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Abstract

The report presents a novel approach for image compression using the Hartley transform
(HT). The Hartley transform has the advantage of solving the problem of phase wrapping
from which the Fourier transform suffers. The magnitude and phase compression using this
transformation (HT) have proved better performance than those of the Fourier Transform.
Magnitude and phase were processed separately. The quantization of frequency samples in
less bits has increased the compression ratio.Furthermore, the distributions used to generate
the noise significantly influence the result.

The lossy compression technique used seems not to degrade the image quality. A non-
linear filter for smoothing the resulting image would be suitable for image enhancement. In
general, the overall compression ratio is acceptable it compresses to about 15-30% the size
of the original image. A lossless compression technique could be performed additionally to
increase the compression factor.

!This Work has been performed in the frame of the ERASMUS Intensive Program at INSA-
Lyon France on May 2000.
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1 Introduction

This report addresses the problems related to still image compression and presents a novel
compression technique based on the frequency domain representation. Uncompressed mul-
timedia (graphics, audio and video) data require considerable storage capacity and trans-
mission bandwidth. Despite rapid progress in mass-storage density, processor speeds, and
digital communication system performance, demand for data storage capacity and data-
transmission bandwidth continues to outstrip the capabilities of available technologies. The
recent growth of data intensive multimedia-based web applications not only have sustained
the need for more efficient ways to encode signals and images but have made compression
of such signals crucial to storage and communication technology. For still image compres-
sion, the ‘Joint Photographic Experts Group’ or JPEG [1] standard has been established
by ISO (International Standards Organization) and IEC (International Electro-Technical
Commission). The performance of these coders generally degrades at low bit-rates mainly
because of the underlying block-based Discrete Cosine Transform (DCT) scheme. More
recently, the wavelet transform has emerged as a cutting edge technology, within the field
of image compression. Wavelet-based coding provides substantial improvements in picture
quality at higher compression ratios. Over the past few years, a variety of powerful and
sophisticated wavelet-based schemes for image compression, as discussed later, have been
developed and implemented. Because of the many advantages, the top contenders in the
upcoming JPEG-2000 standard are all wavelet-based compression algorithms. The num-
bers in Table 1 show the qualitative transition from simple text to full-motion video data
and the disk space, transmission bandwidth, and transmission time needed to store and
transmit such uncompressed data.

The examples above clearly illustrate the need for sufficient storage space, large trans-
mission bandwidth, and long transmission time for image, audio, and video data. At the
present state of technology, the only solution is to compress multimedia data before them
storage and transmission, and decompress them at the receiver for play back. For example,
with a compression ratio of 32:1, the space, bandwidth, and transmission time requirements
can be reduced by a factor of 32, with acceptable quality.

Compression Principles

A common characteristic of most images is that the neighbouring pixels are dependent and
therefore contain redundant information. The fundamental task then is to find less corre-
lated representation of the image. Two basic components of compression are redundancy
and irrelevancy reduction. Redundancy reduction aims at removing duplication from the
signal source (image/video). Irrelevancy reduction omits parts of the signal that will not
be perceived by the signal receiver, namely the Human Visual System (HVS). In general,
three types of redundancy can be identified:

e Spatial Redundancy or correlation between neighbouring pixel values.

e Spectral Redundancy or correlation between different colour planes or spectral bands.



Multimedia Size/ Bits/Pixel | Uncompressed | Transmission | Transmission
Data Duration or Bits/ Size Bandwidth Time( with
Sample | (B for Bytes) (b for bits) | 28.8K Modem)
Page of 117 x 8.5” Varying 48 KB 32-64 Kb 1.1-2.2 sec
Text resolution 48 KB /page
Telephone 10 sec 8bps 80 KB 64 Kb/sec 22.2 sec
quality
speech
Greyscale 512 x 512 8bpp 262 KB 2.1Mb/image 1 min 13 sec
image
Color image | 512 x 512 24bpp 786 KB 6.29Mb/image | 3 min 39 sec
Medical 2048 x1680 12bpp 5.16 MB 41.3 Mb 23 min 54 sec
image /image
Full-motion | 640 x 480, 24 bpp 1.66 GB 221 Mb/sec 5 days 8 hrs
video 1 min
(30 fr/s)

Table 1: Multimedia data types and uncompressed storage space, transmission bandwidth,
and transmission time required

e Temporal Redundancy or correlation between adjacent frames in a sequence of images

(in video applications).

Image compression research aims at reducing the number of bits needed to represent an
image by removing the spatial and spectral redundancies as much as possible. Since we
will focus our attentiononly on still image compression, we will not worry exploit temporal

redundancy.

Compression Techniques

There are two ways of classifying compression techniques:

1. Lossless vs. Lossy compression: In lossless compression schemes, the reconstructed
image, after compression, is numerically identical to the original image. However
lossless compression can only a achieve a modest amount of compression. An image
reconstructed following lossy compression contains degradation relative to the orig-
inal. Often this is because the compression scheme completely discards redundant
information. However, lossy schemes are capable of achieving much higher compres-
sion. Under normal viewing conditions, no visible loss is perceived (visually lossless).

2. Predictive vs. Transform coding: In predictive coding, information already sent or
available is used to predict future values, and the difference is coded. Since this is
done in the image or spatial domain, it is relatively simple to implement and is readily
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Figure 1: A Typical Lossy Signal/Image Encoder.

adapted to local image characteristics. Differential Pulse Code Modulation (DPCM)
is one particular example of predictive coding. Transform coding, on the other hand,
first transforms the image from its spatial domain representation to a different type
of representation using some well-known transform and then codes the transformed
values (coefficients). This method provides greater data compression compared to
predictive methods, although at the expense of greater computational requirements.

1.1 Typical image coder

A typical lossy image compression system is shown in Figure 1. It consists of three closely
connected blocs namely, (a) Source Encoder, (b) Quantizer, and (c) Entropy Encoder.
Compression is accomplished by applying a linear transform to decorrelate the image data,
quantizing the resulting transform coefficients, and (entropy) coding the quantized values.

1.2 Some Standard Compression Techniques
1.2.1 Discrete Cosine Transform Method

The introduction of DCT in 1974 is an important achievement for the research community
working on image compression. The DCT can be regarded as a discrete-time version of the
Fourier-Cosine series. Unlike DFT, DCT is real-valued and provides a better approximation
of a signal with fewer coefficients. The DCT of a discrete signal x(n), n=0, 1, .. , N-1is

defined as: N
X,(n) — \/%C(u) 3" (n) cos (%) (1)

n=0

where, C(u) = 0.707 for u = 0, and C(u) = 1 otherwise.

1.2.2 Joint Photographic Experts Group (JPEG) standard

In 1992, JPEG established the first international standard for still image compression where
the encoders and decoders are DCT-based. Figure 2shows the key processing steps in the
sequential encoding for greyscale images. Colour image compression can be approximately
regarded as compression of multiple greyscale images, which are either compressed entirely
one at a time, or are compressed by alternately interleaving 8x8 sample blocks from each
in turn.
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Figure 2: JPEG Encoder Block Diagram.
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Figure 3: (a) Separable 4-subband Filterbank, and (b) Partition of the Frequency Domain

1.2.3 Wavelets and Image Compression

Since the input image needs to be divided into blocs using JPEG compression, correlation
across the block boundaries is not eliminated. This results in noticeable and annoying
“blocking artifacts” particularly at low bit rates. Over the past several years, the wavelet
transform has gained widespread acceptance in signal processing in general, and in image
compression research in particular. In many applications wavelet-based schemes (also
referred as subband coding) outperform other coding schemes, such as the one based on
DCT. Since there is no need to block the input image and its basis functions have variable
length, wavelet coding schemes at higher compression avoid blocking artifacts. Wavelet-
based coding is more robust under transmission and decoding errors, and also facilitates
progressive transmission of images. The fundamental concept behind Subband Coding
(SBC) is to split up the frequency band of an image and then to code each subband using
a coder with bit rate accurately matched to the statistics of the band. SBC has been
used extensively because of its inherent advantages resulting from variable bit assignment
among the subbands as well as coding error confinement within the subbands.

Figure 3-(a) Separable 4-subband Filterbank, and Figure 3-(b) Partition of the Fre-



quency Domain In the following sections, a novel approach for still image compression is
proposed using the spectral decomposition called Hartley Transform.

2 Hartley Transform

Image processing as used here means improving images or pictures and generating special
pictorial effects. These operations rely heavily upon matrix algebra used to implement,
Fourier Transform, Hartley transform, etc. However, an attempt will be made to describe
some of the basic operations utilized for image processing with the minimum of mathemat-
ics. The general principle of developing a compressing technique in our case is to digitize a
picture into a small number of bits. The Fourier analysis is used to convert a picture into
an equivalent form which can be more easily processed, filtered, compressed, etc., using
suitable algorithms for manipulating its contents, particularly when including filters. In
the case of the orthogonal transforms, Fourier transform is one of the transforms, with the
following properties :

1. It must be reversible
2. It must be unique : one-to-one mapping

3. The two domains should be orthogonal

W(t, f) = e 2™ = cos(2nft) — jsin(2mft) (2)
To observe the similarity and the property of data (correlation) :

o0

/ s(t) cos(2n ft) dt = Sp(f) (3)

—0o0
[e.o]

/ s(t)sin(2r ft) dt = Si(f) (4)

—0o0

: REAL part of Fourier Transform : IMAGINARY part of Fourier T.
The complex Fourier spectrum is defined as:

S(f) = Sr(f) — 7Si(f) (5)

The picture data are represented in two parts with the Fourier Transform approach :

1. Magnitude

M(f) = I1S()] = /Sa(f) + SH/) (6)
2. Phase

¢(f) = arctan (7)



The major problem of Fourier Transform is a computational limitation resulting from the
phase spectrum (Phase Wrapping) : linearity that progresses to infinity. To resolve this
computational problem related to the phase spectrum of Fourier transform, two types of
solutions may be used :

1. the first solution consists of an algorithmic approximation to the phase,

2. the second solution consists to extend the Fourier transform with a best solving of
its phase problem. Therefore, Hartley Transform was proposed.

2.1 Hartley Transform Properties

The Hartley Transform requires new transform operations to extend the Fourier approach

Wy(t, f) = cos(2nft) + sin(27wft) (8)

Sult) = [ sOWn(t, f) dt = Sp(f) + Si(f) = M(f) (cosd(f) + sin6(f)) (9)
Sa(f) = M(f)cos(f) (10)

Si(f) = M(f)sino(f) (11)

The advantage of the Hartley Transform results from the function:, that contains in-
formation about the phase without a computational complexity.
The picture data are represented by the Hartley Transform as follows:

1. Magnitude :

M(f) = |S(H| = SA(f) + S3(F) (12)
2. Phase : expressed in V(f)
Vi) = Sl = wsof) + sinols) (13)

Figure 4 depicts an illustration for computing the Hartley transform based on the Fourier
transform in one dimension.

3 Proposed Techniques

3.1 Description of the proposed technique

The parameters from an image obtained from Hartley transform are magnitude and phase.
However, those two parameters are processed separately. The operations constituting the
proposed techniques are shown in figure 5.
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Figure 4: Illustration of the Hartley Transform

3.2 Compression of the magnitude

The magnitude is compressed by combining two methods:
1. Substitution of blocks by noise of a specific distribution.
2. Quantization.

The entire image is divided into square blocks with the size L. In each block the maxi-
mum value is determined and compared to a threshold t. If the value is smaller than the
threshold, the first method is applied, otherwise the second one is used.

3.3 Noise generation

Each block has to be substituted by noise. The coordinates (2-10 bits) and the parameters
(2-8 bits) of the distribution which are derived from the data in the block are stored. Four
different distributions are considered

1. Zero-data distribution. All data in the block are set to zero

2. Uniform distribution. Adapt the distribution to the data by calculating the base
b and the scale factor s where b is the minimum value in the block and s is the
difference between the maximum and the minimum value.

3. Exponential distribution.

4. Rayleigh distribution. After having analyzed several histograms of blocks in real
images, we observed their resemblance to the exponential or Rayleigh distribution.
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Figure 5: Flowchart of the proposed techniques (Magnitude and Phase Compression)



However, the number of samples is not sufficiently large to justify this statement.
But it is interesting to see the effect on some reference pictures. The parameters for
both distributions are the scaling factor a, which is the mean of the data, and the
offset b, which is the minimum of the data.

3.3.1 Random number generation

Instead of using Matlab standard random number generator for uniform distribution we use
a chaotic number generator, based on the tent map function. In a real implementation this
could decrease the computational complexity of the compression algorithm, if the chaotic
number generator produces results similar to a uniform number generator. The chaotic
number generator can be implemented in hardware very easily. The histogram and the
correlation of one million samples show the characteristic of a uniform distribution.

3.3.2 Quantization

The values of the blocks, which are not substituted by noise, are represented by fewer bits.
Before the quantisation uniformly distributed noise with an amplitude equal to the LSB
is added. This idea is derived from signal processing technique where an n bit quantiser
can be replaced by an m bit quantiser (mjn), if noise is added to the signal and then is
oversampled. After suitable averaging, one will get a similar result for both techniques.
For sampling, a logarithmic scale is used. After having observed the magnitude spectrum
of several images, it is concluded that a logarithmic scale seems more appropriate than
uniform one.

3.4 Compression of the Hartley phase

For Hartley phase, a different approach is chosen, since the information in the phase is
more important and it has some characteristics we want to exploit. Hartley phase has the
property of being constrained to the interval of [—v/2, /2] and its variance is 1. Therefore,
one approach is to code every value by one bit, and to set it to 1 or -1 for decompression
so that the variance is preserved. Another method is to code the lower frequency phase
with more bits than the higher frequency phase, what we call scaled phase coding. As
the phase at low frequencies is more important than the phase at high frequencies, this
could be a promising approach. A disturbance of higher frequencies will just result in a
slight blur of edges, whereas a disturbance of lower frequencies will probably corrupt the
picture. We implemented the one bit-encoding scheme, which is quite straightforward as
well as the variable quantization. For the latter case, three areas of constant quantization
are specified. Hartley phase is calculated then, a sampling rate in the frequency domain
is chosen such that the number of samples is equal the number of pixels in the picture.
Hartley phase is represented in a rectangular array that has exactly the dimensions of the
original picture. In this array the low frequencies are at the edges and the high frequencies
are in the middle. The areas are defined either by two rectangles or by two diamonds as
sketched in Figure 6. The position of the borders of the areas are kept variable, in the



Figure 6: Definition of Regions of Phase Distribution

current implementation they can be set interactively by the user. As in the case of the
magnitude we add uniformly distributed noise in the order of the LSB. For decompression
the bits that were lost by the quantisation are also randomized.

3.5 Implementation

The Matlab implementation of the software was performed. The compression and de-
compression of the image is done in one step. This is equivalent to simply destroying
all information that would be lost, if the proposed technique would be used to compress
the image, transmit it over a channel and decompress it. The exact compression rate is
calculated. As for the magnitude, the number of replaced blocks rb is counted as follows:

rb = (\xPositiom + |yPosition| + Z|parameters\) (14)

where |z| is the length of the bit representation of x. For the uniform distribution,
|zPosition| = |yPosition| = 10 bit. > (|parameters|) is 16, since we code each of
the parameters by 8 bit. For the quantization of magnitude and phase the calculation of
the necessary bits is straightforward. If this technique would really be used, one needs
a program that really produces the compressed representation, which is only implicitly
contained in this program. Still the quality of the transmitted image and the compression
rate would be exactly the same as in our emulation.

4 Experimental Results

Different experiments to test the software modules are performed. As the quality of a
compressed image is a highly subjective measure, we did not try to map the quality to
some pseudo-objective error measure; in fact, we relied on our own judgement. These are
the experiments we carried out:
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4.1 Adding noise before quantization vs. quantization without
noise

Images that were compressed using the extra noise before quantization looked more blurred

than those which were directly quantized. Thus, a method that yields good results when

directly applied to image data gives poor results when applied to magnitude and phase
quantization.

4.2 Using one bit phase compression of phase vs. scaled phase
coding

The one bit phase compression resulted in very bad images; it is not appropriate in our

case. The scaled phase coding performed much better. For the same compression rate

(1/8) the image quality is acceptable. Generally, we used 0 bits for the phase in high
frequencies, which allows for a more accurate encoding of the phase of low frequencies.

4.3 Using rectangular windows for phase compression vs. using
diamonds

According to the idea that the most important phase information in the frequency domain is

at the edges of our phase array, diamonds are expected to perform better than rectangles,

because they represent the transition from low to high frequencies more accurately. In

fact, the difference between the two partitions is perceptible. The diamonds partition
gives slightly better results.

4.4 Magnitude compression with logarithmic quantization vs.
with uniform quantization

There is a significant difference between logarithmic scaling and uniform scaling, as one
might expect because the typical magnitude histogram resembles much more an exponential
distribution than a uniform one.

4.5 Noise generation with chaotic numbers vs. noise generation
with random numbers

Pictures compressed with either chaotic or random numbers cannot be distinguished, so
that the use of chaotic numbers for this compression scheme is a possible choice.

4.6 Magnitude compression by noise substitution with different
probability distributions

The quality of the compressed images can be improved significantly by choosing the appro-
priate probability distribution for the noise. Several tests are made using a set of images.

11



Figure 7: Experimental Results on Lena

A typical example is the image of Lena. In order to test the magnitude compression
we turned off the quantization. Thus, the magnitude is compressed to about 15% (com-
bined with quantization the compression would have been better). In Figure /reffig-lena,
there is the original image(top-left), compressed image with uniformly distributed noise
(top-middle), compressed image without noise (top-right), compressed image with expo-
nentially distributed noise(bottom-left), and compressed image with noise according to the
Rayleigh distribution (bottom-right). The compressed pictures were (subjectively) ordered
by increasing quality. In general the Rayleigh distribution gives good results whereas a
uniform distribution performs quite poorly at higher compression rates. Setting the noise
level to 0 yields blurred pictures.

Using different block sizes and threshold values for decision between two magnitude
compression schemes. It is clear that the higher one sets the threshold value, the higher
the resulting compression rate will be, since more and more blocks get substituted.

Table /reftab:exp represents the experimental results of the compression software on

a set of images. It is clear that the compression ratio depends on the image. In fact,
the software performance seems to be promising. Conclusion This report presents a novel

12



Picture Magnitude Co- | Phase Compres- | Observation/Remarks
(Size) pression Ratio sion Ratio
Lena 0.31 (threshold | 1.00 no quantization, with different dis-
(228x228) | 14000  blocksize tributions none : blurred uniform :
20) blurred, additional texture exponential
: a lot of additional texture Rayleigh :
additional texture
Olympia | 0.16 (threshold | 1.00 as Lena, but Rayleigh and exponential
(530x460) | 14000  blocksize distribution do not differ much
20)
Lena 0.15 (threshold | 1.00 no quantisation, with different distribu-
(228x228) | 50000  blocksize tions none : grainy and blurred uni-
20) form : severly distorted exponential :
very grainy, a lot of additional texture
Rayleigh : grainy, additional texture
Lena 0.22 (0.17) (thresh- | 1.00 with quantisation and Rayleigh distri-
(228x228) | old 21150 blocksize bution quite ok (only additional tex-
20 8 bit (6 bit)) ture)
Lena 0.11 (threshold | 1.00 with quantisation and Rayleigh distri-
(228x228) | 21150 blocksize 20 bution: very poor quality
4 bit)
Lena 0.11 (threshold | 1.00 with quantisation and Rayleigh distri-
(228x228) | 50000 blocksize 20 bution: decreased but tolerable quality
6 bit)
Santana 1.00 0.28 (0/0/8 | rectangular regions for phase encoding:
(327x210) (inner /mid- | a lot of additional texture
dle /outer)
rectangle)
Santana | 1.00 0.28 (0/0/8 rect- | rectangular regions for phase encoding:
(327x210) angle) a lot of additional texture
Santana 1.00 0.26 (inner bits: | rhombical regions for phase encoding:
(327x210) 0 middle bits: 0 | additional texture
outer bits: 8
rhombus)
Lena 1.00 0.10 ( 0/2/4 | rhombical regions for phase encoding:
(228x228) rhombus) additional texture
Olympia | 0.092 blksize 20 | 0.084 ( 0/2/4 | good quality
(530x460) | threshold 20000 rhombus)

Table 2: Experimental Results on Several Images
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approach for the image compression using the Hartley Tranform. The magnitude and
phase compression using this transformation has proved a good performance. The lossy
compression technique used, seems to not degrade as well the image quality. A non-linear
filter for smoothing the resulting image would be suitable for the image enhancement. In
general, the overall compression ratio is acceptable. A lossless compression technique could
be performed additionally to increase more the compression factor. As future work, this
compression method will be used for the complete Hartley frequency spectrum instead of
separately processing the magnitude and the phase.

5 Conclusion

The report presents a novel approach for image compression using the Hartley transform.
The magnitude and phase compression using this transformation have proved a good per-
formance. Magnitude and phase were processed separately. The quantization of frequency
samples in less bits has increased the compression ratio. Furthermore, the distributions
used to generate the noise influence the result significantly. The lossy compression tech-
nique used seems not to degrade the image quality. A non-linear filter for smoothing the
resulting image would be suitable for image enhancement. In general, the overall compres-
sion ratio is acceptable it compresses to about 15-30% the size of the original image. A
lossless compression technique could be performed additionally to increase the compression
factor. More levels of different bit length would probably improve the results. As future
work, this compression method could be used for the complete Hartley frequency spectrum
instead of separately processing magnitude and phase.
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