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Abstract

In this report we present a new calibration technique for off-the-shelf CCD cameras and acquisi-
tion systems. The estimated camera model includes 6 extrinsic and up to 8 intrinsic model param-
eters including radial and tangential distortion. Also an inverse distortion function for correction
of distortion effects can be estimated. Planar and non-planar objects can be used as previously
measured calibration targets. The method is suitable for single image and multiple image input
datasets. Tools for MathematicaTM, MATLABTMand KhorosTMwere developed and tested by the
author at PRIP. In addition this report includes also a number of practical test results.
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Preface

Structure of this work

The report is split into 5 main parts. Chapter 1 gives a brief introduction to camera calibration
topic. The main motivation and the reasonable needs for calibrated cameras are explained.
In Chapter 2 we give a broad overview of existing techniques and point out their benefits and
drawbacks. In the following sections projection geometry of lens cameras and the mathematical
representation of camera models is investigated. Chapter 3 presents the methods and algorithms
of the implemented solution of which in Chapter 4 test results are shown. In Chapter 5 we
draw our conclusions and give some outlook. Additionally we added 3 Appendices containing
implementation details.

Contributions

• In-depth analysis of geometric and chromatic projection features of lens cameras

• Development of a new alternative approach to camera calibration by using classical pose
estimation

• Implementation of the presented method in a MatlabTMtoolbox and application to a real
world 3D acquisition system
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1 Introduction

Originally camera calibration is one of the main issues in the field of photogrammetry, a scien-
tific discipline, that emerged at the time of the invention of photography long before computers
and even electronics had been invented. Photogrammetry is primarily occupied with measure-
ment by photography. Technologies for aerial and terrestrial survey were developed relying
on expensive, state-of-the-art optical equipment. In order to measure characteristics of optics
mechanical devices like the goniometer were invented ([1]). Before CCD 1 technology was
available, only high quality photographic emulsions and filters were used in image acquisi-
tion. Photographic film preserves analog image information as negative image of the projection
resulting from chemical reaction during light exposure. Shape and light information can be
digitized by scanners and in the following be processed by computer software. This process is
the main topic of analytic photogrammetry.
In 3D computer vision we use medium quality CCD cameras and off-the-shelf frame grabbers
and video cards. Today digital CCD cameras are commonly used and quite affordable. But not
every camera type will match the high opto-sensoric and mechanical standards of a photogram-
metric acquisition system (e.g. web cams). These low-cost cameras are also more sensitive to
environmental conditions like temperature, air pressure or mechanical exposure.
Basically one can distinguish between two different features of an existing camera-CCD-sensor
system. First there are the radiometric properties of optics and sensor. Spectral irradiance,
reflectance and response determine resolution of light intensity per channel. One can find a
number of adequate radiometric calibration methods in literature (e.g. in [2]).

Secondly we have to be concerned about the geometric features of the camera lens projec-
tion. Geometric calibration of a camera system is needed to get an accurate approximation for
the focal length and lens distortion of the optical part and for the horizontal and vertical res-
olution of the digital sensor element. In case we have information about the real world sizes
of the sensor and the number of sensor elements in each row or column of the sensor matrix
the resolution parameters are given. In most cases this data is made available by the manufac-
turer and so they are supposed to be known. But to maintain flexibility the proposed calibration
method does not rely on that. Another important parameter is the pixel position of the point of
intersection between the optical axis and the image plane — called principal point (abrev. p.p.).
It is important to note that we have to distinguish the principal point from the optical center
which lies also on the optical axis but within lens center.
Apart from the theoretical considerations there are also a number of practical requirements.
The method should produce reliable results of a predefined and satisfying quality regardless
of camera type and light source quality. Also the effort to produce a calibration object and its
cost should be considered. Calibration equipment should be transportable and easily replace-
able. Also a variety of different calibration targets should be possible to cover different kinds of
scene spaces (it is well-known (see [3]) that, in order to obtain satisfactory and reliable calibra-

1CCD: Abbreviation for charge coupled device. A semiconductor image-sensing device that (a) is usually in
the form of a plane rectangular matrix of microscopic, individual sensing elements, each of which corresponds
to an image pixel, (b) is placed at the focal plane of an optical imaging system, and (c) converts the optical
image into electrical signals which represent the information contained within each pixel, and which may be
extracted sequentially and stored or otherwise processed in digital form for the purpose of transmitting or storing a
digital representation of the optical image. Note: CCDs are commonly used as image sensors in professional and
consumer television cameras and camcorders, and as image sensors in digital still cameras

1
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tion results, it is necessary for the calibration object points to “fill up” the entire scene space).
This report solely deals with geometric camera calibration. So we do not care much about the
electrical characteristics of the sensor elements or the reflectance properties of the calibration
object. For our purpose only the real world ranges and sizes of the calibration target and an es-
timated value for the focal length of the lens system are needed. Problems due to faulty sensor
elements are not considered.

2
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2 Geometric calibration of CCD camera systems

Numerous methods were developed and applied to 3D vision acquisition systems. In this section
we present a short, systematic classification of methods and required setups. Figure 2.1 gives a
schematic overview. It will be explained more precisely in the following.

Frame grabber
Video card

PC  or Workstation

Video memory stores serveral images

OpticsCCD

Camera

Video Interface

Calibration objects with known sizes

Known 3D coords.

Epipolar geometry

Straightness

Correspondence

1) Planar target:

2) Non−planar:

3) Scene: no 3D object models available

Internal Setup Projective
Features

Exploited
External Setup

Homograph, XY−plane

Symmetry of 3D obj.

Geometry of Surface

Acquisition System

(planar, spheric, surf. o. rot.)

Selfcalibration

Figure 2.1: Entities and possible setups for camera calibration with required a-priori knowledge
and exploited projective constrains

2.1 The big picture

The entities of concern in camera calibration are the acquisition system, that has to be calibrated,
and the real world environment, that is recorded during the calibration process. The acquisition
system applied for digital 3D vision tasks, consists of the following parts:

• a camera, with optics suitable for close range (0.5 - 5 meters) photography and with a typ-
ical field of view <25 degree, and a CCD sensor of known size and resolution. Depending
on the type of sensor the CCD delivers gray-scale or RGB color image information.

• a video interface, that transmits the image information acquired from the sensor to an-
other device. Older video standards (like Composite-Video, S-Video) work with analog
transmission. In general digital transmission is more preferable due to signal quality.

3
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Popular standards for digital video interfaces are FirewireTMand USB 2.0TM. In case of
color imaging there are three independent RGB channels.

• a PC or workstation in which a frame grabber or video card2 is integrated. In case of
an analog interface the computer hardware has to re-digitize image information. This
certainly lowers image quality. The resulting digital images do not necessarily have CCD
sensor resolution. Indeed this is not true when using analog interfaces. Also digital image
file format can have an effect on image quality. One should not use e.g. JPEG, since its
compression mode is lossy an can produce unwanted artifacts.
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Figure 2.2: Digital image of (a) planar calibration object with circular control points (b) non-
planar spheres

As second major aspect the structure of the recorded environment and its known objects clas-
sifies calibration methods. In Figure 2.1 a global disposition of types of calibration environ-
ments is given rightmost. A basic distinction should be made between object calibration with
calibration objects,that have a known geometry and size, and self-calibration that uses invari-
ant features of several views of a rigid 3D scene space and therefore does not rely on a pre-
manufactured calibration objects. While self-calibration requires the change of orientation of
the camera towards the scene3, in object calibration the camera position is rigid and the posi-
tion of the calibration objects is altered in case we use multiple views. Both approaches have
their benefits and drawbacks. Object calibration generally is more accurate and can work with
more complex camera models. In return the calibrated scene space is limited to the extent and
positions of the calibration objects.
This may cause difficulties especially when it comes to plane-based calibration([4],[5],[3]),

2The basic difference between a frame grabber and a video card lies within performance. While a grabber
needs at least one to several seconds to process one image (or frame), video card process in (almost) real time
(>15 images per second)

3This does not have to mean, that we have to move the camera. In fact the scene can be re-positioned, if this
does not affect its rigid appearance.

4
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where the calibrated range 4 is defined by planar surfaces in 3D space. In this case a set of
co-planar control points serves as calibration target. Normally these calibration points form a
regular grid of known size and dimension and are defined by circles (see Figure 2.1a), squares
or a checkerboard pattern. These geometric figures lose some geometric features by perspective
projection, e.g. the center of gravity of circles and squares within the image is not identical
to the position of its counterparts in the real world environment). A short summary of the
pitfalls and solution methods of the contour-based control point detection problem is given in
[6]. The geometric properties of the perspective projection of planar objects cause some useful
constraints for geometric calibration (e.g. parallelism constraint in [3], simplified DLT in [5],
simplified Kruppa equations in [4]). Therefore plane-based calibration is the method of choice
from a numerical and mathematical point of view. Calibration on basis of a regular 3D-point-
grid ([7]) can be seen as an extension to plane-based calibration, since it still uses co-planarity
of planes together with orthogonality of grids. The constrains and algorithms used resemble
that of plane calibration.
Though most approaches use planar calibration objects, some work has been done on cali-
bration using spheres ([8], Figure 2.1b) and rotation symmetric bodies ([9]). Additionally in
photogrammetry ([1]) calibration is also done using so-called pass points. The relative position
of these pass points to each other is previously measured. It is sufficient to measure the distance
for each pair in the pass point set to determine their absolute orientation in the camera coordi-
nate system. This condition is met by our method purposed in Section 3 of this report.
The concept of self-calibration established just at the beginning of research in photogrammetry,
but it is still an important topic in 3D vision. Some very interesting reports were published in
recent years at INRIA ([10],[11]).
How can the method proposed be categorized? The method can be applied for plane-based cal-
ibration (as shown in test results) as well as for the non-planar case using pass points. Though
it was not investigated, it should also be possible to calibrate with a 3D-point-grid.

2.2 Projective models

The projection of objects and shapes of the 3D environment to a specific 2 dimensional surface
is described by the projective model. For some projective models certain constrains can be de-
duced from its projective geometry. The projective model of a CCD camera is determined by
its optics and the relative orientation of the CCD towards the optical axis.
In the history of arts and to some extent in computer vision visualization of 3D worlds in pic-
tures or on flat displays is done according to perspective projection, since perspective fulfills a
key constraint of human visual perception, the so-called straightness constraint. Straightness
guarantees that any straight line or connection in the 3D environment is projected as straight
line in the 2D projection. Additionally all flat surfaces in the 3D environment retain their flat-
ness property in the projection. For any sets of parallel lines or planes vanishing points can be
constructed. For any set of correspondences of different views of a scene epipoles and resulting
epipolar lines can be derived out of the image information. All this is directly implied by the
straightness of perspective projection. Unfortunately one can not say, that perspective projec-

4We will explain this term more precisely in the following

5
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tion is the only true and real projective model. Indeed, perspective produces some effects that
do not naturally comply to human perception. Spheres e.g. generally do not preserve their cir-
cular shape, rotation symmetric bodies lose their symmetry property by perspective projection.
Despite concentration on perspective model for machine vision was criticized by some authors
(see e.g. [12], [13]), it is the standard model for calibration of close-range CCD cameras. This
is due to the fact that the effects mentioned in the previous paragraph are very limited, if the
field of view is smaller than 90◦.

2.2.1 Perspective Projection and the Pinhole Camera

Perspective projection is an abstract, mathematical concept. It describes the projection of any
3D point P onto a (virtual) projection plane, where it corresponds to an image point p. We
denote the coordinates of the real world 3D point with (xc, yc, zc) and that of the image point
p with (u, v). The origin of 3D coordinate system lies at projection center C which is the
exact position of the observer. Its XY-plane is parallel to the projection plane. The intersection
between the projection plane and the line of sight is referred to as the principle point (abrev.
p.p.). In Figure 2.3 the geometry of perspective projection is illustrated. A specific projection
is characterized by the following parameters:

• the distance of the virtual observer from the projection plane, called focal length f and

• the direction of the line of sight, which defines the principal point (p.p. or p0) within the
projection plane. We denote its image coordinates with (Cx, Cy). Additionally the line of
sight is always a normal vector of the projection plane.

From Figure 2.3 it is easily seen that the triangles 4(p, p0, v0) and 4(P, P0, y0) are congruent
and parallel to each other. From this the following relationship is derived:

xc

u
=
yc

v
=
R

r
. (2.1)

Also 4(C, p, p0) and 4(C, P, P0) are congruent from which follows:

R

r
=
zc

f
, (2.2)

with r =
√
u2 + v2 and R =

√

xc
2 + yc

2.
From 2.1 and 2.2 we can now compute the image coordinates (u, v) of the projection of any
given point P(xc, yc, zc) with the following equation:

u = f
xc

zc

v = f
yc

zc

(2.3)

As mentioned the perspective projection model is only a mathematical construction and has
no exact physical model. The camera type which comes closest to perspective projection is the
pinhole camera. This camera was indeed the first photographic device which was discovered5.

5The earliest mention of this type of device was by the Chinese philosopher Mo-Ti (5th century BC). He
formally recorded the creation of an inverted image formed by light rays passing through a pinhole into a darkened
room. He called this darkened room a "collecting place" or the "locked treasure room."

6
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The device, also known as camera obscura6, is a very simple construction. It basically consists
of a photo-resist box, the so-called chamber in which a tiny pinhole is cut. As we see in Figure
2.4 all rays of light passing through the pinhole project an image onto the opposing plane inside
the box. The image seems to be upside down an flipped and is generally very dark. Also blur
is present due to the fact, that the rays do not exactly intersect in a single point. The laws of
projection for the pinhole camera are same as for perspective projection. Why? Note that if
we put the projection plane in Figure 2.3 behind the observer the image will also be inverted
geometrically and the geometry itself is the same as for the pinhole camera changing nothing
we derived from the congruence of the triangles we investigated. In fact for a given focal length
and a line of sight there are always to possible projections — one in front and one behind the
observer.

2.2.2 Lens projection model

If we want to build a pinhole camera, that has absolutely perfect perspective projection geome-
try, its pinhole must be of infinitesimal size, since all rays of light passing through the pinhole
should intersect in one single dimensionless point. Physically this is not possible7.
Since the tinier the pinhole the smaller the amount of light passing through will get, long ex-
posure times are required. Therefore the use of pinhole cameras for cinematic photography or
snap shots is ruled out. In order to build optics with better illumination the pinhole is replaced
with an optical lens. In the following the main characteristics of optical refraction are discussed.

Refraction

If light rays pass the border surface of two physically different mediums, like air and glass, they
are refracted according to the law of Snellius:

sinα

sin β
=
n1

n2
, (2.4)

where α is the angle of incidence and β the angle of deflection, n1 is the refraction index of the
medium from where light rays are emitted, n2 its counterpart for the other medium. The angles
are measure with respect to the surface normals at the points were the light rays are refracted.

In Figure 2.5 refraction at spheric surfaces is illustrated. Let R be the radius and M be the
center of the corresponding sphere and OF be a randomly chosen projection axis. Then a par-
axial ray is refracted at S according to the law of Snellius with incident angle α and deflection
angle β. The angle between the axis and the deflected ray is given by γ = α − β, the distance
of A from the axis is given by h = R · sin β. We now can make the following conclusions:

b =
h

sin γ
=

h

sin(α− β)
=

R · sin β
sinα · cos β − cosα · sin β (2.5)

6The term "camera obscura" was first used by the German astronomer Johannes Kepler in the early 17th century.
He used it for astronomical applications and had a portable tent camera for surveying in Upper Austria.

7Classical theories of optics fail at the point the pinhole is tiny enough. Indeed we are right in between quantum
physics.
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Figure 2.5: Definition of the focal length f in case of refraction at spheric surfaces.

A focal point F is now defined as the point where8 all par-axial rays are bundled. We can
formulate the following approximation for the distance of F — the so-called focal length f —
of the spheric projection of S defined by OF and M with radius R:
If we assume that α, β � 1rad(≈ 57, 2958◦), then cosα, cos β ≈ 1 and we get:

f = R + b ' R ·
[

1 + sinβ

sin α−sinβ

]

= R · sinα

sinα− sin β
(2.6)

According to Equation 2.4 the law of spheric refraction can be formulated:

f ' R · n2

n2 − n1
(2.7)

If light rays are emitted from inverse direction the distance f ′ of focal point is approximated by:

f ′ ' R · n1

n1 − n2
(2.8)

Thin radial biconvex lens

The facing of radial lenses is defined by two opposing spheric surfaces with radius R1 and R2.
According to their orientation towards the image plane their numerical values are signed. If
R1 < 0 and R2 > 0, the lens is biconcave. If R1 > 0 and R2 < 0 the lens is biconvex. In case
the thickness d of the lens is considerably smaller than the absolute values of R1 and R2, we

8Due to the fact that we draw our conclusion from an approximation, par-axial rays do not actually intersect in
one point. In fact this is only a good guess for narrow angles of α � 1rad
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talk about a thin lens. In the other case this is a thick lens.
In Figure 2.6 the refraction of a light ray by a biconvex radial thin lens is illustrated. Addition-
ally by R1=R2 the lens is symmetrical9. The point B is a projection of point A. Any ray of light
passing through the lens is refracted at S1 and S2. Let the refraction index of the surrounding
medium n1 = n3 = 1, and that of the lens medium n2 = n. Therefore and according to equa-
tion 2.4 α1 which is the angle of incidences for the refraction at S1 equals α2 which is the angle
of deflection for the refraction at S2. Also β1 and β2 are equal. This is true, because points A
and B are the two focal points of S1 and S2 for the forward projection.
It can be derived from approximation 2.7 that the following relationships hold in this case:

2
M

1

ε

ββ1 2

R1 R2

d

αα1 2

A Bn   = n2

n  = 1 n  = 11 3

ε=α  + α   − β  − β 1      2      1     2

S1 S2
M

u 1

u 2

v2

v1

Figure 2.6: Illustration of the thin lens projection: an object point A is projected by the biconvex
radial lens to the image point B. The course of one sample ray is depicted.

(n− 1) ·
[ 1

R1
− 1

R2

]

=
1

u1
+

1

v2
(2.9)

and
1

f
= (n− 1) ·

[ 1

R1
− 1

R2

]

, (2.10)

where R2 < 0, because the lens is biconvex, and f is the distance of focal point from S2. The
relation 2.10 is also known as the Lens Maker’s formula. If the lens is symmetric like in Figure
2.6 the focal lengths for both directions are equal. From equations 2.9 and 2.10 neglecting the
thickness d by assuming that u = u1 and v = v2 we get:

1

f
=

1

u
+

1

v
(2.11)

9This is not a necessary condition for the following conclusions!
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which is also known as the Gaussian thin-lens equation. The distances are now measured with
respect to the center of the lens, which is is the equidistant point to M1 and M2. In Figure 2.7
geometry of lens projection according to equation 2.11 is depicted. It must be emphasized, that
this is an ideal model, since two approximations were used in order to get the relation. Similarly

focal length

image distance object distance

o.c f

pr
oj

. p
la

ne

optical axis

Figure 2.7: Schematic illustration of the camera lens projection

to the pinhole model all rays emitted from a planar surface with object distance U to the lens
center are projected to points on a planar surface with image distance V to the lens center. If we
assume that U → ∞, then V = F . Therefore: if U � V then V ≈ F , which gives the thin lens
model nearly a perspective projection geometry. As illustrated in Figure 2.8 all par-axial points

α

α

D

F

f

f α

Figure 2.8: Projection of a parallel bundle of rays in the thin-lens model

(points that are parallel to the line of sight) are bundled in a focal point F with distance f from
the lens center. Also a parallel bundle of rays10 will intersect at one point that has a distance D

10In the pinhole model we can not really define a parallel bundle of rays, because the size of the pinhole is
assumed to be infinitesimal.
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from F . D is dependent on the angle of incidence α in the following way:

D = f · tanα ≈ f · α. (2.12)

The approximation f · α is adequate for smaller angles, and defines the spherical surface illus-
trated as dashed curve in Figure 2.8.
The scaling SF of the projection is given by:

SF =
F

U − F
(2.13)

from which Newton’s projection formula can be derived:

(U − F ) · (V − F ) = F 2. (2.14)

Thick lens

For thick lenses the projective geometry is considerably different. As depicted in Figure 2.9 any
ray crossing the center of the lens is now deflected by a parallel displacement ∆. Its absolute
value can be computed by:

∆ = d · sinα ·
[

1 − cosα
√

n2 − sin2 α

]

(2.15)

Indeed the angle of incidence α measured with respect to H1 and the angle of deflection α′

measured with respect to H2 are the same. This implies that there are two optical planes with
two optical centers O1 and O2. Also the “real optical center” O is defined as the point where all
crossing rays have equal angels of incidence and deflection. It can be derived from approxima-
tion 2.7 that the Lens Maker’s formula for thick lenses is now:

1

f
= (n− 1) ·

[

1

R1

− 1

R2

+
(n− 1) · d
n ·R1 ·R2

]

, (2.16)

where d is the thickness of the lens. The distances h1 and h2 of the optical centers O1 and O2

to S1 and S2 (see Figure 2.9) is given by:

h1 = −(n− 1) · f · d
n ·R2

; (2.17)

h2 = −(n− 1) · f · d
n ·R1

(2.18)

In Figure 2.10 the construction of the projection of a thick lens is depicted. The difference
to the thin lens model is that the thickness of the lens is not neglected. Therefore an additional
length e is introduced designating the normal distance of the optical centers O1 and O2. If the
thins lens is symmetric so that f1 = f2 and the optical planes H1, H2 are parallel then Equation
2.11 is valid also for thick lens11.

11In this case we also assumed that the aperture is symmetric with respect to its position and size.
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Figure 2.9: Thick lens projection: path of a central ray through the lens
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Figure 2.10: Geometric construction of a projection for thick lens: the rays are elongated by a
distance e, geometry is basically the same as for thin-lens
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Spherical Aberration

The Gaussian lens model is basically a rough approximation of the physical lens projection. Due
to the bounding of refraction angles α and β in formula 2.7 the model gets inaccurate for rays
that are remote to the optical axis. In fact the focal length is dependent on α. From Equations 2.7
the deviation of spheric refraction model from the physical model can be described functionally
as follows:

f(h) = R ·
[

1 +
1

√

n2 − h2

R2 −
√

1 − h2

R2

]

(2.19)

where h is the axial distance of the refraction point. This so-called spherical aberration effect
is a systematic and radial-symmetric distortion effect. In principal it is possible to correct this
effect by sophisticated lens systems. Due to lack of space we refer to [25] which is an in-depth
analysis of applied optics and optical design.

Chromatic Aberration

∆f

λbluef(         )

λ

λ

f(      )λred

Figure 2.11: Effects of chromatic aberration: the focal length is dependent on the physical
wavelength λ of the rays

The refraction index n in Equation 2.4 is only constant for a specific wavelength λ. There-
fore the conclusions drawn so far are one valid for mono-chromatic light (LASER). The spec-
trum of visible light can be roughly specified with λblue = 380 nm to λred = 780nm. In Figure
2.11 the refraction of two white par-axial light rays containing the full visible spectrum at a
radial biconvex lens is depicted. The focal lengths f(λ) for λred ≤ λ ≤ λblue will be within
the range of ∆f . In other words two par-axial rays will only intersect at a point with distance
f(λ), if they have the same wavelength λ. As mentioned the refraction index is functionally
described by the chromatic refraction n(λ). If n(λblue) < n(λred) the lens is characterized as
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having normal chromatic dispersion.
In order to build an achromatic lens which features a very small ∆f , a putty layer is applied
un-evenly to the inside surface of a biconvex normally dispersive lens producing an asymmetric
lens with inside radius:

R2 = R1 ·
n2(λblue) − n2(λred)

n1(λblue) − n1(λred)
, (2.20)

where n1(λ) is refraction function of the biconvex lens and n2(λ) that of the putty material. R1

is the radius of the spherical surfaces of the biconvex lens.

Astigmatism

Sometimes12 the shape of thin lens in not perfectly radial, because the profiles of a pair of per-
pendicular meridians is not equal. In this case the focal length is also dependent on the position
of the the rays seen from a frontal direction (identical to the line of sight). The dependency is
known to be radial-tangential.

Depth of Sharpness and Distortion

Summing up the previous paragraphs the focal length f varies dependent on the following
factors:

• the angles of incident of the rays emitted from a certain point with distance u from the
lens center. This is due to spherical aberration

• the wavelengths of the rays emitted a point due to chromatic aberration.

• the relative position seen form a frontal direction, if the lens is not radial. This effect is
known as astigmatism.

The thin-lens model suggests that the rays of each point of a plane perpendicular to the optical
axis and with distance u to the lens center, will intersect in one single point at a planar area
with distance v from the lens center. For all such projections the focal length f is assumed to be
constant. As we have seen this is generally not the fact. Indeed for each ray emitted from some
point the focal length is unique! Since photographic imaging is done by collecting the physical
light information by a (usually) planar detector with has a defined distance to the optical center,
the focal length is always under- or overestimated.

In Figure 2.12 the effects of over- or underestimating the focal length are depicted. Let O
be a point with object distance u. We define to imaging planes for the projection with distances
v′ and v′′. According to thin lens equation their focuses are defined by F ′ and F ′′. Let the
physically correct focus for the projection of O be F . Then the rays from O passing the lens
optics will intersect at a point with image distance v.

12The human eye possesses a natural astigmatism, since focal length is adjusted by squeezing the flexible eye
lens.
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Figure 2.12: Effects of under- or over-focusing on sharpness and distortion

At image distance v′ and v′′ the rays will spread around a circular area13 A′ and A′′. The di-
ameters of the circular areas 14 are dependent on the deviation of the image distances from v
(or alternatively from deviation of focal lengths to f ) and the size of the aperture a. As long
as these diameters are smaller than the granularity defined by the resolution of the detector, a
picture of an object with distance u will still be sharp. If the diameters are bigger, blurring is
present. The tolerance level of this effect is known as the depth of sharpness.
By the deviation of the focal length not only sharpness (appearance of the shape of its projec-
tion), but also the position of the projection within the image plane is affected. As depicted in
Figure 2.12 the centers of the circular areasA′ andA′′ define approximately the positionsP ′ and
P ′′ of the projected point O as the planar detector will recognize them, indifferently, if blur is
present or not. We notice that these deviations can be bigger than the granularity of the detector
and thus will decrease by d′ or increase by d′′ the distance to the optical axis of the recorded
image points. The effect is generally dependent on the deviation of the focal length and the size
of the aperture. Since the focal length deviation is due to the spheric aberration, the absolute
values of d′ and d′′ are increasing by the distance to the principal point (the intersection of the
image plane with the optical axis). The projection of a straight line will appear slightly curved
against or towards the p.p.. The effects are known as radial-symmetric barrel and pincushion
distortions.
The effects of chromatic aberration are generally not systematic with respect to geometry and
are dependent on the chromatic dispersion characteristics of the optics and the lightning and
reflection features of the recorded scene. We generally suggest the lens system is achromatic

13The distribution of the rays is generally Gaussian like.
14If the lens are not radial the areas are ellipses.
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and, if not, its effects should be normally distributed over the image area.
Astigmatism is responsible for systematic distortion effects that are not radial, but radial-tangential
symmetric, which means that the projections of points equidistant to the optical axis are not
equidistant to the p.p. within the image plane.

Calibration range

As we have seen distortion and sharpness are effects of optical aberration and are strongly in-
terlinked with each other. In order to get a sharp image of a certain calibration object or a scene,
we have to either adjust the nominal focal length, the image distance or the aperture. All tree
adjustments implicitly define a volume with certain ranges within all rays emitted are projected
sharply to the image plane. The calibrated focal length will be an average for the spatial vol-
ume we covered with our adjustment and the control points that were obeyed. Additionally the
distortion estimates are also average values for the predefined range.

2.2.3 Projection models in photogrammetry

So far we have only dealt with single lens projection. Normally camera optics feature lens
systems in order to correct aberration effects. A typical lens system consists of several lenses
of various shapes and sizes. The lenses themselves are made of different sorts of glasses and
materials.
In Figure 2.13 the ideal photogrammetric projection is illustrated. In principal the lens systems
can be treated as a single thick lens. As discussed thick-lens projection features two optical
principal planes. We denote the object-sided plane as H1 and the image-sided one as H2. The
sum of the object distance u, the distance of the principal planes e and the image distance v
defines the so-called adjustment distance d. In amateur photography this factor is used for the
manual adjustment of the object distance, that is now measure with respect to the image plane.
The optical system is assumed to be symmetrical with its aperture positioned in center of sym-
metry. This implies that the angles of incidence τ and the angle of deflection τ ′ of a central ray
are equal. The optical axis is a surface normal to the image plane, since its p.p. is mutually the
projection of K1 and K2.

The light that is passing through the optics is limited by the diameter of the aperture. The
virtual picture of the aperture percept at the position of object bounds the bundle of rays which
produces the effective image. This bundle of rays is generally referred to as entrance pupil,
whereas the equivalent bundle of rays seen from the p.p. is called the exit pupil.
In practice the camera optics will never be perfectly symmetric. Indeed most photogrammetric
cameras have very long and asymmetric optical systems with aperture s generally not posi-
tioned in center of the optics. As a consequence the entrance pupil will unlikely coincide with
H1, which results in a deviation of angles τ and τ ′.
In Figure 2.14 the effect of this deviation is described graphically. In principal the reference
axis of the inner orientation of the camera is not the optical axes OOP

′ of the lens system. It
is the object-sided principal ray HS perpendicular to the image plane, that crosses the center
O of the entrance pupil. The intersection between the image plane and OOP

′ is called princi-
pal auto-collimation point HA. The physical projection center lies within the center of the exit
pupil OP

′. If we apply the pinhole model to the physical projection, then the two angle τ and
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Figure 2.13: Ideal photogrammetric camera model

τ ′ are equal and the projection center is at OM
′, since we have to state a focal length c for the

projection15. Now the expected distance ρ′ = c · tan τ from HA deviates from the the observed
distance ρ by ∆ρ, which is referred to as the optical radial symmetric distortion.
The question is now: Which factors determine ∆ρ? In Figure 2.14 we see that the image plane

seem to be considerably titled towards the optical axis. That does not necessary depict physical
reality, (the position of the CCD sensor) but an imaginary image plane, valid only for a certain
angle τ . The imaginary image plane is tangential at T to S, which is a spheric surface having O
as radial center point. If τ is increased or decreased this will cause the imaginary image plane to
be still tangential to S, increasing or decreasing ∆ρ. If τ = 0◦ then the imaginary image plane
is perpendicular to the optical axis, ∆ρ = 0 and OM

′ lies on the optical axis . For any value of τ
HA will have the same position within the imaginary image plane being p.p. of the projection.
Since c is supposed to be constant for all values of τ according to the pinhole model the normal
distance of OM

′ to the image plane is also constant. Concluding from these observations we
can state, that through the asymmetry of the lens system and its aperture, the physically correct
projective surface would be spheric. The radial symmetric distortion emerges from the fact that
the physical detector — a photographic film, or a CCD sensor — is usually planar.

15In photogrammetry the focal length is mostly called camera constant c. This is due to the fact that a focus or
a focal length is a measure for the refraction on surfaces not especially for lenses and optics at all.
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Figure 2.14: Schematic illustration of effects caused by assymmetric optics and de-centered
apperture position

2.3 Calibration parameters

The calibration problem requires the identification of the camera model, which describes all
the characteristics of the acquisition system with respect to an ideal projective geometry. With
camera model we mean the set of mathematical relationships that link the 3D coordinates of a
point in the scene space to the 2D coordinates of its projection on the acquired image. Such rela-
tionships can be defined in many different ways, as literature shows. Among them, a distinction
could be made:

• Models defined by an operator (projection matrix) that link the coordinates of a 3D point
to the coordinates of its projection in the image: The coefficients of such a projection
matrix do not have any physical meaning, so the description of projection features of the
camera system is implicit. To get the real world optical parameters like focal length and
distortion factors further mathematical analysis of the projection matrix has to be done.
A good example of a calibration method working on an implicit camera model is DLT
(see [14]). Here a 3x4 projection matrix is used to project the 3D object coordinates in
a homogeneous coordinate system to the 2D image coordinates also in a homogeneous
coordinate system. To retrieve some of the real world physical parameters of the projec-
tion an RQ decomposition technique proposed by Melen in [15] can be used. The major
disadvantage of this approach is that radial-symmetric distortion can not be estimated –
indeed the computation effort is minimal.
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• Models defined by a set of parameters describing all optical and geometric parameters
of the camera explicitly. Therefore this kind of approach is called the explicit model.
R. Y. Tsai’s method ([3]) is a good example for that. The advantage of this approach is
basically that all physical parameters can be estimated. It is also possible to use a-priory
knowledge of the camera properties by keeping some of the model parameters constant.
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Yc

Zc
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Figure 2.15: The adopted camera model: Point P with its object (world) coordinates
(xw, yw, zw) is transformed into the coordinate system of the camera (xc, yc, zc), then it is pro-
jected into the image plane. Distortion causes the gap between Pd which is the real world
projection point and the hypothetical projection Pu, that would be projected, if the lens system
was perfectly linear (free of distortion).

The camera model that was adopted here, belongs to the later category. The illustration in
Figure 2.15 sums up the whole camera model that provides a direct way of calculating the image
coordinates of the projection of P, given its position in the scene space. This can be represented
as a function g that maps a point m in the model space into a point d in the observation space.
The function itself depends on e set of parameters that can be split up in two group:

• parameters describing the orientation of the object coordinate system to the camera coor-
dinate system (xc, yc, zc) → (xw, yw, zw) — also called the extrinsic parameters. In the
previous section we specified the auto-collimation principal ray HS

16 as z-axis and the
sensor surface to constitute the XY-plane of the camera coordinate system. The object
coordinate system is freely chosen according to a set of defined world coordinates. It
must be emphasized that both coordinate systems have to be simultaneously right-handed
or left-handed in order to get the right physical orientation parameters.

• parameters describing the projection features of the camera-sensor system — the so called
intrinsic parameters.

Extrinsic and intrinsic parameters can only be distinguished in the explicit model in a direct way.
So explicit models are more suitable for calibration with multiple images of the calibration
object, because the position independent intrinsic parameters have to converge to the same

16As described the direction of the auto-collimation principal ray in the object space is variable for any angles
τ , but it is constant in the image space by definition (= direction of the normal distance of the center of the exit
pupil to the sensor plane)
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values for all views whereas the extrinsic parameters have to be estimated separately for each
single view.
This set of equations is called direct model. For each fiducial point Pi the direct model provides
image coordinates di,j in the form

di,j = g(Pi, C, Oj); (2.21)

where C is the set of camera specific intrinsic parameters and Oj is set of parameters describing
the orientation of the object coordinate system in the jth view. g : R3 → R2 is called the
complete camera model.

2.3.1 Extrinsic parameters - outer orientation

The goal is to find a linear transformation between two coordinate systems. This is equivalent
to a description of the relative spatial orientation of the camera lens and the calibration object.
Geometrically all these orientations can be conceived as two linear transformations:

• a 3dimensional rotation R around all three axis

• a translation along a 3D translation vector ~t

There are two mathematical representations for the rotation parameters:

• as a 3x3 rotation matrix

R =





r1 r2 r3
r4 r5 r6
r7 r8 r9





where all 9 coefficients are taken as calibration parameters or

• the Euler Angles ϕ, ϑ, ψ that can be derived from the coefficients r1..r9 as follows:

ϕ = arctan
r6
r9

ϑ = arctan
−r3 cosϕ

r1

ψ = arctan
r2
r1

The matrix R can be expressed as a matrix multiplication of three rotation matrixes (Rx ·Ry ·Rz)
which can are computed as follows:

Rx =





1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ



 Ry =





cosϑ 0 sinϑ
0 1 0

− sin ϑ 0 cosϑ





Rz =





cosψ − sinψ 0
sinψ cosψ 0

0 0 1





Therefore the rotation matrix can also be written as














cosψ cosϑ sinψ cos ϑ − sin ϑ
− sinψ cosϕ+ cosψ sinϑ sinϕ cosψ cosϕ+ sinψ sin ϑ sinϕ cosϑ sinϕ
sinψ sinϕ+ cosψ sinϑ cosϕ − cosψ sinϕ+ sinψ sinϑ cosϕ cosϑ cosϕ














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The translation vector

~t =





t1
t2
t3





adds another three calibration parameters.
Summing up we now have the following set of calibration parameters for the outer orienta-

tion:
Rotation:r1, r2...r9, or alternatively ϕ, ϑ, ψ; Translation:t1, t2, t3

The whole transformation from one coordinate system to another now looks like this:

~Pc = R · ~Pw + ~t (2.22)

where the ~Pw are the 3D object coordinates and ~Pc its representation in the target coordinate
system (e.g. the camera coordinate system)

To simplify Equation 2.22, we can use homogeneous 3D coordinates. In this case the orig-
inal Cartesian space is expanded by an additional dimension. For point coordinates the value
of the added coordinate is usually defined as 1. Formally this has in consequence, that the ori-
gin of a Cartesian coordinates system, which is usually linearly dependent to all vectors in the
Cartesian coordinate system, now is linearly independent to all transformed vectors of the orig-
inal Cartesian space. Homogeneous17 coordinates are commonly used in the world of computer
graphics. The attraction of homogeneous coordinates is that in a 2- or 3- dimensional trans-
formation of an input coordinate system or object into an output coordinate system or changed
object we do not have to split our operation into a part with a multiplication for the rotation
matrix and scale factor, and separately have an addition for the translation vector. Instead we
simply employ only a matrix multiplication having a simple homogeneous coordinate for a point
and output coordinates for the same point after the transformation, which leads to the following
equation:

~Pw =









xw

yw

zw

1









, ~Pc =









xc

yc

zc

1









=









r1 r2 r3 t1
r4 r5 r6 t2
r7 r8 r9 t3
0 0 0 1









·









xw

yw

zw

1









(2.23)

The right-most lowest element of the matrix in Equation 2.23 can alternatively be set to a dif-
ferent value than 1, which would add a scaling element to the transformation.
By determining a linear transformation from an object coordinate system to a camera coordi-
nate system, we managed to transform the object coordinates so that all real world distances and
sizes can be computed relatively to the camera position. The camera coordinate system itself
can be oriented in several ways. In this case its z-axis is identical with the optical axis of the
camera lens system. Its origin lies within the optical center of the lens (see Figure 2.15). One
could also take the x or y-axis to represent the optical axis — however, this is uncommon.

17Homogeneous coordinates are sometimes also refered to as projective coordinates in order to point out, that
this is not designating a single point in the Euclidean space, but a projection of a point in the projective space,
which defines its projection only up to a scale factor

22



PRIP-TR-{085} 2.3 Calibration parameters

2.3.2 Intrinsic parameters - inner orientation

The projection geometry of the camera is described by the intrinsic model parameters. In Sec-
tion 2.2.2 we described numerous properties of optical lens projection. Now a suitable mathe-
matical model has to be defined.
A specific perspective projection with focal length f and the principal point with coordinates
(Cx, Cy) being the origin of the image coordinate system can be formulated as matrix operation
according to Equation 2.3 on page 6:





U
V
S



 =





f 0 0 0
0 f 0 0
0 0 f 0



 ·









xc

yc

zc

1









, (2.24)

where ui = (U + Cx)/S and vi = (V + Cy)/S, if S 6= 0.
It is easily seen that this is not a linear projection. It causes the system of the equations, that
represent the direct model to be non-linear. The coordinates (ui, vi) represent the physical coor-
dinates of projection on the sensor plane — the so-called retinal coordinates. These coordinates
have to be normalized to the resolutions sx and sy of the digital image information delivered by
the sensor. Normally the origin of retinal coordinate system is not in the origin of the retinal
plane, but at a certain point (Cx, Cy), the position of the p.p.. Considering that a simple but
complete intrinsic camera model for the projection can be formulated:





U
V
S



 =





f · sx 0 Cx 0
0 f · sy Cy 0
0 0 1 0



 ·









xc

yc

zc

1









, (2.25)

where uf = U/S and vf = U/S, if S 6= 0.
This model represents the projective geometry of a camera, that comes very close to the pinhole-
camera model. As we have seen lens projection does not comply to perspective projection ge-
ometry. Therefore a systematic radial-symmetric distortion effect will always be present.

Distortion parameters

The physical effects that causes geometric distortion can be identified as spherical abberation
(see Section 2.2.2) and a decentered aperture position (see Section 2.2.3). Practically spheric
aberration will occur when using wide-angle optics, because the rays of incidence of objects
near to the border of the image range are considerably bigger than 1 rad. In contrast this ef-
fect can be neglected when using telephoto optics, that feature very long and asymmetric lens
systems. In this case distortion is caused by the decentering of the aperture position. Anyhow,
we must assume that radial-symmetric distortion is always present, since aberration depends
generally on the manufactured quality of the optics.
There are physically correct mathematical formulas, that can exactly model both aberration
effects and their superimposition. Due to the fact that these terms are mathematically very
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complex and that there might be a number of other deviations from our ideal camera model18,
it is more convenient to give an estimate of the distortion function by describing it as a finite
polynomial Taylor series:

D(ri, ~κ) =
rd

ri

= 1 + κ1ri
2 + κ2ri

4 + . . .+ κnri
2n, (2.26)

where ri =
√
ui

2 + vi
2 and rd =

√
ud

2 + vd
2 being the distance of the distorted image point

(ud, vd) to the p.p.. In [16] some alternative models for radial-symmetric distortion are dis-

dtdr

U

V

undistorted

distorted

R

r

Figure 2.16: Schematic illustration of camera lens distortion

cussed. It is also mentioned that in general it is sufficient to use the first two terms of the Taylor
series for the model function. Therefore we have

(

ud

vd

)

+

(

Dx

Dy

)

=

(

ui

vi

)

, (2.27)

Dx = ud(κ1r
2 + κ2r

4), Dy = vd(κ1r
2 + κ2r

4), r = 2

√

u2
d + v2

d.

where (ud, vd) are the coordinates of the real-world distorted point and (Dx, Dy) is the relative
distance to the undistorted point (ui, vi) in x and y direction. If just one term is used, the
distortion function is defined by

D(ri, κ1) =
rd

ri

= 1 + κ1ri
2. (2.28)

The main advantage of using just one polynomial term is that there is a closed-form solution
(see [16]) for derivation of the inverse model:

ud = ui ·D(ri, κ1), vd = ui ·D(ri, κ1) (2.29)

18e.g. lens are not perfectly radial, transmission and dispersion features of the optics are estimates
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In [17] a slightly different polynomial distortion function is described by Lenz:

ui =
2ud

1 + 2
√

1 − 4κrd
2

vi =
2vd

1 + 2
√

1 − 4κrd
2
. (2.30)

Depending on the sign of the first order polynomial coefficient κ1, the picture of a square will
be distorted barrel-like, if κ1 is negative, otherwise it will be distorted to a pincushion shape
(see Figure 2.17).
Either we use Equations 2.27, 2.28 or 2.30 we can still not model radial-tangential distortion
caused by astigmatism. In Figure 2.16 the effects of radial-tangential distortion are depicted. In
general the direction of this type of distortion is defined by a tangent to the circle with radius R,
which is the length of the position vector of an already radially distorted image point. Formally
this can be described as follows:

(

ud

vd

)

+

(

Dx

Dy

)

+

(

Dtx
Dty

)

=

(

ui

vi

)

, (2.31)

Dtx = 2τ1udvd + τ2(r
2 + 2u2

d)

Dty = 2τ2udvd + τ1(r
2 + 2v2

d)

The two additional parameters for radial-tangential distortion are called τ1 and τ2, or alterna-
tively τx and τy.

a

o.c.
b

Figure 2.17: Schematic illustration of the barrel/pincushion-effect: The square around the opti-
cal center (p.p..) is extended to a or shrunken to b by radial lens distortion

Summing up we have now up to four different distortion parameters depending on whether
we use Equation 2.27, 2.28, 2.30 or additionally 2.31. The more distortion parameters are
calculated the more we expect the calibration procedure to be accurate. On the other hand
this will consume more computation time caused by the increase of complexity. In fact this
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assumption does not always hold in practice. In the proposed solution Equation 2.31 is used to
estimate the distortion effect, because it has shown that this method delivers considerably good
results and is numerically stable (see [5]).

Sensor dependent parameters

So far we examined only effects that are determined by lens features. But there are also the
sensor attributes that are important to know for correct image interpretation.
In the previous section we got the distorted point that should be projected to the projection
plane. Ideally this projection plane should be identical with the sensor plane, where all digital
sensor elements are placed. There, the projected light is recorded by a matrix of sensor ele-
ments. These sensor elements produce and analogue or digital (depends on the camera type)
signal that is processed by the frame grabber module in case the signal is analogue.
First of all we have to deal with resolution parameters. Simply speaking: How large is the
region in real that is represented by one pixel in a digital image frame?
Secondly we have also to determine where the computer image coordinates of the optical prin-
cipal point (p.p.) are located in the pixel coordinate system. This is also vital for correct
computation of the distortion effect, because all distortion depends on the distance between a
point and the estimated position of the p.p. in the image 19. We denote the pixel coordinates of
the p.p. as (Cx, Cy) and take them as two additional camera parameters.

Figure 2.18 illustrates the meaning of the resolution factors dx and dy. Since the image is

Sensor elementdx

dy

dx’

Figure 2.18: Horizontal and vertical resolution parameters

19It is well known that the center of distortion — the point where no distortion is present — is not equal to the
p.p. in general. If we take that in account, we would still need a more complex camera model (see [1] for further
details)
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scanned line by line obviously, the distance between adjacent pixels dy in the y direction is just
the same as the center to center distance between adjacent CCD sensor elements in y direction.
Therefore we can formulate the following relationship:

vf =
vd

dy

+ Cy

where vf is the vertical pixel position of the distorted point uf and Cy the y coordinate of the
p.p..
In case the CCD camera delivers an analogue signal, a waveform is generated for each line of
the image. Then it is sampled by the frame grabber into Nfx samples. Therefore, the horizontal
resolution dx′ (see Figure 2.18) directly relates to the pixel coordinate system in a way that:

uf =
ud

dx′
+ Cx, dx′ =

dxNcx

Nfx

where Ncx is the number of sensor elements in x direction, and dx is the mean distance between
two adjacent sensor elements.
However, this is usually only true for pixel symmetric CCDs and digital transmission. When us-
ing analogue transmission and frame grabbers with low accuracy with respect hardware timing
for scanning and digitization, an additional uncertainty parameter sx has to be introduced. This
is due to a variety of factors, such as slight hardware timing mismatch between image acquisi-
tion hardware and camera scanning hardware, or the imprecision of the timing of TV scanning
itself. For example even a 1% difference in that can cause three to five pixels error for a full
resolution frame. In case of a synchronous digital signal there is no need for the parameters sx

Sometimes we do not have a priori knowledge of the sensor resolution (dx,dy), but of the digital
image frame resolution (Dx, Dy). If we assume that one sensor element represents a square area
within the projection plane then a pixel in the digital image will stand for a rectangular area with
different range and area size if resolutions differ from each other. In this context we speak of
rectangular pixels. A rectangle can be categorized by difference to a equal sized square. This is
expressed by a parameter called aspect ratio or shortly sasp. Formally the parameter sasp has a
resemblance to sx in the camera model, but of course its meaning is different. On computing the
camera model on the basis of digital image resolution the following formulas and parameters
are important.

uf = sasp

ud

Dx

+ Cx, vf =
vd

Dy

(2.32)

Dx =
Rx

Nfx

, Dy =
Ry

Nfy

(2.33)

where Nfx and Nfy are the numbers of pixels in x and y direction of the digital image. Putting
everything together now we have the following formulas and parameters:
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A priori known:
Nfx: number of pixels in a line as sample by the frame grabber
Nfy: number of pixels in a row as sample by the frame grabber
Ncx: number of sensor elements in X direction
Ncy: number of sensor elements in Y direction
dx: distance between adjacent sensor elements in X direction
dy: distance between adjacent sensor elements in Y direction
Dx: proportionate distance of adjacent pixel centers in X direction
Dx: proportionate distance of adjacent pixel centers in Y direction
Rx: physical range of sensor element in X direction
Ry: physical range of sensor element in Y direction

Calibration parameters for estimation:
sx: uncertainty factor for horizontal scaling
sasp aspect ratio of x and y ranges

(Cx, Cy): computer image coordinates for p.p.

Coordinates:
(ud, vd): real image coordinates in sensor plane
(uf , vf ): resulting computer image coordinates

Table 2.1: List of sensor dependent parameters

Sensor resolution parameters are known:

uf =
udsx

dx′
+ Cx, vf =

vd

dy

+ Cy (2.34)

where dx
′ =

Rx

Ncx

and dy =
Ry

Ncy

Sensor size and image resolution is known:

uf =
udsasp

Dx

+ Cx, vf =
vd

Dy

+ Cy (2.35)

where Dx =
Rx

Nfx

and Dy =
Ry

Nfx

All a priori parameters are known:

snorm =
dxdy

DxDy

Normalize focal length: f ′ = f

snorm

Depending on the set of known a priori parameters either {sx, Cx, Cy} or alternatively {sasp, Cx, Cy}
is the set of parameters, that is to be calibrated.
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2.4 Estimation of the calibration parameters

The camera model consists of an extrinsic and an intrinsic model. The extrinsic model describes
only the spatial orientation of some object to the camera optics and is only needed to calculate
the whole projection of the object points. The the parameters of intrinsic model are invariant
with respect to the pose of the camera towards a scene or an object and describe the common
features of the CCD camera system.
Table 2.2 gives an overview of the whole projection and all calibration parameters needed to
determine the camera model.

Step Transformation Operation Parameters
1 (xw, yw, zw) → (xc, yc, zc) Rigid body transformation r1, r2...r9 or

ϕ, ϑ, ψ and
t1, t2, t3

2 (xc, yc, zc) → (ui, vi) Perspective projection f
3 (ui, vi) → (ud, vd) Radial distortion κ1, κ2 or κ

Tangential distortion τ1, τ2
4 (ud, vd) → (uf , vf) Scaling (Cx, Cy), sx

Table 2.2: Configuring the parameters of the calibration process

Step 1 is done by using the extrinsic camera model, Step 2-4 are calculated according to an
intrinsic camera model of a kind that we presented in the previous sections.
What will be the result of the camera calibration? Assuming that we have already got the set
C of all parameters for the extrinsic and intrinsic camera models we have to put our real world
coordinates (xw, yw, zw) of the object into the formulas of Step 1-4. Mathematically this can be
represented by a vector function gC : R3 → R2 as follows:

gC((xw, yw, zw)) = (uf , vf)
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2.4.1 Inverse Camera Model

In practice we need a model that expresses the the projection of a given 2D data set of image
points to the control points of a 3D object. Therefore we have to find a mathematical method to
compute the inverse function of gC . In case we apply a distortion model with at least two radial
distortion parameters like in Equation 2.31 this is not trivial, since there is no exact analytic
method to the inverse mapping (the function gC is not linear - an above all not linear in its
parameters). The distortion function described by 2.31 de-linearizes the problem by causing the
presented camera model to become a fifth order polynomial. The mapping from undistorted to
distorted image coordinates (ui, vi) → (ud, vd) is given as follows:

ud = κ2u
5
i + 2κ2u

3
i v

2
i + κ2u

4
i vi + κ1u

3
i + κ1uiv

2
i + 3τ2u

2
i + 2τ1uivi + τ2v

2
i + ui

vd = κ2u
4
i vi + 2κ2u

2
i v

3
i + κ2v

5
i + κ1u

2
i vi + κ1v

3
i + τ1u

2
i + 2τ2ufvi + 3τ1v

2
i + vi

(2.36)

Nonlinear search is required to recover (ui, vi) from (ud, vd) in Equation 2.36. To avoid large
computation effort some approximations for the inverse mapping were presented in literature
([5],[18],[19]). In the presented solution the approximation method in [5] is used.
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3 Proposed solution

In order to build a robust and easily usable tool to calibrate the CCD cameras of a 3D image
acquisition system at PRIP, the calibration method was developed and implemented. The main
objective was to develop a software tool that can be used as a ready-to-use calibration toolbox
in MatlabTM. Additionally there are implementations for KhorosTMand MathematicaTM.
In this part only the fundamental ideas and algorithms are explained (for implementation details
refer to Appendix A, B and C in this report). Furthermore no effort was made to create a
specialized calibration technique that only works in some very limited arrangement. So different
calibration parameter settings and even camera models can be used. The core of the work lies
in the estimation of the outer orientation and the optimization procedure itself.

3.1 General description of the calibration method

Before the main calibration process can be started, the calibration points have to determined
from the previously acquired image data. This tasks is generally referred to as labeling or in
case of a 2D calibration target as 2D-grid labeling. After labeling all calibration points one
can assign all these points to the appropriate known world coordinates in all image data sets.
In this report we present a robust labeling method that takes in account some odds concerning
distortion effects.
The proposed solution of the calibration problem can be categorized as nonlinear. It uses several
images (multi-view technique) to estimate all specified calibration parameters for a selectable
camera model. The calibration object does not have to be a set of coplanar points. One could
use any desired shape that is spanned by the calibration points. The calibration points should be
numerous depending on the chosen camera model according to that the camera is calibrated.
The method differs from others presented in literature in the way how it estimates the outer
orientation of the calibration object. In [20] the only start parameters needed are the scaling
factors. Here we have to make an initial guess for all calibration parameters defined by the
camera model. According to these start values the outer orientation of all views is calculated
geometrically. We have to remark that the accuracy of these extrinsic parameters computed in
this first step can not be determined because it heavily depends on the deviation of the start
value for the focal length to the real world camera model, because this optimization step does
not estimate the focal length. After all extrinsic parameters for all views are calculated the op-
timizer task tries to fit the whole camera model into the given image and real world data of the
points. The method is described later on.
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Figure 3.1: Schematic diagram of the calibration process

So basically the calibration process can be divided into three different tasks (see Figure 3.1)

• Detection of the calibration points in the images of all views of the object: This is done
by some 2D image processing algorithm (see Section 3.2) that computes the coordinates
of the control points in the digital image with sub-pixel accuracy.

• Estimation of the outer orientation of all views: This tasks needs the world coordinates
and the detected image coordinates of at least four calibration points per view, and the
start values of the intrinsic parameters as input parameters. According to this data an
approximation for the rotation matrix and the translation vector of the calibration object
in each view is calculated. The robustness of the solution depends heavily on the number
of points that were specified.

• Final computation of all calibration parameters by the optimizer: This is the most computation-
intensive part of the calibration, because it requires the minimization of a system of func-
tions that depend nonlinearly on a set of calibration parameters. This is done by a standard
optimization algorithm called the Levenberg-Marquardt method that is described in [21]
(see also Section 3.5).

3.2 Extraction and labeling of control points

After acquiring the gray scale image input data, a binary image is produced by a simple thresh-
old algorithm which is referred to as Otsu’s method. This binary image data are used to compute
connected components (4- or 8 neighborhood). In order to avoid artifacts these components are
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filtered by size of area and their solidity, which is the ratio between the area defined by the con-
vex hull of a component and its own area. Later criterion proved to be very useful for excluding
artifacts of about the same area size, but with frayed edges. For the remaining components
centers of gravity are computed as to stand for the extracted control points. A sample of this
kind of preprocessing is shown in Figure 3.2.

Original grayscale image
200 400 600

100

200

300

400

500

Segmentated threshold image with centers of gravity
200 400 600

100

200

300

400

500

Figure 3.2: Preprocessing: (1) Threshold operation - (2) compute connected regions - (3) com-
pute centers of gravity (4) filter according to area size and solidity

Grid labeling

Having extracted the location of the control points in the image data set, the next task is to match
these image coordinates to the appropriate world coordinates for a known predefined calibra-
tion target. In this work we confine ourself to planar targets with regular grid patterns. Regular
grids have one or more axes of symmetry which determines their nature (e.g. a square is a 4-
symmetric pattern, a regular hexagonal pattern a 6-symmetric pattern). It is also postulated that
the calibration object is visible on the image to its full extent, though not all calibration points
have to be visible (e.g. some object lying on the calibration plane of which all corner points are
visible).
One additional challenge arises from the presence of distortion in camera projection, because
,unlike in the pinhole projection model, straight lines are no longer straight. This prevents us
from using a simple style grid matching algorithm which was applied by so many applications
before.
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Figure 3.3: Labeling a 5x5 rectangular grid: Effects of image distortion - straight lines are no
longer straight

Looking at the distorted projection of a number of points forming a regular grid the follow-
ing observations are made (see Figure 3.3):

• All corner points are members of the convex hull.

• Some but not all edge points are members of the convex hull

• None of the inner points is a member of the convex hull, even if some control points on
the edges are missing (if distortion is not extraordinary high)

• If we manage to detect edges and corners of the starting grid, we can iteratively solve the
problem by taking the remaining inner points as the follow-up grid.

• Selecting the points with most acute angle between their adjacent points in the convex
hull delivers the corner points of the grid. Moreover the number of corners is determined
by the symmetry of the regular grid itself. Therefore this approach can be implemented
for any regular grid, e.g. a hexagonal pattern.

• Points on the edges of the grid have minimal normal distance to the direct connection of
the corners defining the specific edge. It is important in this case that the normal distance
is measured with respect to the direction of the normal vector and is compared to the
normal distance of any of the remaining corner points.

• If some of the inner points were mismatched as edge points in a first step, they can be
relabeled in the following steps by comparing previous normal distances to current ones.
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Taking into account these observation the following labeling algorithm was implemented:

1. Computation of the convex hull: This is done by implementing an algorithm proposed by
Sedgewick in [22]. The points of the convex hull are sorted clockwise beginning at the
point with minimal y location with index i = 1..nch.

2. Selection of the corner points: Get n corner points of the n-symmetrical grid by com-
puting n most acute angles between all adjacent triplets of points of the convex hull.
Order them as they appear in the clockwise ordered list of points in the convex hull. Take
adjacent corners to define edges.

3. Selection of the edge points:

(a) For all points Pi in the grid despite of corner points A and B defining edge AB
compute normal distance given by:

d(Pi) = (B − Pi) · n0 · sgn(d(C)), (3.1)

n0 =
~NAB

‖ ~NAB‖
, ~NAB =

(

0 1
−1 0

)

· (B − A),

d(C) = (B − C) · n0,

where n0 is the normalized normal vector of AB, C is another corner point and
d ∈ Z

(b) According to the dimensions of the grid we know the number m of edges points.
Select m points with smallest normal distance.

4. Label all corners and edges according to the dimensions of the gird. Return to the first
step with the remaining inner points

If the algorithm does not stop with a single point or a void dataset, we have to relabel the points
in a backtracking manner. Therefore all distances for all points (except initial corner points) in
every iterative step have to be stored and compared at the end.

3.3 Estimation of extrinsic parameters

The basic idea of this approach is that every 3D calibration object consists of a number of adja-
cent vertices spanned by its calibration points. Each vertex spanned by three calibration points
can be taken as a calibration plane and associated to a specific object coordinate system. Be-
cause the relative orientations of all vertices to one another is known, the orientation of any 3D
object can be derived immediately. The calibration object used in testing — a set of coplanar
points on a calibration board — does not really make use of that special feature. But for com-
parison to other calibration methods a coplanar target was chosen.
So we have a set of vertices describing the calibration object, each consisting of 3 calibration
points P1, P2, P3 of which we want to know the absolute orientation in respect to the cam-
era position. The orientation is described by a rotation matrix R and a translation vector ~t. In
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photogrammetry literature this problem is usually called the three point perspective pose esti-
mation problem for which a couple of solutions were developed by some mathematicians in the
late 19th and early 20th century. For further historical details refer to [23].

3.3.1 Three Point Perspective Pose Estimation Problem

In order to compute the outer orientation we first determine the position of the three points
P1, P2 and P3 with respect to the camera frame. To do so it is sufficient to know the absolute
distances of the points S1, S2 and S3. In Figure 3.4 a schematic illustration of how the problem

a

b
γ

α

β

S1

S3
o.c.

S2

zo

xo

P1

P2

P3

c

calibration plane

yo

Figure 3.4: Schematic illustration of the three point space re-section problem.

can be set up is given. Here the point p.p. designates the optical center (center of perspective)
which is the reference point for the origin in the camera coordinate system. The lengths of the
vectors form the p.p. to the object points P1,P2 and P3 are the distances S1, S2 and S3 for those
we want to have a solution. Knowing the world coordinates of the object points P1, P2, P3 we
also know the side lengths of this triangle:

a = ||P2 − P3||, b = ||P1 − P3||, c = ||P1 − P2||. (3.2)

Given the perspective projection — that means that we know the distances of the p.p. from the
image plane (focal length f) — it is now possible to determine the positions of the 3 vertices
constituted by the known triangle spanned by the object points P1,P2 and P3. There may be as
many as four possible solutions for point positions in front of the p.p. and four corresponding
solutions whose point positions are behind the center of perspective.
Now let the observed perspective projection of P1, P2 and P3 be p1, p2 and p3, respectively;

pi =

(

ui

vi

)

, i = 1, 2, 3

The coordinates of the real world object points are

Pi =





xi

yi

zi



 , i = 1, 2, 3
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By the perspective equations

ui = f
xi

zi

, vi = f
yi

zi

the unit vectors ji pointing from the center of perspective p.p. to the real world positions Pi of
the observed points pi are given by

ji =
1

√

u2
i + v2

i + f 2





ui

vi

f



 , i = 1, 2, 3 (3.3)

Then the p.p. together with the 3 object points form a tetrahedron with S1, S2, S3, a, b and c as
side lengths (see Figure 3.4) and the 3 vertices and the triangle as surface. Now let the angles
at the p.p. opposite sides a,b and c be α, β and γ. Given the unit vectors the three angles can be
determined as follows:

cosα = j2 · j3, cos β = j1 · j3, cos γ = j1 · j2 (3.4)

Summing up we have now the following known values:

• the side lengths a,b,c of triangle spanned by the three object points

• the angles α, β, γ at the p.p. opposite sides of the triangle

The distances S1, S2, S3 are the 3 unknowns that have to be solved by an equation system
in order to compute the real world positions of the object points according to the following
formula:

Pi = Si · ji, i = 1, 2, 3

If we look at the three vertices spanned by the p.p. and two of object points of the triangle in
Figure 3.4, we can now proceed in setting up three equations according to the law of cosines:

S2
2 + S2

3 − 2S2S3 cosα = a2 (3.5)

S2
1 + S2

3 − 2S1S3 cos β = b2 (3.6)

S2
1 + S2

2 − 2S1S2 cos γ = c2 (3.7)

By solving this quadratic equation system we have now simultaneously solved the point space
re-section problem. In [23] six different methods of solving this equation system are presented.
They were also implemented an tested giving results about the accuracy and robustness of the
tested algorithms. In this case a method presented by a German mathematician called Fin-
sterwalder yielded the best result. Therefore this exact solution method is also used in our
calibration procedure.
We now give a short summary about the basic idea of Finsterwalder’s solution which can be
also read in [23].

Finsterwalder’s solution

By changing the variables in Equation 3.5, 3.6 and 3.7 by

S2 = uS1, S3 = vS1
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the three equations from above look like this:

S2
1(u

2 + v2 − 2uv cosα) = a2 (3.8)

S2
1(1 + v2 − 2v cos β) = b2 (3.9)

S2
1(1 + u2 − 2u cos γ) = c2 (3.10)

Therefore,

S2
1 =

a2

u2 + v2 − 2uv cosα
=

b2

1 + v2 − 2v cos β
=

c2

1 + u2 − 2u cos γ

from which we can derive the following two equations

u2 +
b2 − a2

b2
v2 − 2uv cosα +

2a2

b2
v cos β − a2

b2
= 0 (3.11)

u2 − c2

b2
v2 + 2v

c2

b2
cos β − 2u cos γ +

b2 − c2

b2
= 0 (3.12)

Now we introduce a new variable λ and multiply Equation 3.12 by it and add the result to
Equation 3.11 to produce

Au2 + 2Buv + Cv2 + 2Du+ 2Ev + F = 0 (3.13)

where the coefficients depend on λ:

A = 1 + λ

B = − cosα

C =
b2 − a2

b2
− λ

c2

b2

D = −λ cos γ

E =
(a2

b2
+ λ

c2

b2

)

cos β

F =
−a2

b2
+ λ

(b2 − c2

b2

)

Equation 3.13 is now considered as a quadratic equation in v. Solving for v, we have

vlarge =
−sgn(Bu + E)

C
[|Bu + E| +

√

(B2 − AC)u2 + 2(BE − CD)u + E2 − CF ]

vsmall =
C

vlarge
(3.14)

Now we can ask, if a value for λ can be found which makes the term (B2 −AC)u2 + 2(BE −
CD)u+ E2 − CF a perfect square. In this case v can be expressed as a first order polynomial
in terms of u. Geometrically that means that the solution to Equation 3.13 corresponds to two
intersecting lines. Now the first order polynomial can be substituted back into Equation 3.11 or
3.12 which yields a quadratic equation that can be solved for u, and then using the value for u in
the first order expression for v, a value for v can be determined. This calculation produces four
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solutions since there are two first order expressions for v and two solutions for u in the resulting
quadratic equation.
The value for λ which makes the term a perfect square now satisfies

(B2 − AC)u2 + 2(BE − CD)u+ E2 − CF = (up+ q)2

And so we can say,

B2 − AC = p2

BE − CD = pq

E2 − CF = q2

And because p2q2 = (pq)2 we get,

(B2 − AC)(E2 − CF ) = (BE − CD)2

which represents a cubic equation for λ :

Gλ3 +Hλ2 + Iλ+ J = 0 (3.15)

where

G = c2(c2 sin β − b2 sin γ)

H = b2(b2 − a2) sin2 γ + c2(c2 + 2a2) sin2 β

+2b2c2(−1 + cosα cos β cos γ)

I = b2(b2 − c2) sin2 α + a2(a2 + 2c2) sin2 β

+2a2b2(−1 + cosα cos β cos γ)

J = a2(a2 sin2 β − b2 sin2 α).

By solving this equation for any root λ0, p and q can be determined:

p =
√
B2 − AC

q = sgn(BE − CD)
√
E2 − CF

Then we use these results in equation 3.14 to produce:

v =
−(Bu+ E) ± (pu+ q)

C

=
−(B ∓ p)u− (E ∓ q)

C
= um+ n

where

m =
−B ± p

C

and

n =
−(E ∓ q)

C
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By substituting this back into Equation 3.12 and by simplifying there results

(b2 −mc2)u2 + 2(c2(cos β − n)m− b2 cos γ)u− c2n2 + 2c2n cos β + b2 − c2 = 0 (3.16)

A numerically stable way to calculate the solutions for u is again to compute the smaller root in
terms of the larger root:

ularge =
−sgn(B)

A

[

|B| +
√
B2 − AC

]

usmall =
C

ularge

where

A = b2 −mc2

B = c2(cos β − n)m− b2 cos γ

C = −c2n2 + 2c2n cos β + b2 − c2

Now that we have all solutions for u and v we can compute the four possible values for the
distances S1, S2 and S3 of the three object points.

3.3.2 Determination of the outer orientation

P1

P2

P4

P3

S2

S4

S3

S1

o.c.

calibration object

a

b
c

d

e

Figure 3.5: Estimation of the outer orientation by solving the three point re-section problem
and using an additional fourth point

In the previous section we solved the problem of computing all possible positions of three
already detected object points in front of the image plane. There can be up to four different
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solutions for three points. But for our purpose we need to know where these object points are
located in the scene space. To manage that we could use a fourth object point of which we
know exactly the position relative to the other three object points. As depicted in Figure 3.5
we now have four vertices each consisting of the p.p. and two object points and a tetrahedron
spanned by the object points themselves. For each side of the tetrahedron we now solve the
three point re-section problem as described in the previous section. Each pair of adjacent ver-
tices share a common side length Si (i=1,..4) for which up to four different solutions per vertex
were computed in the previous run. As we see in Figure 3.5 there are three adjacent vertices per
side length Si. So we have now up to twelve different solutions for Si. By comparing the three
tuples of up to four solutions for each vertex a quite robust estimation of the correct distance for
each object point can be given in the following way:
Let A, B, C and D be the four sides of the tetrahedron spanned by the four object points
P1, P2, P3 and P4.
Let Si,j(A) be the i-the solution of the distance of object point Pi computed by solving the three
point re-section problem for the triangle A consisting of three object points including Pi.
Then we calculate an estimation for Si by

Si = median(Si,jA
(A), Si,jB

(B), Si,jC
(C)) (3.17)

where jA, jB, jC are second order indices of the the tuple of solutions out of

{(Si,j(A), Si,k(B), Si,l(C))|i, j, k = 1, 2, 3, 4}

for which

[Si,j(A) − Si,k(B)]2 + [Si,k(B) − Si,l(C)]2 + [Si,j(A) − Si,l(C)]2

is minimal.
In practice this estimation has shown to be quite robust in terms of accuracy and reliability. In-
deed we can extend the method introducing a fifth, a sixth or a any number of additional points
in order to increase the robustness of the method. For further information about the numerical
stability and accuracy of the selected algorithm read Appendix II and III in [23].

Now that we have the exact position of at least three object points of our calibration object
we can compute the outer orientation of these points — that means the orientation of the plane
spanned by the points relatively to the camera coordinate system described in previous sections
— in the following way.
Let P ′

i be the corresponding coordinates of Pi (object coordinates of the point) in the camera
coordinate system. Then

P ′
i =





x′i
y′i
z′i



 =





r1 r2 r3
r4 r5 r6
r7 r8 r9



 ·





xi

yi

zi



 +





t1
t2
t3



 = R · Pi + ~t (3.18)

where P ′
i is the point in the camera coordinate system, Pi the same point in the object coordinate

system, R is the rotation matrix and T the translation vector (compare to 2.3.1 on page 21). In
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[24] one can find a proof that the 9 parameters of the rotation matrix R are not independent.
Indeed there exist some constraints as follows

r2
1 + r2

2 + r2
3 = r2

4 + r2
5 + r2

6 = r2
7 + r2

8 + r2
9 = 1, (3.19)

and

r3 = r4r8 − r5r9, (3.20)

r6 = r2r7 − r1r8, (3.21)

r9 = r1r5 − r2r4 (3.22)

Since any three points are coplanar and because of the constraints above we can assume that
zi = 0, i = 1, 2, 3. Therefore Equation 3.18 can be rewritten as

P ′
i =





x′i
y′i
z′i



 =





r1 r2
r4 r5
r7 r8



 ·
(

xi

yi

)

+





tx
ty
tz



 (3.23)

By reducing the unknowns we now can set up an equation system that has a unique solution X
for all the remaining unknowns as follows:

A ·X = B, (3.24)

where

A =





























x′1 y′1 0 0 0 0 1 0 0
0 0 x′1 y′1 0 0 0 1 0
0 0 0 0 x′1 y′1 0 0 1
x′2 y′2 0 0 0 0 1 0 0
0 0 x′2 y′2 0 0 0 1 0
0 0 0 0 x′2 y′2 0 0 1
x′3 y′3 0 0 0 0 1 0 0
0 0 x′3 y′3 0 0 0 1 0
0 0 0 0 x′3 y′3 0 0 1





























,

X = [r1r2r4r5r7r8txtytz]
T ,

B = [x1y1z1x2y2z2x3y3z3]
T .

Now that we have all necessary values we can also compute the rest of the rotation parameters
r3, r6 and r9 by using the constraints formulated in the Equations 3.19 - 3.22.
The assumption that we get all object coordinate Pi in a way that all z-coordinates are zero
requires an additional transformation in another coordinate system (where all three points are
located in the xy-plane) before the described computation of the outer orientation can be done. It
would also be appropriate to find a coordinate system that places one object point into the origin
and a second one into the y-axis, since this would set a number of values in the equation system
system to zero and therefore would increase numerical stability and accuracy. In Figure 3.5
this is schematically illustrated by the dotted lines x0, y0 and z0 that represent the axis of such
a coordinate system. In order to find a transformation matrix we can proceed in the following
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way: We use homogeneous coordinates to describe the transformation from the original real
world object coordinate system into the desired one by a single matrix C:

C =









c1 c2 c3 cx
c4 c5 c6 cy
c7 c8 c9 cz
0 0 0 1









where c1, ..., c9 denote the rotation and cx, cy, cz the translation component. The coordinates for
the solution of the equation system in 3.24 are computed by









x′i
y′i
z′i
wi









= C−1 ·









x′′i
y′′i
z′′i
1









where x′′i , y
′′
i , z

′′
i are the coordinates of the object points P1, P2 and P3 in the original object

coordinate system.
To place the origin in P1 we set





cx
cy
cz



 =





x1

y1

z1





Then defining the y-axis so that P2 lies on it we set




c2
c5
c8



 =
P2 − P1

‖P2 − P1‖
.

To make the z-axis perpendicular to the triangle we set





c3
c6
c9



 =





c2
c5
c8



 × (P3 − P1)

∥

∥

∥

∥





c2
c5
c8



 × (P3 − P1)

∥

∥

∥

∥

and to define the direction of x-axis:




c1
c4
c7



 =





c2
c5
c8



 ×





c3
c6
c9





So putting everything together we now have the matrix

Rfinal =









r1 r2 r3 tx
r4 r5 r6 ty
r7 r8 r9 tz
0 0 0 1









· C−1 (3.25)

describing the transformation of the original object coordinates of the object points into the
camera coordinate system as previously defined.
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3.4 Calibration parameters

In the previous section a method for estimating the extrinsic camera parameters was presented.
Several calibration methods have been introduced for different purposes and requirements cal-
ibrating a subset of intrinsic parameters. We can presuppose that the vertical and horizontal
resolution parameters are know. In fact we do not have to have exact values for them because
they are linearly dependent to the focal length and the scaling factor (see [5] and Equation 2.34
on page 28).As a consequence, the value of the focal length only corresponds to its real world
physical value, if resolution parameters are in compliance with the real world measurements.
As we discussed in Section 2.3, a basic distinction between an explicit and an implicit formu-
lation of the projection features of a camera system can be made. In our case we only refer to a
direct (explicit) model that describes these features by evaluating all necessary physical values
to determine the projection. The pinhole model – translating the perspective projection directly
– represents the ideal case of a perfect lens system with no distortion effects. Therefore, cam-
era models basically differ in their perception and mathematical formulation of the nonlinear
distortion effect that is the case in every real world camera projection. But also this kind of
approach is just an approximation, since a camera lens can be de-formated in any possible way.
Other camera parameters like resolution and the exact position of the principal point have also
be taken into account, because they heavily depend on the distortion effect, too (the principal
point is the only point in the image that is not distorted at all). To keep flexibility and to com-
pare different kinds of camera models all of the three distortion models presented in Section
2.3.2 were implemented. Also the resolution uncertainty parameter Sx can be kept constant or
variable depending on the kind of camera/sensor system that is used.
Table 3.1 sums up all possible distortion models for the camera models, that can be evaluated
with this calibration software:

distortion parameters focal length Sx (Cx, Cy)
radial and tangential: κ1, κ2, τ1, τ2 + +/- +/-

radial: κ1, κ2 + + +/-
Lenz’s camera model: κ + + +/-

Table 3.1: Parameters of the distortion model: the plus and minus signs in this table stand for
the inclusion or exclusion (keeping it to a constant value) of the physical parameters in the
calibration procedure.

3.5 Nonlinear estimation

The resulting pixel image coordinates (uf , vf ) are then used to determine the difference to the
points that where projected by the a real world CCD camera system and detected by some image
processing algorithms. Mathematically we can now formulate an error function — also called
the merit function.
For a set P of N calibration points and a projection gC that depends on the calibration parameters
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in C the residual is given by

χ2 =
N

∑

i=1

‖pi − gC(Pi)‖2 (3.26)

where pi is a point in real world image coordinates.(uw, vw) and Pi the corresponding coordi-
nates in the 3D object (real world) coordinate system (xw, yw, zw).

Our goal is to minimize χ2 by variation of the values of the calibration parameters in C. Several
optimization methods for this task can be used. Note that the function gC is a non-linear projec-
tion. Therefore an iterative optimization technique for non-linear models like the Levenberg-
Marquardt method (see 3.5 on page 47) has to be used.
In case we use a multi-image technique we have a number of camera models. For all V views
an extrinsic model with parameters in R and ~t has to be determined. The intrinsic model is
invariant for all views. We are using a set of functions G = {gCi

: R3 → R2|i = 1..V }. So the
merit function for the multi-view case is

χ2 =
V

∑

j=1

N
∑

i=1

‖pij − gCi
(Pj)‖2, (3.27)

where pij is the real world projected point of the 3D real world point Pj in the image of view vi.
For the implementation of the estimation process, that uses an optimization procedure that does
not understand a model definition consisting of several functions, it is necessary to express the
residuals as one function dependent on the parameter vector ~x as follows:

χ2(~x) =
V

∑

j=1

N
∑

i=1

‖pij − g(Pj; ~x)‖2. (3.28)

where g is now a function of high dimensionality describing all outer orientations and the in-
trinsic camera parameters. Each additional view of the calibration object adds another 11 cal-
ibration parameters (r1...r9, t1, t2, t3) to the camera model. So the number of variants in the
parametric fit is equal to 11N+I, where I is the number of intrinsic parameters. The optimiza-
tion methods themselves use a set of M equations to fit the model into the given data set of M
points pij. Obviously this equation system should be heavily over-determined so that the num-
ber of calibration points M should be considerably larger then 11N+I which is the dimension
of the parameter vector ~x. The disadvantage of that is that heavy increase of dimensionality in
parameter space.
Since all camera models used are highly nonlinear we rely on heuristic search to find the most
optimal parameter values for describing a specific camera system. The first step to solve this
problem is to formulate an appropriate error function that has to be minimized to fit a set of
adjustable camera parameters to a model, that summarizes the data given by the observations
of the calibration object points. In Section 3.5 we have already given an error function χ2 by
Equation 3.28 (merit function), that evaluates a dimensionless value for the gap between the
real world data points and the computed ones according to the estimated parameter values. In
this case we do not search for a solution that is the global minimum of the error function but
one that locally minimizes the error function within a certain region of the multi-dimensional
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solution space. Limiting this region means to bound all parameters to certain intervals that are
plausible. e.g. the focal length has to be within an interval of 30 to 80 mm, or the p.p. is located
near the center of the image.
On the other hand by finding a set of appropriate start values for the outer and inner orientation
of the camera system we define a starting vector X0 for the following optimization procedure.
A classical approach to solve a nonlinear optimization problem is the steepest descent method
(which, incidentally, goes back to Cauchy) where we start at the point X0 and move from point
Xi to the pointXi+1 (i=0,...,N) along the line form Xi in the direction of the local downhill gra-
dient −5 χ2(Xi), as many times N as needed. In practice this method has shown to be a quite
ineffective strategy, because every new gradient at the minimum point of any line minimization
is perpendicular to the direction just traversed. This behavior causes an unacceptable amount
of iterative steps in case of a narrow and long ”valley” in the error function, that is a huge gap
between the steepness of two or more minimization variables, to reach the minimum.
A more efficient solution to the minimization problem is to prevent this situation by making
the iteratively computed set of directions non-interfering, that means that minimization along
one is not “spoiled” by subsequent minimization along another, so that interminable cycling
through the set of directions can be avoided. Conventionally methods following this concept of
non-interfering (conjugate) directions are called conjugate gradient methods.

Generally every multidimensional function f(~x) can be approximated at some particular
point P by its Taylor series

f(~x) = f(P) +

N
∑

i=1

∂f

∂xi

+
1

2

N
∑

i,j=0

∂2f

∂xi∂xj

+ ... (3.29)

≈ c− b · ~x +
1

2
~x · A · ~x (3.30)

where

c ≡ f(P), b ≡ ∇f |P, [A]i,j ≡
∂2f

∂xi∂xj

∣

∣

∣

∣

P

The matrix A whose components are the second partial derivative matrix of the function is called
the Hessian matrix of the function at P. If we replace f(x) by the merit function χ2 defined by
our arbitrarily known camera model we can calculate the gradient components by

βk ≡ −1

2

∂χ2

∂xk

, k = 1, ...V ·N + C (3.31)

and the components of the Hessian matrix

αkl ≡ −1

2

∂2χ2

∂xk∂xl

, k, j = 1, ..., V ·N + C (3.32)

where the rank of both is given by the number of views V, the number of extrinsic camera
parameters N (6 or 11 depending on whether we use the Euler angles or a rotation matrix)
and the number of intrinsic camera parameters C. Therefore, the derivation variables xk are the
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intrinsic and extrinsic camera parameters in the model.
The matrix [α] = 1

2
D in Equation 3.29 and is usually called the curvature matrix.

Using formula 3.29 the minimum can be found iteratively by

~xmin = ~xcur +D−1 · ∇χ2(~xcur) (3.33)

Rewriting this using the curvature matrix we get a set of linear equations

V ·N+C
∑

l=1

αklδal = βk (3.34)

This set is solved for the increments δal that, added to the current approximation xcur gives the
next approximation xmin.
This method is generally called the inverse-Hessian method and falls into the class of the con-
jugate gradient methods. Another way of iteratively finding the minimum point is the steepest
descent method which only uses the first derivative term:

δal = constant× βl (3.35)

The problems in case of a narrow long “valley” of the steepest descent method we already
discussed in a previous section. But also the inverse-Hessian method has its problems, because
the inclusion of the second-derivative term can be destabilizing if the models fits badly (the
value of the merit function is huge) or is contaminated by outlying points that are unlikely to be
offset by compensating points of opposite sign.

Levenberg-Marquardt Method

To avoid the mal-behavior of both methods, Marquardt has put another elegant method, related
to an earlier suggestion of Levenberg, for varying smoothly between the extremes of the inverse-
Hessian method and the steepest descent method. There, the steepest descent method is used
far from the minimum, switching continuously to the iterative approximation of the minimum
by the inverse-Hessian method. In practice, this method has become the standard of nonlinear
least-square problems (remember that the merit function computes a squared error).
The first consideration in this case is how the constant in Equation 3.35 should be quantified,
even in order of magnitude. There is no information in the first derivative, but the Hessian ma-
trix that gives at least some information about the order of magnitude.
Another question is drawn by considering the dimensionality of the components of the deriva-
tives. The merit function χ2 expresses a dimensionless value – a pure number. On the other
hand, the components of the first-derivative term βk have the reciprocal dimension of the orig-
inal camera parameters xk. Therefore, the constant of proportionality between βk and xk must
have the dimensions of x2

k. Examining the curvature matrix [α] only the reciprocals of its diag-
onal elements 1/akk possess the same dimensionality. Therefore this term must set the scale of
the constant. In case also this scale is too big, we divide the constant by some (non-dimensional)
fudge factor λ. Summing up we can replace Equation 3.35 by

δal =
1

λαal

βl. (3.36)
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Secondly the Equations 3.36 and 3.34 can be combined if a new matrix [α′] is defined by the
following prescription

α′
jj ≡ αjj(1 + λ) (3.37)

α′
jk ≡ αjk and j 6= k. (3.38)

Now we can replace Equation 3.34 and 3.36 by

V ·N+C
∑

l=1

α′
klδαl = βk. (3.39)

For a deeper understanding of the mechanism we can state that the matrix [α′] is forced into
being diagonally dominant, if the fudge factor λ is large. On the other hand if λ is small, then
Equation 3.39 resembles more and more Equation 3.35.
Now Marquardt has given the following recipe:

• Compute χ2(x0)

• Pick a modest value for λ – about 0.001

• †: Solve the linear equations of formula 3.39 for δ~x and evaluate χ2(~x + δ~x).

• If χ2(~x + δ~x) ≤ χ2(~x), increase λ by a factor of 10 and go back to † or

• Else decrease λ by a factor of 10 and go back to †.

The iterative computation can be stopped when the value for χ2 changes by an amount � 1
because further proceeding is generally wasteful and unnecessary since the minimum is at best
only a statistical estimate of the parameters.
Once the minimum has been found, we can set λ = 0 and compute the matrix

[C] ≡ [α]−1 (3.40)

which contains the estimated covariance matrix of the standard errors in the fitted parameters
in ~x.

3.6 Computation of parameters for the inverse model

As discussed in Section 2.4.1 we need the inverse camera model to correct image distortion to
get an adequate back-projection function. Several methods were proposed. In [19] the following
approach is used to compute the corrected image points out of the distorted image points:

~qi = ~qd − δ(~qd − δ(~qd)) (3.41)

where ~qi is the vector for the corrected image coordinates, ~qd the vector for distorted ones and
δ : R2 → R2 the function of the distortion in image location ~q. This method generally gives
poor results with a residuals of about 0.1 pixels for typical lens distortion parameters according
to [5].
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A slightly different approach to the back-projection problem is the estimation of a model func-
tion determined by a set of non-physical or implicit parameters representing an inverse model.
In [18] the following method is proposed to compute an accurate model function:

ui =

∑

0≤j+k≤N

a
(1)
jk u

j
dv

k
d

∑

0≤j+k≤N

a
(3)
jk u

j
dv

k
d

, vi =

∑

0≤j+k≤N

a
(2)
jk u

j
dv

k
d

∑

0≤j+k≤N

a
(3)
jk u

j
dv

k
d

(3.42)

where (ui, vi) is a dense grid of of points in the image coordinate systems, N equals the order
of the numerator and denominator polynomials of the fractions, (ud, vd) the corresponding dis-
torted image coordinates and {a(n)

jk } is the set of model parameters for the inverse model.
(ud, vd) can be calculated by computing the distorted image coordinates according to the cam-
era model described by Equation 2.36 on page 30. The grid of points should be large enough to
result in an over-determined equation system defined by Equation 3.42 in order to solve for the
parameters a(n)

jk , 1 ≤ n ≤ 3, 0 ≤ j + k ≤ N . Obviously the required number of points is very
high, since N should be at least be equal to the order of the polynomial in Equation 2.36 which
is 5. Assuming N=5 we have 21 terms per set n of unknown parameters a(n)

jk . Fortunately many
of these parameters were found to be quite redundant by simulations ([5]). Indeed the following
definition is sufficient to compensate for the distortion effect:

(

ui

vi

)

=
1

G

(

u′d + u′d(a1r
2
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4
d) + 2a3u

′
dv
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2
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2
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4
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2
d + 2u′d

2) + 2a4u
′
dv

′
d

)

(3.43)

and

G = (a5r
2
d + a6u

′
d + a7v

′
d + a8)r

2
d + 1

where

u′d =
(ud − Cx)

d′xsx

,

v′d =
(vd − Cy)

d′y
and

rd =

√

u′d
2 + v′d

2

The terms Cx, Cy, d′x, d′y and sx stand for the intrinsic parameters described in Table 2.2 on
page 29. Using this model we have reduced the number of parameters from 63 in Equation 3.42
to 8 ({a1, a2, . . . , a8}) for the inverse model. This greatly reduces computation effort without
worsening results as it was proved by [5]. The parameters a1, . . . , a4 of the inverse model
resemble radial and tangential distortion parameters κ1, κ2, τ1, τ2.
In order to estimate inverse model parameters of Equation 3.43 we can solve the equation system
iteratively using the least square technique or directly by projecting a number of additional
virtual control points within the calibration plane. Experiments in [5] showed the number of
these tie-points (uii, vii) and (u′di, v

′
di) is chosen best between 1000 and 2000 (40x40).

Now the following computation method will solve the problem:

Defining the following vectors and matrices . . .
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T = [ ~u1, ~v2, . . . , ~ui, ~vi, . . . , ~uN , ~vN ]T ,

~p = [a1, a2, . . . , a8]
T

~e = [ud
′
1 − ui1, vd

′
1 − vi1, . . . , ud

′
i − uii, vd

′
i − vii, . . . , ud

′
N − uiN , vd

′
N − viN ]T

i = 1 . . .N,

. . . the following relationship can be obtained by using eqn. 3.43:

~e = T~p

The vector ~p is now estimated in a least square sense:

~pest = (T TT )−1T T~e

The term (T TT )−1T T of this equation is also known as the

pseudoinverse of the matrix T.

3.7 Determining start values

We have to determine a starting vector for the optimization process. Because of the complexity
of the merit function there will be a number of local minimums. We are actually not looking
for the smallest or global minimum, but one that is plausible. (e.g. the values for focal length
or the uncertainty factor should not be magnitudes larger or smaller than expected). Because
of the iterative nature of the proposed heuristic method, the initial parameter vector heavily
determines the result (see [21]). In fact we expect or final estimation to be near the initial start
vector. Assuming that the camera has in general a projection geometry that is not too different
to the pinhole model a good guess for the start values is listed as follows:

• focal length f : is equal to the nominal focal length that can be read on the camera

• distortion: by setting all coefficients to zero we ignore the distortion effect at the start,
assuming linear Euclidean perspective projection.

• uncertainty factor sx: is initially set to one, assuming that the signal is perfectly syn-
chronous, there is no difference between sensor resolution and resolution of the digital
image.

• principal point (Cx, Cy): set in the center of the image frame

4 Test results

Due to different requirements in the history of this project several implementations of the pre-
sented calibration method were developed. In an early work a simulation for the Mathematica
4.0 (Wolfram Research) program was written. It showed some interesting results with respect to
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the estimation of outer orientation by the Finsterwalder method. Unfortunately we had difficul-
ties to get stable optimization results for the estimation of intrinsic parameters. Nevertheless the
routines are available for practical use in conjunction with an additional Khoros environment
that builds up a communication structure between the Mathematica Kernel and the Khoros can-
tata run time environment.
In order to establish an easy to use and portable calibration toolbox, all further programming
was done with MATLAB. A simulation script as well as a real world calibration environment
including grabbing and preprocessing of the image data was implemented, of which the most
important experiments and results will be presented. In addition the MATLAB implementation
was also made available for use with cantata (Khoros runtime environment) by implementing
a kind of Khoros-to-MATLAB interface that establishes a glyph for starting and controlling a
small-sized MATLAB-engine, and manages data exchange for both environments.

4.1 Tests with synthetic data in MathematicaTM

First of all a hypothetic calibration object was determined. We have chosen a quite simple
model, a 3x3 matrix of coplanar control points.

ControlPoints = {{-0.03,-0.03,0.}, {0.,-0.03,0.},{0.03,-0.03,0.},
{-0.03,0.,0.},{0.,0.,0.},{0.03,0.,0.},
{-0.03,0.03,0.},{0.,0.03,0.},{0.03,0.03,0.}};

Afterwards we computed a number of N=5 randomized outer orientations. The translation in x
and y direction is in a range of ±10 cm, in z direction between 0.5 m and 0.7 m. The rotation is
limited to ±Π/4 for every degree of freedom.

Translations = Table[{ Random[Real,{-0.1,0.1},2],
Random[Real,{-0.1,0.1},2],
Random[Real,{0.5,0.7},2]},{5}];

EulerAngles = Table[Random[Real,{-N[Pi]/4,N[Pi]/4},6],{5},{3}];
TransformationMatrices =

Table[rtmat[Translations[[i]],EulerAngles[[i]]],{i,1,5}];
W0 ={0.,0.,0.}; T0 = {0.,0.,0.5};
Null= Table[rtmat[T0,W0]];

To create the images of the calibration object, we used a calibration setup taken from a real
world CCD camera. These values are the ones that should be approximated by the calibration
software.

f=0.016;k1=60.;k2=300.; sx:=1.05;
dx=0.0000086; dy = 0.0000083; Cx = 378.; Cy=291.;
Params={f,k1,k2,sx,dx,dy,Cx,Cy};

The resulting projection is illustrated in Figure 4.1. The 9 control points are associated to the
corner points of the squares.
In the next step we try to estimate the outer orientations of all views by Finsterwalder’s algo-

rithm. Therefore, we first have to define a set of vertices within the calibration plane together
with a fourth reference point. We used the configuration illustrated in Figure 4.2. To simulate
that we do not know the exact value for the focal length f at this point its value as input param-
eter for the optimization deviates slightly from its real value (about ±5%) assuming a normal
distribution.

OuterOrientations = MultImagEstim[ImageCoords, ControlPoints ,
NumOfPlanes,CalibP, Length[CalibP],
Params,100.];
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Figure 4.1: Projected image points of five views of the calibration plane
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Figure 4.3: The resulting planes (orientations) and the original orientation

As we found out a maximal squared error of 100 guarantees a successful estimation procedure.
This squared error is calculated by back-projection according to the determined extrinsic pa-
rameters. Figure 4.3 shows the result of an optimization run resulting in an squared error of
89.21.
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2 3 4 51

Figure 4.2: Five vertices together with their fourth reference point were chosen to get an estima-
tion of the outer orientation. Since all points are coplanar the orientations of the planes defined
by the vertices towards the abstract camera coordinate system has to be the same. The fourth
reference point is depicted as a circle.

4.2 Tests with real world data using MATLAB

Though there also exists a simulation environment for the MATLAB implementation of the
calibration routines, we skip the presentation of these results, because they are quite similar to
those which were accomplished by real world experiments.
The setup for the experiments is described as follows:

• Hardware: For the acquisition of the images an of-the-shelf IMAC-S30 CCD camera was
used. The analog signal was processed by a METEOR frame grabber card. Nominal focal
length of the optics, the size and resolution of the CCD-sensor and the output resolution
of the frame grabber card were known (see Table 4.1).

• Calibration target, 3D table: A simple plane with a black backdrop an bright white circle
areas was used as calibration object. The dimensions of the circle area and its relative
positions were measured. To avoid numerous artifacts and to simplify the extraction of
the regions of interests (circle areas) the whole scene was dimmed out by photo-resist
drapery. The range within images were taken can be roughly specified by 1x0.5x0.5
meters.

• OS and Software: The program was run on Linux machine using the MATLAB 6.2 en-
gine. A third party driver for the frame grabber card was used that unfortunately delivered
sometimes poor results (missing lines in frames, lower resolution than camera).

The chosen experiments are a representative example for the derivation of our most important
conclusions that we draw from numerous others before. A set of 3, 4, 5 and 7 different images
were chosen for comparison (see Figure 4.2) with the same camera at a fixed location.
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nominal focal length: 16 mm aspect ratio(Sx) 1.0
horizontal resolution: sensor: 762 vertical resolution: sensor: 768

image: 768 image: 576
sensor size horizontal 8.6 mm

vertical 6.6 mm

Table 4.1: Known camera and sensor parameters

1 2 3

(a) Dataset 1

1 2 3 4

(b) Dataset 2

1 2 3 4 5

(c) Dataset 3

1 2 3 4 5 6 7

(d) Dataset 4

Figure 4.4: Sample of images for experiments - 4 datasets

With this four datasets and the a-priori known intrinsic parameters and additionally estimat-
ing the position of the principal point in the image center and neglecting distortion the following
results were achieved:
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4.2.1 Extrinsic parameters (Orientation)

In Figure 4.5 the computed orientations of the planes in the images is visualized per dataset.
The line of sight is depicted as the dotted line, the position of the optical center of the camera
lies in the origin of the xy-plane.
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Figure 4.5: Orientations of the planes towards the camera position as computed by the calibra-
tion toolbox

The figures show that the images were taken in about the same range from the camera.
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4.2.2 Unknown intrinsic parameters

In Table 4.2 the results for all 4 datasets are given. One may notice that some parameters like
the principal point are more likely to deviate from other results than the real focal length or the
radial distortion coefficients.

Dataset 1 2 3 4

Sx 1.0457 1.0452 1.0439 1.0508
f 17.1269 17.8233 17.3469 17.3575
Cx 355.5063 415.8188 377.1927 384.0515
Cy 344.4231 408.2650 292.9970 313.8536
κ1 -0.0015 -0.0016 -0.0011 -0.0017
κ2 1.4219e-05 5.0658e-06 -2.6071e-06 3.6567-05
τx -1.5049e-05 -6.6540e-04 -1.2514e-04 -3.2130e-05
τy 2.2373e-04 -5.4902e-04 1.6888e-05 3.5260e-05

Error/point 0.395265 0.412533 0.223246 0.421950

Table 4.2: Computed intrinsic parameters and error after back-projection for the datasets. The
average pixel error is 0.363302

Of course the table above is just a small sample of dozens of other experiments, but it gives
an appropriate impression of the general features of the calibration method. The above results
show that the calibration method is functionally correct and delivers a camera models that fits
to the input data with sub-pixel accuracy. The focal length, the aspect ration (Sx) and first order
radial distortion coefficient (κ1) are less diversified than the coordinates of the principal point
(Cx, Cy) and 2nd order radial, and tangential distortion coefficients. Because the latter param-
eters have generally very limited effects on the model itself, they can only be narrowed down
properly by orders of magnitude. Additionally the model is normalized to the digital image res-
olution and not the sensor resolution, which would alter the value of the aspect ratio, the focal
length and the principal point.

4.2.3 Inverse distortion parameters

After calibration of the real world camera parameter and an inverse model for distortion was
computed using a normally distributed set of 1000 randomly chosen points. The parameters
values are shown in Table 4.3. The resulting error histograms are shown in Figure 4.6.
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Dataset 1 2 3 4

a1 -0.0033 -0.0029 -0.0023 -0.0036
a2 0.0001 1.86e-05 -1.89e-05 1.58e-04
a3 1.52e-05 6.71e-04 1.2440e-04 3.33e-05
a4 -0.0002 0.0006 -1.68e-05 -3.64e-05
a5 0.0001 2.33e-05 -2.13e-05 1.95e-04
a6 1.19e-06 -4.01e-06 1.47e-07 2.76e-08
a7 -1.26e-07 -5.66e-06 -1.11e-06 -9.32e-09
a8 -0.0048 -0.0045 -0.0035 -0.0054

Table 4.3: Inverse distortion model: parameters of inverse distortion function defined by Equa-
tion 3.43

In all experiments the inverse models achieve sub pixel accuracy for all points. The his-
tograms reach their peak around the zero error level as expected by using a normally distributed
set of points. Despite of the parameters a1 and a8 all other parameters of the inverse model are
diversified according to diversification of the original distortion model.
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(a) Dataset 1 (b) Dataset 2

(c) Dataset 3 (d) Dataset 4

Figure 4.6: Inverse distortion model: histogram of errors by back-projection in x and y direction
for 1000 randomly computed points distributed normally over the image area

4.2.4 Interpretation of experimental results

Considering the results of our experiments the following conclusions are drawn:

• The estimation of extrinsic parameters at the first stage of the calibration process is accu-
rate enough to yield a good starting vector for the second stage optimization vector.

• The optimization results produce camera models that fit to selected input data images with
sub-pixel accuracy. The values for the focal length, aspect ratio, position of the principal
point and first order radial distortion are reliably estimated lying within about the same
range. This indicates stability with respect to the physical model. Other model parameters
are strongly diversified and are narrowed only in respect to their order of magnitude.

• The quality of the results does not depend on the number of images in the input data
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set in general, but more obviously on the diversification of the images themselves. This
is, because on taking several images of the calibration target we are virtually building a
dataset of a three dimensional object of certain extent. This extent and the distribution
of the control points within this 3 dimensional structure are the true quality determining
factors for the resulting camera model. Therefore the camera model is always measured
with respect to the range that is defined by the virtually created 3 d structure and can only
be applied with expected accuracy on measurements and experiments that work within
this range.

• In order to eliminate distortion effects for further processing an inverse camera model can
be produced. The inverse models yield sub-pixel accuracy with great reliability. Despite
of a1 and a8 the parameters of the inverse model are strongly diversified.
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5 Conclusion and Outlook

In this work we presented an calibration technique that yields sufficiently accurate results for
common purpose 3D vision tasks. The inverse distortion model it delivers is appropriate for
eliminating distortion effects almost completely. A great advantage of this calibration method
is its flexibility. Six degrees of freedom are allowed for the position of the calibration target.
Also various calibration targets can be used, even objects with non-coplanar surfaces, which
will be investigated in forthcoming experiments. Improvements should be made concerning
the acquisition of the image data, which is of poor quality right now. In literature numerous
methods for estimating focal length, principal point and distortion are presented. Some of these
might be adequate to yield a more accurate start vector in the initial pre-optimization stage.
Indeed, this will be a main issue in the forthcoming work.
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A Short description of the MATLAB toolbox

In order to make the implementation of the calibration method available for practical use a
MATLAB script was written to adapt to the existing experimental setup. Its functionality spans
from acquisition of the image data, extraction of control points to computation of the camera
model and its inverse camera model. The functionality is determined by assign a string to the
variable ’mode’. To abbreviate this, the more-or-less self explaining code of the script is printed
below:

% definition of fileformat for center points

%roiextract.path = ’./work/work/’;
%roiextract.filename = ’component_centers’;
%roiextract.fileformat = ’%d %f %f #%d points\n’;

% apriori knowledge of intrinsic camera parameters

%cam.name = (’sony’);
%cam.NDX = 768; cam.NDY = 576;
%cam.sx = 6.2031; cam.sy = 4.6514;
%cam.f = 8.5;

% definition of calibration target

%target.type = (’rectangle’);
%N = 6; M=6; dn = 0.15; mindn = -0.30;
%dm = 0.15; mindm = -0.30;
%target.def = [N,M,dn,dm,mindn,mindm];
%target.world = compute_wpoints(target.type,target.def);

% simulation dataset
%numOfImages = 5;
DisplayAll = 1;
%MaximalAngle = [85,85,45];
%MaxTrans = [0.5,0.5,1.5];
%SetSeedIntrinsic = 0;
%SetSeedExtrinsic = 0;
%NoiseRate.FocalLength = 1;
%NoiseRate.Center = 0.8;
%NoiseRate.Asp = 0.001;

% options for precalibration
copts.est_extrinsic.method = ’finster’;
copts.est_intrinsic.method = ’none’;

if strcmp(mode,’init’)
par(1) = cam.NDX; par(2) = cam.NDY; par(3) = cam.sx; par(4) = cam.sy;
par(5) = 1.0; % Aspect Ratio
par(6) = cam.f;
par(7) = cam.NDX./2; % Cpx
par(8) = cam.NDY./2; % Cpy
par(9:12) = 0.0;
target.world = compute_wpoints(target.type,target.def);

elseif strcmp(mode,’add_centerpoints’)
if roiextract.path(length(roiextract.path))==’/’

name = strcat(roiextract.path,roiextract.filename);
else

path = strcat(roiextract.path,’/’);
name = strcat(roiextract.path,roiextract.filename);

end
[n px py w] = textread(name,roiextract.fileformat);
% filter
j = 0;
for i=1:length(n)

if (w(i)>=roiextract.filtermin) & (w(i)<=roiextract.filtermax)
j=j+1;
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images(imagenr,j,:) = [px(i) py(i)];
numbers(imagenr,j) = [n(i)];

end
end
numOfPoints = j;
if (numOfPoints<length(target.world)) | (numOfPoints>length(target.world))

error(’Two few/many center points (%d) in image %d\n’,numOfPoints,imagenr);
end

elseif strcmp(mode,’calibrate’)
warning off MATLAB:nearlySingularMatrix;
[iparamc,oparamc,epipoles,residual] = ...

calibrate(par,target,images,DisplayAll,copts,nbr);
pointError = sqrt(residual/sum(nbr));

fprintf(1,’Absolute residual: %f\tError per point: %f\n’, ...
residual,pointError);

intrinsic.Asp = iparamc(1);
intrinsic.f = iparamc(2);
intrinsic.Cx = iparamc(3);
intrinsic.Cy = iparamc(4);;
intrinsic.radial2 = iparamc(5);
intrinsic.radial4 = iparamc(6);
intrinsic.tangentialX = iparamc(7);
intrinsic.tangentialY = iparamc(8);
display(intrinsic);

elseif strcmp(mode,’showimages’)
numOfImagedata = size(img,3);
figure;
for i=1:numOfImagedata

subplot(1,numOfImagedata,i);
colormap(gray);
imagesc(img(:,:,i));
axis square

end
elseif strcmp(mode,’inverse’)
a = invmodel(par,iparamc);
fprintf(1,’Parameters for the inverse model:\n’);
display(a);

% compute some random points
r=[rand(1000,1)*768 rand(1000,1)*576];
figure;
plot(r(:,1),r(:,2),’rx’);
% Press enter
pause
clc
d=imdist(par,iparamc,r);
hold
plot(d(:,1),d(:,2),’go’);
c=imcorr(par,iparamc,a,d);
clf
subplot(1,2,1)
hist(r(:,1)-c(:,1))
title(’Error in x direction’)
xlabel(’pixels’)
subplot(1,2,2)
hist(r(:,2)-c(:,2))
title(’Error in y direction’)
xlabel(’pixels’)

elseif strcmp(mode,’grab’)grabopts.ctrlcmd =’/opt/meteor/bin/vctrl’;
grabopts.resolutionX = ’768’;
grabopts.resolutionY = ’572’;
grabopts.colordepth = ’24’;
grabopts.composite = ’-p -i 0’;
grabopts.grabcmd =’/opt/meteor/bin/vcat’;
grabopts.rawfile =’$HOME/work/work/image.raw’;
grabopts.ppmfile =’./image.ppm’;
grabopts.convcmd =’/usr/bin/rawtoppm -bgr’;
display(grabopts);
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R = input(’Select composite 1 or 2 [1]’,’s’);
if strcmp(R,’2’)

grabopts.composite = ’-p -i 0’;;
else

grabopts.composite = ’-p -i 1’;
end
notDone = 1; i = 0;
while (notDone)

i = i + 1;
grabopts.changectrl = (i==1);
img(:,:,i) = grab_image(grabopts);
colormap(gray);
R = sprintf(’Image %d’,i);
xlabel(R);
imagesc(img(:,:,i));
axis square;
fprintf(1,’Current # of frames: %d\n’,i);
R = input(’Keep image? (y/n)’,’s’);
if strcmp(R,’n’)

i = i - 1;
else

R = input(’Grab another image? (y/n)’,’s’);
notDone = strcmp(R,’y’);

end
end
numOfImages = i;
fprintf(1,’%d images are kept.\n’);

elseif strcmp(mode,’extract’)
if strcmp(target.type,’rectangle’)

numOfPoints = target.def(1) * target.def(2);
elseif strcmp(target.type,’square’)

numOfPoints = target.def(1) * target.def(1);
end
[images(:,:,:),nbr] = roi_extract(img,numOfPoints);

end

B Manual for the Mathematica package

B.1 Computation of the rotation matrix, translation vector and the Euler
angles

1. yaw[q_Real]->Matrix[[4,4]]: computes a 4x4 matrix describing a rotation around the
x axis by the angle of q (in radians).

2. pitch[q_Real]->Matrix[[4,4]]: computes a 4x4 matrix describing a rotation around
the y axis by the angle of q (in radians).

3. tilt[q_Real]->Matrix[[4,4]]: computes a 4x4 matrix describing a rotation around the
z axis by the angle of q (in radians).

4. transl[x_Integer,y_Integer,z_Integer]->Matrix[[4,4]]: computes a 4x4
matrix describing a translation along a vector (x,y,z).

5. rmat[rx_Real,ry_Real,rz_Real]->Matrix[[4,4]]:computes a 4x4 matrix describ-
ing a rotation around the x, y and z axis by the angles of rx, ry and rz.
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6. rtmat[T_VectorQ,rx_Real,ry_Real,rz_Real]->Matrix[[4,4]]:computes a 4x4
matrix describing a rotation around the x,y and z axis (by rx, ry and rz) and simultaneously a trans-
lation along a vector T.

7. EulerAngles[R_MatrixQ]->{yaw,pitch,tilt}:computes the Euler angles yaw, pitch
and tilt by a given 4x4 rotation matrix including also a translation vector in the last column.

B.2 Further geometric functions

1. SqrErr[{u1_,v1_},{u2_,v2_}]->Real:computes the squared distance of two 2dimen-
sional points.

2. sqrdist3d [x1_,y1_,z1_,x2_,y2_,z2_]->Real:returns the value for the squared
distance of two 3dimensional points (x1, y1, z1) and (x2, y2, z2).

3. VectorLength[x_VectorQ]->Real: computes the length of a vector of any dimensional-
ity

4. Norm[x_VectorQ]->VectorQ:returns the unit vector of a given vector x of any dimension-
ality.

5. UnitVector[u_,v_,focus_]->{x_Real,y_Real,z_Real}:computes the 3dimensional
unit vector (x,y,z) of the viewing ray of a given image point (u,v) according to a given focus (focal
length) describing a the projection.

6. cosimg[P1_,P2_,focus_]->Real:computes the angle between the viewing rays of two
given 2dimensional points P1 and P2 reversing the projection given by the focus (focal length).

7. finster[P1_,P2_,P3_,I1_,I2_,I3_,f_Real]->List[L1,L2,...]:
computes all possible spatial orientations (the distances to the focal center) of the three 3dimen-
sional object points P1, P2 and P3 in front the image plane given their 2dimensional image co-
ordinates I1, I2 and I3 and the focal length f, which defines the perspective projection, using the
pinhole camera model. The solutions (there can be up to four) are returned as a list of up to four
3dimensional vectors L1, L2, L3 and L4. If there is less than four solutions also less than four
vectors are included (that means that the number of elements in this list can vary).

8. ObjCoordSys[{Pw1_,Pw2_,Pw3_,Pw4_}]->Matrix[[4,4]]:returns a 4x4 transfor-
mation matrix from the given coordinate system of Pw1, Pw2 . . . Pw4 to a coordinate system
where Pw1 is identical with the origin, Pw2 lies on the y axis and Pw3 is within the xy plane.

B.3 Other functions

1. SqrdErrSum[a_Real,b_Real,c_Real]->Real: computes the sum of all squared dif-
ferences of the values a, b and c.

2. Lcube[d1_,d2_,d3_]->Real:returns the median value of the triple out of all possible
triples consisting of one element of each of the lists d1, d2 and d3, that has the minimal sum
of squared differences between the three values.
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B.4 Determination of the Outer orientation

1. FourPointPoseEstim[{P1_,P2_,P3_,P4_},{I1_,I2_,I3_,I4},f_Real]->{d1,d2,d3,d4}:

returns the estimated distances d1, d2, d3 and d4 of four object points P1, P2, P3 and P4 from
the focal point given the 2dimensional image points I1, I2, I3 and I4 and the focal length f of the
projection.

2. OuterOrientation[{P1_,P2_,P3_},{I1_,I2_,I3_},{S1_,S2_,S3_},f_Real]->

Matrix[[4,4]]: returns the 4x4 transformation matrix from the coordinate system of three 3dimen-
sional object points P1, P2 and P3 to the coordinate system defining the optical of the projection
as the z axis and the projection plane as the xy plane. The parameters that have to be given are
the 2dimensional image coordinates I1, I2 and I3 of the projected points, their distances from the
focus S1, S2 and S3 and the focal length f, defining the perspective projection.

3. TransCoord[P3d_,RT_]->{x,y,z}:returns the 3D coordinates of the 3dimensional point
P3d in a coordinate system defined by the 4x4 transformation matrix RT.

B.5 Camera model

1. pinhole[{x_,y_,z_},f_Real]->{u,v}: returns the projected image point (u,v) of a
given 3D point (x,y,z) of perspective projection defined by f according to the pinhole camera
model.

2. distortion[{x_,y_},k1_Real,k2_Real]->{xd,yd}: returns the distorted image point
(xd,yd) of a given 2dimensional image point (x,y) according to the radial distortion parameters k1
and k2.

3. scaling[{xd_,yd_},Sx_Real,Dx_Real,Dy_Real,Cx_,Cy_]->{X,Y}: transforms
the physical (optical) image coordinates (xd,yd) into the digital (machine depended) pixel coordi-
nates (X,Y). The naming of the input parameters refers to that used previous sections.

4. invScaling[P2d_,{Sx_Real,Dx_Real,Dy_Real,Cx_,Cy_]->{x,y}: This is the
inverse function of the previous one.

5. project[{x_,y_,z_},{f_Real,k1_Real,k2_Real,Sx_Real,Dx_Real,
Dy_Real,Cx_,Cy_,RT_MatrixQ]->(X,Y): computes the pixel coordinates (X,Y) of the
3dimensional point (x,y,z) in the world coordinate system of the object according to the intrinsic
camera parameters given by f, k1, k2, Sx, Dx, Dy, Cx, Cy and the extrinsic ones given by the
transformation matrix RT. This routine simulates the hole camera model.

B.6 Estimation of start values for extrinsic camera parameters

1. ImagEstim[PunktePK_,PunkteWK_,CalibP_,Params_]->{R1_Matrix[[4,4]],

R2_Matrix[[4,4]],EA_Vector[[3]],TV_Vector[[3]]}:computes the estimated outer orientation of
the plane spanned by the first three points of CalibP. CalibP must contain at least four points (their
indices) to compute an exact solution. PunktePK contains the pixel coordinates, PunkteWK the
world coordinates of the points. Param is the set of start parameters that is used for the defined
intrinsic camera model.
The return values contain the parameters R2 that is the acctually computed outer orientation as
a 4x4 rotation/translation matrix and R1 that is the transformation matrix normalizing the object
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coordinate system. EA contains the 3 euler angles and TV the translation vector as they are defined
by the transformation matrix R2.

2. MultImagEstim[PunktePK_,PunkteWK_,NumOfPlanes_,TestP_,
NumOfCalib_,Params_, MaxErr_]->List[NumOfPlanes,4]:computes the estimated
outer orientations of serval images of the calibration object defined by the 3D world coordinates
in PunkteWK. PunktePK is a set of NumOfPlanes sets of the coresponding image coordinates (the
numbering has to be consistent!). TestP is a set of NumOfCalib sets of at least four points (their
indices in the point sets) for each of them the first three points are used as the reference coordinate
system to compute an outer orientation (this is processed by the invocation of ImageEstim). By
the assumption that all points in TestP are located in a single plane a robust estimation over all
computed orientations per subset can be made to get the most likely values for the outer orienta-
tion of the calibration points in one image can be done. This process is used for all NumOfPlanes
images to compute their extrinsic camera parameters. MaxErr defines the maximum residual error
that is allowed by the estimation process.
The function returns a list of extrinsic parameters for each image. The form of the return values
in a parameter set is equal to the form in ImagEstim.

3. BestFit[PunktePK_,PunkteWK_,Results_,Params_,MaxErr_]->{R1,R2,EA,TV}:returns the optimal re-
sult out of results for the best that fits best in the model defined by the intrinsic camera parameters
params and world and image coordinates of the calibration points. MaxErr defines the maximal
tolerable residual of this fitting procedure. The form of the return values is equal to the ones
returned by ImagEstim that accually invokes this procedure to produce a result.

B.7 Optimization

1. ParameterEstim[PunkteWK_,NumOfPoints_,PunktePK_,RT_,
NumOfPlanes_,Params_,Vars_,MaxIt_]-> List: estimates the selected intrinsic cam-
era parameters listed in Vars and returns them in the form {{V ar1 → V alue1}, {V ar2 →
V alue2}, . . . ,{V arn → V aluen}}. The input parameters are the world coordinates Punk-
teWK of the NumOfPoints calibration points, their pixel image coordinates PunktePK in each
of the NumOfPlanes images, the start values for all intrinsic camera parameters in the form
{{Par1,V alue1}, . . . , {Parm, V aluem}}, the start values for the extrinsic camera parameters
RT as a list of 4x4 homogene transformation matrices and the maximum number of iterations
MaxIt during the optimization procedure (Levenberg-Marquardt).

2. MultiImagCalib[PunkteWK_,NumOfPoints_,PunktePK_,
NumOfPlanes_,TestP_,Constants_,StartVars_,MaxErr_,MaxIt_]->List: does
basically the same as ParameterEstim. Additionally it also invokes MultiImageEstim with the pa-
rameters PunkteWK, NumOfPoints, PunktePK, NumOfPlanes and TestP to get the start values for
the extrinsic camera model so the are not included in the input parameters. StartVars contains a
list of the start values of all intrinsic camera parameter in the form of which is used in the function
ParameterEstim for Vars. Constants is a list of intrinsic parameters that are actually no calibration
parameters. MaxErr refers to the parameter in function MultiImagEstim and MaxIt to the one in
ParameterEstim.

3. SuccMultiImagCalib[PunkteWK_,NumOfPoints_,PunktePK_,
NumOfPlanes_,TestP_,StartVars_,Succ_,MaxErr_,MaxIt_]->List:estimates
a subset of the intrinsic camera parameters. The optimization can be done in consecutive steps
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using different subsets of intrinsic camera parameters defined Succ that is a list of sets of camera
parameter symbols (f, sx, sy, dx, dy, k1, k2, Cx, Cy) . PunkteWK, NumOfPoints, PunktePK,
NumOfPlanes, TestP and StartVars refer to the corresponding parameters in MultiImageCalib that
is invoked by the procedure.

B.8 Package installation and using

All functions of the package are organized in so called m-files. These files include a Master
m-file called Master.m file that declares all exportable functions and constants.

Installation To install the m-files of the Calibration package into your Mathematica system
you first have to make a new directory named Calibration within the directiory you normally
start the Mathematica kernel or in the Mathematica AddOns|Autoload directory if you want to
load the package every time the kernel gets started or in the Mathematica AddOns|ExtraPackages
directory. Then untar all m-files of the package and copy them to the previously created direc-
tory.

Load package into kernel To use the Mathematica function of the Calibration package you
first have to load the package into the kernel and set the context path. This is done by the
command

Get[Calibration] <CR> or
<<Calibration or
Needs[Calibration] <CR>

in case you are not sure if the package was already loaded.

This loads all functions of the package and sets the context path to directory where the package
files are copied. To load only a single function e. g. SuccMultiImagCalib you type

Get[Calibration‘SuccMultiImagCalib‘] or
<< Calibration‘SuccMultiImagCalib‘ or
Needs[Calibration‘SuccMultiImagCalib‘]

Now you can type in

$ContextPath <CR>

to see if the the package context was actually set.

Using the calibration commands To evaluate the result of a function by the given input
parameters in the notebook click into the corresponding cell and press CRTL + Enter. No the
cell will be evaluated producing occasionally different types of output cells. For further details
refer to [26] Normally it only makes sense to you use the high level optimization functions for
the purpose of calibration. These functions require can require a huge amount of input data. So
it is quite unhandy to type in all input data manually in fact importing and exporting ASCII data
files would be a more appropriate solution to that. For further details refer to [26].
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B.9 Used standard packages and functions

Statistics‘NonlinearFit‘ implementation of the Levenberg-Marquardt optimization algorithm.

Statistics‘DescriptiveStatistics‘ several statistical functions like median and StandardDevia-
tion.
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C Manual for Khoros toolbox

C.1 General description

This calibration toolbox was designed to integrate the Mathematica package into the Khoros
system. For this purpose, we have written the tasks GetWorld , SetParameters and SetCon-
figuration, that enables the user to control the input parameters of the calibration procedure
interactively without editing text files. The generated output files of these tasks can be submit-
ted to MCalib that finally processes the communication with the Mathematica kernel by loading
the package and by the construction of the Mathematica commands needed to invoke the cal-
ibration process. After invocation the program waits for the final result from the kernel and
translates the return package into the specified output file.

C.2 Installation remarks

First it is necessary that the Mathlink C library is included in the local Mathematica installation.
It contains all functions and data structures for communication with the Kernel and is used by
MCalib. Then, if there are no binary already available and running, the tasks have to be com-
piled and linked. For this purpose have to specify the additional library path for the Mathlink
library. This is done by editing the Imake configuration file, toolbox.def. Now, if for example
the Mathlink path is /usr/local/mathlink you can add the following line to configuration file,

/* -toolbox_library_path */
TOOLBOX_LIBDIR +<= -L$(MULTICALIB_LIBDIR)
TOOLBOX_LIBDIR +<= -L/usr/local/mathlink

/* -toolbox_library_path_end */

which makes this directory all search path for the toolbox libraries. After creating the imake
and make files, the compilation of all tasks should work normally.
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C.3 Description of the tasks

C.3.1 MultiCalib
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Figure C.1: Pane of the MultiImageCalibration Task MCalib

General description This tasks communicates with the Mathematica kernel by sending com-
mands for loading the calibration package and invoking the calibration routine with the desired
input parameters. All input parameters are expected to be in ASCII format as described in
Appendix C.4.

Input parameters

Mathematica link The mutual exclusive group in the upper half of the pane determines
the link where the data between Khoros and Mathematica is exchanged. Giving the name ex-
plicitly enables the user to control and manipulate the data flow by the Mathematica front end
(see Notebook file communciation.nb). In this case the Mathematica Front End should already
be running or invoked during the calibration procedure. If you do not want to do this, select the
flag for the standard mathlink connection. This will start the Mathematica kernel automatically
in the background opening a pre-defined standard mathlink connection. Mathlink connections
are generally based on a TCP like socket layer which enables the use of remote hosts, so that
the kernel does not need to be started on the local machine.

Max. iterations determines the maximal number of iterations in the Levenberg-Marquardt
optimization procedure.

Max. Error determines the maxmial error for the residual of the Levenberg-Marquardt
that is will be accepted as final result.
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Input files

Start Values defines the start values for the intrinsic camera parameters. (see Appendix
C.4)

Image coordinates contains all detected calibration objects points and its image coordi-
nates for each image. (see Section C.4

World coordinates contains all real world 3D coordinates of the calibration object points.

Vertices defines the sets of calibration points (the points numbered in the world coordinate
specification file) according to them the outer orientation of the calibration object is computed
by the Finsterwalder’s algorithm. (see Appendix C.4)

Optimization Setup defines the parameters that have to be optimized by the calibration
task. They are specified by a list that contains some elements of the set {f, sx, k1, k2, tx, ty, Cx,
Cy }. (see Appendix C.4)

Output file contains the optimized intrinsic camera parameters. (see Appendix C.4)

C.3.2 GetWorld
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Figure C.2: Pane of the Calibration Object Geometry Task GetWorld

General description delivers the 3D world coordinates and the vertices suitable for Finster-
walder’s optimization of the calibration object points.

Input parameters
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Number of vertices specifies the number of vertices that are used for the estimation of
the outer orientation of the calibration object in each frame. This number is bounded by the
maximal number of vertices that is possible. In this case this has the same effect as enabling the
second flag ’Use maximal number of vertices. The two flags are mutually exclusive of course.

Input file Contains the world and image coordinates of all calibraiton points in all frames.
This file is expected to be delivered by the point detection task. (see Section 3.2 on page 32

Output files

World Coordinates contains all world coordinates for the calibration points (see Ap-
pendix C.4)

Vertices contains a number of lists prepresenting different vertices spanned by the cali-
bration points. (see Appendix C.4)

C.3.3 SetParameters
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Figure C.3: Pane of the Parameter Set Task Set Parameters

General description This glyph is a tool for determining start values for the intrinsic camera
parameters. It produces an output file that is compatible with the input file structure of the Start
Values input file of MCalib

Input parameters

Focal length defines the start value for the focal length in the calibration procedure. The
selection on the right hand side of the input field specifices the dimension.
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Horizontal resolution defines the start value for the horizontal resolution. The selection
on the right hand side of the input field specifices the dimension. The horizontal uncertainty
scaling factor is also assumed to be one.

Vertical resolution defines the start value for the vertical resolution. The selection on the
right hand side of the input field specifices the dimension.

Image center x coord. specifies the x coordinate of the image center (principal point).
This input field is optional in case a reference image is specified. Then the image center is
calculated automatically.

Image center y coord. specifies the y coordinate of the image center (principal point).This
input field is optional in case a reference image is specfied. Then the image center is calculated
automatically.

Input file

Image center from image file specifies the file name of the reference image from which
the image center is taken as the location of the principal point. This specification is optional in
optional and mutual exclusive to the input fields the image center coordinates.

Output file contains the start values for all intrinsic camera parameters in a form compatible
with the input file structure of the Start Values input file of MCalib.

C.3.4 SetConfiguration
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Figure C.4: Pane of the Configuration Task SetConfiguration

Input parameters
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Camera model This selection defines the camera model used for calibration. The imple-
mented camera models differ in the way distortion effects are modelled. (radial dist. according
to Lenz, radial dist. according to Tsai, radial and tangential distrotion).

focal length This flag specifies if the value of the focal length should be optimized during
the calibraiton procedure.

uncertainty factor This flag specifies if the value of the uncertainty scale factor sx should
be optimized during the calibraiton procedure.

distortion factors This flag specifies if the value of the distortion parameters (κ, κ1, κ2, τ1, τ2
depending on the camera model).

image origin coordinates This flag specifies if the position of the principal point in the
image plane.

Priority flags Each selection field is assigned to the parameter flag on the left hand side.
There are four priority levels defined. The reason for that is, that the optimization can also be
done consecutivly with different sets of camera parameters to optimize. So the parameter with
the highest priority is included first, while parameters with a lower priority are included in a
consecutive run afterwords together with the ones that have higher priority. The reason for that
is that the start values for the calibration procedure can be given in different qualities (accuracy),
or that we are more interesseted in the accuracy of one parameter than in that for others.

Output file contains all configuration information for the MCalib task compatible with its
input file specification (see Appendix C.4)

C.4 File format specification

In this section all used file formats are described in a formal manner. For all file types their
standard naming format and their syntactical structure is given. In case the reader is not famil-
iar with the formal notification as a gammar here are some short instruction how to read this
defintion.
A syntactical definition of a file format defined as a language typically looks like this:

language name := { {set of expressions}, {set of atoms}, {derivation rules}, start
symbol }

The set of expressions contains all non-atomic syntactical elements of the language, where the
set of atoms contains all atomic signs, also called atoms. An atom is syntactical elements that
can not be derived. The derivation of the non-atomic elements is specified by a set of derivation
rules which are typically in the following syntax:

< elementname >⇒ < rulebody >
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The rule body consists of a series of expressions that can be grouped by { . . . } and [ . . . ]. Where
{ . . . } means that the bracketed expressions can be repeated serveal times and [ . . . ] designates
an optional expression. Also alternatives can be expressed by the notation

< expression1 > |< expression2 >.

So one of the two expressions can be specified in this case. Finally the start symbol is the
syntactical element that has to be derived first by a syntactical derivation of a sentence (file) in
that grammar.

C.4.1 Input files

Start Values: defines the start values for the intrinsic camera parameters. To identify the
parmeters the following abbreviations for the intrinsic camera parameters (see also 2.3
on page 19) are specified:

f: focal length
sx: uncertainty factor for x resolution
sy: uncertainty factor for y resolution
k1,k2: radial distortion parameters;

(in case only k1 is given, the Lenz’s camera model is adopted)

tx,ty: tangential distortion parameters
dx: horizontal resolution of the sensor
dy: vertical resolution of the sensor
Cx,Cy: pixel coordinates of the principal point

Filename: < filename >.start

Language definition: START := {{ STARTFILE, FILEHEADER, FILEBODY, CAM-
TYPE, CAMID, PARAMETER, VALUE, NUM, FLOAT, DIGIT, LETTER},
{ "f","sx","sy","dx","dy", "k1","k2","tx","ty","Cx","Cy","."}, Rules, STARTFILE }
Rules := {

STARTFILE ⇒ FILEHEADER FILEBODY
FILEHEADER ⇒ CAMID CAMTYPE < CR >
FILEBODY ⇒ {PARAMETER VALUE}
CAMID ⇒ NUM
CAMTYPE ⇒ {LETTER |DIGIT}
PARAMETER ⇒

"f"|"sx"|"sy"|"dx"|"dy"|"k1"|"k2"|"tx"|"ty"|"Cx"|"Cy"

VALUE ⇒ NUM |FLOAT
NUM ⇒ DIGIT {DIGIT}
FLOAT ⇒ DIGIT {DIGIT}["."DIGIT]
DIGIT ⇒ 0-9
LETTER ⇒ a-z |A-Z |"-" |"/"
}
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World Coordindates: defines the real world sizes and positions of the calibration object points.

Filename: < filename >.world

Language definition: WCOORD := { { WCOORDFILE,FILEHEADER, FILEBODY
,POINT, COORD, NUM, DIGIT},{"Index WorldX WorldY WorldZ < CR >" "."},
Rules, WCOORDFILE}
Rules := {

WCOORDFILE ⇒ FILEHEADER FILEBODY
FILEHEADER ⇒

"Index WorldX WorldY WorldZ < CR >"

FILEBODY ⇒ {POINT}
POINT ⇒ NUM COORD COORD COORD
NUM ⇒ DIGIT {DIGIT}
COORD ⇒ DIGIT {DIGIT} ["." {DIGIT}]
DIGIT ⇒ 0-9
}

Image Coordinates: contains all detected calibration object points of a calibration object view
in an image.

Filename: < filename >.image

Language definition: IMAGE := {{IMAGEFILE, FILEHEAD, FILEBODY, POINT,COORD},
{"Index ImageX ImageY < CR >","."}, Rules, IMAGEFILE}
Rules:= {

IMAGEFILE ⇒ FILEHEADER FILEBODY
FILEHEADER ⇒ "Index ImageX ImageY < CR >"
FILEBODY ⇒ {POINT}
POINT ⇒ NUM COORD COORD
NUM ⇒ DIGIT {DIGIT}
COORD ⇒ DIGIT {DIGIT} ["." {DIGIT}]
DIGIT ⇒ 0-9
}

Vertices: defines the sets of calibration points (the points numbered in the world coordinate
specification file) according to them the outer orientation of the calibration object is com-
puted by the Finsterwalder’s algorithm. The file directly reffers to a specific world coor-
dinate file (WCOORDFILE, see above).

Filename: < filename >.vertices

Since the data has a context to a specific calibration object and therefore to
one particular world coordinate file (WCOORDFILE), it is quite appropi-
ate to name the prefix after the same prefix < filename > as in this file.

Language definition VERTICES := {{VERTFILE, FILEHEADER, FILEBODY, NUM,
DIGIT}, {"First Second Third Fourth"}, Rules, VERTFILE }
Rules := {

78



PRIP-TR-{085} C.4 File format specification

VERTFILE ⇒ FILEHEADER FILEBODY
FILEHEADER ⇒ "First Second Third Fourth < CR >"
FILEBODY ⇒ {NUM NUM NUM NUM < CR >}
NUM ⇒ DIGIT {DIGIT}
}

Optimization Setup defines the parameters that have to be optimized by the calibration task.
They are specified by a list that contains some elements of the set {f, sx, sy, k1, k2, tx, ty,
Cx, Cy }.
There are some restrictions about the possible combinations of estimation parameters:

• if k2 is included in the list also k1 has to.

• if tx is included in the list also ty has to and vice versa.

• if tx and ty are included in the list also k1 and k2 have to.

• if k1 is included in the list and k2 is not, tx and ty have not to.

• if Cx is included in the list also Cy has to and vice versa.

Filename: < filename >.setup

Language definition: SETUP := { {SETUPFILE, FILEHEADER, FILEBODY, PARLIST,
PARAMETER, NUM}, {"f","sx","sy","k1","k2",
"tx","ty","Cx","Cy","Setup Information"}, Rules, SETUPFILE}
Rules := {

SETUPFILE ⇒ FILEHEADER FILEBODY
FILEHEADER ⇒ "Setup Information" < CR >
FILEBODY ⇒ NUM PARLIST {NUM PARLIST} < CR >
PARLIST ⇒ PARAMETER {PARAMETER}
PARAMETER ⇒ "f"|"sx"|"sy"|"k1"|"k2"|"tx"|"ty"|"Cx"|"Cy"
NUM ⇒ DIGIT {DIGIT}
}

C.4.2 Output files

Intrinsic camera parameters contains all values for the intrisic camera parameters computed
by the optimizer. It also contains the information which parameters were accutally esti-
mated or kept constant in the previous run.

Filename: < filename >.cam

Language definition: INTRINSIC:= {{IPARFILE, FILEHEADER, FILEBODY, PARAM-
ETER, PARNAME, BOOLEAN, VALUE, NUM, FLOAT,
DIGIT}, {"f","sx","sy","k1","k2","tx","ty","Cx","Cy",".","Parameter Value optimized",
"True","False"}, Rules, IPARFILE}
Rules := {

79



PRIP-TR-{085} C.4 File format specification

IPARFILE ⇒ FILEHEADER FILEBODY
FILEHEADER ⇒ "Parameter Value optimized" < CR >
FILEBODY ⇒ PARAMETER PARAMETER
PARAMETER ⇒ PARNAME VALUE BOOLEAN < CR >
PARNAME ⇒

"f"|"sx"|"sy"|"dx"|"dy"|"k1"|"k2"|"tx"|"ty"|"Cx"|"Cy"

BOOLEAN ⇒ "True" |"False"
VALUE ⇒ NUM |FLOAT
NUM ⇒ DIGIT {DIGIT}
FLOAT ⇒ DIGIT {DIGIT} ["."{DIGIT}]
DIGIT ⇒ 0-9
}

Extrinsic parameters contains the parameters of the outer orientation in one view (image) of
the calibration object (4x4 rotation/translation matrix).

Filename: < filename >.< imagefile >.extrinsic

The imagefile part of the filename designates the name of the view (image
file) that was analysed.

Language definition: EXTRINSIC := {{EXTFILE, ROW, FLOAT},{"."}, Rules, EXTFILE}
Rules := {

EXTFILE ⇒ ROW ROW ROW ROW
ROW ⇒ FLOAT FLOAT FLOAT FLOAT < CR >
FLOAT ⇒ DIGIT {DIGIT} ["." {DIGIT}]
DIGIT ⇒ 0-9

Optimization statistics: contains the covariance matrix (see 3.40 on page 48) of the optimized
parameters, the minimum and the number of iterations of the optimization procedure.

Filename: < filename >.statistic

Language definition: STATISTIC := {{STATFILE, FILEHEADER, FILEBODY, OPT-
STAT, PARLIST, PARAMETER, MATRIX, ROW, NUM, FLOAT},{ "f","sx",
"sy","k1","k2","tx","ty","Cx","Cy,".","Minimum", "Iterations","Parameters" },Rules,
STATFILE }
Rules := {

STATFILE ⇒ FILEHEADER FILEBODY
FILEHEADER ⇒ OPTSTAT < CR > "Parameters" PARLIST < CR >
MATRIX
OPTSTAT ⇒ "Minimum" FLOAT "Iterations" NUM < CR >
PARLIST ⇒ PARAMETER {PARAMETER}
PARAMETER ⇒ "f"|"sx"|"sy"|"k1"|"k2"|"tx"|"ty"|"Cx"|"Cy"
MATRIX ⇒ ROW {ROW}
ROW ⇒ FLOAT {FLOAT}
NUM ⇒ DIGIT {DIGIT}
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FLOAT ⇒ DIGIT {DIGIT} ["." {DIGIT}]
DIGIT ⇒ 0-9
}
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