
Technical Report Pattern Recognition and Image Processing Group
Institute of Computer Aided Automation
Vienna University of Technology
Favoritenstr. 9/1832
A-1040 Vienna AUSTRIA
Phone: +43 (1) 58801-18351
Fax: +43 (1) 58801-18392
E-mail: kampel@prip.tuwien.ac.at
URL: http://www.prip.tuwien.ac.at/

PRIP-TR-86 August 27, 2003

3D mosaicing of fractured surfaces

Martin Kampel

Abstract

A major obstacle to the wider use of 3D object reconstruction and modeling is the extent of
manual intervention needed. Such interventions are currently massive and exist throughout every
phase of a 3D reconstruction project: collection of images, image management, establishment of
sensor position and image orientation, extracting the geometric detail describing an object, merg-
ing geometric, texture and semantic data.
This work aims to develop a solution for automated documentation of archaeological pottery,
which also leads to a more complete 3D model out of multiple fragments. Generally the 3D re-
construction of arbitrary objects from their fragments can be regarded as a 3D puzzle. In order
to solve it we identified the following main tasks: 3D data acquisition, orientation of the object,
classification of the object and reconstruction.
3D acquisition with respect to archaeological requirements is described by four different methods,
designed for the recording of fragments, complete vessels, profile sections and color. The range
and pictorial information of the objects is the input for further classification and reconstruction.
In the so-called documentation step the processing of the recorded data leads to orientation and
the profile sections. The following classification step produces a systematic view and order of the
material recorded and identifies possible candidates for subsequent fragment assembling. Recon-
struction of pottery refers not only to the reconstruction of a pot from its fragments, but also to
the reconstruction of a pot or fragment out of its profile section.
This thesis describes a complete system for automated documentation and reconstruction of ar-
chaeological pottery. The main contributions are 3D scanning of pottery, pairwise registration
of views, a scheme for automatic classification of pottery, and an approach for solving 3D jigsaw
puzzles of fragmented surfaces. In order to evaluate the system, experiments and results are given
on both synthetic and real data. The selected approaches are cross-checked with the associated
archaeologists.
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Chapter 1

Introduction

I know these pieces fit cuz I watched them falling away

mildewed and smoldering, Fundamental differing.

Tool, Schism

Archaeology is at a point where it can benefit greatly from the applica-

tion of computer vision methods, and in turn provides a large number of

new, challenging and interesting conceptual problems and data for computer

vision [82]. In particular, a major obstacle to the wider use of 3D object

reconstruction and modeling is the extent of manual intervention needed.

Such interventions are currently massive and exist throughout every phase

of a 3D reconstruction project: collection of images, image management, es-

tablishment of sensor position and image orientation, extracting the geomet-

ric detail describing an object, and merging geometric, texture and semantic

data. Improvements in rangefinder technology, together with algorithms for

combining and processing 3D data allow us to accurately digitize the shape

and surface characteristics of physical objects.

Every archaeological excavation must deal with a vast number of ceramic

fragments. The documentation of archaeological findings is a problem, that

could benefit greatly from computerized assistance, because the process of

documentation and classification can be carried out by computerized meth-

ods in both a faster and a more objective way [118].

We begin this chapter by defining a set of subproblems within the greater

framework of computer vision and archaeology. Then we give the archae-
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ological background, followed by a discussion of relevant work that most

influenced the research described in this thesis. The chapter concludes with

an overview of the thesis.

1.1 Problem Statement

The problems specifically addressed in this thesis are:

• How can we acquire 3D data of small artifacts found on archaeological

excavations using a camera and structured light?

With the help of 3D data, the profile (a cross section in the three

dimensional model) of the fragment is constructed. The profile serves

as a basis for any subsequent classification and reconstruction.

• How can we accurately express recorded data in a single object centered

coordinate system?

In order to compute a complete 3D model of an object two or more

views of an object from a scene, in our case the front and the back

view of the fragment have to be aligned. By using the 3D model ar-

chaeologists are able to perform 3D measurements on the surface of the

objects interactively.

• How can we manipulate the surface description so that it better ap-

proximates the input data in order to allow robust classification?

The purpose of classification is to get a systematic view of the material

found [89], to recognize types, and is used to relate a fragment to

existing parts in the archive.

• How can we solve the 3D jigsaw puzzle of putting fragmented surfaces

together?

Reassembly of fragmented objects from a collection of thousands ran-

domly mixed fragments is a problem that arises in several applied dis-

ciplines, such as archaeology, failure analysis, paleontology, art conser-

vation, and so on. Solving such jigsaw puzzles by hand may require

2



years of tedious and delicate work, consequently the need for computer

aided methods is obvious [73].

• How can we speed up the archival- and documentation process in ar-

chaeology? How can we decrease the amount of human intervention

needed for 3D scanning of small artifacts?

At excavations a large number (up to 80.000) of ceramic fragments are

found. These fragments are photographed, measured, drawn (called

documentation) and classified. Up to now documentation and classifi-

cation have been done manually which means a lot of routine work for

archaeologists and a very inconsistent representation of the real object

[113].

• How can we improve the benefit of using computer vision methods

applied to archaeology?

Recent advances in rangefinder technology, together with algorithms for

combining and processing 3D data allow us to propose new strategies

to archaeology and in turn archaeology provides a large number of new,

challenging and interesting conceptual problems and data for computer

vision [82].

• How can we make documentation in archaeology more objective?

Whereas the results of the conventional documentation by different ar-

chaeologists may differ [90], this system should serve the archaeologist

as a powerful tool for reducing the amount of routine work and for

getting an objective, reproducable acquisition of the material.

In order to clarify the problem statement from an archaeological point of

view the next section describes the archaeological background of the thesis.

1.2 Motivating Application: Archaeology

Ceramics are one of the most widespread archaeological finds and are a short-

lived material. This property helps researchers to document changes of style
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and ornaments. Therefore, ceramics are used to distinguish between chrono-

logical and ethnic groups. Furthermore, ceramics are used in economic his-

tory to show trading routes and cultural relationships [90]. In particular

ceramic vessels, where shape and decoration are exposed to constantly chang-

ing fashion, not only allow a basis for dating the archaeological strata, but

also provide evidence of local production and trade relations of a community

as well as the consumer behavior of the local population [90].

The documentation, administration and scientific processing of these frag-

ments represents a temporal, personnel and financial problem [19]. Various

excavation projects have been completed many years ago, but due to these

problems their findings have yet to be published (see [38]). Scientific eval-

uation in archaeological practice often suffers due to extensive amounts of

time required for the documentation and classification of ceramic finds [90].

Many publications do little more than present the drawings, descriptions and

determinations of the objects found [118]. Thus it is frequently the case that

several hundred pages of catalogs and illustrations are accompanied by only

a few pages of analysis [25].

Figure 1.1: Boxes filled with ceramics stored in archives.

Figure 1.1 shows boxes filled with ceramics stored in an archive. If one
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asks archaeologists what they use pottery for (or why excavated fragments

of pottery are kept) they will probably reply ’for dating evidence’. This

dating evidence furthermore splits into three different types of evidence that

is obtained from excavated pottery or its fragments [90]:

• Dating

• Distribution relating to trade

• Function and/or status

These are based on the fact that every pot was made or used at a certain

time, made at a certain place, and used for a certain purpose. Therefore,

every fragment or pot holds the information about when, where, and what

it was made for. This fact places a heavy burden on excavators and primary

processors or recorders of the material since the primary task of pottery re-

search is comparison [90]. This means that pottery must be grouped and

recorded in a way that facilitates a comparison.

The recording of fragments consists of:

1. Photographing

2. Measuring

3. Drawing

4. Grouping

Up to now all this has been done manually which means a lot of routine

work for archaeologists and a very inconsistent representation of the real

object [90]. First, there may be errors in the measuring process, diameter or

height may be inaccurate, second, the drawing of the fragment should be in

a consistent style, which is not possible since a drawing of an object without

interpreting it is very hard to do. The third process, grouping or classifying,

is also a very difficult task. There have been several attempts to develop

a reliable method of classification [11, 94, 25, 16, 1, 117], none of which

is widely accepted. A graphic documentation done by hand additionally
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raises the possibility of errors. This leads to a lack of objectivity in the

documentation of the material found. To give an example, a vessel was

drawn by four different illustrators resulting in four different vessels as shown

in Figure 1.2. Note the different shape and decoration, the rim and the

thickness for instance are significantly different.

Figure 1.2: The limits of objective recording: The same vessel drawn by four
different illustrators (from [90]).

At excavations most of the finds are in form of fragments, with only a

few are still complete. It would be ideal to have one acquisition system that

covers both sorts of objects, however, they do have different properties like

dimensions, color, and geometry. Furthermore, the acquisition time for frag-

ments has to be short, for complete vessels, since they are rare, the acquisition

time is not critical but the output should be accurate in all dimensions.

A very important property of archaeological pottery is color [90]. Ar-

chaeologists determine the specific color of a fragment by matching it to the

Munsell color patches [86, 131]. Since this process is done ”manually” by

different archaeologists and under varying light conditions, the results differ

from each other. In general, photos of fragments are taken in order to have

color representations in the archive. Due to different camera characteristics

and changing light conditions the color of a fragment in images varies. Ar-

chaeologists need digital color images of fragments for archivation purposes,

thus the color information which is normally achieved with a color measure-

ment instrument can be gained directly from the digital image for each pixel

in the entire image.

Traditional archaeological classification and reconstruction is based on the

so-called profile of the object, which is the cross-section of the fragment in the
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direction of the rotational axis of symmetry. This two-dimensional plot holds

all the information needed to perform archaeological research. The correct

profile and the correct axis of rotation are thus essential to reconstruct and

classify archaeological ceramics. Figure 1.3 shows the inner side of a fragment

on the left and its left side (broken surface) on the middle, and the profile

section on the right (Figure 2.7d shows the same fragment drawn by hand).

(a) (b) (c)

Figure 1.3: (a) Archaeological fragment (b) site of fracture (c) profile section.

The purpose of classification is to get a systematic view of the material

found (if every piece would be treated as unique, this would immediately lead

to the wood-for-the-trees syndrome due to the vast amount of information),

to recognize types, and to add labels for additional information as a measure

of quantity. In order to standardize the classification, which is based on the

fragment’s structure, it can be divided into two main parts, shape features

and properties. The classification of shape defines the process by which

archaeologists distinguish between various features such as the profile and

the dimensions of the object like diameter and type of surface, whereas the

classification of material copes with different characteristics of a fragment

like the clay, color and surface properties.

Archaeological classification is traditionally done by typology [30]: de-

fined forms are identified to possess certain significance and then addressed

as ”types”. These ”types” can be used as a sort of ”label”, which sim-

plifies comparative studies and communication within the scientific field

[101, 1, 117, 9, 23]. The drawing in Figure 1.4 for instance is a repre-
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sentative for many other examples. Furthermore, with the recognition of

vessel types, chronological, topographical, etc. patterns can be recognized.

Hence, classification provides the basis for statistical analysis.

Figure 1.4: Drawing of a complete pot (from [65]).

Archaeologists often leave their typologies at an ”impressionistic” or in-

definite level, because their main task is to present new material. There

have been many attempts to objectify and standardize shape description

and classification - also in connection with systems for automated recording

[61, 119, 96] - , but in practical archaeological research most of the consequent

formal and mathematical classification schemes did not find a wider recep-

tion or application because they are often too vague, abstract, reductionistic

or inpracticable [90].

1.3 Previous Work

The documentation of archaeological finds is a problem that could benefit

greatly from computerized assistance, because the process of documentation

and classification can be carried out by computerized methods in both a

faster and a more exact way [118]. The search for possible solutions began

early [31, 75, 119, 63, 128, 32]. More recently, improvements in rangefinder

technology, together with algorithms for combining and processing 3D data

allow us to accurately digitize the shape and surface characteristics of many

physical objects. Three larger projects are selected and illustrated which
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thereby should represent further ongoing initiatives:

Within The Digital Michelangelo Project [28], M. Levoy and his group

from Stanford University describe a hardware and software system for image

acquisition, segmentation, reconstruction and visualization of large fragile

objects. The goal of the project is to produce a set of 3D models (statue,

architectural settings, fragments) to create a long-term digital archive of im-

portant cultural artifacts. They digitized 10 statues by Michelangelo (largest

dataset contains 2 billion polygons and 7000 color images), two building in-

teriors, and all 1,163 fragments of the Forma Urbis Romae, a giant marble

map of Rome. The challenge of the project was the size of the datasets,

which made the invention of new methods for representing, aligning, merg-

ing and viewing necessary. K. Pulli describes in his Ph.D. thesis [99] the

methods used for post-processing this data. The integration of these large

datasets into a surface model is estimated by a robust hierarchical space

carving method [100].

Putting together the fragments of the Forma Urbis Romae is one of the

great unsolved problems of archaeology. The Stanford Group is currently

assembling the pieces to create 3D models of each map fragment and solving

the map with 3D matching based on features like thickness, marble veining,

straight borders or clamp holes. A further goal is a web-accessible relational

database giving description and bibliographic information about each frag-

ment [43].

The SHAPE Project [27] from Brown University is an interdisciplinary

effort for scientific research in the analysis of archaeological finds and arti-

facts. In particular they are concerned with the assembly or reconstruction

of pottery vessels from a collection of fragments. The fragments in this col-

lection may come from one or more vessel whose design and construction are

not known. The goal is to develop methods for completing the process in an

efficient and automatic fashion. Cooper et. al. [14] present an approach to

a largely automated estimation of polynomial models in order to assemble

virtual pots from 3D measurements of their fragments. The estimation of

mathematical models for matching of fragments is based on matching break-
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curves, which are curves on a pot surface separating fragments. Fragment

matching based on a Bayesian approach using break curves, estimated axis

and profile curves is presented in [26]. Kong et. al. [67] try to solve the jig-

saw problem in two stages: first, potsherds are joined automatically in two

dimensions by using an efficient joint detection algorithm. Next in finding

a global solution, ambiguous results from local shape matching are resolved

and the pieces are merged together.

The Canadian National Research Council (CNRC) laboratory has devel-

oped 3D digitizing and modeling technologies since 1981. Their main objec-

tive is the integration of technologies for the development of a 3D digitizing

system in order to allow the monitoring of precise dimensional (geometry)

and photometric (color) information over time and its visualization. Within

the digital Michelangelo Project NRC’s high resolution scanner was used to

provide images of several areas on different sculptures which represent a va-

riety of tool marks, surface finishes and types of marble for the project [102].

Two projects have been undertaken to demonstrate a system for rapid re-

sponse to remote heritage recording applications [7]: the goal of the ’Biris

in Padova’ project was to digitize a sculpture, bas reliefs and deteriorating

architectural elements and the goal of the ’Biris in Ferrara’ project was to

digitize building elements of the 8th century. Further projects dealt with 3D

imaging of paintings [5], remote access to museums [123] and large view

laser scanners [102].

The 3D MURALE Project [108, 15] contributes to new developments in

recording, cataloging, conserving, restoring and presenting archaeological ar-

tifacts, monuments and sites. It focuses on two aspects: firstly putting new

technologies in the hands of the archaeologists themselves rather than cre-

ating multimedia content after the excavations, and secondly, presenting the

site not as a static entity from a long-gone past, but as a vibrant place that

underwent a lot of changes throughout its existence. A first goal of the

project is to register in situ all stratigraphical evidence (an archaeological

site is excavated layer by layer so-called stratas resulting in a sequence of

strata), as archaeological fieldwork by its nature destroys this kind of in-
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formation. The 3D recording techniques replace present techniques of 2D

recording which offer only a piecemeal representation and are both time con-

suming and labor intensive. Secondly, techniques are developed to build 3D

models of artifacts, mainly for cataloging and visualization, and of sculptures

and buildings, mainly for restoration and visualization. Thirdly, the terrain

of the site is modeled in 3D as such topographic data yield important infor-

mation for the archaeologists and is vital for a realistic visualization. Finally,

an integrated model is built of the landscape, the buildings, and the artifacts,

this being done for different eras, showing reconstructions for these periods

or the current state. Recording and reconstruction of small artifacts are of

major concern of our group at the Vienna University of Technology in the

ongoing project. Engaged results comprise the recording of complete vessels

in respect to archaeological needs and the virtual reconstruction of complete

objects out of fragments [SM96].

Motivated by the current requirements of archaeological research our

group develops an automated archival system for archaeological fragments

[56]. Within the project Bildhafte Keramikerfassung (P09954-SPR) [110]

a computer based acquisition system for archaeological fragments was de-

veloped. This prototype carries out an automated object surface acquisi-

tion with respect to archaeological requirements [48]. The following project

Computer Aided Classification of Ceramics (P13385-INF) [2, 54] describes

a system for automatic classification and reconstruction of archaeological

fragments. With the help of this system and the knowledge of an expert an

automated classification of archaeological finds is achieved [53]. It is intended

to develop both an objective classification tool and an objective classification

standard that fulfill defined classification criteria with specific emphasis on

the classification possibility of object types not known a-priori.

Further descriptions of related work to each subtopic can be found in

Chapters 2, 3, 4 and 5.
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1.4 Overview

This thesis presents a complete system for scanning and reconstructing pot-

tery found in archaeological excavations. The main goal is to find

1. a solution for automatic documentation of archaeological pottery, which

leads to

2. a complete 3D model of a vessel out of multiple fragments.

Here is a summary of the contributions in this thesis:

• We have constructed a 3D scanning device for pottery with hardly any

human intervention needed. The main innovations are automatic ori-

entation of fragments and fully automatic recording of complex shapes.

• We have developed a method for pairwise registration of two views

based on a model-based approach.

• We have developed a classification scheme for automatic classification

of pottery.

• We have developed a macro geometric approach for solving 3D jigsaw

puzzles of fragmented surfaces. It is based on the profile sections of the

pottery.

The chapters in this thesis are written as a sequence of stages that rep-

resent the workflow of the approach. Figure 1.5 summarizes the workflow

of the thesis, giving an overview of the technical research aims. Using the

acquired data of a fragment, the data is processed in order to compute its

profile section. With the help of this profile, measurements like volume,

area, percentage of complete vessel, height, width and so on are computed

automatically. Next a mosaicing process tries to find different fragments be-

longing to the same vessel based on attributes stored in the archive database.

After the segmentation and classification of the profile of the fragment, the

profile can be used to reconstruct the complete vessel which leads to a virtual

3D Model of the original vessel.
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Figure 1.5: Workflow of the thesis.

In the introductory chapter the motivation and the contributions of the

thesis were described. It discussed the archaeological background by present-

ing the manual archivation of pottery. In order to present ongoing initiatives

in the field of ’Computer Aided Archaeology’ three larger projects were de-

scribed. In Chapter 2 3D data acquisition with respect to archaeological

requirements is outlined. Four different methods, designed for the recording

of fragments, complete vessels, profile sections and color are described. Pro-

totype systems as well as commercially available 3D scanners are presented.

This chapter is intended for readers who are not familiar with the general

concepts of 3D scanners based on structured light. Chapter 3 addresses the

processing of the recorded fragment data in order to compute their profile

sections. Algorithms for finding the orientation of a fragment, aligning two

views of a fragment and the computation of the profile section are presented.

Chapters 2 and 3 describe the so-called documentation step, which is followed

by the classification step. An approach for automatic classification of pot-

tery based on profile sections is presented in Chapter 4. A curvature based

segmentation technique is described in order to identify characteristic pot-

tery types like plate, bowl, etc. This chapter is intended for readers who are

mostly interested in the applied classification strategy. The reconstruction

out of classified fragments is described in Chapter 5. A concept for the com-

parison of pottery shapes is outlined and an algorithm for finding matching
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pairs of candidate fragments is introduced. Reconstruction results for pro-

files, fragments and pots on synthetic and real data are shown in Chapter

6. Finally Chapter 7 concludes this thesis and gives an outlook on future re-

search. Each chapter starts with a brief introduction and is concluded with

a short summary. Results are shown at the end of each chapter.
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Chapter 2

Data Acquisition

Data acquisition is the first and the most important task in a chain of 3D re-

construction tasks, because the data quality influences the quality of the final

results [8]. El. Hakim specifies in [24] the quality of the data by a number of

requirements: high geometric accuracy, capturing all details, photo-realism,

full automation, low cost, portability, flexibility in applications, and efficiency

in model size. It would be ideal to have one single acquisition system that

satisfies all requirements, but this is still the future. F. Blais gives in [12] an

overview on state of the art of range scanners by describing the last 20 years

on range sensor development. The order of importance of the requirements

depends on the application, for example cost is a major concern in the field

of archaeology.

For the acquisition of archaeological pottery we identified the following

four applications:

• Profile acquisition [45, 46]. The goal is to provide data in real time

for the manual classification done by archaeologists.

• Fragment acquisition [48, 51]: Computation of a range image of two

views of a fragment. The data acquired is used for the documentation

and archival of the fragment, thus it is the data to be assembled into

one object.

• Recording of complete objects [111, 58]: Data is used as virtual

representation of the real object.
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• Color acquisition [50, 49]: On the one hand the data is used as

texture of the fragments recorded, on the other hand it serves as an

attribute for the automatic classification of the finds.

This chapter describes a selection of acquisition devices designed or adapted

to facilitate the recording of pottery. It is organized as follows: In Section

2.1 we describe the recording of fragments. The four devices presented meet

the requirements of the task in different ways. Since we focus on the process-

ing of fragments, a method for the acquisition of complete vessels is briefly

described in Section 2.2. Furthermore the estimation of accurate color in-

formation is shown in Section 2.3. Each section concludes with results and

shows the accuracy of the approach. A chapter summary is given at the end

of this chapter.

2.1 Acquisition of Fragments

The acquisition method for estimating the 3D shape of a fragment is Shape

from structured light (SfSL) [20], which is based on active triangulation

[10]. SfSL is a method which constructs a surface model of an object based

on projecting a sequence of well defined light patterns onto the object. The

patterns can be in the form of coded light stripes [44] or a ray or plane of

laser light [74]. For every pattern an image of the scene is taken. This image,

together with the knowledge about the pattern and its relative position to

the camera are used to calculate the coordinates of points belonging to the

surface of the object. In the process of calibration the parameters to describe

the position of the sensors in a reference co-ordinate system and the sensor

characteristics of the camera are estimated [44]. If the geometry between the

light plane and the image is known, then each 2D image point belonging to

the laser line corresponds to exactly one 3D point on the surface of the object

[66, 114]. This process is also called active triangulation [10, 20], illustrated

in Figure 2.1.

The volume of the fragments to be processed ranges from 3 × 3 × 3cm3

to 30 × 30 × 50cm3.
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Laser plane

Image with detected laser line

Figure 2.1: Active triangulation.

2.1.1 Two Laser Method

In order to generate a profile section in real time we use a two laser technique

resulting in a two dimensional image of the profile [79]. The acquisition

system consists of the following devices:

• two monochrome CCD-cameras with a focal length of 16mm and a

resolution of 768 × 576 pixels.

• two red lasers with a wavelength of 670nm and a power of 10mW . The

lasers are equipped with a prism in order to span a plane out of the

laser beam.

The acquisition system is illustrated schematically in Figure 2.2: Laser

1 and laser 2 are mounted in one plane on both sides of the fragments, so

that camera 1 takes the picture of the laser-plane projected on the outer

side (Figure 2.3a) and camera 2 on the inner side of the sherd as seen in

Figure 2.3b. These images are combined manually, so that a profile line

containing the inner and outer profile is generated. The resulting image is

filtered by an adaptive threshold that separates the background from the

laser. Afterwards the laser line is thinned, so that a profile line - similar to

the lines drawn by hand from archaeologists - is extracted [79].
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laser plane

camera 1

fragment

profile section

laser 1 laser 2

camera 2

Figure 2.2: Profile section using two lasers.

(a) (b)

Figure 2.3: 2D-acquisition with two lasers and two cameras: (a) Camera 1
acquires laserline 1, (b) Camera 2 acquires laserline 2.

The method has some drawbacks for using it in an automated system:

1. The sherd has to be oriented manually, because no axis of orientation

can be estimated from the recorded data.

2. The diameter of the whole object has to be determined manually.

3. The position of the fragment, laser and camera in the acquisition system

has to be selected, so that there are a minimum of occlusion effects of

the laser plane and that the longest profile line is recorded.
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2.1.2 LCD-Projector

In order to overcome the limits from the two laser method, a system for

the automated acquisition of the profile line was developed. The acquisition

system consists of the following devices:

• one monochrome CCD-camera with a focal length of 16mm and a res-

olution of 768 × 576 pixels.

• a Liquid Crystal Display (LCD640) projector1).

Figure 2.4 illustrates the acquisition system. The LCD projector is mounted

at the top in order to illuminate the whole acquisition area. The angles be-

tween the optical axis of the LCD projector and the camera are chosen to

minimize camera and light occlusions (approximately 20◦).

Figure 2.4: Acquisition System.

The projector projects stripe patterns onto the surface of the objects. In

order to distinguish between stripes they are binary coded [66]. The camera

1ABW GMBH, Siemenstrasse 3, D-72636 Frickenhausen, Germany, www.abw-3d.de.
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grabs gray level images of the distorted light patterns at different times. The

image obtained is a 2D array of depth values and is called a range image [66].

Fragments of vessels are thin objects, therefore 3D data of the edges of

fragments are not accurate, and this data cannot be acquired without placing

and fixing the fragment manually which is time consuming and therefore

not practicable. Ideally, the fragment is placed in the measurement area, a

range image is computed, the fragment is turned and again a range image

is computed. This step consists of sensing the front and backsides of the

object (in our case a rotationally symmetric fragment) using the calibrated

3D acquisition system. The resulting range images are used to estimate the

axes of rotation, in order to reconstruct the fragment.

There is no manual orientation of the fragment necessary, because it is

computed automatically (see Section 3.1). Since this acquisition system is

not portable and therefore not usable outside the laboratory, we used the

“Minolta Vivid 900” Technology, presented in the next section for recording

fragments outside.

2.1.3 Minolta Vivid 900

The Vivid 900 3D Scanner developed by MINOLTA2) in our setup consists

of the following devices:

• one CCD-camera with a focal length of 14mm and a resolution of 640×
480 pixels, equipped with a rotary filter for color separation.

• one red laser with a wavelength of 670nm and a maximal power of

30mW . The laser is equipped with a galvanometer mirror in order to

open loop control the laser beam scanning motion.

Figure 2.5 illustrates the acquisition setup consisting of the Vivid 900

Scanner connected to a PC and the object to be recorded. Optionally the

object is placed on a turntable with a diameter of 40cm, whose desired po-

sition can be specified with an accuracy of 0.1◦. The 3D Scanner works on

the principle of laser triangulation combined with a colour CCD image. It

2MINOLTA Austria GMBH, Amalienstrasse 59-61, 1131 Vienna, Austria,
www.minoltaeuropa.com.
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is based on a laser-stripe but a galvanometer mirror is used to scan the line

over the object.

Figure 2.5: The Minolta VIVID 900 scanner.

Vivid 900 is a portable device, that does not require a host computer.

The optional rotating table is used to index the scanned part and capture

all sides in one automated process. Due to its weight (11kg) and size (213×
413 × 271mm3) it cannot be used as handheld device which complicates the

acqusition process on the excavation site. In order to record fragments on

site, we therefore used the “ShapeCam” Technology, presented in the next

section.

2.1.4 ShapeCam Technology

The ShapeCam Technology developed by Eyetronics3) consists of the follow-

ing devices:

• a Sony TVR-900E digital camera

• a Leica slide projector

3Eyetronics HQ, Kapeldreef 60, 3001 Heverlee, Belgium, www.eytronics.com.
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Figure 2.6 illustrates the ShapeCam: a digital camera and a specially

designed flash device are mounted on a lightweight frame. The flash device

projects a predefined grid or pattern onto an object or a scene which is viewed

by a camera from a (slightly) different point of view. The camera also grabs

the texture information which can be mapped on the resulting 3D geometry

of the object.

Figure 2.6: Eyetronic’s ShapeCam.

The ShapeCam technology is a commercially available technique that

allows the generation of 3D models based on the use of a single image taken

by an ordinary camera.

As this system is a handheld device, the shapes can be recorded in situ.

Within the 3D MURALE project we carried out on site tests to capture 3D

pot sherds and other finds from the excavation site in Sagalassos [15]. The

ShapeCam hardware has been adapted to facilitate such work.

2.1.5 Results and Accuracy

In order to demonstrate the output of the presented acquisition systems,

examples for each method are given below. Acquisition speed and accuracy

of each system are compared to each other at the end of this section. The

range accuracy describes the measurement uncertainty along the depth axis,

i.e. Z axis. It is estimated by comparing measurements of known objects
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with measurements of the recorded object: the average deviation along the

Z axis gives the range accuracy.

• Two lasers

Five examples are given (see Figure 2.7 to Figure 2.11) in order to

show the applicability of the approach. Each figure contains the data

acquired (a), the thinned profile and final presentation of the profile

section (c). In order to visually compare the computer aided results

with the manual results, a manual drawing of the same fragment is

given (d).

The results achieved visually correspond to the manual drawing of the

fragment, showing the feasibility of the approach. Since the images

are combined and orientated manually, the precision of the final profile

section depends on the resolution of the camera and on the experience

of the user [85], consequently the results are not objective. The profile

is acquired in real time, because acquisition takes only the time neces-

sary to grab an image. Experiments have shown that the actual speed

for the acquisition of a profile section by an experienced archaeologist

lies between 10 and 30 seconds, because time is spent for the manual

orientation of the fragment.

• LCD projector

Applying the non portable acquisition system, two views of 40 frag-

ments from the late Roman burnished ware of Carnuntum [33] have

been recorded. The data was mainly used for testing the classification

tasks, because these fragments have been available in the laboratory,

which has simplified the evaluation of the automatic classification. Non

of these fragments belongs to the same vessel. See Figure 2.12 for two

resulting range images of one fragment. The front view contains 37176

points and the back view contains 31298 points.

Experiments on the acquisition device are thoroughly described in [44].

Range accuracy is specified between 0.68mm to 1mm. Most of the

acquisition time (5sec; ±0.5sec) is needed for the projection of the
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(a) (b) (c) (d)

Figure 2.7: Profile acquisition of fragment 70-1.

(a) (b) (c) (d)

Figure 2.8: Profile acquisition of fragment 78-2.

(a) (b) (c) (d)

Figure 2.9: Profile acquisition of fragment 72-8.

(a) (b) (c) (d)

Figure 2.10: Profile acquisition of fragment 75-3.
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(a) (b) (c) (d)

Figure 2.11: Profile acquisition of fragment 81-1.

(a) (b)

Figure 2.12: Range Image of two views of a fragment, (a) front view (b) back
view.

light patterns. Total acquisition time is around 5.5 sec (±0.5 sec) on a

Pentium 233MMX with 256 MB RAM using non-optimized code.

• Minolta VIVID 900

Using the VIVID 900 we have recorded 2 to 15 views of 10 archaeologi-

cal fragments. The number of data points ranges from 3.000 to 150.000

points. Figure 2.13 shows a decorated fragment with 17781 points and

33981 triangles. The acquisition time depends on the number of range

points (size of the object), for 150.000 points it is approximately 1.5

sec. The achieved range accuracy lies between 0.2mm and 0.7mm.

• ShapeCam Technology

Using the ShapeCam Technology we have recorded four different boxes

of sherds from the common wares of Sagalassos [19]. Table 2.1 gives an
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(a) (b)

Figure 2.13: (a) Wireframe representation and (b) textured representation
of a fragment using the VIVID 900.

overview of the data collected. These fragments serve as test material

for assembling a complete vessel. Box1 and Box2 contain fragments

from different vessels, whereas some fragments of Box3 and Box4 are

from one and the same vessel. Knowing that fragments belong together

will simplify the evaluation of the assembly. Two views from each frag-

ment have been recorded, except for Box4 multiple views have been

taken. The views of the fragments of Box4 have been registered man-

ually. The pottery dataset contains 70 pieces in total.

BOX 1 BOX 2 BOX 3 BOX 4

Nr. of fragments 21 12 28 9
Format VRML 2 VRML 2 VRML 1 VRML 2
Nr. of views 2 2 2 multiple
Nr. of vertices 3000− 9000 4000− 9000 3000− 8000 15000− 80000
Preregistered No No No Yes

Table 2.1: Pottery dataset.

Figure 2.14a shows the wire frame model of the recorded front view

(a) containing 3538 points with 6774 triangles and (b) shows the same

view with its texture.
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(a) (b)

Figure 2.14: (a) Wire frame representation of the front view (b) and a tex-
tured representation of fragment 18 box 1.

The range accuracy lies between 0.7mm to 1mm which matches the

specification of the manufacturer. The acquisition time depends on

the number of range points (size of the object), for 30.000 points it is

approximately 2sec.

• Comparison of the systems

In order to compare the acquisition systems presented Table 2.2 sum-

marizes the results. For each technique the type of the computed re-

sults, the underlying measuring method, the precision in terms of range

accuracy, portability and acquisition speed is given. The result of the

two laser method is a 2D plot of the profile line, consequently no range

accuracy is given. The most accurate and fastest system is the VIVID

900, but it is also the most expensive one which makes it difficult to

use at archaeological excavations. The advantage of the ShapeCam is

its portability, efficiency in model size and flexibility in applications.

The use of LCD projector which is not a portable system allows full

automation from the acquisition until the reconstruction.
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Device output
Measuring Precision port-

Speed Cost
Method [mm] able

Two 2D Profile Laser − No
real
time

Prototype
Laser Line Scanner

LCD
Range Pattern

0.65− 1 No
50.000 pts

10.000EUR
Image projection in 5.5sec

Shape- 3D- Pattern
0.7− 1 Yes

30.000 pts
20.000EUR

Cam Geometry projection in 2sec
Vivid- 3D- Laser

0.2− 0.7 Yes
150.000 pts

50.000EUR
900 Geometry Triangulation in 1.5sec

Table 2.2: Comparison of the acquisition devices used.

2.2 Acquisition of Complete Vessels

For complete objects we use a combination of the Shape from Silhouette (SfS)

method [125] with the SfSL method. The output of both algorithms is then

used to construct a single 3D model.

SfS is a method for automatic construction of a 3D model of an object

based on a sequence of images of the object taken from multiple views, in

which the object’s silhouette represents the only interesting feature of the

image [121, 97]. The object’s silhouette in each input image corresponds to

a conic volume in the object real-world space. A 3D model of the object

can be built by intersecting the conic volumes from all views, which is also

called Space Carving [69]. SfS can be applied on objects of arbitrary shapes,

including objects with certain concavities (like a handle of a cup), as long

as the concavities are visible from at least one input view. This condition is

very hard to hold since most of the archaeological vessels do have concavities.

To discover these concavities we use SfSL. Images for both algorithms are

acquired by rotating the object on a turntable in front of a stationary camera.

Then an octree representation [125] of the object is built incrementally, by

performing limited processing of all input images for each level of the octree.

Beginning from the root node a rough model of the object is obtained quickly

and is refined as the processed level of the octree increases. The method is

described in full detail in [124].
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2.2.1 Acquisition

The acquisition system (Figure 2.15) consists of the following devices:

• a turntable (Figure 2.15a) with a diameter of 50cm, whose desired

position can be specified with an accuracy of 0.05◦. The turntable is

used to obtain multiple views of the object observed.

• two monochrome CCD-cameras (Figure 2.15b and 2.15c) with a focal

length of 16 mm and a resolution of 768 × 576 pixels. One camera

(Camera-1 in Figure 2.15) is used for acquiring the images of the ob-

ject’s silhouettes and the other one (Camera-2 in Figure 2.15) for the

acquisition of the images of the laser light projected onto the object.

• a red laser (Figure 2.15d) used to project a light plane onto the object.

The laser is equipped with a prism in order to span a plane out of the

laser beam.

• a lamp (Figure 2.15e) used to illuminate the scene for the acquisition of

the silhouette of the object. The object should be clearly distinguish-

able from the background independent of the object’s shape or the type

of its surface. For that reason back-lighting [37] is used. A large (ap-

prox. 50× 40cm2) rectangular lamp is placed behind the turntable (as

seen from the camera).

The size of objects to be processed ranges from 10× 10× 20cm3 to 40 ×
40 × 50cm3. Prior to any acquisition, the system is calibrated in order to

determine the inner and outer orientation of the camera and the rotational

axis of the turntable. The calibration method used was exclusively developed

for the SfS algorithm presented and is described in detail in [59].

2.2.2 Modeling

Our approach builds a 3D model of an object by performing the following

steps [60]: First, both of the input images (SfS and SfSL) are binarized so

that the black image pixels possibly belong to the object and the white pixels

undoubtably belong to the background. Then, the initial octree containing
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(c) Camera−2

(a) Turntable(b) Camera−1

(d) Laser (e) Lamp

Figure 2.15: Acquisition system for complete objects.

Figure 2.16: Geometrical setup of acquisition system.

one single root node marked ”black” is built. Black nodes are subsequently

checked by projecting the nodes into all SfS binarized input images and

intersecting them with the image silhouettes of the object. As the result of

the intersection the node can remain ”black” (if it lies within the object) or be

set to ”white” (it lies outside the object) or ”grey” (it lies partly within and

partly outside the object). If the resulting node is not white, it is projected
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into the binarized SfSL image representing the nearest laser plane to the

node and again intersected. All grey nodes are divided into 8 child nodes all

of which are marked ”black” and the intersection test is performed in each

of the black nodes. This subdivision of grey nodes is done until there are no

grey nodes left or a subdivision is not possible (voxel size), which results in

the final model.

2.2.3 Results and Accuracy

The reconstruction of complete vessels was tested on synthetic and real ob-

jects: For tests with synthetic objects we can build a model of a virtual

camera and create input images which fit perfectly into the camera model.

In a test we built models using 360 views with the constant angle of 1◦ be-

tween two views, while increasing octree resolution. It turned out that the

SfS method performed best with an octree resolution of 1283, where the ap-

proximation error was +0.83% of the actual volume. In the second test we

built models with constant octree resolution of 2563 and an increasing num-

ber of views. The models computed are shown in Figure 2.17. It turned out

that the use of 20 views instead of 360 views was sufficient to create models

which differed by less than 1% from the models built using 360 views.

4 views 10 views 20 views 30 views

180 views 360 views90 views60 views

Figure 2.17: 3D models of a synthetic sphere with an increasing number of
views.

For tests with real objects we used 5 objects: a metal cuboid, a wooden

cone, a coffee mug, and two archaeological vessels. The cuboid and the

cone have known dimensions so we can calculate their volumes analytically

and compare them with the volumes of their reconstructed models. Using
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these two objects we can also measure the impact of ignoring camera lens

distortion on the accuracy of the models. All models shown in this section are

built using 360 views, with a constant angle of 1◦ between two neighboring

views. Table 2.3 summarizes the results. The resulting models, shown from

three views, are depicted in Figure 2.18. All models are built with an octree

resolution of 2563 and using 360 views.

object voxel size measured volume(mm3) calculated
dimensions (mm) dimensions (mm)

cuboid - 100.0× 70× 60 384678 (−8.41%) 101× 71 × 60
cone - 156.0× 156× 78 435180 (−12.43%) 150.1× 149.4× 77.5

vessel #1 0.74 mm 141.2× 84.8× 93.7 336131 139.2× 83.2× 91.4
vessel #2 0.53 mm 114.2× 114.6× 87.4 263696 113.0× 111.9× 86.4

cup 0.66 mm 113.3× 80.0× 98.9 276440 111.6× 79.0× 98.3

Table 2.3: Reconstruction of cuboid, cone, two vessels, and a cup.

Vessel #1 Vessel #2

CupMetal cuboid & Wooden cone

Figure 2.18: 3D models of cuboid, cone, two vessels, and a cup
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2.3 Color Acquisition

In order to allow automated color estimation we use a solution to color con-

stancy assuming that the spectral reflectance [78] of archaeological fragments

varies slowly in the visible spectrum [50]. Our approach is based upon R.

Lee‘s method and assumes that spectral illumination is known [71]. This

means that small changes of RGB values should lead to small changes in

reflectance. Prior knowledge about the illuminant leads to chromaticity and

luminance information. The algorithm is described in detail in [49] and [50].

The following experiments show the feasability of the approach.

Two experiments are presented: the first example with MacBeth Colors

[84] and the second with real fragments. In the first experiment we use the

measured reflectance of 12 MacBeth color patches as reference and try to

estimate the reflectance of the other 12 patches using the reference set. The

resulting reflectance is compared to previous measured values.

The computed reflectances of the 12 color patches correlated between

0, 85 and 0, 98 to their corresponding measured reflectances with an aver-

age correlation of 0, 92 (see Table 2.4). Lower correlation may be caused

by the purely statistical representation of the underlying variables by the

characteristic vector analysis [116].

patchnr corr patchnr corr
1 0.98 7 0.97
2 0.97 8 0.95
3 0.93 9 0.96
4 0.98 10 0.91
5 0.86 11 0.85
6 0.92 12 0.89

Table 2.4: Correlation between measured and calculated spectral reflectances
of 12 Macbeth ColorChecker patches.

In the second experiment we grab an image of a fragment and specify two

test regions A and B (Figure 2.19a). The reference set was chosen from the

MacBeth color checker. The spectral reflectances of A and B are computed
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and visualized in Figure 2.19b. For evaluation purposes we calculate CIE

tristimulus values using a linear transformation and compare the achieved

values with measured chromaticity coordinates from a Chroma Meter CR-

200b.

Table 2.5 shows a comparison between measured and computed chromaticity

coordinates. The final results are in the close neighborhood of the measured

values which shows that the method correctly determines color values.

Comp. A Meas. A Comp. B Meas.B
x 0.48 0.33 0.49 0.40
y 0.39 0.34 0.41 0.37
Y 17.9 11.1 32.3 21.0

Table 2.5: Measured and computed chromaticity coordinates.

(a) (b)

Figure 2.19: (a) Test regions A and B and (b) calculated spectral reflectance
of positions A and B.

2.4 Chapter Summary

In this chapter a selection of acqusition devices which meet the requirements

of pottery acquisition has been described. The setup of each acquisition

system and its technical principles were shown. We differentiated between

fragment acquisition in Section 2.1 and complete vessel acquisition in Section

2.2. Furthermore in Section 2.3 an approach for accurate color estimation
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was presented. Results of the methods described show the accuracy and

applicability of the selected approaches.
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Chapter 3

Data Processing for Fragments

The range and pictorial information of a fragment provided by the acquisition

system is the basis for the further classification and reconstruction process. In

order to automate this process, the profile has to be determined in the same

way as in the manual documentation. First the orientation of the fragment

has to be estimated, which is described in Section 3.1. With the help of the

2.5D-range images [81] achieved from the acquisition system, a 3D object

model has to be constructed in order to determine the profile. We developed

a model-based approach, which performs the registration of the two surfaces

of one fragment. The approach is presented in Section 3.2. The generation

of the profile is shown in Section 3.3. The chapter concludes with results of

each section.

3.1 Orientation

The term orientation describes the exact position of a fragment on the orig-

inal vessel. Finding the proper orientation of a fragment is one of the main

tasks of the archaeological classification process [90]. The basis for classi-

fication and reconstruction is the profile, which is the cross-section of the

fragment in the direction of the rotational axis of symmetry. Hence the

position of a fragment (orientation) on a vessel is important.

The manual process of making pottery with the potter’s wheel is primarily

based on the rotation of the potter’s wheel and the forming through the

potters own hands. The newly formed pot is built up vertically around
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the axis of rotation. The upper part of the vessel, which is called the rim,

terminates in the so called orifice plane. Based on the orifice plane the

archaeologist first orientates the rim sherd according to its former position

on the original vessel. If the fragment shows a section of the rim, the simplest

way of manually establishing its orientation is by placing it upside down i.e.

with the rim on a horizontal surface (see Figure 3.1).

Figure 3.1: Archaeological approach for finding the correct orientation of a
rim fragment.

Next, the measured height of the orientated rim-sherd is used for drawing

the sherd in its original position. Archaeologists use a horizontal surface like

a ruler or a table etc. to orientate the fragment by aligning the fragment with

the plane: they look for the position where a minimum gap exists between

the plane of the rim fragment and the chosen horizontal plane. The gap is

clearly shown by the amount of light coming through. Once the point of

greatest resemblance is found, the height of the sherds is measured.

In order to find the correct orientation automatically we developed an

approach for finding the axis of rotation of the fragment, which is described

in Section 3.1.1. Additionally, we followed the archaeological approach and

estimated the orientation by computing the orifice plane of the fragment,

which is explained in Section 3.1.2.

3.1.1 Determination of the Axis of Rotation

The basis for this axis estimation is a dense range image provided by the range

sensor. The estimation approach exploits the fact, that surface normals of

rotationally symmetric objects intersect their axis of rotation. If we have an

37



object of revolution (like an archaeological vessel made on a rotation plate)

we can suppose that all intersections of the surface normals ni are positioned

along the axis of symmetry R, which is schematically shown in Figure 3.2.

n1

I1

n2R
In

Figure 3.2: Axis determination using Hough-Space.

This assumption holds [35] for a complete object or even for its fragment.

We try to extract a surface of revolution where the curvature of the surface

is relatively small. A few approaches to extract volumetric shape descriptors

of solids of revolution out of dense range images are reported in Yokoya and

Levine [134] and a Hough-based approach to the problem is presented. The

Hough transform is a robust and efficient tool for feature extraction [103, 39].

It is based on a voting principle: each point or element will vote for the set

of features to which it could belong. This voting principle makes the Hough

transform very robust toward noise or outliers [4]. Yokoya and Levine [134]

use the center of the principal curvature from first and second partial deriva-

tives of the surface, which construct the so-called focal surface (see [133]).

Since our surfaces have a relatively small curvature we adopted this method

by using a robust way for the determination of the surface normals, based

on planar patches.

We consider a planar patch of size s× s. The patch is fitted according to

the following equation:

ax + by + cz + d = 0 . (3.1)

This defines a planar patch with normal −→n = (a, b, c). The fitting algo-

rithm used is the Total Least Squares (TLS). Let X={ X1, ....XN }, where
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Xi = (xi, yi, zi). The TLS minimizes the following expression

En =
N

∑

i=1

ri
2, where ri =

|axi + byi + czi + d|√
a2 + b2 + c2

. (3.2)

It was shown that this approach is equivalent to the MCA or Minor

Component Analysis [132]: min−→n En ≡ A.−→n = λmin
−→n , where A is the

covariance matrix of set X and λmin is the smallest eigenvalue. The constant

d is determined by

d = −−→n .
1

N

N
∑

i=1

Xi. (3.3)

The main goal is to minimize the distances between the points of the

surface and the planar patch. An iteratively re-weighted algorithm is used

to compute the optimal value of the normal and to discard outliers. The

objective of the algorithm is to achieve:

∆ = min−→n

s2

∑

i=1

[axi + byi + czi + d]2. (3.4)

In order to minimize the function, we use an iterative scheme. The points

are weighted according to their residual [42], a point Mi at iteration k and

with residual ri has a weight ωk defined by:

ωk =

{

1 if ri ≤ Sa
0 otherwise

(3.5)

where S is the Median Absolute Deviation and a is a tuning constant. The

algorithm can be outlined with the initial state k = 0, ω0 = [1...1] as follows:

1. compute the surface normal −→n k using weights wk.

2. compute the residuals ri with the estimated parameters.

3. compute ωk+1 based on ri.

4. iterate steps 1., 2., and 3 until convergence.

The algorithm uses all data points in the initial step, since it is assumed

that there are only a few outliers in the data and the number of data-points

within the patch is relatively low (around 20). If these conditions do not
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hold this produces an incorrect surface normal that is eliminated by the

subsequent axis determination.

Once the surface normals for all points are computed the rotation axis

R can be estimated. For each point on the object, the surface normals −→n k

are computed using Minor Component Analysis. In order to determine the

axis of rotation R all surface normals −→n k are clustered in a 3D Hough-space:

All the points belonging to a line −→n k are incremented in the accumulator.

Hence the points belonging to a large number of lines (like the points along

the axis) will have high counter values. All the points in the accumulator

with a high counter value are defined as maxima. These maxima form the

axis of rotation.

The accumulator maxima are taken as candidate points for the estimation

of the rotation axis. For the set of points acc(x, y, z) a Principal Component

Analysis (PCA) [88] is used to find the optimal axis going through these set

of points M with

M = {Pi(x, y, z)|gi = acc(x, y, z) > Tacc} , (3.6)

with

Tacc = s ∗ max(acc), (3.7)

where Tacc defines a threshold accepting points in the accumulator. In order

to estimate the axis the vector −→v is determined by A−→v = λmax
−→v , where A

is the covariance matrix of set M and λmax is the largest eigenvalue of A.

A point G on the axis is determined by using all points in M with

GM =

∑

i∈M
g̃i Pi

∑

i∈M
g̃i

, where g̃i =

{

gi di ≤ Td

0 otherwise
(3.8)

and the threshold Td = aS. With the point G and the vector −→v the rotation

axis is defined. Using this axis a robust version of the complete algorithm

can be outlined by iteratively refining the position of the rotation axis. The

sets Ik and Ok are respectively the inlier and outlier sets and the method

starts with the initial condition k=0, Ik = M and Ok = {}.

1. compute surface normals −→n for all points of the object.
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2. cluster lines Li in acc(x, y, z).

3. compute −→v k and GIk
using set Ik.

4. determine the distances di of set M to the axis defined by GIk
and

−→v k.

5. update Ok+1, Ik+1 = M−Ok+1.

6. iterate steps 3., 4. and 5. until convergence or a maximum number of

iterations is reached.

Using this technique, outliers introduced by noisy range data, due to bad

calibration or discretization errors, can be avoided, since in the Hough-Space

incorrect data points are in the minority and do not build a maximum. To

evaluate this, synthetic range images are used where the axis of rotation is

known and the images are disturbed by non symmetric object parts. Since

there are some threshold parameters, the effect of changing these parameters

was also taken into consideration.

The size of s of the planar patches depends on the geometry of the object

and the accuracy of the range sensor: the more noise expected, the larger

s should be to eliminate the outliers. However, since we are considering

curved surfaces, s is also influenced by the minimal curvature we want to

estimate in relation to the sensor resolution. In our tests using different

sizes, it was shown to work best with s = 5, which ensures that there are

at least 20 range points within the patch. The tuning constant was set

to a = 1 (and therefore not used) and the threshold Tacc = 0.7 in all of the

experiments. Both parameters were determined empirically based on our test

data. The parameter space of the Hough space was set to 400 × 400 × 800,

which corresponds to the range image size of 400 × 400 and the maximal

possible diameter of the fragment. The computation time depends on the

number of range points (size of the object) and varies between 5 min and 15

min on a Pentium 233MMX with 256 MB RAM using non-optimized code.

In order to determine the error of the axis computation, the Mean Square

Error (MSE) between the original and the computed axis is determined.

The MSE is computed for all points of the axis inside the test object. The
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MSE of all distances between the estimated and correct axis define the

error. In Figure 3.3 test objects are visualized, where the estimated axis of

rotation is drawn into the range image. For each test image the MSE is given

according to the position of the original axis. It is instructive to compare

our method to simple least square solutions, for which one incorrect surface

normal which is sufficiently far away from the bulk of data can ruin the

estimation completely. It can be shown that using our method, the axis can

be determined even if there are large regions in the range image which are not

rotationally symmetric, as can be seen in Figure 3.3b. In our tests we found

out that on the average 15% of the surface normals were incorrect, which did

not (or only slightly) influence the accuracy of the axis determination, since

these normals were eliminated by the Hough method.

(a) MSE=0.16 (b) MSE=0.20 (c) MSE=0.11 (d)

Figure 3.3: Axis determination for synthetic and real range data.

Problems that arise with real data are symmetry constraints, i.e. if the

surface of the fragment is too flat or too small, the computation of the rota-

tional axis is ambiguous (worst case: sphere) resulting in sparse clusters in

the Hough-space, which indicate that the rotational axis is not determinable.

Therefore, before we start our registration algorithm we first compute the

Gaussian curvature for 20% of randomly selected surface points of one sur-

face (back side, since there are usually no decorations on it). We determine

whether the curvature is large enough to estimate the rotational axis, i.e

we look at curves determined by the intersection between the surfaces and

planes perpendicular to the tangent plane at each surface point. All these

curves have a single and well defined curvature at the point. The maximum

and minimum of the normal curvature κ1 and κ2 at a given point on a sur-

face are called the principal curvatures. The principal curvatures measure
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the maximum and minimum bending of a regular surface at each point. The

Gaussian curvature K and mean curvature H are related to κ1 and κ2 by:

K = κ1∗κ2 and H = 1/2(κ1+κ2). We introduce two thresholds - a lower and

an upper - to evaluate the results of the axis determination. If the average

mean curvature of all selected surface points is below a lower threshold (0.2)

the process is not started and the fragment is marked as incomputable. If it

is above the lower threshold and below the upper threshold (0.8) it is marked

as computable with a confidence weight, and if it is above the threshold it is

again very unlikely to get good results since the surface is sphere - like (which

is almost never the case in our test data). For both non-computing cases,

other registration strategies have to be used, for flat fragments the surfaces

are registered assuming that they are completely flat and should match to

one another, for sphere-like fragments no registration is performed since these

fragments do not hold any relevant archaeological information (they are not

orientable manually either). Figure 3.3d shows the result for a front view of

a fragment with the estimated rotational axis (black regions in Figure 3.3d

indicate points where no range information is available due to occlusion).

3.1.2 Determination of the Orifice Plane

The determination of the orifice plane, on one hand, defines rim-fragments,

which are the most important fragments for classification and reconstruction

[90] (like the border pieces from a puzzle). On the other hand, due to the fact

that the plane is orthogonal to the axis, it serves as additional information

in the case of ambiguous computation of the curvature (i.e. the principal

curvature is not uniquely determinable, see Section 3.1.1): the axis, which is

orthogonal to the orifice plane is chosen. Furthermore it defines the top of

a rim-fragment: the side fitting to the orifice plane is defined as top of the

fragment.

Pottman et. al [98] describe the detection of planar faces reduced to

the detection of point clusters on the Gaussian sphere. They improve the

approach by using the Euclidian distance to detect point clusters. Kanazawa

and Kanatani present in [62] a numerical scheme called renormalization for

optimally fitting a planar surface to data points. Besides the optimal fit of
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a planar surface, its reliability is automatically evaluated.

(a) (b)

Figure 3.4: Projection of a fragment onto yz-plane: (a) Outline and triangles
of the fragment, (b) Outline of the fragment.

We consider the problem in two dimensions, by projecting the outline of

the orientated fragment onto the yz-plane (see Figure 3.4). Next we find the

lines in the 2D point data using an Eigenspace approach based on the work

of Leonardis et al. [120]. The algorithm can be outlined as follows:

1. First the axis of rotation is transformed into the z-axis of the coordinate

system in order to simplify further computation.

2. The fragment’s height is described as the difference between the max-

imum z-value and the minimum z-value of the fragment point data.

Initialization of the plane EOrif in the xz-plane of the coordinate sys-

tem on the max. z-position.

3. The fragment is projected into yz-plane and the outline is computed.

4. Two random points of the outline are selected and a line is defined.

5. All points of the outline are investigated to determine, whether they

lie on the line. If a point lies on the line, it supports the line and a

counter is increased.
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6. The next two points on the outline are chosen, the distance to the

previous is typically around 30-40 points. Again a line is defined and

the support is computed.

7. The previous step is continued until the whole outline has been pro-

cessed.

8. The line, with maximal support is chosen for the estimation of the

orifice plane.

Figure 3.5 shows the fragment (a) and the outline of the fragment to-

gether with its orifice plane.

(a) (b)

Figure 3.5: 3D View of (a) the outline and (b) the triangles of a fragment
together with the orifice plane.

3.2 Registration

The task of building full 3D models of general objects is difficult, since there

is no a-priori knowledge about the shape of the object. A simple method is

to use a calibrated turntable upon which the camera is fixed, as described in

[122]. Even though the turntable method described above is good at creating

3D models, there is still the problem of acquiring the bottom of the object

sitting on the turntable. Hence the bottom and the top of the object needs
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to be scanned in and then registered. In the case of thin ceramic fragments,

the rotation table method does not solve the registration problem since one

view of the fragment is always invisible (one solution would be to ”glue”

the fragment onto the plate in an upright position, however, this method is

impractical and unthinkable for archaeologists [125]).

Fragments of vessels are thin objects, therefore 3D data of the edges

of fragments are not accurate and this data cannot be acquired without

placing and fixing the fragment manually. Ideally, the fragment is placed in

the measurement area, a range image is computed, the fragment is turned

and again a range image is computed. To perform the registration of the

two surfaces, we use a-priori information about fragments belonging to a

complete vessel: both surfaces have the same axis of rotation since they

belong to the same object. Furthermore, the distance of the inner surface to

the axis of rotation is smaller than the distance of the outer surface. Finally,

both surfaces should have approximately the same profile; i.e. the thickness

of the fragment measured on a plane perpendicular to the rotational axis

should be constant on average. Note that this is only the case if the profile

is taken perpendicular to the axis since this is induced by the manufacturing

process. This condition holds for almost all fragments with the exception of

relief decorated fragments. Still, the average distance perpendicular to the

rotational axis is constant on most of the parts of the fragments since there

are more undecorated than decorated parts. Therefore, this assumption is

used to perform the ”fine registration”.

The most commonly used algorithms for registering is the Iterative Clos-

est Point (ICP) algorithm [76]. ICP iteratively improves the registration

of two overlapping surfaces by calculating the unique transformation that

minimizes the mean square distances of the correspondences between the

two surfaces. The algorithm starts with the selection of some point sets in

one or both surfaces (which generally are triangulated surfaces), matches

these point sets to one another, which gives a set of corresponding pairs, and

weights the corresponding pairs. A rejection rule for pairs is applied to all

pairs to determine outliers. To measure the fit, an error metric is used, which

is minimized iteratively.

There are many different variants of the ICP Algorithm (see [106] for a
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review) all based on local point correspondences. Therefore, it is very impor-

tant to have a good rough alignment of the surfaces to be registered. Algo-

rithms that do not use single pair of surface registration (no pre-alignment)

are also called global registration algorithms (see [100], [22], or [130] for de-

tails).

Since we have a-priori knowledge about our surfaces and the rotational

axis estimation we decided to use a computationally relatively inexpensive

model-based approach [109, 47]. No point to point correspondences are re-

quired to determine the interframe transformation needed to express the

points from each view in a common reference coordinate system [127]. We

register the range images by calculating the axis of rotation of each view

(Figure 3.6a and Figure 3.6b) and by bringing the resulting axes into align-

ment (Figure 3.6c). Knowing the surface normals of all surface patches we

transform them into a common reference coordinate system. The first rough

alignment is performed by aligning the two surfaces vertically. To do so

we select the 10 uppermost points of each surface (we take the uppermost

points since rim fragments are the most important fragments in archaeology

and they have the property that all points of the rim lie in the plane perpen-

dicular to the rotational axes) and align them vertically. Next we perform

the horizontal alignment by rotating one surface relative to the other until

both surfaces have a maximum number of points in a common projection

normal to the fixed surface. Note that after the rough alignment (vertical

and horizontal) due to inaccurate estimation of the rotational axis the two

surfaces may intersect (Figure 3.6d).

In the next step we have to align the surfaces of the objects to avoid in-

tersecting surfaces. The correct match is calculated using a slightly modified

ICP algorithm [100]. The difference to the standard ICP is that we are calcu-

lating the unique transformation that minimizes the mean square distances

of the correspondences between the two surfaces to a constant value instead

of zero. This distance dn is the distance of the two surfaces on a plane per-

pendicular to the rotational axis where n denotes the vertical position on the

axis. Corresponding points of the two surfaces are estimated by computing

the Euclidean distance of the candidate points on the inner surface to the

normal on the rotational axis for the point on the outer surface. The point

47



with the minimal distance is taken as corresponding point.

(a) (b) (c) (d) (e)

Figure 3.6: Registration steps using synthetic data.

The first estimation of all dn is given by the range sensor. Since both

range images are computed in the same environment and the fragments are

placed on a plane, the range sensor computes the normal distance of the

inner surface to the object plane on the lowest point of the surface - which

is an estimation of the thickness of the fragment in a stable position.

Next the ICP starts by iteratively minimizing the error δi, which is the

mean error of the local surface distances to dn until all δi are positive (i.e.

surfaces do not intersect). Then all dn are updated to the mean distance of

the surfaces in the direction of the rotational axis, the mean square error δ

of the local surface distances are computed and the process is restarted. The

algorithm ends if there are no significant improvements or the overall error

increases. To sum up, the registration algorithm can be outlined as follows:

1. compute the axis of rotation for each view.

2. compute the vertical alignment by top points of each view.

3. compute the horizontal alignment until the maximum number of points

in common projection is reached.

4. set all dn to the same initial value given by the range sensor.

5. compute all actual distances dn.

6. compute all errors δi.

7. iterate steps 5 and 6 until all δi are positive
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8. update all dn to new mean distance in direction of rotational axis.

9. iterate steps 5, 6, and 8 until all δi are minimal or MSE δ increases.

Figure 3.6e shows the result for synthetic range data with 50 surface

points for each view and a distance of 2.9mm. The computed distance be-

tween the inner and the outer surface is 2.9mm. The registration error is

δ=0.05mm, the mean square errors between the original and the computed

axes are 0.26mm and 0.31mm respectively.

3.3 Profile Generation

The registration of front and back views together with the axis of rotation

provide the profile used to reconstruct the vessel [55].

Figure 3.7: Orientated sherd, rotational axis rot, intersecting plane emax and
longest profile line.

Figure 3.7 shows the 3D model of a sherd and its rotational axis rot as

a vertical line along the z-axis. The black plane represents the intersecting

plane emax at the maximum height hmax of the sherd. A profile line is the line

formed by the intersection of the surface of the sherd and the intersecting

plane. The longest profile line is the longest of these lines. The extracted

profile line is shown in the xz-plane. Our algorithm for the estimation of the

longest profile line consists of the following steps:

1. First the axis of rotation is transformed into the z-axis of the coordinate

system in order to simplify further computation.
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2. The fragment’s size is estimated as described by its circular arc. De-

pending on the size we compute a number of intersecting planes ei,

which are used for the profile estimation. The number of planes ei

depends on the length of the perimeter of the fragment. Experiments

have shown that 7 to 13 profile lines return the best ratio of exactness

and performance. Figure 3.8 shows a sample of 4 planes ei intersecting

the 3D model and the plots of the extracted profile lines on the surface

of the sherd.

Figure 3.8: Sample of intersecting planes ei.

3. A profile line is calculated by intersecting the 3D data of the fragment

with planes ei: First the distance of each vertex of the fragment to the

plane ei is calculated. All vertices are sorted by their distance to the

plane. Then the nearest 1% of vertices are selected as candidates for

the profile. For each of those vertices, all the patches to which they

belong are filtered through a search in the patch list with their index

number. In Figure 3.9 a sherd shaded by the value of distance to the

intersecting plane is shown (lighter means nearer to the intersecting

plane). Every patch is a triangle which consists of three points that

are connected by three lines. Every pair of vertices that has a point on

both sides of the plane is part of the profile line, because its connection

intersects the plane. The coordinates of these pairs are rotated into
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the xz-plane and the z-coordinate is removed. The result is a properly

oriented profile line.

Figure 3.9: Properly oriented sherd and intersecting plane ei. The greyvalues
correspond to the distances. Lighter means nearer to the intersecting plane.

4. Next the longest profile line is determined: the difference between the

maximum z-value and the minimum z-value of the profile line defines

the height of the profile line. The remaining profile lines are used for

evaluation of the estimate of the rotational axis.
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Figure 3.10: Maximum, mean and minimum diameters.

Figure 3.10 shows two plots of diameters based on the profiles from two

different fragments. The y-axis is the difference of the diameters to the
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overall mean diameter of all profiles in centimeter and the x-axis corresponds

to the circular arc. The upper line shows the maximum diameter, the middle

shows the mean diameter and the lower line shows the minimum diameter.

The grey box allows the quality of the results to be visualized by showing

the overall mean diameter of all profiles versus the standard deviation. If

the standard deviation exceeds a certain threshold (for example 0.5 cm) the

fragment is excluded from further reconstruction.

As seen in Figure 3.10a a correctly estimated rotational axis results in a

mean diameter with a small standard deviation (smaller than 0.5 cm) along

the perimeter of the sherd. Also the minimum and the maximum diameter

are constant except on the left and right side, where the fracture of the

fragment is located. In Figure 3.10b the mean diameter along the perimeter

has a standard deviation of more than 0.5 cm (in this case 5 cm). This

indicates that the estimate of the rotational axis is not accurate enough for

further processing. In this case we plan to extend the algorithm for axis

estimation by using additional information on the fragment e.g. ’rills’ on the

inner surface.

3.4 Results

In order to evaluate the results experiments with synthetic data have been

performed. Figure 3.11 demonstrates the correctness of the algorithm by

computing the axis of rotation of a cylinder with the parameters cylinder

radius = 35 and cylinder orientation = [001]. The axis computed is described

by r = 35, v = [0, 00 0, 00− 1, 00] showing a 100% theoretical accuracy of the

approach.

Table 3.1 shows computed registration results for piece02 of box1: for

each registered sherd the filename is given. The average outer diameter

indicates the average distance of all data points of the outer surface to the

axis of rotation. The inner diameter indicates the average distance of all data

points of the inner view to the axis of rotation. Standard deviation is given

for the outer and inner surface. A small standard deviation (< 0.1) indicates

a smooth surface, no handles and correct orientation. The average thickness,

given in cm is the difference between average outer diameter and average
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(a) (b)

(c) (d)

Figure 3.11: Evaluation of the axis computation using synthetic data.

inner diameter. Outer and inner angle range point out the proportion of

the outer and inner surface on the whole pot based on the perimeter. This

proportion is also given in percentage. The overlapping area shows the extend

to which the two surfaces overlap.

Figure 3.12 shows registered views of piece02 from box1. It can be shown

that the two recorded views are in alignment, which means that they have

the same orientation.

As a second example Figure 3.13 shows registered views of a rather flat

surface. Since the curvature is still non-ambiguously computed (see the top

view), the registration could be performed.

The resulting 3D reconstruction of fragments depends on the correct ori-
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Sherd #1: Files:
box 01 piece 02 mvc0001
box 01 piece 02 mvc0003
Average Outer Diameter: 19.7676
Standard deviation: 0.0593222
Average Inner Diameter: 13.8706
Standard deviation: 0.0153669
Average Thickness: 5.89702
Outer Angle-Range: -8.75561deg to 9.1036deg
(Total): 17.8592 - 4.96089%
Inner Angle-Range: -9.51135deg to 8.27617deg
(Total): 17.7875 - 4.94098%
Overlapping Area: 91.4951%

Table 3.1: Computed registration results.

entation of the profile section. The evaluation of the 3D representation is

rather complicated since ground truth is not available due to the fact that

there is no 3rd dimension in achaeological archive drawings, and that the

object does not exist in reality. The description of shape is subject to the

ideas of the archaeologists and is not standardized.

Experiments were done on all 40 fragments of our pottery database. The

success rate for correct extraction of the profile line and consequently the

percentage of sherds used for further reconstruction is around 50% of the data

found at the excavation site. This should be compared to manual archivation

done by archaeologists [90]: for coarse ware around 35% [19] and for fine

ware around 50% [95] of the findings are used for further classification. It

depends heavily on the shape of the fragment (e.g. handle, flat fragments

like bottom pieces, small size, etc.). Eighteen fragments have been excluded

from reconstruction due to incorrect estimation of the axis of rotation.

Table 3.2 shows samples of results for properly orientated fragments. Box

and piece numbers are used for identification of the fragment. The radius r

is the estimated mean radius of the whole object. The standard deviation of

the radius was estimated along the perimeter of the fragment. The thickness

of the fragment is the difference between the mean radius of the inner side

and the outer side. The fragment size is the percentage of the perimeter of
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Box Sherd Radius Standard Mean Fragment
Nr. Nr. deviation thickness size

(cm) (cm) (cm) (%)
1 04 10,20 0,05 0,51 11,13
1 08 15,78 0,04 0,39 4,78
1 16 14,56 0,09 1,75 6,36
1 17 16,15 0,15 1,51 8,08
1 18 15,16 0,03 1,75 5,12
1 19 14,54 0,15 0,84 8,25
1 20 12,99 0,08 1,56 7,55
1 22 11,53 0,10 0,75 13,55
1 23 12,33 0,08 0,65 8,72
2 01 9,97 0,09 0,82 11,15
2 02 15,95 0,03 1,13 6,35
2 04 6,66 0,18 1,67 17,03
2 05 9,94 0,08 0,49 8,94
2 06 2,35 0,21 1,03 31,51
2 09 12,3 0,08 0,97 9,06
2 10 18,33 0,06 1,00 5,91
2 11 10,2 0,05 2,24 9,09
2 12 12,34 0,12 0,982 10,04
2 14 16,91 0,17 1,52 12,61
2 15 15,42 0,07 1,21 8,4
2 16 14,36 0,12 1,53 8,47
2 18 10.8 0,06 1,93 9,69

Table 3.2: Sample of Results.
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(a) (b)

(c) (d)

Figure 3.12: (a) registered views (b) registered inner view (c) registered view
outer view (d) registered top view.

the sherd compared to the perimeter of the whole object.

Experiments with synthetic data have shown that the correctness of the

reconstruction depends on the correct estimation of the axis of rotation (see

[109] for a detailed survey) and on the resolution of the 3D scanner used.

The number of vertices in the data used ranges between 4000 and 15000,

leading to a profile line with 200 to 300 points. The execution time using a

prototype written in Matlab running on a Pentium III 1 GHz is less than

a minute per sherd. It depends heavily on the computation of the axis of

rotation (70% to 80% of the execution time).
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(a) (b) (c)

Figure 3.13: Box01, piece 14: registered views: (a) 3D view (b) side view
and (c) top view.

3.5 Chapter Summary

In this chapter we described the processing of the fragment data in order

to further automate archivation and reconstruction. The orientation, which

defines the exact position of a fragment on the original vessel, was described

by the axis of rotation. Rim fragments were detected by the computation

of the orifice plane. In order to get a full 3D model, a front view and a

back view of a fragment were registered. Registration was based on a model

based approach. Out of the registered 3D model of the fragment, a profile

section was computed. The profile section was the basis for the subsequent

classification. In order to demonstrate the correctness of the processing tasks,

experiments followed by a discussion were shown.
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Chapter 4

Classification

The purpose of classification is not only to get a systematic view of the ma-

terial found but also to find different fragments belonging to the same vessel

based on attributes stored in an archive database. After that, the profile of

the fragment can be used to reconstruct the original (complete) vessel. This

includes the possibility of reconstructing missing parts of the vessel and the

search for possible matches of other fragments already stored in the archive

with the one that is under consideration (part-assembly).

This chapter is organized as follows. First we describe the determination

of shape characteristics based on so-called characteristic points in Section

4.1. In Section 4.2 we take a closer look at the profile segmentation based on

cubic splines. The generation of primitives is presented in Section 4.3. The

chapter concludes with results (Section 4.4) of each section and a discussion

of the selected concepts.

4.1 Determination of Shape Characteristics

By classifying the parts of the profile, the complete vessel is classified, and

missing parts may be reconstructed. Following the manual strategy of the

archaeologists, the profile should first be automatically segmented into its

parts, the so-called primitives, [52]. Our approach to do so is a hierarchical

segmentation of the profile into rim, wall, and base by creating segmentation

rules based on expert knowledge of the archaeologists and the curvature
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of the profile. These three segments of the profile are stored in a so-called

description of the profile. Figure 4.1 shows an archive drawing of a fragment

with its profile section divided into various primitives. If there is a corner

point, that is a point at which the curvature changes “substantially”, the

segmentation point is obvious. If there is no corner point, the segmentation

point has to be determined mathematically [113, 1].

Figure 4.1: Profile with known primitives.

Up to now this segmentation has been done manually by archaeologists,

and there are no segmentation standards in archaeology [1]. Figure 4.2 shows

different shapes of manually segmented primitives.

Figure 4.2: Different shapes of primitives.
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The basis for the segmentation is the outer profile line, i.e. the profile

line along the outside of the vessel. The segments of the profile are divided

by so called characteristic points or segmentation points. Figure 4.3 shows

the classification scheme applied to an “S-shaped vessel” as an example.

The coordinate system has its origin at the intersection point of the axis of

rotation and the orifice line.

Figure 4.3: S-shaped vessel: profile segmentation scheme.

In order to allow proper segmentation, the following points have been

identified.

• SP starting point: in the case of vessels with a horizontal rim: in-

nermost point, where the profile line touches the orifice plane;

• OP orifice point: outermost point, where the profile line touches the

orifice plane;

• IP inflexion point: point, where the curvature changes its sign, i.e.

where the curve changes from a left turn to a right turn or vice versa;

• MI local minimum: point of vertical tangency; point where the x-

value is smaller than in the surrounding area of the curve;
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• MA local maximum: point of vertical tangency; point where the

x-value is bigger than in the surrounding area of the curve;

• CP corner point: point where the curve changes its direction sub-

stantially;

• BP base point: outermost point, where the profile line touches the

base plane;

• RP point of the axis of rotation: point where the profile line touches

the axis of rotation; applied to non complete profile

• EP end point: point where the profile line touches the axis of rotation;

applied to complete profiles

4.2 Curvature-based Segmentation

The profile determined has to be converted into a parameterized curve [115,

41] and the curvature has to be computed [6, 83]. Local changes in curvature

[105] are the basis for rules required for segmenting the profile. The most

formalized approach uses mathematical curves to describe the shapes of the

vessels and more often their parts. The profile is thus converted into one

or more mathematical curves. These approaches (i.e. the sampled tangent

profile [77], the B-spline methods [36], the two-curve system [34]) provide

the most precise representation so far, however no automatic comparison of

complete profiles resulting from these methods has been published. The sit-

uation is complicated by the fact that ceramic vessels, produced by hand, do

not have mathematically perfect surfaces which affects the application of the

above mentioned methods. Consequently, the precision of the representation

of the vessels is reduced [101].

In order to apply interpolation and approximation methods the profile is

subdivided into sub-intervals by using corner points. Then the most appro-

priate interpolation and approximation methods are computed and selected

for each of the intervals of the curve, the method with a smaller error (in

case of ambiguity, the interpolation method is preferred) is selected for the

interval. The approximation error of the representation over the whole curve
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is computed via the sum of squares of the differences of the input value and

the spline value. We apply four methods for interpolation and four methods

for approximation by B-splines on the reconstruction of the vessel profiles

[52], which we call multi-spline processing.

4.2.1 Cubic Splines

The following definitions were adopted from [21]. We suppose that the planar

closed curve r to be fitted (interpolated or approximated) will be represented

by parametric equations

r(t) = [x(t),y(t)] (4.1)

in an interval in the Cartesian coordinates of R2 and has continuous sec-

ond derivatives. The curve is given by a set of points Pi = [x(t), y(t)] together

with the non decreasing sequence of knots {ti, i = 1, . . . , n + 1} of parameter

t. Constructing a curve S(t), which approximates the function given by the

points can be done by a cubic spline with an adequate parameterization and

external conditions. The curve must be initially divided into sub-intervals,

where functional approximation and interpolation methods can be applied.

The support of a cubic spline is 5 intervals. Denote by B4
i a k − th order

spline (k ≤ 3) whose support is [ti, ti+4]. Then it is possible to normalize

these splines so that for any x ∈ [a, b] equation 4.2 equals 1.

n+3
∑

i=−3

B4
i (x) = 1 (4.2)

Any cubic spline Sn(x) with knots t0, . . . , tn and coefficients a−3, a−2, . . . , an

can be written in the form of equation 4.3.

Sn(x) =
n

∑

i=−3

aiB
4
i (x) (4.3)

There are n + 3 coefficients ai in equation 4.3 showing that the vector

space of cubic splines has dimension n + 3, so that the n + 1 functional

values will not determine Sn(x) uniquely - two additional constraints must

be supplied. Consequently, in evaluating S(x) for any x ∈ [a, b], only four

terms at most in the sum (4.3) will be non-zero.
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The basis cubic splines can be constructed by the following recurrent

relationship:

Bn
i (x) =

x − ti
ti+n−1 − ti

Bn−1
i (x) +

ti+n − x

ti+n − ti+1

Bn−1
i+1 (x), (4.4)

i = −3, . . . n − 1 and n = 1, 2, 3, 4. A useful convention is to define the

first-order splines as right-continuous so that

B1
i (x) = δi for x ∈ [ti, ti+1), i = −3,−2, . . . , n + 3, (4.5)

The method is of local character: the change of the position of one control

vertex influences only 4 segments of the curve. The resulting curve is in

particular coordinates a polynomial of 3rd degree for t ∈ (tj, tj+1) and all its

derivatives are in continous coordinates.

Since Bn
i (x) is nonzero only on the interval [ti, ti+4], the linear system

for the B-spline coefficients of the spline to be determined, by interpolation

or least-squares approximation, is banded, making the solving of this linear

system particularly easy.

S4(xj) =
n

∑

i=0

B4
i (xj)ai = yj, j = 0, . . . , n (4.6)

for the unknown B− spline coefficients ai in which each equation has at most

4 nonzero entries.

4.2.2 Interpolation by Cubic B-Splines

For data point interpolation (i.e. an exact fitting of data points by a curve,

see the Figure 4.4), we selected four methods which we empirically showed

to be appropriate in our experiments:

a) Cubic spline interpolation with Lagrange end-conditions (cs1) (i.e. the

additional end-condition for the first and for the last data site matches

endslopes to the slope of the cubic that matches the first four data at

the respective end [18]).

b) Cubic spline interpolation with not-a-knot end-condition (cs2), mean-

ing that it is the unique piecewise cubic polynomial with two continuous
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derivatives with breaks at all interior data sites except for the leftmost

and the rightmost one).

c) Spline interpolation with an acceptable knot sequence (cs3) (i.e. The

knot sequence knots is acceptable for interpolation to data in the sense

that there is exactly one spline of order k with knot sequence knots

that matches given data at those sites).

d) Spline interpolation with an optimal knot distribution (cs4). As ’opti-

mal’ knot sequence the optimal recovery theory of Micchelli, Rivlin and

Winograd [87] is used for interpolation at data points τ(1), . . . , τ(n) by

splines of order k

Figure 4.4: Interpolation by B-spline functions.

These methods are applied to each of the intervals of the curve, and their

approximation error is evaluated on the given data set.

All the discussed interpolation methods satisfy the Schoenberg-Whitney

conditions, i.e. the achieved representation is unique for the method, the

given data and knot sequences. The selection of a unique interpolation rep-

resentation of the curve in the particular interval is made using the following

criteria in the respective order:

1. Minimal approximation error in the corresponding interval.

2. Minimal length of the knot sequence
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3. Priority of the interpolation method based on the statistical observa-

tions

The priority of the methods was achieved experimentally on profiles and

their particular intervals as follows: 1. Cubic spline interpolation with La-

grange end-conditions (cs1); 2. Cubic spline interpolation with not-a-knot

end-condition (cs2); 3. Spline interpolation with an acceptable knot sequence

(cs3); 4. Spline interpolation with an optimal knot distribution (cs4).

4.2.3 Approximation by Cubic B-Splines

Since the number of data pairs acquired to describe a vessel or its parts do

not always suffice to represent the shape of the vessel reliably, interpola-

tion is not always the appropriate method. For this reason, we compared

the approximation methods to the interpolation methods in terms of how

well they represent the overall shape of the whole curve. For data point

approximation (i.e. an approximate fitting of data points by a curve with re-

spect to a minimal approximation error over the interval from which the data

points are taken, see Figure 4.5), we selected four methods which appeared

as appropriate based on our experiments. As in the interpolation case, the

approximation error is measured as the sum of squares of the differences of

the input value and the spline value. The following approximation methods

were applied and compared:

a) Cubic smoothing spline with the smoothing parameter p > 0 (cs5);

This smoothing spline f minimizes p
∑n

j=1 wj(yj − f(xj))
2 + (1 − p)

∫

(f (2)(t))2 with wj = 1, j = 1, . . . , n, where n is the number of data

points. (For p = 0, the smoothing spline is the least-squares straight

line fit to the data, while, at the other extreme, i.e. for p = 1, it is the

’natural’ or variational cubic spline interpolant).

b) Smoothing spline with the smoothing parameter tol > 0 (cs6);

This function creates the smoothest function f in the sense that

F (f (2)) =
∑

∫ xn

x1
(f (2)(t))2 is the smallest, for which E(f) =

∑n
j=1 wj(yj−

f(xj))
2 ≤ tol, with the weights wj = 1 and data points xj, j = 1, . . . , n

(where n is the number of data points).
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c) Least squares spline approximation with the number of knots equal to

a half of the number of data points (cs7).

d) Least squares approximation with the number of knots equal to the

number of data - degree of the spline in the particular interval (cs8).

Figure 4.5: Approximation by B-spline functions.

The approximation errors of both smoothing spline methods cs5 and cs6

vary significantly, depending on the selection of the parameters p > 0 and

tol > 0, respectively. A correct selection of p and tol can decrease the

error over the interval, but there is no simple method known for such a

selection which would in general guarantee that the approximation error of

the corresponding functions is minimal. In the case of the cubic smoothing

spline with parameter p (cs5), we used p = 1 to give a variational cubic

spline interpolant (and thus ’low’ errors with respect to the data). (As the

setting of tol in the method cs6 is more difficult, this method did not appear

as appropriate for creating an automated system, part of which the selection

of the curve representation is intended to be).

An ’optimal’ (in the sense of the compared methods, given data and

the applied criteria for selection) method is selected according to the same

criteria as in the interpolation case and again, the priority ordering of the

methods was achieved experimentally: 1. Cubic smoothing spline with the

smoothing parameter p > 0 (cs5); 2. Smoothing spline with the smoothing

parameter tol > 0 (cs6); 3. Least squares spline approximation with the
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number of knots equal to a half of the amount of the data (cs7); 4. Least

squares approximation with the number of knots equal to the number of data

- degree of the spline (cs8).

4.3 Generation of Primitives

The attributes of a successful classification have been summarized by Orton

and others [90, 95]:

• objects belonging to the same type should be similar (internal cohesion)

• objects belonging to different types should be dissimilar (external iso-

lation)

• the types should be defined with sufficient precision to allow others to

duplicate the classification

• it should be possible to decide to which type a new object belongs

In order to achieve these aims our classification scheme of the vessel form

is based on two aspects [57]:

• absolute measurements and ratios

• segmentation of the profile line

The first step is the measurement of the following parameters: rim diam-

eter, bottom diameter, height, x- and y- values of all segmentation points.

With these measurements a variety of ratios can be calculated. A specific

choice of these ratios is in each case characteristic for one vessel type; for

example the ratio rim diameter to the height of the fragment.

The characteristic points together with the following measurements are

used to define basic vessel forms and types [3]:

• Rim-diameter rdm: The diameter of the orifice plane

• Wall-diameter wdm: The maximum diameter of the object orthogo-

nal to its rotational axis

67



• Bottom-diameter bdm: Diameter at the bottom of the object

• Height h: The overall height of the object

• The characteristic ratio rchr: The ratio between height h and rim-

diameter rdm: h : rdm

Together with archaeologists [2] three levels of hierarchical classification

rules based on the work of R. Schreg [112], Andraschko et al. [3] and G.

Webster [129] have been worked out. They consist of three consecutive levels

ware, basic form and basic type, see Table 4.1. These rules were applied to

the late Roman burnished ware of Carnuntum [33]. The first classification

level defines the excavation site, where the objects were found.

I ware Late Roman Burnished Ware
II basic form beaker, plate, bowl, pot, jug

III
basic
type

beaker1, beaker2, pot1, pot2, plate1-2,
plate11-2,plate13-7 jug1, jug2-3, jug4

Table 4.1: 3 levels of classification.

Classification level II defines basic forms (see Table 4.2). The grouping

follows functional aspects based on characteristic ratios and diameter. A

variation of ±15% is taken into account. For example, a plate is defined by

rchr = 1 : 8 and rdm ranging from 16cm to 34cm.

basic vessel form rchr(+/ − 15%) rdm wdm
plate 1:8 16-34 cm -

bowl 1:2 - 1:4
10-16 cm -
12-30 cm -

beaker 1:1 8-11 cm 5-14 cm
jug 4:1 - 2:1 6-14 cm

pot 1:1 - 3:1
8-12 cm 15-25 cm
12-16 cm 18-21 cm

Table 4.2: Classification level II: specific vessel forms.

The forms are sub-divided into basic vessel types (see Table 4.3), which

are defined in level III. The grouping follows the characteristic properties of
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the profile section and the position of the characteristic points. Table 4.3

shows the rules and images of all vessel types which are taken into account.

References of all forms to Grünewald [33] and representative images of the

specific form are given. For example, a plate is further specified by not having

an inflection point IP and no curvature point CP . In practice, basic forms

have names or labels like “Knickwandschüssel”.

4.4 Results

First we show results of finding characteristic points using the multi-spline

method. Next we present experiments on the segmentation of the character-

istic points, which is followed by examples of automatic classification. The

pottery dataset used for the experiments was already classified by archaeolo-

gists and published by Grünewald [33]. Besides the manual drawings of the

fragments, the fragments themselves were available. In order to evaluate the

classification results achieved, we randomly selected 8 fragments from the

pottery dataset, classified them, and compared the results to manual classi-

fication results of the same fragments.

Four interpolation and four approximation methods were applied for ev-

ery sub-interval of the curve after each run of the program. While the curve

was generated gradually for each sub-interval of the curve, the overall approx-

imation error was computed. As a result, the profile was constructed from

the selected methods and was compared to the data set. Table 4.4 displays

the approximation errors for all methods in all intervals of the vessel 70-1

[33], including the selected interpolation and approximation methods for the

corresponding interval and the selected overall method for the whole profile.

In our experiments the most frequently selected interpolation method was

cs1 and the most frequently selected approximation method was cs6. An in-

terpolation method was preferred in the intervals where a sufficient number

of data points with respect to the length of the interval was available. An

approximation method was preferred in the intervals where there was a lack

of data.

Spline interpolation with an acceptable knot sequence cs3 in all inter-
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basic
vessel
types

charact.
points

charact.
properties of
the profile
section

reference
Grünewald [33]

image

Beaker1
1 IP, no
CP

rdm � bdm 78/1-4

Beaker2 > 1 IP rdm ≈ wdm 78/6

Plate1-2
1 IP, no
CP

f(x + 1) > f(x)
71/9;
75/1-4

Bowl1-2
1 IP, no
CP

f(x + 1) ≥ f(x)

MA(y) < h
10

70/1-6;
71/2

Bowl3-7
CP, > 1
IP

f(x + 1) � f(x)
72/5-8;73/1-
3;74/4,6-8

Pot1 > 1 IP
rdm � bdm
rdm � wdm
MA(y) > h

5

79/2; 81/2

Pot2
1 IP, no
CP

rdm � wdm

MA(y) ∼= h
2

79/1,3

Jug1 > 1IP
rdm ≈ wdm
wdm � bdm

-

Jug2-3 CP rdm ≈ bdm 84/10

Jug4
> 1 IP
or CP

rdm < 12cm

84/1-3,8;
85/2-7,9-
11

Table 4.3: Classification level III: basic vessel types.
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vals of all profiles approximated the data with a smaller error than spline

interpolation with optimal knot distribution.

method / interv. 1 2 3 4

cs1 0.2163 0 0.6047 0.0781

cs2 0.2163 0 0.5994 0.0782

cs3 0.2163 0 0.5994 0.0782

cs4 0.2163 0.6169 2.1080 0.0877

cs5 (tol = 5) 0.2163 2.3114 0.5994 1.1816

cs6 (p = 1) 0.1350 0 0.6229 0.07812

cs7 0.2163 5.9470 5.5298 0.5015

cs8 0.2163 0.0032 0.6014 0.1308

select. intp. 1 1 2 1

select. appr. 6 6 5 6

overall select. 6 1 2 1

method / interv. 5 6 7 8

cs1 1.1685 2.2497 1.1424 0.0884

cs2 1.1686 2.2514 0.1433 0.0884

cs3 1.1686 2.2514 0.1430 0.0883

cs4 1.4510 2.3485 0.1615 0.0991

cs5 (tol = 5) 2.9430 2.2514 2.2073 0.0884

cs6 (p = 1) 1.1687 2.2496 0.1646 0.0884

cs7 6.9127 6.2323 0.8617 1.0675

cs8 1.1850 3.8347 0.1430 0.2551

select. intp. 1 1 1 1

select. appr. 6 6 8 6

overall select. 1 6 1 6

Table 4.4: Approximation errors for all methods in all intervals.

We take the outer profile line as basis for the segmentation: Figure 4.6

shows two examples of automatically segmented pots with the characteristic

points detected shown in (b), and the appropriate manual segmentation in

(a).

Applying level II of the classification scheme to the curves computed gives

a first indication of the group to which the object belongs. Table 4.5 sum-

marizes results from 8 fragments. The most important measurement is the

diameter of the rim rdm, because its estimation does not depend on whether
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(a) (b)

Figure 4.6: Classified pot 70/1: (a) manual drawing, (b) detected character-
istic points

the object is a fragment or a vessel. On the contrary the diameter of the

bottom bdm represents only a reliable indicator for vessels, because the bdm

of a fragment is not the same as the bdm of the whole vessel.

For example, the rdm of fragment 70/1 is 15.6cm, which allows the forms

plate, bowl and pot. Its characteristic ratio rchr = 1 : 1.5 excludes plates,

leading to bowl and pot as indication. Ambiguities are resolved within clas-

sification level III.

Table 4.6 shows results of the estimation of characteristic points. Except

for IP, where the number of IPs found is shown, the coordinates of the char-

acteristic points are given. One of the most reliable indicators is the number

of IPs, because it identifies S-shaped forms by simply counting points with-
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ID [33] rdm wdm bdm h rchr indication

70/1 15.6 19.2 9.2 10.2 1 : 1.5 bowl, pot
70/4 19.6 21.6 9.6 6.4 1 : 3.0 bowl
72/6 14.4 17.0 5.2 7.4 1 : 1.9 bowl,pot
72/8 22.2 24.2 7.2 10.0 1 : 1.2 bowl
75/3 29.6 32.4 16.2 5.6 1 : 5.3 plate
78/2 6.4 7.2 4.6 9.2 1.4 : 1 jug, pot, beaker
79/2 12 14.0 5.2 10.6 1 : 1.1 pot, beaker
81/1 12.4 15.4 4.8 11.3 1 : 1.1 beaker, pot

Table 4.5: Classification level II: Characteristic forms.

out requiring of their position. The y-position of the MA characterizes forms

reliably, because its approximate position is sufficient.

To continue the previous example with fragment 70/1, the forms bowl

and pot are further investigated: The position of MA indicates that it is not

a pot, since it lies within the first 20% of the height h. Having 1 IP only

gives priority to Bowl1-2, which actually is a correct classification [33].

ID OP MA MI #IP CP BP RP EP

70/1 [7.8, 0.0] [9.6, 0.8] EP 1 - - - [4.6, 10.2]

70/4 [9.8, 0.0] [10.8, 0.8] BP 1 - [4.8, 6.4] - -
72/6 [7.2, 0.0] [8.5, 1.0] EP 3 - - - [2.6, 7.4]

72/8 [11.1, 0.0] [12.1, 0.9] EP 3 - - - [3.6, 10.0]

75/3 [14.8, 0.0] [16.2, 0.8] BP 1 - [8.1, 5.6] - -
78/2 [3.2, 0.0] [3.6, 0.5] EP 2 - - - [2.3, 9.2]

79/2 [6.0, 0.0] [7.0, 1.5] EP 1 - - - [2.6, 10.6]

81/1 [6.2, 0.0] [7.7, 1.8] EP 1 - - - [2.4, 11.3]

Table 4.6: Classification level III: Characteristic types.

Table 4.7 summarizes the results for the eight randomly selected frag-

ments. The results achieved indicate the same basic vessel forms as published

by [33], except for 79/2 and 81/1. The reason is that distinction between

forms pot1 and pot2 is is not possible for fragments, where the bottom is

missing, because it depends only on the relative position of MA.
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ID [33] level II classification rules applied indication

70/1 bowl, pot 1 IP,MA(y) < h
5
(∼= 0.8 < 2.0) Bowl1-2

70/4 bowl 1 IP,MA(y) < h
5
(∼= 0.8 < 1.3) Bowl1-2

72/6 bowl, pot 3 IP,MA(y) < h
5
(∼= 1.0 < 1.5) Bowl3/7

72/8 bowl 3 IP,MA(y) < h
5
(∼= 0.9 < 2.0) Bowl3/7

75/3 plate 1 IP Plate1-2

78/2 jug, pot
2 IP, rdm > bdm;

MA(y) < h
5
(∼= 0.5 < 1.8)

Beaker1

79/2 pot, beaker 1 IP, MA(y) < h
5
(∼= 1.5 < 2.1) Pot1, Pot2

81/1 pot, beaker 1 IP, MA(y) < h
5
(∼= 1.8 < 2.3) Pot1, pot2

Table 4.7: Final Classification

4.5 Chapter Summary

In this chapter we presented the classification of the profile section based on

the manual approach of the archaeologists. In order to define shape character-

istics, a classification scheme was defined. The profile was segmented based

on local changes in curvature, therefore B-Splines have been applied to the

profiles. Three levels of classification based on characteristic measurements

and the segmentation of the profile allowed the grouping of the fragment

into specific vessel forms and specific vessel types. Results were shown for

each intermediate step. The classification scheme presented depends on the

excavation site. In order to apply our algorithm to other fragment-fabrics we

have to redefine the classification scheme based on the characteristics of the

specific fabric.
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Chapter 5

Mosaicing

The assembling of an object from pieces is called mosaicing [70]. In our case,

mosaicing refers not only to the reconstruction of a pot from its fragments,

but also to the reconstruction of a pot or fragment out of its profile section.

It is similar to the automatic assembly of jigsaw puzzles, which among others

has been addressed by [13]. In [68] a system for analyzing and assembling

a 2D image of pieces of a jigsaw puzzle is presented. The matching method

is based on the shape and color characteristics of the pieces. However these

approaches rely on specific characteristics of the pieces like color, critical

points, or no gaps between matching pieces.

More generally mosaicing can be seen as a special case of object recog-

nition by approximate outline matching: The specific problem of identifying

adjacent ceramic fragments by matching the shapes of their outlines was con-

sidered by Üçoluk and Toroslu [126]. They represent the 3D fragments by

their boundary curves. From the 3D boundary curve data, curvature and tor-

sion scalars are computed. A noise tolerant matching algorithm serves to find

the best match of two such circular strings. Üçoluk and Toroslu disregard

the interior of the broken surface and their method is therefore restricted to

thin-walled objects. No experiments with real pottery data are reported.

Hori et. al. [40] propose a method for joint detection among two pot-

sherds designed for pottery fragment outlines. They consider that 2D images

instead of 3D shape data are applicable. Their approach is based on a par-

tial verification method of a pair of contours without knowledge of the shape

features of a piece.
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Kong et. al. [67] approach the jigsaw problem in two stages: first, local

shape matching aims to find likely candidate pairs for adjacent fragments.

Second ambiguities resulting from local shape matching are resolved by a

global solution. The matching is based on the notion of an alignment curve

to represent a correspondence between two curves. They generalize the curve

matching to 3D by computing a distance metric based on speed, curvature,

and torsion. Experiments are shown, but no explanation of the accuracy and

usability of the method are given.

2D Potsherd reconstruction based on shape similarities is presented by

Kanoh et. al. [64]. In a first step they join potsherds in two dimensions. The

contour of a potsherd is divided into sub-contours by salient points [104], and

the matching of the sub-contours is performed by P-type Fourier descriptors.

In the second phase, three dimensional shape is recovered by mapping the

2D points into the 3D coordinate system of a cone or a cylinder. They claim

that their system only works for thin, moderately flat and small fragments,

consequently their approach is limited to a very specific range of fragments.

The computed 3D model only represents the real object if the shape of the

real objects corresponds to a cone or cylinder.

Marques et al. [80] present a 2D object matching technique based on the

comparison of a reference contour to the contours in the image partition. The

comparison is based on a distance map that measures the Euclidean distance

between any point in the image to the partition contours. The accepted

transformations depend on the minimum of a given cost function.

H.C.G. Leitǎo introduced, in her PHD-thesis [72], a method for auto-

matic reassembly of two-dimensional fragments. Together with Stolfi [73] she

demonstrates a multiscale matching method based on the idea that the out-

lines of two matching fragments are two noisy copies of the same time-domain

signal. They compute the curvature encoded fragment outlines in order to

compare possible matching candidates. To reduce the cost of computing the

optimum pairing for a candidate, they progressively increase scales of res-

olution. The implementation is restricted to flat objects, such as tiles and

murals. For curved fragments the three-dimensional geometry of the fracture

line must be recovered with fairly high resolution, so as to have a represen-

tation of the fracture line that is insensitive to the fragment’s orientation in
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three dimensions.

G. Papaioannou et. al. [91, 93] present a semi-automatic reconstruction

of archaeological finds from a geometric point of view: they rely on the broken

surface morphology to determine correct matches between fragments. In the

first stage they estimate coarse surface regions (i.e. the fractured side of

the fragment) by surface bumpiness estimation [92]. It is based on a region

growing algorithm, which estimate the deviation of the surface normals from

an average surface normal. If the deviation exceeds a certain threshold, a

new region is defined. In the second stage, a matching error is calculated

for all candidate regions of every possible pair of fragments. Minimizing the

matching error through enhanced simulated annealing performs fragment

matching. The third stage computes the final reconstruction by selecting

those fragment combinations that minimize an overall error. The method

was tested on up to 35 statuary fragments, of which 90 percent were matched

correctly.

Summarizing existing techniques on the assemblage of virtual pots we

observe a main focus on the analysis of the outline of the break curve: 2D

outline matching is most common [73, 64, 67, 13, 68], but work on 3D outline

matching exist [126]. Surface matching of fractured surfaces is proposed in

[91]. So far, no complete system from acquisition to reconstruction has been

described.

This chapter is organized as follows. In Section 5.1 we introduce the

determination of the description language based on the work of Sablatnig

[107] and Menard [85]. Then we present the fragment retrieval in order to

get the optimal pairing of matching candidates (Section 5.2). Section 5.3

describes the algorithm for matching the oriented and classified fragments.

The chapter concludes with a chapter summary.

5.1 Determination of Description

In order to reconstruct complete pots out of fragments, profiles with similar

attributes are to be found in an archive database. Classification of newly

found fragments of unknown type is performed by comparing the description

of the new fragment with the description (see Section 4.1) of already classified
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fragments. The fragment structure is formed by its shape features (or geomet-

ric features like the profile) and its properties (or material like clay, color and

surface) as shown in Figure 5.1. The description of the fragment is structured

in a description language consisting of primitives and relations. Primitives

are a representation of shape features, relations represent the properties.

Figure 5.1: Fragment structure.

From the description language point of view, the modeling can be inter-

preted as a syntactic pattern recognition approach in which the primitives

are transformed into the vocabulary and the relations are transformed into

a grammar [29]. This approach makes use of the idea of shape decomposi-

tion; it divides complex shapes into simple elementary units, i.e. primitives.

This can be seen as an application of semantic networks [17], because se-

mantic networks are labeled, directed graphs whose nodes represent objects,

sub-objects, or shape primitives and whose arcs represent relations between

them. A set of attributes that describe different features is attached to each

node; a set of attributes that describe different properties is attached to each

arc. Once the fragment is transformed to this representation all operations

for classification and reconstruction can be executed on this graph structure.

The advantage of a description language lies in the uniqueness of represen-

tation, different fragments result in different descriptions, similar fragments

result in similar descriptions [107].
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The description language, which was originally designed to solve 2D au-

tomatic visual inspection problems [107], is applied and extended in order

to solve the classification problems. The actual profile contains features,

which are a representation of shape features. To accomplish classification,

primitives are further subdivided into part-models (or part- primitives), the

consistency between part-primitives is established by relations among part

parameters.

Formally, the description language is a graph G =< O, R >, where O =

{m|1 <= m <= n} denotes the set of nodes and R = {< c, d > |c, d ∈ O}
the set of arcs. A node O consists of different sub-objects or primitives. Each

node has different attributes a, with weights w, and a tolerance T (a) defined

as

T (a) =

{

1, if|adb − anw| ≤ c, and
1

|adb−anw |
otherwise

(5.1)

where c is the allowed tolerance, adb denotes the value of attribute a in the

archive, and anw the value of the attribute a of the object.

Two nodes are in relation according to R. Each relation < c, d > is

decomposed into k sub-relations between the same nodes, each with a weight

v and a tolerance T (r). Figure 5.2 shows the graph and the inner structure

of nodes and arcs. The shape primitive S1 is subdivided into c different

shape primitives (such as profile, diameter and the like). For each of these

shape primitives n different sub-primitives (such as rim, wall and the like)

are defined. Since the manual segmentation of the profile varies tolerances

and weights are included in the description. Note that all attributes and

relations contain numerical values.

The weights w and v are necessary for classification. Each property has

a certain weight in order to verify the corresponding description to a given

fragment. The verification of fragment to description consists of verifying

whether the number and type of features and primitives are the same. Next,

attributes and relations are checked to verify whether they match within

given tolerances. Comparing all attributes of a node and its successors with

the model carries out the verification process. The confidence for a node can

be computed based on the result of the comparison:
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Figure 5.2: Description language graph.

conf(p) =
n

∑

g=1

wg ∗ T (ag) +
m

∑

(p,g)

v(p,q) ∗ conf(q). (5.2)

where wg are the weights of the attributes of the nodes and v(p,q) the weights

of the sub-relations of the arcs. Observe that n, the number of attribute

values, and m, the number of arcs, depend on the node p. Moreover, for

leaves we have:

conf(p) =
n

∑

g=1

wg ∗ T (ag). (5.3)

This enables us to compute the confidence of a node by summing up the

weighted tolerances of each attribute of the node and the overall confidence

of the subgraph connected to this node. By computing the consistency for

different descriptions, the one with the highest confidence value can be chosen

if the confidence is above a certain threshold. For a given profile all primitives

are represented in the description of the profile.

5.2 Fragment Retrieval

In order to describe a vessel or a fragment using the description language,

primitives and attributes together with their weights have to be defined.
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The optimal setting of the weights was found empirically. We defined the

following primitives and attributes (Figure 5.3):

1. Pot P : a pot is a complete pottery object, which consists of one to

many fragments. It is the reconstructed pot. It has its own coordinate

system called the pot coordinate system.

Attributes:

• fabric (fP , w = 1): the fabric defines the excavation site.

• Vessel coordinates (vP , w = 1): The pot coordinate system defines

the position of the fragments on the pot.

2. Fragment F : A fragment represents a piece of a pot and consists of

many primitiva.

Attributes:

• Primitive (ptF , w = 0.9): Rim, wall or base.

• Profile Line (plF , w = 0.9): Cross section of the fragment in the

direction of the axis of rotation. The profile is used for classifica-

tion.

• Height (hF , w = 0.5): Height of the fragment.

• Characteristic ratio (rchrF
, w = 0.6): The ratio between height

and rim-diameter.

• Characteristic points (chF , w = 0.7): These points divide the pro-

file line into its primitives.

• Color (cF , w = 0.9): Color of the fragment.

• Position (pF , w = 0.9): Bottom up or bottom down position of

the fragment.

• Material (mF , w = 1): Type of material of the fragment.

• Archaeological Editor (edF , w = 1): A person who found the piece.

• Archaeological Label (lbF , w = 1): Specific archaeological label of

the fragment.
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• Prospectus Drawing (drF , w = 1): A drawing of the fragment,

which may be used for archaeological publications.

• Date: (dtF , w = 1): Finding date.

3. Rim (R): A rim is the upper part of a fragment.

Attributes:

• Rim Diameter (rdmR, w = 1).

• Starting point (spR, w = 1).

• Orifice point (opR, w = 0.9).

• Inflexion point (ipF , w = 0.9).

• Local maximum (maF , w = 1).

4. Wall (W ): A wall is the middle part of a fragment.

Attributes:

• Wall diameter (wdmW , w = 1).

• Inflexion point (ipW , w = 0.8).

• Local maximum (maW , w = 0.8).

• Local minimum (miW , w = 0.8).

• Corner point (cpW , w = 0.6).

• End point (epW , w = 1).

5. Base (B): A base is the lower part of the fragment.

Attributes:

• Bottom diameter (bdmB, w = 0.8).

• Local maximum (maB, w = 0.8).

• Local minimum (miB, w = 0.8).

• Base point (bpB, w = 0.9).

• Corner point (cpW , w = 0.7).

• Point of the axis of rotation (rpB, w = 1).
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Following the definition of primitives, relations between them complete

the description.

R1: F = {m ∈ P |1 <= m <= n}, v = 1, A pot consists of one to many

fragments.

R2: v = 1, Rim fragments have an orifice plane.

R3: v = 0.8, Wall fragments have neither an orifice plane nor bottom plane.

R4: v = 0.8, Bottom fragments have a bottom plane.

R5: rchrF
= 1 : 8, v = 0.6, Defines a plate by its characteristic ratio.

R6: Rim: rdmF = [16..34cm], v = 0.9 Defines a plate by its rim diameter.

R7: rchrF
= 1 : 2 − 1 : 4, v = 0.6 Defines a bowl by its characteristic ratio.

R8: Rim: rdmF = [10 − 16; 12 − 30cm], v = 0.8 Defines a bowl by its rim

diameter.

R9: rchrF
= 1 : 1, v = 0.6 Defines a beaker by its characteristic ratio.

R10: Rim: rdmF = [8−16cm], v = 0.9 Defines a beaker by its rim diameter.

R11: Wall: wdmF = [5 − 14cm], v = 0.9 Defines a beaker by its wall

diameter.

R12: rchrF
= 4 : 1 − 2 : 1, v = 0.6 Defines a jug by its characteristic ratio.

R13: Rim: rdmF = [6 − 14cm], v = 0.9 Defines a jug by its rim diameter.

R14: rchrF
= 1 : 1 − 3 : 1, v = 0.6 Defines a pot by its characteristic ratio.

R15: Rim: rdmF = [8− 12; 12− 16cm], v = 0.9 Defines a beaker by its rim

diameter.

R16: Wall: wdmF = [15 − 25; 18 − 21cm], v = 0.9 Defines a beaker by its

wall diameter.
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Figure 5.3: Description language for archaeological pottery.

Figure 5.4 describes an example for the retrieval. Each fragment has a

unique number when archived. Together with all attributes the fragment is

stored in the description. The left side shows a profile, which was classi-

fied as bowl and separated into edge (E048), border (B012), and ringbase

(R145). These primitives are the basis for the classification and reconstruc-

tion process. On the right hand side a fragment, which is not yet classified

is depicted, thus the type of the pot is not yet known. The profile is manu-

ally segmented into its primitives by an archaeologist and the corresponding

attributes like color, surface, and dimensions are determined. In order to clas-

sify the fragment (find the pot in the database that matches the fragment) the

generated description is compared with already existing descriptions. If the

profile primitives of the fragment can be found in the description and other

attributes match within a given tolerance, the type of the fragment can be

classified as bowl. Furthermore, missing parts of the fragment (like the base

in this case) can be reconstructed based on the already stored information.

5.3 Fragment Matching

The optimal pairing of matching candidates obtained as a in from the previ-

ous section serves as input for the fragment matching part. Consequently we
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(a) (b)

Figure 5.4: Retrieval of similar fragments: a) description of known bowl, b)
description of fragment of unknown type.

know those pairs of fragments which were probably adjacent in the original

object. We virtually glue two matching fragments together by computing

the transformation parameters, which bring two candidate fragments into

alignment.

In order to represent the matching of two fragments, G. Papaioannou et.

al. [91] describe seven pose parameters. In their approach the two fragments

are first prealigned so that their broken facets face each other. In our case we

know the orientation of a fragment, consequently we prealign two candidate

fragments by simply aligning their axis of rotation. As a result, a two-

degrees-of-freedom continous search space is defined. The transformation

which matches two candidate fragments consists of a translation along the

z-axis with parameter Tz and a rotation around the z-axis with parameter

Rz (see Figure 5.5).

The basic concept in our method for estimating Rz is that the best fit is

likely to occur at the relative pose which minimizes the point-by-point dis-

tance between the facing outlines. For this reason, we introduce a matching

error εM based on the mean Euclidian distance between the corresponding

points of the outlines of the candidate fragments with points X = (x, y) and
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Figure 5.5: Fragment Matching with 2-degrees-of-freedom.

X ′ = (x′, y′):

εM =
1

N

N
∑

i=1

√

(xi − x′
i)

2 + (yi − y′
i)

2. (5.4)

where N is the number of data points used. The height of the fragment, which

was estimated in Section 4.3 limits the length of the matching segments.

Different fragments types lead to the following matching possibilities:

A Rim fragments: first Tz is computed by aligning the rim along the orifice

plane. Next Rz is estimated, so that the positioning transformation

with the smallest matching error εM is considered to be the correct

position. Figure 5.6 shows matching outlines of two rim-fragments.

B Bottom fragments: first Tz is computed by aligning the bottom along

the base plane. Next Rz is estimated in the same way as for rim

fragments.

C Wall fragments: Candidates are first aligned along their profile sec-

tions. Next Rz is estimated in the same way as for rim fragments.

Since it is not clear whether a new candidate fragment is in bottom

up or bottom down position, we have to compute Rz and Tz for both

positions. The positioning transformation with the smallest matching

error εM is considered to be the correct position.
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Figure 5.6: Matching outlines.

Matching algorithm

1. Define reference fragment Fref with its axis of rotation ROTref : defines

a new pot P , creates the pot coordinate system, ROTref is aligned to

the z-axis.

2. Prealignment of the candidate fragment Fcand by its axis of rotation

ROTcand: ROTcand is aligned to ROTref . This results in a two-degrees-

of-freedom search space.

(a) translation Tz along the axis of rotation (up/down).

(b) rotation Rz around the axis of rotation.

3. Estimation of the translation parameter Tz: search for minimal distance

d between all y-values (radius) of the profile of Fref and the profile of

Fcand.

Exception A: Rim fragments are aligned along the orifice plane.

Exception B: Bottom fragments are aligned along the base plane.

When the candidate fragment is a wall fragment, the minimal distance

d is computed for both positions, and the one with the smaller is con-

sidered to be the correct position.
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4. Estimation of the rotation parameter Rz by finding the position with

the smallest matching error εM .

5.4 Chapter Summary

In this chapter we described the assemby of an object from pieces, which

in our case means the reconstruction of a pot from its fragments, but also

the reconstruction of a pot out of its profile section. In order to find the

confidence between two fragments, a description language was applied. A

vessel or fragment was transformed into the description language by defining

primitives and attributes. In order to find the candidate fragments that could

match a fragment the generated description is compared with already existing

descriptions. Since we know the orientation of the candidate fragments we

defined a two-degrees-of-freedom search space for representing the alignment

of two fragments. A matching algorithm based on the minimal arc length

between points of the fragment’s outline was proposed.
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Chapter 6

Reconstruction Results

This chapter presents the tests performed on the reconstruction method de-

scribed in this work and analyzes their results. We have tested our recon-

struction method on object models, both computer generated and 3D digi-

tized models of real fragments. First we illustrate results on the reconstruc-

tion of profiles in Section 6.1. Then we present results and experiments for

the reconstruction of fragments out of their profiles (Section 6.2). Results for

the vessel reconstruction out of multiple fragments are shown in Section 6.3.

In Section 6.4 an archaeologist comments the results of the thesis. Finally

Section 6.5 concludes with a short summary.

6.1 Reconstruction of Profiles

We illustrate three reconstructed profiles which thereby represent further

profile reconstructions from our pottery dataset. The x- and y axis denote the

diameter and the height (y = 0 in the middle) of the fragment respectively.

The area between the inner and outer profile is drawn black in order to have

a similar representations as manual drawings. This automatically generated

drawing is intended to use in archaeological publications.

Figure 6.1a shows the profile of fragment 1 from box 2 (Figure 6.1b)

with an average inner diameter of 9.56 and an average outer diameter of

10.38. The computed average thickness is 0.81cm. The average height of the

fragment is 6.5cm. The profile represents a wall fragment, which is indicated

by the straight ending at the top of the profile.
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(a) (b)

Figure 6.1: (a) reconstructed profile section and (b) Image of fragment 1
from box 2.

Figure 6.2a shows the profile of fragment 6 from box 2 (Figure 6.2b) with

an average inner diameter of 2.01 and an average outer diameter of 3.04. The

computed average thickness is 1.03cm. The average height of the fragment

is 10.06cm. The profile represents a rim fragment, which is indicated by the

curved ending at the top of the profile.

Figure 6.3a shows the profile of fragment 8 from box 1 (Figure 6.3b) with

an average inner diameter of 15.58 and an average outer diameter of 10.97.

The computed average thickness is 0.39cm. The average height of the frag-

ment is 5.1cm. The profile represents a wall fragment, which is indicated by

the straight ending at the top of the profile.

As discussed in Section 3.4 the evaluation of the profile reconstruction is

rather complicated since ground truth is not available due to the fact that

there is no 3rd dimension in achaeological archive drawings.
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(a) (b)

Figure 6.2: (a) Reconstructed profile section and (b) Image of fragment 6
from box 2

(a) (b)

Figure 6.3: (a) Reconstructed profile section and (b) Image of fragment 8
from box 1
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6.2 Reconstruction of Fragments out of their

Profile

The rotation of the profile section along its axis of rotation leads to a vir-

tual model of the fragment or the whole vessel. We construct the profile

using methods described in Section 3.3. A computed profile and the axis

of rotation are shown in Figure 6.4a. It was rotated 360 degrees around the

axis of rotation in order to construct the vessel in 3D. Next the resulting 3D

point cloud was triangulated and the acquired texture was mapped onto the

triangulated mesh. Figure 6.4b shows the reconstructed pot.

(a) (b)

Figure 6.4: 3D profile section and 3D reconstruction out of the profile section.

In order to demonstrate the correctness of the computed profile lines, Fig-

ure 6.5 shows a recorded sherd (dark object) and its computed profile section

(vertical line). The computation of the virtual fragment (grey object) is based

on the profile section. One can see that the recorded fragment fits into the

virtual fragment, which indicates that the computation is correct. Looking

at multiple cross-sections along the perimeter of the virtual fragment (Fig-

ure 6.6a), one can observe hardly any deviation from the original fragment.

Some deviations are caused by the bumpiness of the surface, because it is

not exactly rotationally symmetric, since it is hand-made pottery.

If the fragment was not orientated correctly, the recorded fragment does

not fit into the virtual object and multiple cross-sections along the perimeter
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Figure 6.5: Reconstructed fragment, profile section and recorded fragment:
correct reconstruction.

of the virtual fragment show large deviations from the original object (see

Figure 6.6b).
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(a) (b)

Figure 6.6: Multiple profile lines: (a) using a correct estimated rotational
axis (b) using a incorrect rotational axis.

Figure 6.7 shows an incorrect reconstruction due to incorrect computa-

tion of the axis of rotation. It shows a recorded sherd (dark object) and

its computed profile section (light line). The computation of the virtual

fragment (grey object) is based on the profile section. One can see that the

recorded fragment does not fit into the virtual fragment, which indicates that

the computation is not correct.
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Figure 6.7: Reconstructed fragment, profile section and recorded fragment:
incorrect reconstruction.

Figure 6.8: Reconstructed vessel piece 04-01: (a) image and (b) reconstruc-
tion.

Rotating the profile section 360 degrees around the axis of rotation leads

to a virtual reconstruction of the vessel. The resulting virtual model visually

gives an idea about the size and the shape of the object. It is not possible to

say if the virtual model represents the real model correctly since ground truth

is not available, e.g. if a feature like a handle is not present in the fragment

data, it is also not present in the reconstruction. In order to overcome this

drawback we need to find the fragment, which contains the handle of that

specific vessel. Figure 6.8a shows an image of a rim fragment (piece01,box

4), and (b) the reconstructed vessel.

Two examples of wall fragments are presented in Figure 6.9a and b. As

in the previous example, one gets an idea about the shape and the size of the
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Figure 6.9: Reconstruction of a fragment out of its profile section ((a) piece04-
09 and (b) piece04-07).

original vessel, but there is no indication of possible handles, for example.

6.3 Reconstruction of Vessels out of Mutliple

Fragments

A series of experiments were run upon synthetic 3D data, parts of com-

mercially available flowerpots and fragments of our 3D pottery dataset. We

present results on each type of experiments.

6.3.1 Synthetic Data

In order to evaluate the results we have tested our method on synthetic 3D

data of three parts of a synthetic pot. Part 1 represents a rim fragment and

contains 39559 points, part 2 represents a rim fragment too and contains 2700

points, and part 3 represents a wall fragment and contains 21750 points.

The orientation of the fragments is defined, which leads to three perfect

matching parts. Figure 6.10 and Figure 6.11a show the three parts as mesh

plot together with their axis of rotation.

Starting with part one as reference fragment for each candidate the match-

ing error was computed. Since the data provides perfect matches, a minimal

value of the matching error εM = 0.00 was found for both candidate frag-

ments. No matching error between fragment two and three was computed
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(a) (b)

Figure 6.10: Synthetic 3D data: (a) part 1 and (b) part 2 of a synthetic pot.

because there was no alignment between their profile sections (i.e. part two

is exactly above part three). Figure 6.11b shows the reconstructed object.

Table 6.1 summarizes Tz, Rz and the matching errors for each possible can-

didate. RFnr and CFnr denote the number of the reference fragment and the

number of candidate fragment respectively, and εM denotes the matching

error. The experiment shows a 100% theoretical accuracy of the approach.

(a) (b)

Figure 6.11: (a) part 3 of a synthetic pot and (b) Matching parts 1, 2, and
3.

To find out if the method is working on real data, we used a flowerpot

with known dimension which is described in the next section.
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RFnr. CFnr. Tz [mm] Rz [deg] εM

1 2 70 60 0.00
1 3 53 125 0.00
2 3 x x x

Table 6.1: Results of the matching process using synthetic 3D data.

6.3.2 Flowerpot

In order to get data of matching fragments of a whole pot, we broke a flow-

erpot into 5 parts (See Figure 6.12). We got three rim fragments, one wall

fragment and one bottom fragment. Each part was digitized leading to a

front and back view of each fragment. Table 6.2 shows the number of points

and triangles computed. The biggest part (nr. 2) covers half of the pot and

consists of 135070 triangles, whereas the smallest consists of 8210 triangles.

Figure 6.12: 5 parts of a flowerpot.

Next we computed the orientation of the fragments, which leads to four

matching candidates and one not processable object: a large part of the

bottom fragment (see Figure 6.13) consists of flat area. It was therefore

excluded from further processing due to its curvature being too low.

Starting with part one as reference fragment for each candidate a match-

ing error was computed. Next part two was defined as reference fragment

and again for each remaining candidate a matching error was computed. This

procedure was continued until no candidate remained. Table 6.3 summarizes
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part nr view points triangles
1 front 43045 85299
1 back 43169 85417
2 front 68185 135070
2 back 54640 106641
3 front 21713 42853
3 back 22729 44847
4 front 14715 28676
4 back 4234 8180
5 front 9378 18393
5 back 10031 19668

Table 6.2: Number of points and triangles.

Figure 6.13: Part 4: bottom fragment.

Tz, Rz and the matching errors for each possible candidate. RFnr. and CFnr.

denote the number of the reference fragment and the number of candidate

fragment respectively, and εM denotes the matching error. The value of εM

for correct matches ranges from 1.12 to 0.63, the combination of part 3 and

5 shows an incorrect match with an error εM of 12.92.

Figure 6.14a displays the resulting match of part 1 and part 3 as both

parts are rim fragments, Tz was computed by alignment along the orifice

plane (see Section 3.1.1). Figure 6.14b shows the resulting match of part 1

and part 5. Since part 5 is a wall fragment the εM was computed for both

possible positions, and the position with lower εM was finally choosen.

Figure 6.15 shows the final reconstruction of the pot. Correct matches

98



RFnr. CFnr. Tz [mm] Rz [deg] εM

1 2 12.03 22.81 1.12
1 3 8.67 -41.29 0.81
1 5 9.34 73.21 0.63
2 3 -4.94 17.61 0.92
2 5 -10.02 -26.75 0.71
3 5 11.10 32.99 12.92

Table 6.3: Translation Tz in [mm], Rotation parameter Rz in [deg] and match-
ing error εM of all candidate fragments.

(a) (b)

Figure 6.14: Matched parts: (a) part 1 and part 3 (b) part 1 and part 5.

for all four candidate fragments have been found. The missing bottom of the

pot is due to part 4, not being processable because of its flat shape.

6.3.3 Archaeological Fragments

We applied our technique to real archaeological fragments (Nr: 319-71, 209-

71 from the late Roman burnished ware of Carnuntum [33]), as shown in

Figure 6.16. Both pieces are rim fragments. Each part was digitized leading

to a front and back view of each fragment. Table 6.4 shows the number of

points and triangles computed.

Next we computed the orientation of the fragments. The alignment along

the orifice plane allowed the estimation of Tz = 7.49cm. The smallest

εM = 0.31 was found for Rz = 3.35◦. Figure 6.17a shows the matched
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Figure 6.15: Matching parts 1, 2, 3, and 5

outlines of the two fragments and Figure 6.17b shows the final reconstruc-

tion. Due to the dense sampling and the non eroded fracture sides of the

original fragments (the fragment was possibly broken during excavation) the

reconstruction method managed to yield to a small matching error.

part nr view points triangles
1 front 15248 26774
1 back 14979 25255
2 front 2526 3680
2 back 2836 4059

Table 6.4: Number of points and triangles.

Another example on real archaeological fragments is shown in Figure

6.18: (a) One rim and (b), (c) two wall fragments from the common ware

of Sagalassos were recorded and their geometrical representation is shown.
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(a) (b)

Figure 6.16: Archaeological rim fragments: (a) Part1, (b) Part 2.

(a) (b)

Figure 6.17: Archaeological rim fragments: (a) Matching outlines, (b) Match-
ing parts.

The number of points and triangles of the front and back views are shown in

Table 6.5.

After the estimation of the orientation we started with part one as refer-

ence fragment and computed for each candidate a matching error. Next part

two was defined as reference fragment and again for each remaining candi-

date a matching error was computed. This procedure was continued until no

candidate remained. Table 6.6 summarizes Tz, Rz and the matching errors

for each possible candidate.

Correct matches were found between part one and part two (εM = 1.32)

and part two and part three (εM = 1.21). No correct match was found
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(a) (b) (c)

Figure 6.18: Archaeological rim fragments: (a) Part 1, (b) Part 2, (c) Part 3.

part nr view points triangles
1 front 4770 9156
1 back 4800 9222
2 front 6575 12712
2 back 6685 12952
3 front 7720 14982
3 back 8566 16522

Table 6.5: Number of points and triangles.

between part one and part three (εM = 14.81), because there was no aligne-

ment of the profile sections (part one is on top of part three). Nevertheless

all three fragments were matched together, since the matching of part two

suceeded for both candidates. Figure 6.19a shows the matched outlines of

the fragment one and two and Figure 6.19b shows the final matching of

three fragments. The reconstructed pot out of the combined profile sections

of part one and part two together with its axis of rotation is shown in Figure

6.19c.

RFnr. CFnr. Tz [mm] Rz [deg] εM

1 2 -4.29 11.70 1.32
1 3 -1.61 7.59 14.81
2 3 -5.19 15.76 1.21

Table 6.6: Results of the matching process using archaeological data.
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(a) (b) (c)

Figure 6.19: Archaeological rim fragments: (a) Matching outlines, (b) Match-
ing parts, (c) Reconstruction out of the matched profile sections.

The results demonstrate the possibility of automatically matching adja-

cent fragments by our method. It works for fragments which can be ori-

entated and classified by our approach with one exception: two adjacent

fragments on top of each other cannot be matched by our method, because

they do not have overlapping profile sections. Furthermore if the surface of

the fragment is too flat or too small (see Section 3.1.1) or the classification

is not known, the fragment is not considered for reconstruction.

6.4 Archaeological Point of View

In order to evaluate the relevance of the results to archaeology Kristina Adler,

who is an archaeologist and member of our interdisciplinary project Com-

puter Aided Classification of Ceramics (see Section 1.3) comments this thesis

from an archaeological point of view:

“This thesis describes the automated documentation of archaeological

pottery. It describes a complete system from data acquisition of pottery

until the final drawing of a fragment. The referenced problems of the docu-

mentation of archaeological pottery are well known within archaeology.

This thesis represents a valuable contribution to decrease the amount of

work necessary for the archival of pottery found on archaeological excava-

tions. As an archaeologist, I identify the automatic and therefore objec-

103



tive generation of profiles and the implicit finding of the correct orientation

of fragments as a major improvement with respect to archaeological docu-

mentation. Rather than having access to virtual reconstructions of pottery,

speeding up the documentation process is of greatest importance for every

ongoing excavation. The proposed solution for automatic classification is

based on classification rules developed from archaeologists [2], which is not

only of crucial importance for the correctness of the results, but also supports

the acceptance of a new tool for archaeology. The final reconstructions and

3D models allow new perspectives to save Cultural Heritage such as those

integrated in virtual museums. Fast access to the archived data may widen

the scope of archaeological research.

The author exchanged and cross-checked his ideas on the topic with the

associated archaeological community, which is expressed in a number of pub-

lications in conferences on Computer and Archaeology in recent years.

New technologies applied to archaeology often raise the problem of fund-

ing and are simply not affordable for archaeological research groups. Conse-

quently I do hope that the very promising tool described in this thesis will

be finally developed by a company and can prove its applicability on a wide

range of excavations.”

Maga. Kristina Adler, City of Vienna, Department of Urban Archaeology.

6.5 Chapter Summary

In this chapter we showed results on the assembly of an object from pieces,

which in our case means the reconstruction of a pot from its fragments, but

also the reconstruction of a pot out of its profile section. First we showed

results on the reconstruction of profiles. Then we presented results and exper-

iments for the reconstruction of fragments out of their profiles. The outcome

on vessel reconstruction out of multiple fragments was described by synthetic

and real 3D data. Finally an archaeologist gave a statement on the results

from her point of view.
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Chapter 7

Conclusion and Outlook

In this thesis we have presented a complete archaeological data system that

begins with scanning both the geometry and color of pottery fragments, and

addresses the processing and classification of the acquired data in order to

finally reconstruct the fragments into complete vessels. In this concluding

chapter the feasibility of the methods presented is discussed (Section 7.1).

Furthermore, the contributions of the thesis are summarized in Section 7.2

and an outlook on future work is given in Section 7.3.

7.1 Feasibility of the Approach

To meet the needs of archaeologists an automated fragment reconstruction

system should include facilities for image acquisition and segmentation, visu-

alization, and user interaction [91]. In order to discuss the feasibility of the

complete pottery documentation and reconstruction system presented every

phase of the approach needs to be examined.

For recording of pottery on site, a handheld device was presented. The

quality in terms of usability of the acquired data depends on the experience

of the user, consequently potential users have to be trained:

• Knowledge of the scanning equipment (features of the camera, place-

ment of the object, lighting conditions, etc.).

• Knowledge of the objects to be scanned: which parts of the object are

essential? Important parts (e.g. rim, texture, curvature, etc. ) should
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be recorded and therefore have to be known a priori.

• Knowledge of the scanning process: how to handle occlusions, reflec-

tions, etc.

From a practical point of view the acquisition task consists of various

tasks like setting up the acquisition equipment, selecting the material, find-

ing optimal lighting conditions and acquiring the data. In our approach it

therefore represents the most time consuming part of the whole reconstruc-

tion process.

The processing of the acquired data is limited by symmetry constraints,

i.e. if the surface of the fragment is too flat or too small. Similar to the

manual documentation process, these fragments are preselected by the sys-

tem and excluded from further processing (see Section 3.4 for a comparison

of manual and automated processing).

Our reconstruction approach depends on the classification of qualitative

features of the fragments and uses methods to explicitly define the structure

of the final, complete object, which must be known a priori. The classification

algorithm is not general and is applicable only to specific types of archaeo-

logical fragments that have to be labeled and categorized beforehand. From

the reconstruction point of view, our approach lacks on general applicability,

but from a practical or archaeological point of view, our approach leads to an

automatic reconstruction and documentation system. Archaeologists benefit

from a decrease in the amount of work needed for archival, and from having

access to virtual reconstructions of pottery [2].

The system proposed does not yet provide a user interface, except for

acquisition and processing. Our system will be integrated into the 3D-

MURALE environment, for which a user interface will be developed [108].

Human intervention is not required but can clarify the final reconstruction

result by interactively imposing restrictions on the final combinations of ob-

jects. Due to the deteriorated state of most archaeological finds, an auto-

mated procedure cannot always replace archaeological expertise. The meth-

ods proposed -with the exception of classification- are not limited to archae-

ological finds, as they do not rely on specific archaeological information and

can therefore be applied in other 3D acquisition and modeling applications.
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7.2 Thesis Summary

In this thesis, we have presented a solution for automatic documentation of

archaeological pottery, which constructs a complete model of a vessel out

of multiple fragments. After describing the archaeological background and

stating the problem in the introduction (Chapter 1), 3D data acquisition

with respect to archaeological requirements was demonstrated (Chapter 2).

We identified four different acquisition techniques, developed for the record-

ing of profile sections, pottery fragments, complete vessels and color.

Chapter 3 addressed the processing of the recorded fragment data in order

to compute their profile sections. First the orientation of the fragment was

estimated by computing the axis of rotation. Based on the computed axis a

model based registration technique was performed. Then the profile section

was estimated which served as a basis for the documentation and subsequent

classification.

The classification process described in Chapter 4 tries to find different

fragments belonging to the same vessel. We determined shape characteristics

by segmenting the profile section. A curvature based segmentation method

based on B-splines was chosen. In order to generate primitives we applied a

classification scheme on the basis of absolute measurements and ratios.

In Chapter 5 the reconstruction of a virtual vessel out of fragments was

described. We proposed a description language in order to compute the

confidence between two fragments. The matching between two candidate

fragments is estimated by a two-degrees-of-freedom approach.

The applicability of the concept was demonstrated by various experiments

described at the end of each chapter. The pottery dataset used for the

experiments contained 70 fragments.

7.3 Future Work

In this work all necessary steps for automated reconstruction of archaeological

pottery have been presented. Future work will be directed towards decreasing

the limits and restrictions described in Section 7.1, and towards extending

the scope of the algorithms presented so that they can be applied to other
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fields of research (e.g. art restoration, failure analysis, handwritten numeral

recognition, object recognition using shape context, ...).

In particular we will integrate our pottery tool into the 3D-MURALE

system, which will then be linked to a user interface and a database. In or-

der to set up a 3D pottery database with more then 1000 fragments, further

recording of fragments is planned. We intend to use pottery from one exca-

vation in order to test all steps of the reconstruction with the same pottery

ware.

Another interesting challenge would be to combine the methods proposed

with other, like the one listed in the introduction section, in order to inves-

tigate the possibility of a reliable and fully automated object reconstruction

procedure.
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1986.

[34] M.B. Hagstrum and J.A. Hildebrand. The two-curve Method for Re-

constructing Ceramic Morphology. American Antiquity, 55(2):388–403,

1990.

[35] R. Haĺı̌r. Estimation of Rotation of Fragments of Archaeological Pot-

tery. In W. Burger and M. Burge, editors, Proc. of the 21st Workshop

of the Austrian Association for Pattern Recognition (ÖAGM), pages
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[113] A.O. Shepard. Ceramics for Archaeologists. Washington (9th reprint

1976), 1956.

[114] Y. Shirai. Three-Dimensional Computer Vision. Springer-Verlag, 1987.

[115] A. Shoukry and A. Amin. Topological and Statistical Analysis of Line

Drawings. Pattern Recognition Letters, 1:365–374, 1983.

[116] J. L. Simonds. Application of characteristic vector analysis to photo-

graphic and optical response data. Journal of the Optical Society of

America, 53:968–974, 1963.

[117] C.M. Sinopoli. Approaches to Archaeological Ceramics. New York,

1991.

[118] C. Steckner. SAMOS: Dokumentation, Vermessung, Bestimmung und

Rekonstruktion von Keramik. Akten des 13. internationalen Kon-
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In Kandler M., editor, Lebendige Altertumswissenschaft: Festgabe zur

Vollendung des 70. Lebensjahres von Hermann Vetters dargebracht von

Freunden, Schülern und Kollegen, pages 423–427, Wien, 1985.

[129] G. Webster. Romano-British Coarse Pottery: A Students Guide. Tech-

nical Report Research Report 6, Council for British Archaeology, 1964.

[130] J. Williams and M. Bennamoun. A Multiple View 3D Registration

Algorithm with Statistical Error Modeling. IEICE Trans. Inf. and

Syst., E83-D(8):1662–1670, 2000.

[131] G. Wyszechi and W.S. Stiles. Color Science: Concepts and Methods,

Quantitative Data and Formula. John Wiley and Sons, 2nd. edition,

1982.

[132] L. Xu, E. Oja, and C.Y Suen. Modified Hebian Learning for Curve and

Surface Fitting. Neural Networks, 5(3):441–457, 1992.

[133] N. Yokoya and M.D. Levine. Volumetric Descriptions of Solids of Revo-

lution in a Range Image. In 10th. International Conference on Pattern

Recognition, Atlantic City, NJ, pages 303–308, 1990.

[134] N. Yokoya and M.D. Levine. Volumetric Shapes of Solids of Revolution

from a Single-View Range Image. International Journal of Computer

Vision, Graphics and Image Processing, 59(1):43–52, 1994.

123



Martin Kampel

Date of Birth: Sept. 02, 1968

Citizenship: Austria

Address: Favoritenstr. 89/10

A-1100 Wien

e-mail: kampel@prip.tuwien.ac.at

Research

Since 1996 he is working at the Pattern Recognition Image Processing

Group of the Vienna University of Technology, engaged in research,

teaching and administration. His research interests are 3D-Vision,

Computer Graphics and Color. He is a member of the IAPR and the

IEEE and author and co-author of numerous scientific papers presented

at several international conferences and workshops.

Education

M.S. Computer Science: Vienna University of Technology, 1994-1999.

Data Technologies: Vienna University of Technology, 1990-1994.

Erasmus Exchange Program: Rijksuniversiteit te Leiden, The Nether-

lands, 1994.

AHS (Highschool): AHS Steyr Werndlpark, graduated in 1987.
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