, we have

conf(p) =
n∑

g=1

wg ∗ T (ag). (3)

This enables us to compute the confidence of a node by
summing up the weighted tolerances of each attribute of the
node and the overall confidence of the sub-graph connected
to this node. By computing the consistency for different de-
scriptions, the one with the highest confidence value can be
chosen if the confidence is above a certain threshold. The
use of weights also allows a two-step identification; primi-
tives or sub-objects with high weights are first detected and
checked, next primitives with low weights are postulated on
a certain position and then verified.

The hierarchical representation of the object within the
description (i.e., shape decomposition) allows an easy update
by adding or removing new nodes and arcs since only the
node of the subgraph where nodes are added or removed has
to be modified the rest of the description remains unchanged.
Therefore, small changes in the object layout result only in
small changes in the description too.

4 The general analysis graph

In contrast to detection, where independent algorithms detect
primitives, the analysis deals with the application-specific
knowledge: the description, tolerances and the order of the
detection steps. After the generation of the inspection model
(i.e., the description), the weights for each primitive of the
object, which is a feature of the object within the image, are
not fixed, since at this stage it is not clear which primitive
can be found reliably and which not, and which primitive is
important for recognition. Therefore, one goal of the anal-
ysis is the determination of the weights of primitives. To
compute weights, the detection order and the parameters of
the detection algorithms are evaluated, features with high
detection confidence get higher weights than features with
low confidence. To model the detection order in the analysis,
we use an analysis graph.

Generally, the inspection could take place based on the
description. Since performance and speed are crucial and the
verifying phase is a graph isomorphism problem whose gen-
eral case is known to have UP complexity [14], the semantic
information stored in nodes and arcs decreases complexity.
There are two different strategies for relating features in the
image coordinate system to the object-centered coordinate
system.

– Parallel (M1). Independent detection and localization
of features followed by a verification of the constraints.
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Fig. 4. Analysis graph with three relation types

– Sequential (M2). Detection and localization of reliable
features; construction of hypotheses based on imposed
constraints of the detected features; verification of hy-
potheses.

Since each method has its benefits, both principles are
used in the proposed analysis process, formulated in a graph
structure introducing a hierarchy (see Fig. 4). It represents
the space of all possible solutions for the problem in the
particular domain. A solution is formulated by instantiating
the graph to form a unique solution. Each node represents an
element of the solution calledcell, i.e., an image-processing
task like Sobel edge detection or a working step like image
acquisition. Thearcs between the nodes represent one of the
following semantic relations (see Fig. 4).

– Sub-divide relation. This is an n-ary relation represent-
ing a sub-division of a cell into its constituent set of sub-
cells. For example, image acquisition can be sub-divided
into CCD size, upper and lower threshold for transis-
tor response, digitizer, illumination adaption, and frame
transfer to name a few. Each sub-divide relation has a
weight, which allows an ordering of relations within the
graph, sub-divide relations with equal weights may be
executed in parallel. For the example in Fig. 4, the cell
C1,1 is first sub-divided intoC2,1 and afterwards into
C2,4 because of the higher weight of the left sub-divide
relation.

– Optional sub-divide relation. This is also an n-ary rela-
tion allowing optional sub-divisions of a cell providing
alternative sub-divisions. For example, a segmentation
can be performed by using region growing or optionally
by split and merge. For the example in Fig. 4, the cell
C1,1 can be sub-divided into eitherC2,2 or C2,3. The rela-
tion is again provided with weights. If there are optional
sub-divisions that have to be performed together, this is
denoted by an arc in the graph. In Fig. 4, an optional
sub-division of cellC2,3 may result inC3,3 or optionally
in C3,4 andC3,5.

– Detail relation. This is a relation between a cell and a
detail of the cell. For any cell there may be a number of
different possible details. For example, a cell represent-
ing edge detection could be detailed in Roberts, Sobel
or Canny algorithm.

An example for an analysis graph is given in Fig. 5 on the
left, which shows that, for example, rectangle detection can
be optionally sub-divided into the cell “Grouping B”, and
optionally also into “Grouping A”. Next, “Grouping B” can
be optionally sub-divided into the cell “Line detection” or
optionally into the cell “Thresholding” which is sub-divided

into “Edge detection”. Up to now, only sub-division rela-
tions were encountered in this graph, all of them represent a
certain class of image-processing algorithm. Detail relations
like the three possible cells “Roberts edge detection”, “So-
bel edge detection”, and “Canny edge detection” of “Edge
detection” in the graph represent actual operations on data.
One possible solution, a so-called instantiation of the analy-
sis graph, would be the rectangle detection using “Grouping
B”, “Line detection”, and “Burns line detection”, shown in
Fig. 5 on the right.

Each cell of the analysis graph can have a set of in- and
outputs, which can be connected to the in- and outputs of
other cells in the analysis graph, representing the data flow
in the analysis graph (see Fig. 6). The hierarchy in the graph
is kept, the output of one cell in one level may be intercon-
nected to an input on the same level, the in- and outputs of
cells on different levels represent the same values. In Fig. 6,
the input parametersp1, p2, p3 of cell C1,1 are either the input
parameters forC2,1 (p2) andC2,2 (p1, p3) or optional input
for C2,3 (p1, p2, p3). The parametersp1 andp3 are computed
either by cellC3,1 or C3,2 represented by the detail relation
of cell C2,2. Detail relations ofC2,1 andC2,3 are not shown
in Fig. 6.

The non-instantiated analysis graph has the benefit that
cells can be added and removed without any effect to the
rest of the graph. Therefore, as many detection algorithms
as available can be tested in parallel, the evaluation of the
detection result is performed by the instantiation, all cells
that are not necessary for the final solution are eliminated.
If the result of the recognition is not satisfying, new cells
are added in the original analysis graph which is then re-
instantiated to provide a better solution.

The analysis process contributes two elements to the final
inspection process, i.e., the building of the description with
the corresponding weights for each node, and the analysis
graph containing the specific detection order and the specific
detection algorithm parameters.

The building up of the analysis graph for inspection can
be generalized, since inspection differs only in the descrip-
tion and detection, the overall process is common to all of
the inspection problems and consists of four major steps.
Figure 7 shows the general analysis graph for inspection.
The input of theobject inspection graph is thedescription,
the output is theresult of inspection. The object inspection
can be (non-optionally) sub-divided into:

– image acquisition. This cell has the image and its sta-
tistical parameters; like noise distribution; as the output.

– Feature determination. The feature determination deter-
mines specific parameters of features (like position and
size) within the image. Depending on the image acqui-
sition, feature determination can be sub-divided into:

– object detection. The object has to be located within
the image and its size has to be determined, and

– feature detection. Within the object, features used
for inspection have to be located.

Optionally, if the image acquisition parameters are fixed
(the object has always approximately the same position,
orientation, and size), these two cells can be replaced by:

– hypotheses generation. Hypotheses about the posi-
tion, orientation, and size of all features are generated
with the help of the description.



40

162 R. Sablatnig: Increasing flexibility for automatic visual inspection

Fig. 5. Example for
a hierarchical analysis
graph

Fig. 6. Data flow in the analysis graph

– Hypotheses verification. The specific parameters of the
features, either determined by detection or by hypothe-
ses generation, are checked whether they match with the
description, using features which were not used up to
this step.

– Model matching. The final step of analysis matches the
actual parameters of the features with the description,
thus producing the result of inspection.

The primitives have to be detected in all of the images
of the test series. The weights of the analysis graph are set
in accordance with their probability of detection. The in-
spection process “learns” which detection algorithms should
be used in a specific area of the image and how many pa-
rameters must be found in the image rather than in the de-
scription. This introduces a detection verification concept
guided by weights in the analysis graph. If some primitives
can be found accurately with a high probability, they get
a high weight. Primitives with high weights are searched
first, if they can be found, primitives with lower detection
probability are predicted in a specific part of the image (a
hypothesis generation), and then checked for their presence
(a verification of the hypothesis).

Evaluation of the cells has to prove that the component is
a legal solution to the given problem. In other words, evalu-
ation becomes verification. Experience reveals that applying
algorithms with standard parameter values often results in
very poor performance in this respect: for example, filtering
algorithms need to know the statistical properties of the noise
to function properly [11]. One solution to this problem con-

sists in adjusting the parameters interactively, i.e., the user
subjectively judges the results on an output device (like the
monitor) [22]. The interactive solution defeats the purpose
of automated inspection, but it is the only one used so far.
Since the human eye is a poor judge for feature detection
results, researchers have developed formal error measures to
assess the degree of conformance of operator evaluation and
segmentation. Furthermore, systems are under development
that solve the problem of algorithm selection and parameter
adjustment (see, for instance, [3,6–8,33]), while others try to
evaluate vision modules and their performance (see [13,16]).
However, up to now, no general-purpose image-processing
system has been presented because this problem is not triv-
ial to solve [8,9]. We performed selection, parameter adjust-
ment, and evaluation of detection algorithms interactively
due to the lack of automated systems in this area.

The instantiation of the analysis graph can also be seen
as: given a directed graph, find an optimal solution path with
minimum amount of computational effort. For solving this
kind of problem, standard techniques (like theA∗ Algorithm
[17, 26]) can be used to find the minimum cost path in the
graph, i.e., the best analysis strategy.

5 Analysis graph for analogue display instruments

This section shows the applicability of the general analy-
sis graph in the case study of analogue display instruments
(ADI). This type of instrument serves as a demonstration,
since there are various different types of measuring instru-
ments with innumerably different displays and layouts, but
all of them have certain common properties which can be
used to build up a specific description. Three common prim-
itives describe analogue measuring instruments (see Fig. 8).

– Pointer. A pointer can have any symmetric shape such
as line, triangle, rectangle, or a combination of them.
In addition, pointers that rotate have a circle at their
center of rotation (see Fig. 8). The shape is defined by a
primitive, a combination of primitives, or in the case of
a shape that is not easily represented by primitives, by a
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Fig. 7. General analysis graph for AVI

Fig. 8. Primitives of a hygrometer

bitmap, containing one half of the shape and the medial
axis.

– Scale. The shape of a scale depends on the motion of
the pointer; scales with rotating pointers have the shape
of a circle or a circular arc. Pointers moving straight
have rectangular scales. Scale captions are considered to
be part of the scale.

– Lettering element. Such an element carries information
about the measurement and the orientation, this includes
all writings such as unit, company name, and emblem of
maker.

Following the definition of the description, the analysis
graph is constructed by applying the general analysis graph
to the specific problem. In- and output parameters are de-
scribed at the top level of the graph only, to simplify the
graph. This general concept is used for the definition of
the analysis graph for ADIs, resulting in the graph shown
in Fig. 9. There are six mayor analysis steps which are the
leaves of the graph. If steps object and feature detection are
optionally replaced by hypotheses generation the number of
steps is reduced to five.

To get an impression of the data flow, Fig. 10 shows the
data flow between the leaves of the graph in Fig. 9. Fur-
ther sub-divisions of individual nodes are shown. Since the
graph will not be instantiated for a specific instrument, detail
relations are not shown. In the following, the nodes of the
analysis graph for ADIs are described.

– Image acquisition. To simplify the analysis, we assume
that the image contains only a single object [31]. Prior to
further computation, the actual image has to be checked
whether it satisfies the assumption. This includes a con-
trol of the contrast and the histogram. If there are strong
variations to the statistical mean image of the inspection

series, there is an error in the illumination, acquisition,
or positioning, and the analysis is stopped. Theimage
of the ADI in x, y coordinates (rows and lines in image
coordinates) is the output of this node. This image is the
input for the measuring instrument detection, or option-
ally for the hypothesis generation if imaging parameters
are fixed. Note that only newly determined or computed
parameters are explicitly mentioned, all others are im-
plicitly available, like the parameters of the description
which are accessible to all nodes of the graph since they
are the input of the root of the graph.

– Measuring instrument detection. If position and size of
the measuring instrument in the image depend on actual
image acquisition parameters and positioning of the in-
strument, this step has to be carried out. The shape of
the instrument is looked for in the image with regard to
topological, radiometrical, and geometrical features. De-
pending on the shape, the node is optionally sub-divided
into the detection of the geometrical shape like rectan-
gle detection, circle detection, and freeform detection.
The leaves of the analysis graph (Fig. 10) are the de-
fined interface to feature detection algorithms. All of the
nodes are sub-divided into different possible detection al-
gorithms and detail relations. In the sub-graphrectangle
detection, for instance, all algorithms to detect rectangles
available to the system are included (as in Fig. 4, for ex-
ample), further ones can be added. Theorigin(x, y) in
image coordinates of the object-centered coordinate sys-
tem and thesize (in image and world coordinates) of the
detected object are the outputs of this node.

– Measuring unit detection. Detection and localization of
measuring units are carried out in the limited area within
the measuring instrument, defined by the hypothesis con-
structed by the measuring instrument detection. First, the
1..n scales are looked for, because they cover a larger
area in the image than pointers and their position does
not change within the instrument. Note that the search
space for the corresponding pointer can be restricted by
the region defined by the detected scale. Furthermore, the
measuring unit detection may be sub-divided into 0..m
lettering element detections. This is necessary to deter-
mine the orientation of the scale if, for instance, there is
only one scale on the instrument. This node supplies the
specific origin and orientation for up ton scales and up
to m lettering elements.
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Fig. 9. General analysis graph for ADIs

Fig. 10. Analysis graph for ADIs (no detail relations shown)

– Hypotheses generation. If the image acquisition param-
eters are fixed, hypotheses about specific parameters of
the measuring instrument and measuring units are gener-
ated without time-consuming search in the image. Scales
and lettering elements are induced to be on a specific po-
sition with a specific orientation within the image. The
output is the same as that of the unit detection.

– Hypothesis verification. For both sub-divisions of feature
determination, a verification of the generated hypotheses
is necessary. In order to answer the question “Are the
measuring units on the right places on the measuring
instrument ?”, the identified type is verified by check-
ing the induced position of the lettering elements (and
possibly scales) in the image. The aim of the verifica-
tion is to find out which of the candidates are elements
of a measuring unit and which are not. Furthermore, all
primitives which were not detected in the previous nodes
are detected. In the specific case of ADIs this detection
includes pointer detection. The origin of the pointer is
the center of the scale, the search space is limited by
the corresponding scale. The possibly corrected positions
and orientations of the scales and the specific positions
of the pointers are the output of this node.

– Measuring unit value determination. The value for each
measuring unit is determined. The valueei, i = 1..n,
for each measuring unit is the result of this node of the
analysis graph.

– Measurement value determination. The last element of
data flow in the analysis graph is the determination of
the valuemvn.

The analysis graph (number of nodes after instantiation:
2×(4+2×(n+m))) describes the analysis for any ADI. In the
example of the hygrometer, an instantiation of the analysis
graph (24 nodes) is shown in Fig. 11, the imaging param-
eters are supposed to be unknown. Therefore, the analysis
graph of the hygrometer has two sub-divisions offeature de-
termination. First, the hygrometer is detected using a circle
detection, defining the origin of the object-centered coordi-
nate system. Since the origin of the scale is the same as
the origin of the instrument, only one lettering element has
to be looked for to determine the orientation of the scales
(in this example, the lettering element “left dot” is looked
for, using again a circle detection technique along a circle
in a known distance). To verify the result, the lettering el-
ement “hygrometer” is checked byhypotheses verification,
i.e., using an OCR algorithm.

If the test is successful, the positions of the pointer is de-
termined by a line detection algorithm. Since the orientation
of the scale and the position of the pointer are known, the
measurement unit determination, computing the angle be-
tween the origin of the scale and the pointer, is performed.
The measuring instrument value determination has the result
mvn= 41. Figure 12 shows the result for the test image; a
humidity of 41% was the correct result.
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Fig. 11. Analysis graph for hygrometer
inspection

Fig. 12. Result for a hygrometer (mvn= 41% humidity)

6 Analysis graph for watermeter calibration

In this section, an industrial application demonstrates the
use of the analysis graph, resulting in a successful working
inspection system for watermeters, a specific analogue in-
strument (for details on the calibration process, see [32]). In
the specific case of watermeters, there are a type-dependent
number of circular scales (two to five) with coupled pointers,
one rectangular scale (not on all types), and different types
of lettering elements (see Fig. 13). Of these, two are always
present and of importance: the serial number, which identi-
fies the watermeter unambiguously, and the rotary counter,
which displays the measurement value for further reading
in the households. For every type, a description (approx. 20
nodes) is constructed.

In the general case, the orientation and position of the
instrument is not known exactly, since positioning errors in
the image acquisition may occur, even if the distance to
the object is fixed. Therefore, the general analysis graph for
watermeters allows a handling of the misorientation and does
not only generate hypotheses that are verified afterwards.
The analysis graph is type independent; however, there is
an interaction with the description of the type. Therefore, it
can distinguish, for instance, whether three or four circular
scales have to be detected.

Fig. 13. Primitives of a watermeter

Figure 14 shows the instantiated analysis graph for wa-
termeters with four circular scales. It has 46 nodes, of which
20 nodes are leaves represented by detail relations. To give
an impression of the size of the non-instantiated analysis
graph, we estimate the number of nodes, since this is de-
pendent on the number of different detection algorithms
available at set-up time. Supposing two or three different
detection algorithms available for each primitive multiplies
the number of optional and detail relations in the graph to
aprox. 100 nodes for this example.

Following the image acquisition, the position of the wa-
termeter has to be detected within the image. All of the scales
(rectangular and circular) have to be detected within the im-
age, since the orientation of the watermeter is not known.
The result of the unit detection is checked with the descrip-
tion, performing a hypotheses verification. In case many dif-
ferent types have to be inspected, all three lettering elements
(approval sign, nominal performance, and country type sign)
which allow a distinction have to be checked. Furthermore,
all positions of the pointers have to be detected within the
scales, once the hypotheses have been verified. To achieve
the complete measurement value, the rotary counter has to
be analyzed, and the serial number has to be read to iden-
tify uniquely the watermeter under inspection. At this stage,
all the generic parameters of the watermeter primitives are
known. The model matching consists of a determination of
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Fig. 14. Analysis graph for watermeter

the value that the single units displays and a value compu-
tation regarding the coupled pointers.

7 Results

An inspection system test checks whether the inspection
works correctly. The watermeter inspection process was
tested comprehensively with a PC configuration [30]. Re-
sults of inspection system test:

– number of images in test series: 200 images
– image size: 300x300 pixels
– detection rate: 100%
– accuracy: 100%
– reliability: 95%
– computation time: app. 2 s.

The reliability of a little more than 95% is due to slight
changes in the illumination during acquisition and air bub-
bles inside the watermeter, which influence the pointer and
scale detection. Although there was a rejection rate of 5%,
the reading accuracy was 100%, because error detection
worked properly, and non-readable images were marked and
stored for inspection by the operator. All of the computed
measurements were correct. Problems with air bubbles dis-
turbing detection occur with rotary counter and serial number
determination.

Air bubbles disturb the pointer detection significantly.
Therefore, strategies for better detection had to be consid-
ered. Instead of using an algorithm that defines the posi-
tion of the pointer with the help of an angle histogram, a
matched-filter approach was used. The exchange of the de-
tection algorithm caused a change of detail relations in the
analysis graph, no other adaption had to be made. The test

series with the 200 images was performed again, now at-
taining a reliability of more than 99% for the measurement
value. Figure 15 shows the user interface for a complete
calibration run, consisting of an initial value (A:1) and five
consecutive measurements for one watermeter. Below the
images the computed measurement values are shown (bot-
tom of Fig. 15).

The application of watermeter calibration has to han-
dle an unlimited number of different types. The flexibility
within the specific analogue instrument is provided by the
description language that handles different layouts by differ-
ent descriptions. The analysis graph is independent of any
change of the description. Another example shows that the
description language and the analysis graph, together with
the appropriate detection algorithms, can also handle another
type of analogue display instrument. With the description of
the clock, generated by generic detection and interactive def-
inition of the primitives (three circular overlaid scales, four
lettering elements, and three different pointers), the analysis
produced the result shown in Fig. 16. In our test series (20
samples, without the specific case of pointers being com-
pletely overlaid), all pointer positions were computed ex-
actly, resulting in correct reading of the time in all images.

The working time for adapting the general description
and the general analysis graph interactively was approx. 6 h
for the watermeter and 1.5 h for the clock. The reason for
the relatively long adaptation time for watermeters lies in
the explicit formulation of coupled pointers. To solve the
problem of overlapping pointers, the measurement unit value
determination was changed so that the minutes hand was
searched first. If the other hands could not be detected, they
were assumed to be overlaid by the minutes hand.

These two examples showed that an inspection system
can be set up in a short time for any analogue instrument.
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Fig. 15. User interface with computed measurement values

Fig. 16. Result for a clock (mvn= 4:54:31h)

To demonstrate that the general analysis graph does not only
work for analogue instruments, a floppy drive casing inspec-
tion was simulated. For the casing, it was supposed that six
drill holes and one punch had to be inspected using the
concept. Using the binary silhouette, the generic detection
produced nine circles. Two of the circles were removed from
the description and two rectangles were added interactively.

The general analysis graph was adapted for the casing
inspection, supposing a nearly fixed orientation of the cas-
ing within the image. The model matching was supposed
to be a checking for existence. The result indicated whether
all of the drill holes were present or not. Figure 17 shows
the result after having performed the inspection for a correct
casing (Fig. 17a) and a (simulated) defect casing (Fig. 17b).
Since one circle in the defect image was not detected, this
image was classified as “fault”. The same analysis graph (in-
cluding detection algorithms) can be used for the inspection
of the object using an intensity image, since the parameters
of the features do not change. Furthermore, misregistrations
do not affect the inspection, since relations between primi-
tives allow their detection.

Fig. 17a,b. Casing:a all holes presentb one hole missing

8 Conclusion

In this paper, a generalanalysis graph for inspection was
presented, where detail relations were used to represent de-
tection algorithms. In the preliminary analysis graph, it was
not specified which of the algorithms should be used for the
specific inspection, the selection of the algorithm was post-
poned to a test series. The use of any detection algorithm
was possible by changing the analysis graph instantiation
in the detail relation, the overall analysis process remained
the same. Together with an object-specific description, the
analysis graph was instantiated. This systematic approach to
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inspection allows its application to a wide range of inspec-
tion problems. It can be seen as a “recipe” for solving indus-
trial applications, stating at which stage which kind of deci-
sions have to be made. The systematic approach also permits
a high degree of flexibility, since it contains application-
specific and application independent parts.

The applicability of the analysis graph was demonstrated
on the case study of ADIs. This type of object served as a
demonstration, since there were various different types of
measuring instruments with innumerable different displays
and layouts, but all of them had certain common properties,
which were used to build up a specific description. With the
help of the description and the proposed general analysis
graph, the specific analysis graph for ADIs was defined. Ex-
amples demonstrated that this ADI analysis graph could be
used to model-specific instruments like hygrometers.

Subsequently, the analysis graph was applied to the cali-
bration of analogue watermeters, where industrial constraints
had to be fulfilled. The inspection determined the indi-
cated measurement value and the serial number, protocoling
each measurement step. In a test series performed with 200
frames, the positions ofall primitives were determined in
the requested time (approx. 2 s), with therequested accu-
racy (100%) andreliability (95%). The reliability of a little
more than 95% was due to air bubbles inside the waterme-
ter. To overcome this problem, the detection algorithm was
changed without changing the analysis. The final test series
with 800 images was performed, attaining a reliability of
more than 99% for the measurement value.

The flexibility of the analysis graph was demonstrated
by testing the analysis process for hygrometers with the de-
scription of other ADIs (watermeters and a clock), which
was performed by adapting the analysis graph, but with-
out changing the detection algorithms. Since the detection is
represented as detail relation in the analysis graph, having a
designed interface for primitives, a change of the detection
algorithm is possible without changing the overall analysis.
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Abstract

Classification and reconstruction of archaeological frag-
ments is based on the profile, which is the cross-section of
the fragment in the direction of the rotational axis of sym-
metry. In order to segment the profile into primitives like
rim, wall, and base, rules based on expert knowledge are
created. The input data for the estimation of the profile is
a set of points produced by the acquisition system. A func-
tion fitting this set is constructed and later on processed to
find the characteristic points necessary to classify the orig-
inal fragment. The one we propose is based on B-splines or
bell-shaped splines.

1 Introduction

A large number of ceramic fragments, called sherds, are
found at excavations (see Figure 1). These fragments are
documented by being photographed, measured, and drawn;
then they are classified and stored in boxes and containers.
The purpose of classification is to get a systematic view on
the excavation finds. As the conventional method for docu-
mentation is often unsatisfactory [9], we are developing an
automated archivation system with respect to archaeolog-
ical requirements [6], that tries to combine the traditional
archaeological classification with new techniques in order
to get an objective classification scheme.
A graphic documentation deviced by hand additionally

raises the possibility of errors. This leads to a lack of objec-
tivity in the documentation of the material found. To give an
example, a vessel was drawn by 2 different illustrators re-
sulting in two different vessels as shown in Figure 2. Note
the different shape and decoration, the rim and the thickness
for instance are significantly different.
Manual drawings like Figure 2b indicate the beginning

�This work was supported in part by the Austrian Science Foundation
(FWF), grant P13385-INF, the European Union, grant IST-1999-20273,
and the Austrian Federal Ministry of Education, Science and Culture.

and end of defined shape features by horizontal lines. The
left half of Figure 2b shows the shape features defined by ar-
chaeologists and a subdivision of the profile into intervals.
They depict the borders of certain parts of the vessel like
rim, wall, and base in this example. By classifying the parts
of the profile, the vessel is classified, missing parts may be
reconstructed with the expert knowledge of the archaeolo-
gist [13]. Segmentation of the profile is done for three rea-
sons: to complete the archive drawing, to classify the vessel
and to reconstruct missing profile parts.

Figure 1. Boxes filled with ceramics stored in
archives.

(a) (b)

Figure 2. Same vessel drawn by two different
illustrators.

Following this manual strategy, the profile should first be
segmented into its parts, the so-called primitives, automat-
ically. Our approach is a hierarchical segmentation of the
profile into rim, wall, and base by creating segmentation
rules based on expert knowledge of the archaeologists and
the curvature of the profile. The segments of the curve are
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divided by so called segmentation points. If there is a corner
point, that means a point where the curvature changes sig-
nificantly, the segmentation point is obvious. If there is no
corner point, the segmentation point has to be determined
mathematically.
The curve is characterized by several points. Figure 3

shows the segmentation scheme of an S-shaped vessel as
an example. A set of points is defined like,
inflexion point ((IP ): point, where the curvature changes
its sign;
local maximum (MA): point of vertical tangency;
local minimum (MI): point of vertical tangency;
orifice point (OP ): outermost point, where the profile line
touches the orifice plane;
base point (BP ): outermost point, where the profile line
touches the base plane;
point of the axis of rotation (RP ): point, where the profile
line touches the axis of rotation.

Figure 3. S-shaped vessel: profile segmenta-
tion scheme.

By means of these curve points several main segments of
a vessel are distinguished: rim, upper part, lower part, neck,
shoulder, belly and bottom. On the basis of the number and
characteristics of these segments different kinds of vessels
can be classified.

2 Automated Segmentation

The profile sections are achieved automatically by a 3D-
measurement system based on structured light and a two
laser-technique [7]. The profile determined has to be con-
verted into a parameterized curve [12, 5] and the curvature
has to be computed [2, 8]. Local changes in curvature [11]
are the basis for rules required for segmenting the profile.
Our formalized approach uses mathematical curves to

describe the shapes of the vessels and their parts. The pro-
file is thus converted into one or more mathematical curves.
We apply four methods for interpolation and four methods
for approximation byB-splines on the reconstruction of the

vessel profiles (i.e. the profiles are projected into the plane).

2.1 Interpolation by Cubic Splines

The following definitions were adopted from [4]. We
suppose that the planar closed curve r to be fitted (inter-
polated or approximated) will be represented by parametric
equations

r(t) = [x(t);y(t)] (1)

in an interval in the Cartesian coordinates of R2 and has
continuous second derivatives. The curve is given by a set
of points Pi = [x(t); y(t)] together with the non decreas-
ing sequence of knots fti; i = 1; : : : ; n + 1g of parame-
ter t. Constructing a curve S(t), which approximates the
function given by the points can be done by a cubic spline
with an adequate parametrization and external conditions.
The curvemust be initially divided into sub-intervals, where
functional approximation and interpolation methods can be
applied.
The support of a cubic spline is 5 intervals. Denote by

B4
i an k�th order spline (k � 3) whose support is [ti; ti+4].

Then, it is possible to normalize these splines so that for any
x 2 [a;b ]

n+3X

i=�3

B4
i (x) = 1 (2)

Any cubic spline Sn(x) with knots t0; : : : ; tn and coef-
ficients a

�3; a�2; : : : ; an can be written in the form

Sn(x) =

nX

i=�3

aiB
4
i (x) (3)

There are n + 3 coefficients ai in representation (3)
showing that the vector space of cubic splines has dimen-
sion n + 3, so that the n + 1 functional values will not de-
termine Sn(x) uniquely - two additional constraints must
be supplied. Cardinality of the basis has been sacrificed for
small support in the basis. Consequently, in evaluating S(x)
for any x 2 [a;b ], only four terms at most in the sum (3) will
be non-zero.
The basis cubic splines can be constructed by the follow-

ing recurrent relationship:

Bn
i (x) =

x� ti

ti+n�1 � ti
Bn�1

i (x) +
ti+n � x

ti+n � ti+1
Bn�1

i+1 (x);

(4)
i = �3; : : : n� 1 and n = 1; 2; 3; 4. A useful convention is
to define the first-order splines as right-continuous so that

B1
i (x) = Æi for x 2 [ti; ti+1); i = �3;�2; : : : ; n+ 3;

(5)
The method is of local character: the change of the po-

sition of one control vertex influences only 4 segments of
the curve. The resulting curve is in particular coordinates
a polynomial of 3 � rd degree for t 2 (tj ; tj+1) and has
continuous all derivatives in these coordinates.
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Since Bn
i (x) is nonzero only on the interval [ti; ti+4],

the linear system for the B-spline coefficients of the spline
to be determined, by interpolation or least-squares approxi-
mation, is banded, making the solving of that linear system
particularly easy.

S4(xj) =
nX

i=0

B4
i (xj)ai = yj ; j = 0; : : : ; n (6)

for the unknownB� spline coefficients ai in which each
equation has at most 4 nonzero entries.
We selected four interpolation methods:

a) Cubic spline interpolation with Lagrange end-
conditions (cs1) (i.e. it matches end slopes to the slope
of the cubic that matches the first four data at the re-
spective end);

b) Cubic spline interpolation with not-a-knot end-
condition (cs2);

c) Spline interpolation with an acceptable knot sequence
(cs3);

d) Spline interpolation with an optimal knot distribution
(cs4). As ’optimal’ knot sequence the optimal recov-
ery theory of Micchelli, Rivlin and Winograd [3] is
used for interpolation at data points �(1); : : : ; �(n) by
splines of order k;

All the discussed interpolation methods satisfy the
Schoenberg-Whithey conditions, i.e. the achieved represen-
tation is for the method, the given data and knot sequences
unique. These methods were applied to each of the intervals
of the curve, and compared from the point of view of their
approximation error (least mean square of the differences of
the input value and the spline value) on the given data.
We made a surprising observation: Spline interpolation

with an acceptable knot sequence in all intervals of all pro-
files approximated the data with a smaller error than spline
interpolation with optimal knot distribution.
We select an ’optimal’ method according to the follow-

ing criteria: The first criterion for selection of the most ap-
propriate interpolation method is the minimal approxima-
tion error on the data in the corresponding interval. To ex-
clude ambiguity, the second criterion is applied: minimal
length of the knot sequence corresponding to the method.
To further exclude ambiguity, the third criterion is applied:
the priority of the interpolation method based on the statisti-
cal observations. The priority of the methods was achieved
experimentally on profiles and their particular intervals and
expresses a ’statistical’ ordering according to the smallest
approximation error over all intervals of the tested profiles.

2.2 Approximation by Cubic B-Splines

Since in the task being solved, the amount of data pairs
acquired to describe a vessel or its parts do not always suf-

fice to represent the shape of the vessel reliably, interpo-
lation does not have to be always the appropriate method.
From this reason, we compared the approximation methods
on representing the overall shape of the whole curve with
respect to the interpolation methods.
The following approximation methods were applied and

compared:

a) Cubic smoothing spline with the smoothing parameter
p > 0 (cs5);

b) Smoothing spline with the smoothing parameter tol>
0 (cs6);

c) Least squares spline approximation with the number of
knots equal to a half of the amount of the data (cs7);

d) Least squares approximation with the number of knots
equal to the number of data - degree of the spline in the
particular interval, (cs8);

3 Results

When the most appropriate interpolation and approxi-
mation methods are computed and selected for each of the
intervals of the curve, the method with a smaller error (in
case of ambiguity, the interpolation method is preferred) is
selected for the interval. The approximation error of the
representation over the whole curve is computed. This rep-
resentation is unique and optimal with respect to the above-
mentioned criteria. The method was tested on profiles like
shown in Figure 4.

Figure 4. Profiles of different fragments.

All interpolation and approximation methods are applied
for every sub-interval of the curve after each run of the
program. While the curve is generated gradually for each
sub-interval of the curve, the overall approximation error is
computed. As a result the profile is constructed from the
selected methods and is compared to the data set. Table
1 displays the approximation errors for all methods in all
intervals of the leftmost profile in Figure 4, including the
selected interpolation and approximation methods for the
corresponding interval and the selected overall method for
the whole profile. The whole data sets contained approx-
imately 350 data points and the length of the whole curve
was approximately 400 points.
The most frequently selected interpolation method was

cs1 and the most frequently selected approximation method
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was cs6 in our experiments. An interpolation method was
preferred in the intervals, where a sufficient number of data
with respect to the length of the interval was given. An ap-
proximation method was preferred in the intervals, where
there was a lack of data. Figure 5 right half shows one ex-
ample of an automatically segmented pot with the charac-
teristic points detected and the appropriate manual segmen-
tation on the left of Figure 5 .

method = interv. 1 2 3 4
cs1 0.2163 0 0.6047 0.0781
cs2 0.2163 0 0.5994 0.0782
cs3 0.2163 0 0.5994 0.0782
cs4 0.2163 0.6169 2.1080 0.0877
cs5 (tol = 5) 0.2163 2.3114 0.5994 1.1816
cs6 (p = 1) 0.1350 0 0.6229 0.07812
cs7 0.2163 5.9470 5.5298 0.5015
cs8 0.2163 0.0032 0.6014 0.1308
select. intp. 1 1 2 1
select. appr. 6 6 5 6
overall select. 6 1 2 1

method = interv. 5 6 7 8
cs1 1.1685 2.2497 1.1424 0.0884
cs2 1.1686 2.2514 0.1433 0.0884
cs3 1.1686 2.2514 0.1430 0.0883
cs4 1.4510 2.3485 0.1615 0.0991
cs5 (tol = 5) 2.9430 2.2514 2.2073 0.0884
cs6 (p = 1) 1.1687 2.2496 0.1646 0.0884
cs7 6.9127 6.2323 0.8617 1.0675
cs8 1.1850 3.8347 0.1430 0.2551
select. intp. 1 1 1 1
select. appr. 6 6 8 6
overall select. 1 6 1 6

Table 1. Approximation errors for all methods
in all intervals.

4 Conclusion and Outlook

The method presented for selection of an ’optimal’ rep-
resentation (optimal with respect to the considered methods
and selection criteria) of a 2-dim profile of an archaeologi-
cal fragment computes and displays a unique solution. The
achieved fragment representations, the first part of an auto-
mated system for classification of archaeological fragments,
are the input of the second part, the classification.
The profile parts, the so-called profile primitives, are

used to perform the classification. The segmentation (divi-
sion) into primitives depends on the orientation of the frag-
ment. In order to achieve a unique representation, it is im-
portant to set a unique orientation for all fragments. The
classification will be solved in the high dimensional real
space and therefore the uniqueness and the high precision
of the profile representation are very important.

(a) (b)

Figure 5. classified pot, (a) manual drawing,
(b) detected characteristic points for primitive
classification.

The method has been tested on synthetic and real data
with good results. The current task is to meet the archaeo-
logical requirements as for the achieved representation.
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 ABSTRACT 
 
The origin of works of art can often not be attributed to a certain artist. Likewise it is difficult to say whether paintings or 
drawings are originals or forgeries. In various fields of art new technical methods are used to examine the age, the state of 
preservation and the origin of the materials used. For the examination of paintings, radiological methods like X-ray and infra-
red diagnosis, digital radiography, computer-tomography, etc. and color analyzes are employed to authenticate art. But all 
these methods do not relate certain characteristics in art work to a specific artist - the artist's personal style. 
 In order to study this personal style of a painter, experts in art history and image processing try to examine the "structural 
signature" based on brush strokes within paintings, in particular in portrait miniatures. A computer-aided classification and 
recognition system for portrait miniatures is developed, which enables a semi-automatic classification and forgery detection 
based on content, color, and brush strokes. A hierarchically structured classification scheme is introduced which separates 
the classification into three different levels of information: color, shape of region, and structure of brush strokes. 
 
Keywords: classification, art history, brush strokes, feature detection, face detection, segmentation. 
 

 1. INTRODUCTION 
 
The Austrian royal family members remaining in Vienna were connected with their re-
latives in foreign countries through a collection of nearly 600 portrait miniatures (small 
format pictures of approximately 8cm x 6cm of a person which basically has the same 
character as a photograph, see Figure 1), started by Empress Maria Theresia. The artistic 
manifestations in the collection cannot lead to a clear affiliation with certain artists, 
especially because of the lack of signatures on the portrait miniatures.  
 Although it is undeniable that an artist produces paintings of varying quality, and 
that these variations can be considered as a whole by an art historian the question still 
remains whether or not an artist can be identified by certain replicable constants, and 
how these are described [7,13]. In the case of portrait miniatures painted in an aquarell 
style using point and line strokes, one can recognize certain mechanical trademarks. 
Each artist applies different hues to the strokes or points to create a distinct portrayal of 
the subject. Because the subject is produced in a very small format and the application 
of multiple strokes is used to create the face, one can observe that the artist has relied 
on his/her own unconscious rhythm. This term describes not only the "handwriting" of 
an individual artist which follows a certain pattern of stroke length and angle, but also the system of lines and the relation of 
lines to one another. However, personal patterns can be recognized, in both high quality and mediocre paintings of an artist. 
In the case of portrait miniatures [2], this basic pattern is that of the face, which is constituted of different recurrent parts 
(basic oval form, eyes, nose, mouth, etc.). The artist applies an individual line system of strokes and colors to this basic 

 

Figure 1: Portrait miniature  
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pattern, thereby not only adding his artis tic signature but also giving the portrait an individual physiognomy.  
 To meet this identification problem we develop artist specific models, which describe artist specific and artist independent 
characteristics of a painted portrait miniature. We claim that these characteristics are expressed in the way the artist placed 
the brush strokes and the constraints he has to consider to create a realistic reproduction of a human face [27]. The overall-
goal of our work is to support the art his torian expert in order to classify and identify the miniatures in an objective manner. 
 The method developed so far concentrates on the detection of stroke segments in intensity images of the portrait minia-
tures. The following section gives a short overview on the image acquisition process and the classification scheme that will 
be used to relate miniatures to artists. In Section 3 a description of the classification model, where artist specific features are 
represented is shown, the local stroke-detector is presented in Section 4 in detail. An analysis of the results of the stroke-
detector in Section 5 discusses the applicability of the proposed classification scheme. The paper concludes with an outlook 
on further working steps. 
 

 2. IMAGE ACQUISITION AND CLASSIFICATION SCHEME 
 
To perform a semi-automatic classification of the portrait miniatures, they were digitized using a 3-chip color CCD camera. 
This color image contains only the face of the person since this part contains the artist relevant information in contrast to the 
background. This color image of the face 
(size: 572x768 pixels) is the basis for the 
subsequent classification.  
 The structural analysis to 
relate an artwork to an artist can be divided 
into 4 hierarchical classification steps: 
Color classification, Shape classification, 
Stroke classification, and finally the Artist 
classification. This global top-down classi-
fication scheme is extended by a bottom-up 
strategy within each classification step. 
Figure 2 shows the single steps of the clas-
sification scheme. The process starts with 
the Image acquisition, which is the basis 
for the color classification. Next, a Color 
space transformation is used to reduce the 
amount of data and to perform the 
subsequent intensity based feature 
detection. An intensity image is the basis 
for the Face extraction, the face is 
segmented from the background. Within 
the face classification relevant Regions Of 
Interests (ROI's) are produced with the 
help of Region Segmentation. These ROI's 
are used to compare shape features (like 
eyes, mouth, and nose) within these ROI's 
to shape features of different artists for 
shape classification. Within certain ROI's 
Stroke detection is performed to capture 
the "rhythm" of the artist. Since this 
detection computes only stroke segments, 

 

Figure 2: Image acquisition and classification scheme  
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a subsequent Stroke analysis is necessary to assemb le these segments into strokes. The stroke classification within certain 
regions allows a robust artist classification. In the following a brief description of the function of the individual processing 
steps is given: 
 

• Image acquisition: To meet the art-his torical requirements, the acquisition system is able to register the face details in 
true color (24-bit). This is attained by the use of a 3-chip color CCD-camera in combination with a specific optical lens 
system. A true-color representation of the image is necessary to carry out the color classification. The signals produced 
by the camera are digitized by a color framegrabber device and prepared for further processing steps. During the acqui-
sition process the illumination conditions were held constant. 

• Color classification: Artist classification by art historians is based on color impression. This term describes the overall 
color perception of the painted face - it's color tone. This color impression considers the origin of the object, because 
colors and the manner of using them vary with time. Based on this fact, portrait miniatures are first grouped by color. To 
perform this rough classification automatically, the mean RGB value of the face is calculated. But RGB color values re-
present only one part of the color impression of an art his torian, he judges also the person presented (man or woman), 
the age of the showed person, the painting manner, and the orientation of the face. Nevertheless, this color classi-
fication is used to perform a rough pre-classification to separate miniatures because of their color tone. 

• Color space transformation: Color space transformations [21] are used as a preprocessing step to prepare the regis -
tered images for the extraction of the features. Since true color image processing is a time-consuming process and there 
is a lack of feasible methods of color feature detection [4,14], we decided to develop a stroke detection method based on 
intensity images. Hence it is necessary to transform the image data from the color space to a gray value space without 
losing too much information with regard to stroke detection [12]. We therefore chose a RGB to HLS transformation, 
because the L (lightness) channel of the HLS-model represents the information (intensity values of the color image), 
which is relevant for line detection [26]. 

• Face extraction: Since relevant artist specific information can 
only be found within the face of the shown person it has to 
be segmented from the background. This segmentation is 
done for two reasons; to reduce the search space and hence 
the computation time and to be able to segment the face into 
certain regions like eyes, nose and mouth to name the most 
prominent. This segmentation can be performed easier than 
conventional face detection since these faces are created by 
an artist which has a standard "creation mo del" in mind (in 
contrast to real perspective projections). Artists use a scheme 
which they have learned during their practice to draw faces. 
Especially in portrait miniatures the painting style is more 
schematic than realis tic. There is evidence [7] that artists used 
an elliptical schema, which determines the shape and orienta-
tion of the head as well as the position of eyes, nose, cheeks 
etc., to develop their portrait miniatures (see Figure 3a). 

 
Our approach assumes that the head can be described by an ellipsoid whose major axis is parallel to the image plane. The 
projection of the ellipsoid into the image plane is an ellipse (face ellipse), which is invariant to the rotation of the ellipsoid 
with respect to the major axis. A second ellipse within the ellipsoid describes the intersection of the facial symmetry plane 
with the ellipsoid (symmetry ellipse, i.e. the ellipse which lies in the direction of the nose). The ellipses are up to now adapted 
manually to the face contours by setting the focal points and a point lying on the ellipse [18]. The second ellipse shares the 
major axis of the first ellipse and its minor axis is oriented according to the orientation of the face. Figure 3b shows the result 
of the ellipse fitting, the face ellipse, the symmetry ellipse and the rotation axis of the rotational ellipsoid. 

 

  Figure 3: a) schematic head shape [7], b) fitted 
ellipses  
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• Region segmentation: Following the face detection and ellipse fitting the image plane el-

lipse is segmented into different facial regions because the stroke arrangement differs 
within certain regions. The stroke arrangement differs for instance significantly between 
eye and the cheeks regions due to their different shape and illumination. To estimate the 
position of the head, to segment the face into characteristic regions, and to support the 
extraction of facial features, two ellipses (face ellipse and symmetry ellipse) are used. The 
information about the rotation of the face ellipse is used to determine elliptic regions like 
eye, nose, mouth, chin, and cheek [16]. Figure 4 shows the segmented regions within the 
face. 

• Shape classification: The face segmentation allows a comparison of portraits on a region 
by region basis. Artists tend to use a schematic way to model face details. For instance 
eyes within portrait miniatures are painted rather schematic than realistic, the depicted eye 
is only similar to the eye of the painted person. This fact is used to classify miniatures due 
to the shape of certain regions, some artist tend to paint "circular" eye regions, some tend 
to paint them in elliptic shape to give an example. The region based matching reduces the 
complexity of comparison too since the search space is reduced from the complete face to specific ROI's. 

• Stroke detection and analysis: In order to compare the segmented regions not only by their shape but also by the 
brush strokes used to paint them, a segmentation of the individual strokes is necessary. One way to segment the 
strokes is to apply edge detection methods that are widely known in pattern recognition. After having studied the 
results of standard edge detection methods, we found that stroke detection is only practicable if an accurate model of a 
brush stroke is defined beforehand. The results of a stroke detection method based on a model incorporating 
parameters like length, width, curvature and so on are given by images of detected stroke segments in various 
orientations. These brush stroke segments are grouped into brush strokes by matching similar curvatures and 
orientations of neighboring stroke segments. If they match within certain tolerances, these stroke segments are 
connected forming the original brush stroke. 

• Stroke classification: The detected strokes are needed to carry out a structural analysis with regard to a classification. 
The structure of the detected stroke segments allows a classification of the miniatures since the brush stroke structure 
is very similar to the basic elements of art his torical classification. Furthermore it can be recognized that there are similar 
arrangements in all miniatures (e.g. contour lines). Therefore, there are two different kinds of characteristics: artist de-
pendent characteristics given by the individual "handwriting" of the artist and artist independent characteristics as a 
constraint from assumed illumination, shape, and 3D-impression of the face. 

 
The hierarchical structure of the three classification steps allows a top-down classification, first the color impression is used 
to have a rough classification, within this subset of all possible artists a more detailed classification is performed due to the 
shape features within certain face regions which reduces again the set of possible candidates. Within the regions of the face 
under examination the stroke classification introduces a bottom-up approach. This three classification stages allow an econo-
mic search space adaptation, having a set of possible artist as classification result. The art historian judges this result, if it is 
not correct, the artist model has to be adjusted. 
 

 

Figure 4: Segmented 
ROI's  
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 3. PORTRAIT CLASSIFICATION MODEL 
 
To relate the characteristics to a specific artist, a so-called artist-model is deve-
loped. The model is based on a reference model of a human face, which assigns lo-
cal artist dependent characteristics to facial regions. A closer look at portrait 
miniatures and their corresponding painting technique reveals that there are a 
number of brush strokes and brush stroke arrangements that are not only specific 
for a certain artist but also influenced by the shape of the painting ground and the 
object to be painted. To achieve a realistic impression of a face - the portrait of the 
person painted should be recognizable - the artist must consider the influence of 
physical illumination on the appearance of the face. That means the artist has to 
consider the direction of the incoming light and the 3D shape of the face for each 
individual point of the face to be illustrated. Therefore, we have to divide the mo-
del parameters into parameters determined by the specific illumination situation 
and parameters that describe the individuality of the artist. To answer the ques-
tion: "is a certain local arrangement of strokes due to the individuality of the artist 
or due to the working process?" we take a closer look at the 2d- brush strokes. To achieve this, a mathematical reference 
model of a human face that is connected with the image information is introduced. In addition to the image information this 
model provides geometric information to support the separation into artist-specific and artist-independent components 
structured into specific regions.  
 A connection between the three-dimensional world coordinate system (x,y,z) ∈∈R; of a human face and a parameter space 
(s,t)∈∈SxT can be defined as follows (see Figure 5): N: nose = (0,0); M: mouth = (0,-1); A1: left eye = (-1,2); A2: right eye=(1,2). 
The geometrical connection between arbitrary points in the parameter space (s,t) and the corresponding points in the world 
coordinate system can be defined via a homomorph transformation: ϕϕ  (s,t) = (x(s,t), y(s,t), z(s,t)). 

 Each point in the parameter space is assigned to radiometric information. If we 

use for instance the HLS color system, we have three information components, 
Hue h(s,t), Lightness l(s,t), and Saturation s(s,t). Brush strokes can be re-
presented in the parameter space by ellipses with a certain angel q(s,t), which 
defines the orientation of the stroke, and with a certain length of the primary axis, 
which defines the length of the stroke. In addition, representations of elongated 
regions ("ribbons") [25] can be applied. Cross-hatched and parallel strokes can be 
represented as a combination of individual strokes. 
 This reference model is based on knowledge from the field of face recognition 
[10,11,23], which also uses reference models to represent a human face and which 
can be transformed if needed. The definition of the individual reference points and 
dis tances has its origin also in this field. Another research area our mo del is  con-
nected with is "Shape from Shading" [9,22].  
 This mathematical model has many benefits. For example, we can select a cer-
tain elliptic region within the parameter space of the reference model and transform 
it to the appropriate image via geometric connection. In this way we can compare a 
cheek region from one artist with the cheek region from another artist, although 
the one artist might have used a frontal and the other a side view. Figure 6 
illustrates the application of the mathematical model to a miniature. 

 

Figure 5: Mathematical model of the 
face 

 

Figure 6: Reference points of the 
model 
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 Further restrictions concerning the detection process are given by the implicit goal 
of an artist to produce an image of the person which is supposed to be represented as 
realistically as possible. This means that he has to consider the position of the light 
source as well as the shape of the actual face and consequently use a certain 
lightness shading. In other words, in certain areas of the human face strokes have to 
be placed primarily in certain directions in order to achieve a sense of plasticity. This 
fact is illustrated in Figure 7 as brush strokes of a portrait miniature are traced by 
hand. 
 The mathematical reference model is the basis for the artist-specific model. We de-
fine artist-specific arrangements of brush strokes, which may appear differently in dif-
ferent face regions. It is important to ascertain whether the arrangement of the strokes 
reflects the individuality of the artist and is not the result of restrictions by the shape 
of the face, the projection geometry and so on. Artist characteristic features are 
represented in a set of parameters (like set of colors, eye shape, face shape average 
stroke length, width, and curvature to name a few) of the mathematical models. So 
every artist is assigned to a set of characteristic parameters. 
 Portrait miniatures which could not yet be classified will be analyzed on the basis of artist-specific models. To compare 
different artists we need a similarity measure of the artist-specific parameter sets. The verification of the model within an 
image results in a measure, which allows to distinguish paintings of artists.  
 

 4. STROKE-DETECTOR 
 
The final detail classification is based on the arrangement of strokes. Therefore, the stroke detection is the most significant 
step in order to perform the classification. Finding brush strokes in an image of portrait miniatures is a typical segmentation 
problem. The aim is to separate the strokes from the background. Two depicted regions are distinguishable since they differ 
in color and/or brightness. Since our focus is on the facial detail of portrait miniatures, color difference is not relevant in our 
specific case, and thus we concentrate on brightness differences instead [15]. 
 The first attempt to such kind of detection problems is the application 
of standard edge detection methods to the lightness components of four 
test images and judging the attained results. To demonstrate and discuss 
the results, a detail (nose detail Figure 8a) of a portrait miniature is used. 
Figure 8b shows the detail superimposed by markers of significant 
strokes determined by the art historian. The goal of edge detection is to 
find the borders of the brush-strokes. A non-maxima suppression method 
[24] was applied to the gradient images to evaluate the results. The result 
is a binary image in which each pixel represents a locally maximal gra-
dient. The resulting binary image of the first edge detector applied, the 
Sobel edge detector, can be seen in Figure 8a. The image shows the 
difficulties of segmentation using a global threshold. The result of the 
Canny edge detector [3] applied to the image of  Figure 8a can be seen in Figure 8b. To produce the binary image, we used a 
threshold calculated according to Canny's hysteresis method using values of 1.5 and 0.75. The last detector of our 
experiments is known as Marr-Hildreth or DoG (Difference of Gaussians) detector [20]. Figure 8c shows the resulting image 
using σσ 1=9. 
Using the three resulting images of Figure 8 we can compare and interpret the application of standard edge detectors, like 
Sobel, Canny, and Marr-Hildreth edge detector [1,6], in view of our specific problem. We sought to detect the borders of the 
individual strokes, which correspond to edges in an intensity image. It is known that the size of the filter kernel influences the 
detection result [8]. The result image of the Sobel operator shows the considerable response to local intensity changes due 

 

Figure 7: Brushstrokes traced by 
hand 

  a)           b) 

  a)   b) 
 

Figure 8: Test image: a) intensity image, b) sig -
nificant brushstrokes  
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to a kernel size of 3 by 3 pixel. Both the Canny and the 
Marr-Hildreth detector use a larger kernel resulting in 
a smoothing effect over a larger region. This leads to 
a weaker response to small intensity changes in the 
image. It can be pointed out that further 
postprocessing steps are necessary, if we want to use 
the detected edges as a representation of stroke 
borders. The determination of strokes based on edge 
detection is expensive due to broken edges. There-
fore, more knowledge about the origin of brush 
strokes into the detection process is integrated. One 
possibility is to use a line detection method instead of an edge detector. The method that will be presented here is based on a 
stroke model which describes brush strokes as line-like objects. 
 
 4.1. Brush stroke model 
 
This section deals with fundamental questions, like how to characterize a brush stroke, what kind of information is necessary 
for a viewer to perceive a brush stroke within the detail of a face and how can a brush stroke be reliably identified by a human 
viewer. Furthermore we will discuss the different views of technicians and art historians, respectively and how both views 
can be reconciled into one. The following brief "ad hoc" definition of the term "brush stroke" illustrates the different view 
points: 
  !  Both art historians participating in the project defined a brush stroke as follows: A brush stroke is a stroke painted by 

an artist. It can be distinguished from the background and thus be perceived by the human eye. A brush stroke 
contains a point of origin and an ending point, which is darker and more saturated due to the lifting of the brush. 

  !  The following definition concerning the appearance of a brush stroke within a digital image of a portrait miniature was 
given by the project participants with technical background: a brush stroke is an elongated shaped region of pixels 
which are characterized by individual color information. 

 
 The statement from the art historian point of view of that a brush stroke can be recognized only if it stands out against the 
background can be generalized in connection with the faculty of human perception. The properties of a brush stroke 
gathered so far can be summed up as follows: 
  !  brush strokes are painted using a fine brush; 
  !  some strokes painted in a wet, and others in a dry manner;  
  !  brush strokes show some colors; 
  !  brush strokes are elongated objects; 
  !  depending on the brush, brush strokes have a certain length and a width; 
  !  strokes show a direction, which means that there is a point of origin and an end point; 
  !  there are combinations of strokes such as: parallel strokes, cross hatched strokes, etc.; 
 
Based on this facts an experiment was made to answer the following two essential questions: 
  1.  How reliably can a brush stroke be recognized by the human eye? 
  2.  What size of background of a stroke is necessary in order for a person to be able to recognize the stroke? 
 
 We used four test images of portrait miniatures in the experiment. The art historian marked significant strokes in the image 
by hand. 120 optically significant strokes, distributed over the whole image, were selected. The selected strokes were 
presented to the art historians and to the technicians respectively in a various sized environment. The task was to decide 
whether a stroke can be identified as such or not. The mean recognition rate of all participants was 84.2 %. This value was 

 

              a)           b)      c) 
Figure 9: Results of standard edge detectors: a) Sobel b) Canny c) 
DoG 
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obtained from a neighborhood size three times the width of a brush stroke. The results of our experiment permit us to make 
the following assertions concerning the definition of a brush stroke model and the development of a stroke-detector: 
  !  the stroke can be recognized in a locally; 
  !  the neighborhood must have a certain minimal size, which is approximately three times the width of the stroke; 
  !  strokes are darker than the background, since in the specific art category of portrait miniatures bright colors are used 

first, dark colors are painted afterwards and therefore the last layer of strokes is locally darker than the background; 
  !  strokes have different orientations; have a certain curvature; and may be interrupted by other strokes. 
 
 Using this knowledge of brush strokes in portrait miniatures we can define a 
model of a brush stroke which is based on the medium axis of the stroke. Figure 10 
gives an illustration of the model and its parameters. 
 The medium axis of the brush stroke is represented by a parametric curve a(t). 
The curvature k(t) of the brush stroke as well as the orientation of the stroke o(t) 
can be computed from this axis. Point A and point E correspond to the point of 
origin and the end point of the brush stroke. The path from A to E represents the 
painting direction of the brush stroke. 
  !  axis of the brush stroke: a(t) = (x(t),y(t)), t  ∈∈2[0,1] 
  !  starting point:    A = a(0) 
  !  end point:     E = a(1) 
  !  width at position t:  b(t) 

  !  length:      (t)dty+(t)x=l 22
B

A
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  !  curvature at position t: 
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 The model defined above can be used to determine the features of a brush stroke. Furthermore the following properties of 
a brush stroke will be used to create a local stroke-detector. 
  1.  Stroke detection can be performed locally 
  2.  The size of the detector kernel is about three times the stroke width  
  3.  Generally the region corresponding to the strokes is darker than the background 
  4.  The detector must be able to detect strokes in every position and orientation within the image 
 
 These properties can be used to define a stroke-detector based on a line model of a stroke. Figure 11 illustrates the model 
and the parameters of the model where  b depicts the width of the brush stroke, 3b the size of the detector kernel, HP the 
brightness of the brush stroke, HH the brightness of the background (HH > HP), and á the local orientation of the brush 
stroke. A detector to detect brush strokes was developed on the basis of this model. 
 
 4.2. Detecting brush strokes  
 
The brush stroke model provides the information for the choice of a detector. Table 1 shows the connection between the pa-
rameters of the model and the corresponding detector specifications.  
 A local line detector able to detect lines in various orientations fulfills the requirements of the model. Since linear line de-
tectors also detect edges, our stroke-detector is based on the semilinear "streak" detector described by Rosenfeld [24]. We 
applied modifications to make it possible to detect strokes in any direction while introducing a nonlinear condition which 
helps to avoid false detections. 

 

 

Figure 10: Parameters of a brush 
stroke  
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Figure 11: Model of a brushstroke  
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 Model parameters  Detector  

location: brush strokes can be recognized locally  local detector 

minimal size of a stroke environment for stroke recognition size of the detector kernel 

brush strokes are darker than the background corresponds to positive contrast line model  

brush stroke can appear in arbitrary orientations detector for strokes of any orientation 

Table 1: Model parameters influencing the detector 
 When using a line detector the number of possible orientations is in the range of 0 to 180 degrees since the direction of a 
line is not taken into consideration, in contrast to an edge [5]. The detector provides an intensity image representing the line 
gradients for each of the orientations used. The images of the individual gradients are combined by forming the maximum of 
the images. Let Gi be the gradient image of orientations O(i) with i = 1..N  and N be the number of orientations at an angular 
distance of N/180. The combination image (maximum image) M is calculated by computing the maximum for every pixel at 
position (x,y) for all gradient images Gi: M(x,y) = MAX(Gi(x, y)). 
 The detector was applied to the image in 
four different orientations of equal angular 
distance (0E,45E,90E,135E). The result of the 
detection, four intensity images, represents the 
response of the detection. The gray values 
may be interpreted as the strength of the line 
gradients. Strokes that are rich in contrast in 
the intensity image show high values in the 
gradient image. However, it should be pointed 
out that the gradient strength depends on the 
local contrast of the image. On the uniform 
background, a very dark thin line may result in 
the same gradient strength as a less darker wide line. The detector provides a line gradient image for any orientation it is 
applied to. The gray values of the gradient image can be seen as a measure of the brush stroke's contrast with the restrictions 
mentioned above. Figure 11c shows the maximum image of eight gradient images which are the result of applying the line 
detector to the intensity image (Figure 11a) in eight combined orientations. 

 The maximum image consists of parts of brush strokes so-called stroke segments. The crossing and overlapping of 
strokes cause incorrect results of the detector. Therefore, these stroke segments must be linked to form complete strokes, 
which are interpreted by the human viewer as a consequence of interpolation. In addition parameters like length, width, cur-
vature and location are calculated for the individual stroke, which is used as input for the classification. Furthermore it must 
be anticipated that some strokes will be covered by other strokes. To assign the stroke segments to original strokes we 

        a)              b)            c)
 

Figure 12: Results of the application of the stroke detector: a) intensity 
image, b) manually determined strokes, c) result of stroke detection 
(inverted) 

 

Figure 13: a) nose image, b) intensity surface interpretation, c) points of maximal in tensity with directions, d) result of linking  
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assume the output of the detector as a surface in the 3D space where the intensity value becomes the surface height. Figure 
13a shows a detail of Figure 11c; Figure 13b shows the intensity surface interpretation of the detail on which the detected 
stroke segments appear as "ridges". We compute the location of points with high positive transverse curvature and locally 
maximal height in the transverse direction in subpixel accuracy. The computed points with the corresponding curve 
directions are shown in Figure 13c, Figure 13d shows the results of linking the computed points, based on the notion of a 
Euclidean distance neighborhood. Most of the strokes (80%) are detected correctly, but in some cases it is necessary to use 
the curvature, the direction and the color of strokes as additional parameters to improve the result of the linking process. 

 
 5. STROKE-DETECTOR ANALYSIS 
 
In a test series we applied the stroke-detector to 44 intensity images of miniatures using 8 distinct orientations with equal 
angular dis tance (0,22.5,...,167.5 degree). To verify the results an art historian segmented the brush strokes manually (by 
marking the strokes with a pen on the monitor into an overlay) to prepare a ground truth (this segmentation is of course sub-
jective since only strokes with high contrast are marked but it this is a first approximation of the human perception of 
strokes). Beside regions, where individual strokes can be identified by the human observer, there are facial regions that show 
only few recognizable strokes.  
 Subimages (all placed in the forehead of the face) were used to analyze the detector results in relation to the detector win-
dow size, i.e. how detection rate of strokes depends on the detector size. According to the brush stroke model the stroke 
width of 3, 5, and 7 pixel corresponds to a detector window size of 9x9, 15x15, and 21x21 pixel respectively. To give an 
example, Figure 14a shows a detail image of a forehead region and Figure 14b four manually segmented strokes. These four 
strokes are strokes that are immediately separated by the human perception, since they have no interconnection and overlap 
with other strokes. There are no further recognizable structures within this region, overlapping strokes of low contrast form 
an almost uniform area. Figure 14c shows the result of the 9x9 stroke-detector (white regions depict strokes) and Figure 14d 
the result of the 15x15 detector. Strokes shown in Figure 14e were detected by a 21x21 stroke-detector.   

   Window size Stroke 1 Stroke 2 Stroke 3 Stroke 4 

9x9 pixels  60% 47% 70% 79% 

15x15 pixels  40% 60% 96% 86% 

21x21 pixels  42% 25% 71% 78% 

        Table 2: correspondence between detected strokes and manually 
segmented strokes (number of overlapping pixels) 

  
 The evaluation of the result is based on the correspondence of the manually segmented to the automatically detected 
strokes, by calculating the percentage of detected pixel within the manual segmented region. The percentage of detected 
stroke pixels was calculated at detector window size 15x15 pixels (see Table 2). This detector size provides the highest detec-

 

Figure 14: Results: a) intensity image, b) manually segmented strokes, c) 9x9 window, d) 15x15 window, e) 21x21 window 
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tion rate because the width of the manually segmented strokes is approximately 5 pixels. Furthermore there is a low percen-
tage of detected stroke pixels at stroke 1 and 2, which are orientated in 45° and 135°. The lower detection rate is due to 
rotational variances of the square shaped detector window at 45° and 135°, which can only be reduced by a circular shaped 
detector [12]. 
 The highest recognition rate of manually segmented strokes and the highest number of detected stroke pixels show that 
there are strokes of width 5 pixel within the almost uniform, bright area of the forehead in this example. In order to identify 
strokes in the result images using different window sizes, one has to pay attention to the fact, that stroke segments identified 
by the large detector (21x21) have their correspondence in the result of the smaller detector windows [19]. The artifacts in-
troduced by smaller windows are mainly located at the borders of the stroke segments detected by the larger window size 
detector. On the other hand we notice also that strokes marked by hand are detected partially by the detector in all different 
window sizes. 
 

 6. CONCLUSION AND OUTLOOK 
 
In this paper a hierarchical top-down classification scheme that uses the color impression as a first rough classification, 
which is refined in a subsequent shape classification and finally refined in a stroke classification was presented. The stroke 
classification within certain face regions uses a bottom-up classification scheme, individual strokes are detected and grouped 
into patterns. To analyze the arrangement of strokes applied by the artist, strokes are detected by a local operator. For the 
design of the operator expert knowledge was captured in experiments resulting in the definition of a stroke model and its 
parameters. A local operator, based on a semilinear streak detector [24], was developed according to the stroke model. The 
parameters of the stroke-detector are the size and the orientation of the detector window which are related with the width and 
orientation of the stroke. The results of developed stroke-detector were evaluated, it turned out that the detector performs 
best if the average stroke width is known. 
 An analysis of the automatically detected stroke results showed, that there are regions in the face which show a lack of 
manually segmented strokes but a number of stroke segments detected by the stroke-detector. These regions are described 
by the human observer as the brightest in the miniature, located in the forehead and below the eyes of the unshaded side of 
the face. Using histogram normalization to enhance the image contrast, some strokes that were not recognized by the human 
expert were visible afterwards. The comparison between the manual segmented strokes and the detected strokes showed a 
divergence. The human eye has the tendency to interpolate between partially interrupted strokes and between dark dots 
resulting from overlapping strokes. Especially in bright regions the human eye cannot decide whether there is a stroke or not. 
The local stroke-detector in contrast provides a result that is independent from the local contrast.  
 The experiments made up to now are pre-studies for the stroke classification within the artist specific model, which can 
describe an individual artist or a group characterized by specific arrangements of strokes. Our goal to classify specific artists 
within a group of artists is based on a stable method to detect the brush strokes since this feature is the only one that allows 
an objective distinction between artists - the personal signature. Regions which lack easy recognizable strokes are examined 
in respect to detector artifacts because of the discrepancy of the number of stroke segments detected by the stroke-detector 
to strokes identified by the expert. The results of the examination of subimages of the forehead show the stability of the 
developed method towards different detector window sizes. Future experiments will include further regions which differ in the 
human perception of strokes and results of the stroke-detector, e.g. the regions below the eyes.  
 Furthermore we currently work on the region extraction based on the mathematical model and the ellipse fitting. Within 
these regions shape detection is performed and matched with the shape of the features of different artists. The final goal is 
the reduction of the number of possible candidate artists to a high degree. The result can facilitate the work of the art 
historians making the final decision regarding the authorship of a painting. Thus our priority is not the full automation of the 
process but to support the work of the art historians. 
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Objects ?

Robert Sablatnig and Martin Kampel
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Institute of Computer Aided Automation,

Vienna University of Technology,
Favoritenstraße 3/183/2, A-1040 Vienna, Austria

Abstract

This paper shows an algorithm that pre-aligns the front- and the backviews of rota-
tionally symmetric objects for the registration of the two 3d-surfaces without using
corresponding points. The geometric alignment of the two three-dimensional sur-
faces is then performed by using a modified ICP (Iterative Closest Point) algorithm,
which needs an initial estimate of the relative pose. The method proposed uses the
axis of rotation of fragments to bring two range images into alignment. We are de-
veloping a classification system for archaeological fragments based on their profile,
which is the cross-section of the fragment in the direction of the rotational axis of
symmetry. Hence, the correct registration of the front- and backview are important.
We demonstrate the method and give results on synthetic and real data.

Key words: Range Image Registration, Pose Estimation, ICP, Ceramics,
Archaeology.

1 Introduction

The typical 3d-scanner output are range images from objects from one direc-
tion at a time. These range images have then to be registered to one another
in order to reconstruct the complete object in 3d. Normally, this registration is

? This work was supported in part by the Austrian Science Foundation (FWF)
under grant P13385-INF, the European Union under grant IST-1999-20273, and
the Austrian Federal Ministry of Education, Science and Culture.
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purely based on geometry since color is not always provided by the range scan-
ner and may also differ viewed from different directions. The most prominent
and dominant method for aligning three dimensional surfaces is the ICP (Iter-
ative Closest Point) algorithm introduced by Chen and Medioni [1] and Besl
and McKay [2]. Since then, many variants have been introduced on the basis
of ICP, some of these variants (like Rusinkiewicz and Levoy [3]) expand the
abbreviation also to Iterative Corresponding Point claiming that this would
better suit the algorithm.

ICP starts with two surface meshes and an initial guess for their relative rigid-
body transform and iteratively refines the transform by generating pairs of
corresponding points and minimizing an error metric [3]. Generating the initial
alignment is a critical issue within this context and is application dependent.
It can be based on the scanner position, surface features, exhaustive search
for corresponding points [4] or interactive user input (which is by far the most
prominent method [5]). All the initial alignment and ICP methods rely on - at
least partially - overlapping range images. When handling with very specific
objects like fragments of ancient ceramics, 3d-range images do not provide
overlapping regions in the range images. In such cases model based approaches
to the problem have to be made, which narrow the range of applicable objects
to be registered.

In this paper we present a method to solve the 3d-registration problem of front-
and backview for rotationally symmetric objects. The 3d-shape of ceramic
fragments is computed using these two views in order to virtually reconstruct
the complete vessel (where the fragment is a part of). Pottery is assumed to
be rotationally symmetric with only one axis of rotation since it was made
on a rotation plate. To perform the registration of the two surfaces of one
fragment, we use a-priori information about fragments belonging to one vessel:
both surfaces have the same axis of rotation since they belong to the same
object. With respect to this property the axis of rotation is calculated using
a Hough inspired method [6]. In this paper we concentrate on the registration
of the front- and backview of one fragment, which is significantly different
from registering the surfaces of different fragments of one object in order to
reconstruct the object out of its pieces.

Figure 1 gives an overview of the 3d-surface reconstruction from two object
views and basically shows the structure of this paper. In Section 2 a short
introduction to our application is given to motivate the registration process.
The first step consists of sensing the front- and backside of the rotationally
symmetric fragment using a calibrated 3d-acquisition system. We use a Shape
from Structured Light method based on active triangulation. The images ob-
tained are computed and the result is a 2D array of depth values (see [7] for
details on the acquisition system). The resulting range images are used to esti-
mate the axes of rotation, shown in Section 3. Section 4 presents the proposed
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registration method for the surface reconstruction and results are presented
in Section 5. We conclude the paper with a discussion of the results and give
an outlook on future work.

Object 
view 1

Object 
view 2

reconstruction
3d−surface

axis of rotation
Estimation of the 

axis of rotation
Estimation of the 

Calibration Registration

Range Image

Range Image3d−acquisition

3d−acquisition

Fig. 1. Overview on 3d-reconstruction from two object views.

2 Motivation - Archaeological Background

In this paper we address a very specific problem on registering front- and
backsides of rotationally symmetric objects, namely fragments of ancient ce-
ramics. Ceramics are one of the most widespread archaeological finds and are
a short-lived material. This property helps researchers to document changes
of style and ornaments. At excavations a large number of ceramic fragments,
called sherds are found. These fragments are photographed, measured, drawn
(called documentation) and classified. Figure 2 shows such an example (taken
from [8]) of a drawing of a pot. On the right hand side the profile is shown
(black part of the figure, four parallel lines on the top show that there are
rills on the top of the pot), the rest of the figure shows the decoration (rills)
on the surface of the pot and its rotational axis. Therefore, the important
properties of such a drawing are outer and inner profile shape, diameter and
surface characteristics.

Fig. 2. Drawing of a complete pot (from [8])

Traditional archaeological classification is based on the so-called profile of the
object, which is the cross-section of the fragment in the direction of the rota-
tional axis of symmetry. This two-dimensional plot holds all the information
needed to perform archaeological research. The correct profile and the correct
axis of rotation are thus essential to reconstruct and classify archaeological
ceramics.
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Because the conventional method for documentation is unsatisfactory [9], we
developed an automated 3d-object acquisition system with respect to archae-
ological requirements [10].

3 Estimation of Axes of Rotation

The basis for this axis estimation is a dense range image provided by the
range sensor. The estimation approach exploits the fact, that surface normals
of rotationally symmetric objects intersect their axis of rotation. If we have
an object of revolution (like an archaeological vessel made on a rotation plate)
we can suppose that all intersections of the surface normals ni are positioned
along the axis of symmetry R, which is schematically shown in Figure 3.

n1

I1

n2R
In

Fig. 3. Axis determination using Hough-Space.

This assumption holds [11] for a complete object or even for its fragment.
We try to extract a surface of revolution where the curvature of the surface
is relatively small. A few approaches to extract volumetric shape descriptors
of solids of revolution out of dense range images are reported in Yokoya and
Levine [12] and a Hough-based approach to the problem is presented. The
Hough transform is a robust and efficient tool for feature extraction [13,14].
It is based on a voting principle: each point or element will vote for the set
of features to which it could belong. This voting principle makes the Hough
transform very robust toward noise or outliers [15]. Yokoya and Levine [12] use
the center of the principal curvature from first and second partial derivatives
of the surface, which construct the so-called focal surface (see [16]). Since our
surfaces have a relatively small curvature we adopted this method by using
a robust way for the determination of the surface normals, based on planar
patches.

We consider a planar patch of size s× s. The patch is fitted according to the
following equation:

ax + by + cz + d = 0 . (1)

This defines a planar patch with normal −→n = (a, b, c). The fitting algorithm
used is the Total Least Squares (TLS). Let X={ X1, ....XN }, where Xi =
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(xi, yi, zi). The TLS minimizes the following expression

En =
N∑

i=1

ri
2, where ri =

|axi + byi + czi + d|√
a2 + b2 + c2

. (2)

It was shown that this approach is equivalent to the MCA or Minor Component
Analysis [17]: min−→n En ≡ A.−→n = λmin

−→n , where A is the covariance matrix
of set X and λmin is the smallest eigenvalue. The constant d is determined by

d = −−→n .
1

N

N∑
i=1

Xi. (3)

The main goal is to minimize the distances between the points of the surface
and the planar patch. An iteratively reweighted algorithm is used to compute
the optimal value of the normal and discard outliers. The objective of the
algorithm is to achieve:

∆ = min−→n

s2∑
i=1

[axi + byi + czi + d]2. (4)

In order to minimize the function, we use an iterative scheme. The points are
weighted according to their residual [18], a point Mi at iteration k and with
residual ri has a weight ωk defined by:

ωk =

 1 if ri ≤ Sa

0 otherwise
(5)

where S is the Median Absolute Deviation and a is a tuning constant. The
algorithm can be outlined with the initial state k = 0, ω0 = [1...1] as follows:

(1) compute the surface normal −→n k using weights wk.
(2) compute the residuals ri with the estimated parameters.
(3) compute ωk+1 based on ri.
(4) iterate steps 1., 2., and 3 until convergence.

The algorithm uses all data points in the initial step, since it is assumed that
there are only a few outliers in the data and the number of data-points within
the patch is relatively low (around 20). If these conditions do not hold this
produces a wrong surface normal that is eliminated by the subsequent axis
determination.

Once the surface normals for all points are computed the rotation axis R
can be estimated. For each point on the object, the surface normals ni are
computed using Minor Component Analysis. In order to determine the axis of
rotation R all surface normals ni are clustered in a 3d-Hough-space: All the
points belonging to a line ni are incremented in the accumulator. Hence the
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points belonging to a large number of lines (like the points along the axis)
will have high counter values. All the points in the accumulator with a high
counter value are defined as maxima. These maxima form the axis of rotation.

The accumulator maxima are taken as candidate points for the estimation of
the rotation axis. For the set of points acc(x, y, z) a PCA is used to find the
optimal axis going through these set of points M with

M = {Pi(x, y, z)|gi = acc(x, y, z) > Tacc} , (6)

with

Tacc = s ∗max(acc), (7)

where Tacc defines a threshold accepting points in the accumulator. In order
to estimate the axis the vector −→v is determined by A−→v = λmax

−→v , where A
is the covariance matrix of set M and λmax is the largest eigenvalue of A.

A point G on the axis is determined by using all points in M with

GM =

∑
i∈M

g̃i Pi∑
i∈M

g̃i

, where g̃i =

 gi di ≤ Td

0 otherwise
(8)

and the threshold Td = aS. With the point G and the vector −→v the rotation
axis is defined, thus a robust version of the complete algorithm can be outlined.
The sets Ik and Ok are respectively the inlier and outlier sets and the method
starts with the initial condition k=0 and Ik = M and Ok = {}.

(1) compute surface normals −→n for all points of the object.
(2) cluster lines Li in acc(x, y, z).
(3) compute −→v k and GIk

using set Ik.
(4) determine the distances di of set M to the axis defined by GIk

and −→v k.
(5) update Ok+1, Ik+1 = M−Ok+1.
(6) iterate steps 3., 4. and 5. until convergence or a maximum number of

iteration is reached.

Using this technique outliers introduced by noisy range data, based on a bad
calibration or discretization errors, can be avoided, since in the Hough-Space
wrong data points are in the minority and do not build a maximum. To eval-
uate this, synthetic range images are used where the axis of rotation is known
and the images are disturbed by non symmetric object parts. Since there are
some threshold parameters, the affect of changing these parameter was also
taken into consideration.

The size of s of the planar patches depends on the geometry of the object
and the accuracy of the range sensor, the more noise is expected the larger s
should be to eliminate the outliers. However, since we are considering curved
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surfaces s is also influenced by the minimal curvature we want to estimate in
relation to the sensor resolution. In our tests we used different sizes it showed
to work best with s = 5, which ensures to have at least 20 range points
within the patch. The tuning constant was set to a = 1 (and therefore not
used) and the threshold Tacc = 0.7 in all of the experiments, both parameters
were determined empirically based on our test data. The parameter space
of the hough space was set to 400x400x800, which corresponds to the range
image size of 400x400 and the maximal possible diameter of the fragment. The
computation time depends on the number of range points (size of the object)
and varies between 5min and 15 min on a Pentium 233MMX, 256 MB RAM
using non-optimized code.

In order to determine the error of the axis computation, the Mean Square
Error (MSE) between the original and the computed axis is determined. The
MSE is computed for all points of the axis inside the test object. The MSE of
all distances between the estimated and correct axis define the error. In Figure
4 test objects are visualized, where the estimated axis of rotation is computed
into the range image. For each test image the MSE is given according to the
position of the original axis. Compared to simple least square solutions only
one wrong surface normal, which is sufficiently far away from the bulk of data
can ruin the estimation completely. It can be shown that using our method
the axis can be determined even if there are large regions in the range image,
which are not rotationally symmetric as can be seen in Figure 4b. In our tests
we found out that in the average 15% of the surface normals were wrong, which
did not (or only slightly) influence the accuracy of the axis determination since
these normals were eliminated by the Hough method.

(a) MSE=0.16 (b) MSE=0.20 (c) MSE=0.11 (d)
Fig. 4. Axis determination for synthetic and real range data.

Problems that arise with real data are symmetry constraints, i.e. if the surface
of the fragment is too flat or too small, the computation of the rotational axis is
ambiguous (worst case: sphere) resulting in sparse clusters in the Hough-space,
which indicate that the rotational axis is not determinable. Therefore, before
we start our registration algorithm we first compute the Gaussian curvature for
20% of randomly selected surface points of one surface (back side, since there
are usually no decorations on). We determine whether the curvature is large
enough to estimate the rotational axis, i.e we look at curves determined by
the intersection between the surface and planes perpendicular to the tangent
plane at each surface point. All these curves have a single and well defined
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curvature at the point. The maximum and minimum of the normal curvature
κ1 and κ2 at a given point on a surface are called the principal curvatures. The
principal curvatures measure the maximum and minimum bending of a regular
surface at each point. The Gaussian curvature K and mean curvature H are
related to κ1 and κ2 by: K = κ1 ∗ κ2 and H = 1/2(κ1 + κ2). We introduce
two thresholds - a lower and an upper - to evaluate the results of the axis
determination. If the average mean curvature of all selected surface points is
below a lower threshold (0.2) the process is not started and the fragment is
marked uncomputable. If it is above the lower threshold and below the upper
threshold (0.8) it is marked computable with a confidence weight, and if it
is above the threshold it is again very unlikely to get good results since the
surface is sphere - like (which is almost never the case in our test data). For
both non-computing cases, other registration strategies have to be used, for flat
fragments the surfaces are registered assuming that they are completely flat
and should match to one another, for sphere-like fragments no registration
is performed since these fragments do not hold any relevant archaeological
information (they are not orientable manually as well). Figure 4d shows the
result for a frontview of a fragment with the estimated rotational axis (black
regions in Figure 4d indicate points where no range information is available
due to occlusion).

4 Range Image Registration

The task of building full 3d-models of general objects is difficult, since there
is no a-priori knowledge about the shape of the object. One simple method is
to use a calibrated turntable upon which the camera is fixed, as described in
[19]. Even though the turntable method described above is good at creating
3d-models, there is still the question of getting the bottom of the object sitting
on the turntable. So the bottom and the top of the object needs to be scanned
in and then registered. In the case of thin ceramic fragments, the rotation
table method does not solve the registration problem since one view of the
fragment is always invisible (one solution would be to ”glue” the fragment
onto the plate in an upright position, however, this method is impractical and
unthinkable for archaeologists [20]).

Fragments of vessels are thin objects, therefore 3d-data of the edges of frag-
ments are not accurate and this data can not be acquired without placing and
fixing the fragment manually. Ideally, the fragment is placed in the measure-
ment area, a range image is computed, the fragment is turned and again a
range image is computed. To perform the registration of the two surfaces, we
use a-priori information about fragments belonging to a complete vessel: both
surfaces have the same axis of rotation since they belong to the same object.
Furthermore, the distance of the inner surface to the axis of rotation is smaller
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than the distance of the outer surface. Finally, both surfaces should have ap-
proximately the same profile; i.e. the thickness of the fragment measured on a
plane perpendicular to the rotational axis should be constant in the average.
Note that this is only the case if the profile is taken perpendicular to the axis
since this is induced by the manufacturing process. This condition holds for
almost all fragments with the exception of relief decorated fragments. Still the
average distance perpendicular to the rotational axis is constant on most of
the parts of the fragments since there are more un-decorated than decorated
parts. Therefore, this assumption is used to perform the ”fine registration”.

The most commonly used algorithms for registering is the ICP algorithm [5].
ICP iteratively improves the registration of two overlapping surfaces by cal-
culating the unique transformation that minimizes the mean square distances
of the correspondences between the two surfaces. The algorithm starts with
the selection of some point sets in one or both surfaces (which generally are
triangulated surfaces), matches these point sets to one another, which gives a
set of corresponding pairs, and weights the corresponding pairs. A rejection
rule for pairs is applied to all pairs to determine outliers. To measure the fit,
an error metric is used, which is minimized iteratively.

There are many different variants of the ICP Algorithm (see [3] for a review)
all based on local point correspondences. Therefore, it is very important to
have a good rough alignment of the surfaces to be registered. Algorithms that
do not use single pair of surface registration (no pre-alignment) are also called
global registration algorithms (see [21], [22], or [23] for details).

Since we have a-priori knowledge about our surfaces and the rotational axis
estimation we decided to use a computationally relatively inexpensive model-
based approach. No point to point correspondences are required to determine
the interframe transformation needed to express the points from each view in
a common reference coordinate system [24]. We register the range images by
calculating the axis of rotation of each view (Figure 5a and Figure 5b) and by
bringing the resulting axes into alignment (Figure 5c). Knowing the surface
normals of all surface patches we transform them into a common reference
coordinate system. The first rough alignment is performed by aligning the two
surfaces vertically. To do so we select the 10 uppermost points of each surface
(we take the uppermost points since rim fragments are the most important
fragments in archaeology and they have the property that all points of the rim
lie in the plane perpendicular to the rotational axes) and align them vertically.
Next we perform the horizontal alignment by rotating one surface relative to
the other until both surfaces have a maximum number of points in a common
projection normal to the fixed surface. Note that after the rough alignment
(vertical and horizontal) due to inaccurate estimation of the rotational axis
the two surfaces may intersect (Figure 5d).
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In the next step we have to align the surfaces of the objects to avoid inter-
secting surfaces. The correct match is calculated using a slightly modified ICP
algorithm [21]. The difference to the standard ICP is that we are calculating
the unique transformation that minimizes the mean square distances of the
correspondences between the two surfaces to a constant value instead to zero.
This distance dn is the distance of the two surfaces on a plane perpendicular
to the rotational axis where n denotes the vertical position on the axis. Corre-
sponding points of the two surfaces are estimated by computing the Euclidean
distance of the candidate points on the inner surface to the normal on the ro-
tational axis for the point on the outer surface. The point with the minimal
distance is taken as corresponding point.

(a) (b) (c) (d) (e)
Fig. 5. Registration steps using synthetic data.

The first estimation of all dn is given by the range sensor. Since both range
images are computed in the same environment and the fragments are placed
on a plane, the range sensor computes the normal distance of the inner surface
to the object plane on the lowest point of the surface - which is an estimation
of the thickness of the fragment in a stable position.

Next the ICP starts by iteratively minimizing the error δi, which is the mean
error of the local surface distances to dn until all δi are positive (i.e. surfaces do
not intersect). Then all dn are updated to the mean distance of the surfaces
in the direction of the rotational axis, the mean square error δ of the local
surface distances are computed and the process is restarted. The algorithm
ends if there are no significant improvements or the overall error increases. To
sum up, the registration algorithm can be outlined as follows:

(1) compute the axis of rotation for each view.
(2) compute the vertical alignment by top points of each view.
(3) compute the horizontal alignment until the maximum number of points

in common projection is reached.
(4) set all dn to the same initial value given by the range sensor.
(5) compute all actual distances dn.
(6) compute all errors δi.
(7) iterate steps 5 and 6 until all δi are positive
(8) update all dn to new mean distance in direction of rotational axis.
(9) iterate steps 5, 6, and 8 until all δi are minimal or MSE δ increases.
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Figure 5e shows the result for synthetic range data with 50 surface points
for each view and a distance of 2.9mm. The computed distance between the
inner and the outer surface is 2.9mm. The registration error is δ=0.05mm, the
mean square errors between the original and the computed axes are 0.26mm
and 0.31mm respectively).

5 Results

We tested our method on synthetic range images of a synthetic fragment
(thickness 2.9mm) with approx. 7000 surface points each where we had a
registration error δ=0.02mm (see Table 1: synth 2). In comparison to the
previous results the registration error is smaller since there are more surface
points and therefore the computation of the rotation axis is much better.

To find out if the method is working on real data we used a totally symmetric
small flowerpot with known dimensions and took a fragment which covered
approximately 25% of the original surface. The results are given in Table 1 for
real 4. The distribution of the registration error δ for the flowerpot is shown
in Figure 6a, where the registration error δ (in mm) is shown as line in the z-
direction of the coordinate system, x- and y-coordinates denote the fragment’s
x- and y-dimensions. The registration error increases towards the top of the
pot, because of the irregularity of the distance between the surfaces at that
region since the flowerpot has an edge (upper border) where inner and outer
surface are not parallel due to misalignment of the surfaces.

(a) (b)

Fig. 6. Distribution of δ: registered flowerpot (a) archaeological fragment (b).

Figure 7c and d show the frontview, backview and the axis of rotation of a real
archaeological fragment. Results of the registration tests with this fragment
(real 16) are shown in Table 1. Figure 8 shows the registration of intersecting
surfaces for real data in detail: Figure 8a and Figure 8b show intersecting
surfaces due to wrong rotational axis estimation, Figure 8c shows the same
surfaces after the ICP-based registration procedure.
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(a) real 4 (b) real 4 (c) real 16 (d) real 16

Fig. 7. Front- and backview and their axis of rotation of a flowerpot real 4 (a,b) and
an archaeological fragment real 16 (c,d).

Figure 6b shows the distribution of δ of a registered archaeological fragment.
Marginal peaks are caused by shadow regions of the backview (see (Figure 7d)
at the border of the fragment, where either no range data is processed or the
range information is unreliable. The increase of the registration error δ reflects
the uneven surface of the fragment.

(a) (b) (c)

Fig. 8. Registration steps using real data.
Table 1 gives an overview of the presented results. It shows the number of
points of the back- and frontview, the mean curvature H, the mean thickness
of the fragment d, the estimated registration error δ, and the relative error
δ/d. The increase of δ between the synthetic and real data tests is caused by
the error in the determination of the rotational axis.

The evaluation of the results shows that the quality of the result is influenced
by the number of points in the two views (resolution of the 3d-scanner and the
object shape for occlusions). Figure 9 shows the correlation (0.83) between the
difference of number of points between the two views (solid line, left vertical
axis) and the relative registration error (dotted line, right vertical axis). The
horizontal axis denotes the samples (data type) as given in Table 1.

The next parameter that influences the results is the mean mean curvature H.
Since the registration algorithm uses the axis of rotation for rough alignment,
surfaces that are flat cannot be registered since the rough alignment does not
work. In our tests no results were obtained if H < 0.2 due to completely wrong
axis estimations.
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Data type # of points # of points H error δ mean d rel. error

(back view) (front view) [mm] [mm] δ/d

synth. 1 50 50 0.53 0.05 2.9 0.0172

synth. 2 6674 6674 0.47 0.02 2.9 0.0069

real 1 52324 52350 0.72 0.31 5.5 0.0564

real 2 46800 46602 0.61 0.49 7.9 0.0620

real 3 28745 29210 0.68 0.30 4.8 0.0625

real 4 10191 9619 0.24 0.44 5.6 0.0786

real 5 21990 22564 0.42 0.60 6.1 0.0984

real 6 24249 25021 0.41 0.29 3.2 0.0906

real 7 40870 41750 0.46 0.69 6.8 0.1015

real 8 48320 49433 0.36 0.53 4.8 0.1104

real 9 18307 17048 0.59 0.65 5.2 0.1250

real 10 60436 62173 0.39 0.74 6.0 0.1233

real 11 28340 30247 0.49 0.49 3.7 0.1324

real 12 49133 47051 0.64 1.35 8.7 0.1552

real 13 136342 134220 0.44 1.37 8.9 0.1539

real 14 142856 147174 0.34 1.64 9.5 0.1726

real 15 44587 39877 0.47 1.11 6.4 0.1734

real 16 31298 37176 0.27 1.19 6.9 0.1725

real 17 27282 33571 0.57 1.06 5.9 0.1797

real 18 71199 81735 0.53 1.98 8.7 0.2276

real 19 32124 21214 0.58 0.99 4.2 0.2357

real 20 120761 134319 0.32 2,59 10.3 0.2515
Table 1
Results of the registration process.

One source of error lies inherently in the algorithm since in the ”fine registra-
tion” process one surface (backview) is fixed and the other surface is registered
in relation to the fixed surface. Therefore the error made in the estimation of
the axis of rotation of the backview is not corrected and influences the regis-
tration result.

From the results one can see that the maximum error was approximately 25%,
which is acceptable in this specific application only since the main goal is to
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Fig. 9. Correlation between difference of number of points in the two views and the
registration error.

compute the profile and the outer profile is the most important attribute. Error
measures are also given to the user so that it is possible to manually correct
the result if necessary. However, the average error of 18% was accepted by the
archaeologists since manual drawings and measurement have more errors [9]
(in fragment thickness terms this is 1mm error in the profile orientation if the
fragment is 4mm thick, which is low in manual drawing). The rendered 3d-
models are also used for visualisation as can be seen in Figure 10. Figure 10a
shows the fragment real 6 from 1, Figure 10b and c show 2 more fragments as
examples.

(a) real 20 (b) real 2 (c) real 11
Fig. 10. Visual results for registered fragments.

6 Conclusion and Outlook

We have proposed a pre-alignment algorithm for registering the front- and
backview of rotationally symmetric objects from range data. The work was
performed in the framework of the documentation of ceramic fragments. For
this kind of objects, the surfaces to be registered have to be pre-aligned care-
fully because otherwise pair-wise registration techniques fail, since there are
no corresponding points in the range images. We demonstrated a model based
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technique that computes and uses the axis of rotation of fragments belonging
to the same vessel to bring two views of a scene into alignment. We used a
robust technique to determine both surface normals and the rotational axis.

The method has been tested on synthetic and real data with reasonably good
results. It is part of continuing research efforts to improve the results from
various range images since the technique depends on the correct determination
of the rotational axis of one surface. Furthermore we want to conduct intensive
tests with real archaeological fragments within the 3D-MURALE project [25]
that are selected, provided, and evaluated by archaeologists.
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Abstract

An algorithm for the automatic construction of a 3d
model of archaeological vessels using two different 3d al-
gorithms is presented. In archeology the determination of
the exact volume of arbitrary vessels is of importance since
this provides information about the manufacturer and the
usage of the vessel. To acquire the 3d shape of objects with
handles is complicated, since occlusions of the object’s sur-
face are introduced by the handle and can only be resolved
by taking multiple views. Therefore, the 3d reconstruction
is based on a sequence of images of the object taken from
different viewpoints with two different algorithms; shape
from silhouette and shape from structured light. The out-
put of both algorithms are then used to construct a single
3d model. Results of the algorithm developed are presented
for both synthetic and real input images.

1. Introduction

The combination of the Shape from Silhouette (SfS)
method with the Shape from structured Light (SfL) method
presented in this paper was performed within the Computer
Aided Classification of Ceramics [6] project, which aims to
provide an objective and automated method for classifica-
tion and reconstruction of archaeological pottery. The vol-
ume of the vessel is of interest to archaeologists, since the
volume estimation allows a more precise classification.

SfS is a method of automatic construction of a 3d model
of an object based on a sequence of images of the object
taken from multiple views, in which the object’s silhouette
represents the only interesting feature of the image [2, 12].
The object’s silhouette in each input image corresponds to
a conic volume in the object real-world space. A 3d model

�This work was partly supported by the Austrian Science Foundation
(FWF) under grant P13385-INF, the EU under grant IST-1999-20273, and
the Austrian Federal Ministry of Education, Science and Culture.

of the object can be built by intersecting the conic volumes
from all views, which is also called Space Carving [7]. The
method can be applied on objects of arbitrary shapes, in-
cluding objects with certain concavities, as long as the con-
cavities are visible from at least one input view [14]. This
condition is hard to hold since most of the archaeological
vessels do have concavities that have to be modeled. There-
fore, a second, active shape determination method has to
be used to discover all concavities. The second acquisition
method used is SfL, based on active triangulation [3, 4].

There have been many works on construction of 3d mod-
els of objects from multiple views. Baker [1] used sil-
houettes of an object rotating on a turntable to construct a
wire-frame model of the object. Martin and Aggarwal [10]
constructed volume segment models from orthographic pro-
jection of silhouettes. Potmesil [12] created octree models
using arbitrary views and perspective projection. In con-
trast to this, Szeliski [13] first created a low resolution oc-
tree model quickly and then refined this model iteratively,
by intersecting each new silhouette with the already exist-
ing model. The work of Szeliski [13] and Niem [11] was
used as a basis for the SfS approach presented in this pa-
per. For the active triangulation method we use an approach
by Liska developed for a next view planing strategy using
structured light [9].

2. Acquisition System

The acquisition system consists of the following devices:
� a turntable (Figure 1a) with a diameter of 50 cm, and

a positional accuracy of 0:05Æ.
� two monochrome CCD-cameras with a focal length

of 16 mm and a resolution of 768x576 pixels. One
camera (Camera-1 in Figure 1) is used for acquiring
the images of the object’s silhouettes and the other
(Camera-2 in Figure 1) for the acquisition of the im-
ages of the laser light projected onto the object.
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� a red laser (Figure 1d) used to project a light plane onto
the object. The laser is equipped with a prism in order
to span a plane out of the laser beam.

� a lamp (Figure 1e) used to back-light [5] the scene for
the acquisition of the silhouette of the object.

(c) Camera−2

(a) Turntable(b) Camera−1

(d) Laser (e) Lamp

Figure 1. Acquisition system.

Both cameras are placed about 50 cm away from the ro-
tational axis of the turntable. Ideally the optical axis of the
camera for acquiring object’s silhouettes lies nearly in the
rotational plane of the turntable, orthogonal to the rotational
axis. The camera for acquiring the projection of the laser
plane onto the object views the turntable from an angle of
about 45Æ. The laser is directed such that the light plane
projected contains the rotational axis of the turntable. Prior
to any acquisition, the system is calibrated in order to deter-
mine the inner and outer orientation of the cameras and the
rotational axis of the turntable (for details see [14]).

3 Combination of Algorithms

An input image for SfS defines a conic volume in space
which contains the object to be modeled (Figure 2a). An-
other input image taken from a different view defines an-
other conic volume containing the object (Figure 2b). Inter-
section of the two conic volumes narrows down the space
the object can possibly occupy (Figure 2c). With an increas-
ing number of views the intersection of all conic volumes
approximates the actual volume occupied by the object bet-
ter and better, converging to the 3d visual hull of the ob-
ject [8]. Therefore by its nature SfS defines a volumetric
model of an object.

An input image for SfL using laser light defines solely
the points on the surface of the object which intersect the
laser plane (Figure 3a). Multiple views provide a cloud of

points belonging to the object surface (Figure 3b), which is
a surface model of the object.

(a) (b)

Figure 2. Two conic volumes and their inter-
section.

(a) (b)

Figure 3. Laser projection and cloud of points.

The main problem to be addressed in an attempt to com-
bine these two methods is how to adapt the two representa-
tions to one another, i.e. how to build a common 3d model
representation. One possibility would be to build a sepa-
rate SfL surface model and a SfS volumetric model fol-
lowed by converting one model to the other and intersecting
them. But if we want to estimate the volume of an object
using our model, any intermediate surface models should
be avoided because of the problems of conversion to a vol-
umetric model. Therefore, our approach proposes building
a single volumetric model from the ground up, using both
underlying methods (see Figure 4):

The first step between the image acquisition and creation
of the final 3d model of an object consists of converting
the images acquired into binary images. A pixel in such a
binary image should have the value 0 if it represents a point
in 3d space which does not belong to the object for sure,
and the value of 1 otherwise. The binarization is performed
on input images for both SfS and SfL.

For the SfS part of the method presented, a reliable ex-
traction of the object’s silhouette from an acquired image
is of crucial importance for obtaining an accurate 3d model
of an object. In addition to the images of the object (Fig-
ure 4a, upper image) taken from different viewpoints, an
image of the acquisition space is taken, without any object
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in it. Then, the absolute difference between this image and
an input image is built, which creates an image with a uni-
form background and a high contrast between the object and
the background.

?

Shape from Silhouette

Shape from Structured Light

(a) Binarization of input images

(c) Intersection testing

(b) Initial octree

(d) Final model

Figure 4. Algorithm overview.

An input image for SfL contains the projection of a laser
plane onto the object (Figure 4a, lower image). A white
pixel in this image represents a 3d point on the object’s sur-
face which intersects the laser plane. A black pixel repre-
sents a 3d point in the laser plane which does not belong to
the object’s surface — it is either inside the object or it does
not belong to the object at all. Based on the known position
of the laser, an input image (Figure 4a, lower left image)
is converted to an image approximating the intersection of
the laser plane with the whole object (Figure 4a, lower right
image).

Our approach builds a 3d model of an object perform-
ing the following steps (illustrated in Figure 4): First, both
of the input images (SfS and SfL) are binarized such that
the white image pixels possibly belong to the object and
the black pixels for sure belong to the background (Fig-
ure 4a). Then, the initial octree containing one single root
node marked ”black” is built (Figure 4b). Black nodes are
subsequently checked by projecting the nodes into all SfS
binarized input images and intersecting them with the im-
age silhouettes of the object (Figure 4c). As the result of the
intersection the node can remain ”black” (if it lies within
the object) or set to ”white” (it lies outside the object) or
”grey” (it lies partly within and partly outside the object).
If the resulting node is not white, it is projected into the
binarized SfL image representing the nearest laser plane to

the node and again intersected. All grey nodes are divided
into 8 child nodes all of which are marked ”black” and the
intersection test is performed in each of the black nodes.
This subdivision of grey nodes is done until there are no
grey nodes left or a subdivision is not possible (voxel size),
which results in the final model (Figure 4d).

4. Results

For tests with synthetic objects we can build a model of
a virtual camera and laser and create input images in a way
that the images fit perfectly into the camera model. We as-
sume having a virtual camera with focal length f = 20 mm,
placed on the y axis of the world coordinate system, 2000
mm away from its origin. We set the distance between two
sensor elements of the camera to dx = dy = 0:01mm. The
laser is located on the z axis of the world coordinate sys-
tem, 850 mm away from its origin, and the turntable 250
mm below the x-y plane of the world coordinate system,
with its rotational axis identical to the z world axis. We
build input images with size 640 � 480 pixels, in which 1
pixel corresponds to 1 mm in the x-z plane of the world co-
ordinate system. As the synthetic object we create a sphere
with radius r =200 mm. Since the sphere does not contain
any cavities, SfS can also reconstruct it completely. There-
fore, we can measure the accuracy of each of the methods
independently, as well as of the combined method.

In a test we build models using 360 views with the con-
stant angle of 1Æ between two views, while increasing oc-
tree resolution. It turned out that the SfS method performed
best with an octree resolution of 1283, where the approx-
imation error was +0.83% of the actual volume, the struc-
tured light method with a resolution of 2563 and +0.29%
error (the other method produced there an error of -1.42%).
In the second test we build models with constant octree res-
olution of 2563 and increasing number of views. Regarding
the number of views, there was no significant difference be-
tween the two methods. Using 20 instead of 360 views was
sufficient for both methods to create models less than 1%
different from the models built using 360 views.

For tests with real objects we used 8 objects: a metal
cuboid, a wooden cone, a globe, a coffee cup, two archaeo-
logical vessels and two archaeological sherds. The real vol-
ume of the first 3 objects can be computed analytically. For
the two vessel it could be theoretically measured by putting
water into the objects, but it has not been done since the
vessels do have holes, which we are not allowed to close, so
for these objects we can only compare the bounding cuboid
of the model and the object. Figure 5 shows the objects and
their models built using 360 views for each of the underly-
ing methods and the octree resolution 2563.

The error of the computed volume for real objects was
between 3% and 13%, by an order of magnitude larger than
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the errors with synthetic objects. The main reason turned
out to be the threshold based binarization of silhouette im-
ages, which interpreted parts of the object as the back-
ground, especially close to the turntable surface. That ex-
plains why the error was the biggest for the cone and the
smallest for the globe (see Table 1). The cone has a large
base leaning on the turntable, while the globe only touches
the turntable in an almost tangential way.

Vessel #1Cuboid

Sherd #2Cup

Sherd #1Globe

Vessel #2Cone

Figure 5. Real objects and their models.

object octree #views volume vol.error

synth. sphere

— analytic 33 510 322 —
64

3 360+360 35 241 984 +5.17%
128

3 360+360 33 786 880 +0.83%
256

3 360+360 33 034 528 -1.42%
256

3 180+180 33 067 552 -1.32%
256

3 20+20 33 230 464 -0.83%

synth. cuboid

— analytic 420 000 —
64

3 360+360 432 000 +2.86%
128

3 360+360 420 000 0.00%
256

3 360+360 420 000 0.00%
256

3 180+180 426 071 +1.45%
256

3 20+20 435 402 +3.67%

real cuboid
— analytic 420 000 —

256
3 360+360 384 678 -8.41%

cone
— analytic 496 950 —

256
3 360+360 435 180 -12.43%

globe
— analytic 1 756 564 —

256
3 360+360 1 717 624 -2.22%

cup
— analytic N/A —

256
3 360+360 276 440 N/A

vessel #1
— analytic N/A —

256
3 360+360 336 131 N/A

vessel #2
— analytic N/A —

256
3 360+360 263 696 N/A

sherd #1
— analytic N/A —

256
3 360+360 35 911 N/A

sherd #2
— analytic N/A —

256
3 360+360 38 586 N/A

Table 1. Volume of objects and their models.

5. Conclusion

In this paper a combination of a SfS method with a SfL
method was presented, which creates a 3d model of an ob-
ject from images of the object taken from different view-

points. The algorithm employs only simple matrix opera-
tions for all the transformations and it is fast, because even
for highly detailed objects, a high resolution octree (256 3

voxels) and a high number of input views (36), the com-
putational time hardly exceedes 1 minute on a Pentium II.
Already for a smaller number of views (12) the constructed
models were very similar to the ones constructed from 36
views and they took less than 25 seconds of computational
time.

For archaeological applications, the object surface has
to be smoothed in order to be applicable to ceramic docu-
mentation, for classification, however, the accuracy of the
method presented is sufficient since the projection of the
decoration can be calculated and the volume estimation is
much more precise than the estimated volume performed
by archaeologists.
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