

PRIP-TR-088 April 13, 2004

On-Ground Astronomical Data Processing
“A Software Tool for HERSCHEL/PACS Data

Decompression and Analysis”

Ernst Hirz, Ahmed Nabil Belbachir
and Robert Sablatnig

Abstract

This work is about the design and development of a standalone tool for the decompression of
data from the Photodetector Array Camera and Spectrometer (PACS), one of the instruments
housed inside the HERSCHEL Space Observatory (HSO). This is a part of an on-ground
processing software package, with the purpose to provide an instrument for collecting,
assembling, decompressing and later analyzing the data fragments received from the
telescope. The work is done in JAVA programming language for simplicity, portability,
reliability and a distributed computing. Furthermore, JAVA is object-oriented. Object-
oriented programming provides greater flexibility, modularity and reusability. Thus it is easy
to maintain/extend the on-ground processing tool for different or further compression
algorithms or general upgrades. Within this work, we developed a scientific software tool for
the processing of the received data from the HSO/PACS instrument. This software tool is
designed and tested for PACS data but not limited for astronomical applications. The on-
ground processing concept can easily be adapted for other applications (Medical imaging,
Telecommunication…etc). Results from the evaluation of the software with real and virtual
test data are given at the end of this report.

Pattern Recognition and Image Processing Group
Institute of Computer Aided Automation
Vienna University of Technology
Favoritenstr. 9/183-2
A-1040 Vienna AUSTRIA
Phone: +43 (1) 58801-18366
Fax: +43 (1) 58801-18392
E-mail: nabil@prip.tuwien.ac.at
URL: http://www.prip.tuwien.ac.at/

Technical Report

On-Ground Data Processing 2

Contents

1 Introduction ... 3

2 Data compression .. 5

2.1 Basics about Data Compression ..5

2.2 Reconstruction Error ...6

3 Compression/Decompression Concept ... 7

4 Software Implementation.. 8

4.1 Design of the Program ..8
4.1.1 Input and Collection of data packets ..9
4.1.2 Decompression and Output of data ..10

4.2 Description of classes and class diagram ...11

5 Evaluation of the Software.. 15

6 Conclusion and Outlook.. 18

A Basics of Compression Algorithms used .. 20

A.1 Arithmetic Coding ..20

A.2 RZIP Compression..21

A.3 Simple Zero Repetition Suppression (ZRS) ...22

A.4 Redundancy Reduction ...22

B Abbreviations... 23

C Manual of the Program.. 23

On-Ground Data Processing 3

1 Introduction

A new form of communication has evolved over the last two decades. This involves mobile
communication, the ever growing internet and video communication for example. Data
compression is one of the enabling technologies for this multimedia revolution [11]. That also
applies for astronomy applications, where data is collected on-board a spacecraft [18].
Optical and radar imaging sensors together with their specific characteristics and their
common user requirements is intended as a basis for typical spaceborne imaging applications,
where high-rate sensors deliver more data than can be transmitted directly to ground [4].
InfraRed (IR) detectors consist of fewer pixels than those for visual range [24], but the design
of multi-sensor instruments leads to even higher data volumes [17]. Figure 1 shows an
example of an IR image of the astronomy object Spiral galaxy M81 in three different wave-
lengths. These images were taken with Spitzer Space Telescope [23].

Figure 1: IR-Image from Spitzer Space Telescope

If multiple detectors are operated in parallel to support multi-spectral or even hyper-spectral
imaging, the data volumes multiply [17]. Transmitting image information face a bottleneck
such, that this constraint has stimulated advances in compression techniques for astronomy
[19]. Within the compression/decompression chain, the ground segment does not only serve
as a facility for decompression of transmitted image data but can make use of much more
advanced functions. These functions may include error concealment during compression (i.e.
hiding of decompression failures due to data loss during transmission), combined
decompression and restoration (e.g. removal of compression and/or sensor effects), or
combined compression and feature detection. State of the art in IR data analysis is the analysis

On-Ground Data Processing 4

package for Infrared Space Observatory (ISO) [21] and also the one for InfraRed
Astronomical Satellite (IRAS) [22]. These packages were programmed in Interactive Data
Language (IDL). Hence they are not programmed in a modular way it is more costly to adjust
them for our need than to develop a new tool for the task. Promising initial results on data
restoration and denoising using both wavelet and multiresolution-based on the median
transform have been shown for ISO [20]. We intend to take advantage of these results for
processing PACS instrument data within a standalone-processing environment for quick-look
analysis and assessment.
In this report we focus on the decompression of HSO/PACS data. The objective of this work
is to develop a software tool for the processing of the received data from the Telescope. This
software tool is programmed in a modular object-oriented way.

Generally the task of the on-ground software can be subdivided into three major parts:

�� Collection of the packets: The data processed by the telescope will be divided into
fragments for transmission to earth. On-ground the compressed data needs to be
regained from these data packets. This involves testing for transmission errors.

�� Decompression of the data: The reconstructed compressed data blocks are
decompressed with the reversals of the compression algorithms used on-board. This
task includes correct handling of the data in case of errors. The user is supplied with
information about the decompression run. Possibility to test the results of the
decompression is given as well as computation of reconstruction error measures,
which are explained in Section 2.2.

�� Analysis of the reconstructed images: Once the original raw decompressed data is
regained, the real images have to be recomputed and analysed. This includes tools for
repairing images in case of transmission errors and evaluation of control and
additional data.

The last item of the above summary of the on-ground software is not part of this work and
will not be described in this work. Further reports about the on-ground software tool for the
HERSCHEL/PACS Telescope will deal with this task.

This document consists of four main parts. First of all we discuss some basic stuff of data
compression. The next section deals with the compression/decompression concept of the
project. After that, this report is about the design and implementation of software, which one
can use for collection and decompression of information, packed into data fragments. In this
project this task was done specifically for the application of the HERSCHEL/PACS telescope.
In section five we talk about the results of the evaluation of the implemented piece of
software.

On-Ground Data Processing 5

2 Data compression

Data compression is used to reduce the amount of bits required to represent information, for
example an image. In this section we want to explain fundamental things about data
compression. This includes methods to compute reconstruction error measures which can be
used to evaluate compression techniques.

2.1 Basics about Data Compression

In brief, data compression is the technique to encode data in a way that it allows compact
storage or efficient transmission of information. This is possible because real world data is
redundant. In information theory, redundancy is the number of bits used to represent a
message minus the number of bits of actual information in the message. Figure 2 shows a
basic data compression/decompression block diagram. Original data gets compressed which
yields compressed data. This compressed data can be used for storage or transmission. The
right part of the diagram shows the decompression which result is the reconstructed data.

Figure 2: Data compression block diagram

To measure how well a compression algorithm compresses a given set of data we look at the
amount of bits required to represent the data before and after compression. Let S be the
original data and CS the compressed data. The compression ratio is defined as follows:

 ()
C

SCompression Ratio CR
S

�

Basically data compression methods can be categorized into two types – lossless or lossy
compression. K. Sayood gives the following definition of these methods [11].

�� Lossless compression techniques, as their name implies, involve no loss of
information. If data have been losslessly compressed, the original data can be
recovered exactly from the compressed data. Lossless compression is genereally used
for applications that cannot tolerate any difference between the original and
reconstructed data. Text compression is an important area for lossless compression.

�� Lossy compression techniques on the other hand involve some loss of information,

and data that have been compressed using lossy techniques generally cannot be
recovered or reconstructed exactly. In return for accepting this distortion in the
reconstruction, we can generally obtain much higher compression ratios than is

On-Ground Data Processing 6

possible with lossless compression. In many applications, this lack of exact
reconstruction is not a problem. For example, when storing or transmitting speech, the
exact value of each sample of speech is not necessary.

Compression methods are evaluated with different parameters. These are mainly, the time it
takes to perform the algorithm on a given system, how much memory it uses and the
reconstruction error versus the compression ratio achieved. The following section defines the
term reconstruction error in this context.

2.2 Reconstruction Error

The reconstruction error is a parameter of the compression method to quantify the loss of
information during the computation. Generally it is a computed value to describe the
difference between the original and the reconstructed data. It can be used to measure the loss
of data during a lossy compression, or to describe the loss of data due to transmission errors.
There are different methods to compute reconstruction error measures. The methods vary in
their way to describe the deviation of the data. Some of these measures are described in the
following and can also be found in [10]. Let S be the original data, RS the reconstructed data
and N the absolute length of the data.

�� Mean Absolute Error (MAE): This is the simplest measure, which computes the
average absolute error and is defined as follows:

1

1(,) () ()
N

R R
x

MAE S S S x S x
N

�

� ��

�� Root Mean Square Error (RMSE): This measure takes the average of the squares of

the absolute difference and takes the square root of the result. It’s calculated as the
standard deviation of the reconstructed data relative to the original data.

� �
2

1

1(,) () ()
N

R R
x

RMSE S S S x S x
N

�

� ��

�� Signal to Noise Ratio (SNR): The SNR measure includes the intensity of the original

data by dividing it with the sum of squares of the absolute difference. It is a term for
the ratio between the maximum meaningful signal and the background noise. The
range of values is reduced by taking the logarithm.

� �

� �

2

1
10

2

1

()
(,) 10log

() ()

N

x
R N

R
x

S x
SNR S S

S x S x

�

�

�

�

�

�

�� Peak Signal to Noise Ratio (PSNR): The PSNR is the most commonly used

reconstruction error measure for compression methods. The PSNR is defined as
follows:

On-Ground Data Processing 7

� �

� �

2

10
2

1

max(()) min(())
(,) 10log

1 () ()
R N

R
x

S x S x
PSNR S S

S x S x
N

�

�

�

��

These metrics help to quantify the loss of data due to an applied compression computation.
For more information on these measures and different measures see also [2,13].

3 Compression/Decompression Concept

The whole project is about the development of a new space telescope – the
HERSCHEL/PACS telescope. This is a space observatory covering the full far-infrared and
submillimetre waveband. It will be located 1.5 million kilometres away from earth. A mirror
will collect the light from distant and poorly known objects, such as newborn galaxies, and
will focus it onto three instruments [1]. The data will be compressed on a digital signal
processor based on the TSC21020E architecture for space application. An undetailed basic
block diagram of the system is shown in Figure 3. The upper part of this diagram shows the
processing of the data on-board the spacecraft. The lower part shows the reconstruction of the
data on-ground.

Figure 3: Block diagram of the basic concept

The cameras of the telescope collect images of astronomy objects. They will either be
spectroscopy or photometry type images, depending on the type of camera they are from. The
data of the images get compressed with lossy and lossless data compression methods. Those
methods are specifically designed and improved to get the best compression results. The
compressed image data together with telescope control and some additional information is put
into a block of data. These blocks are called Compressed Entities (CE). For use of a satellite-
to-ground transmission protocol, the obtained compressed entity is then split into several
packets, which allow appropriate transmission to earth. This is shown in figure 2 at the upper
part.

On-Ground Data Processing 8

On-ground the image data has to be reconstructed. The task of reconstructing the images,
mainly consist of two parts. The first is to reconstruct the raw data. This is shown with the
lower part of figure 2 and that is exactly the task of the software tool, this report is about.
Further parts of the on-ground SW take care of analyzing the raw image, control and
additional data and some other tasks. Those parts will not be discussed in this report.
The data packets generated on-board the telescope are transmitted to earth. The collection of
the packets in first place is done by the on-ground receiving station by hardware which
provides the packets in raw data files in an unordered way. The Software, which we
implemented - we call it On-Ground Data Processing Software (OGDPSW), then has to
collect, check and buffer this data fragments to regain the compressed entities. Once all the
data from a compressed entity is received, the CE gets decompressed by running the
appropriate decompression algorithms, which are the exact reversals of the lossless
compression algorithms used on-board. The use of the compression algorithms is controlled
by the operator of the spacecraft and users are informed with release notes to know the
applied compression algorithms. The decompressed data is outputted into files on hard disk.
Information according to errors during computation is collected and written into logfiles.
After the computation the output data can be tested with reference data, if available. In the
next chapter we describe how this SW is designed and realized.

4 Software Implementation

This part of the report is about the development of the program itself. We describe the design
principles and give some relevant details from the implementation. A class digram and a
flowchart of an important part of the software are included in this section. We as well give a
short explanation of the tasks of each class implemented. The source code is also well
documented with detailed in-source documentation.

4.1 Design of the Program

This software tool can basically be used for handling and decompressing any compressed
data. (With modifications if the system is not using the same protocols as the astronomy
application we are talking about here).
The program has been implemented in JAVA in an object-oriented way. The benefit of using
this language is mainly that the software is immediately available for any given platform.
Furthermore, because JAVA is object-oriented, it provides greater reusability and modularity
which was especially important for meeting the requirement of flexibility concerning the
compression algorithms. This means that simple and quick change or upgrade of compression
algorithms must be possible. That was reached by implementing the program with correctly
designed and well documented interfaces. Thus the decompression sequence can easily be
selected via a regular text file which constitutes the configuration for the decompression.
Because of strict time requirements the program was improved for running time. This on the
other hand has sometimes led to a trade-off between more efficiency and less beauty in
programming. This means for instance that we used arrays instead of vectors even though
vector objects would have been more adequate.

On-Ground Data Processing 9

A detailed breakdown of the task of the program is the following:

�� Read raw data from input files: The packets received by the on-ground receiving
station are stored in files. This data has to be read and the packets contained in the data
are collected.

�� Check files for missing packets: The files are supplied in an unordered way. The files
are put into right order and checked for missing data files.

�� Check data for transmission errors: Every input file is checked for transmission errors
by means of computing a checksum value.

�� Appropriate buffering of the data depending on camera source: The checked packet
data blocks are temporarily stored according to the data type.

�� Reconstruction of the compressed entities: The original compressed data block
generated on-board the telescope is reconstructed with the packet data.

�� Evaluate decompression sequence from a config-file: The decompression sequence,
which is the reversal of the sequence of compression algorithms used on-board, is read
from a config file.

�� Instantiate decompression-algorithm objects: Creation of a vector of image-
decompression objects according to the sequence read from the config file.

�� Decompression of the data with these algorithms: The decompression methods
contained in the decompression objects is applied to the compressed entity data.

�� Output of decompressed data onto files on hard disk: The decompressed raw data
blocks are stored in files on hard disk. This data files are now ready for further
analysis and processing.

�� Appropriate handling of the data in case of errors: The program is capable of handling
the data in case of transmission errors, missing and corrupted data.

�� Output of a logfile according to the decompression run: Information according to the
computation is written to a logfile, which is stored in the output directory.

�� Ability to test the result-data of the decompression: The program is able to test the
output data with reference data if available.

The program has basically two different running modes: First, a so-called single mode where
all the already received packets of data are read and decompressed. Second, a so-called
continuous mode where the data is processed consecutively, which means that the program
keeps checking for new incoming data. Therefore the input and buffer part of the program has
been realized with threads. The threads either run just once or consecutively depending on the
modus the program gets started.

4.1.1 Input and Collection of data packets

The receiving station will put the received data packets into files, which then are present in an
unordered way in the working directory on a hard disk. The program starts with reading the
file list and the files itself. After reading the raw data from the files a CRC-16 CCITT
checksum value is computed. This value is compared with the value which was generated and
added to the packets on-board. If the checksum value differs from the value computed on-
board the corresponding decompressed data is marked with ERROR and a log file is created at
the end of the computation.
If the program notices missing files, which means packets are missing, it will determine the
corresponding compressed entities. These are not processed but saved in one single file

On-Ground Data Processing 10

instead. That file is marked with INCOMPLETE and information about number, size and
input files is stored in the error log file.

If the checksum is correct the packet header is evaluated.

This header mainly stores the following information:

�� The total number of packets the CE has been split to
�� The number (index) of this single packet
�� Whether the CE was processed through Digital Signal Processor (DSP) 1 or 2

A new CE is created every time a packet with index 1 is received. The CE is assigned to a CE
information object which stores the unique internal CE number, the DSP, block and index
information. At any time there will be 2 CE information objects - one for each DSP. Those
are need for unique internal identification. All other packets are checked for the information
in the packet header and assigned to the right CE. If missing files are detected, and it is not
clear where a packet has to be assigned to, a new CE object is created as well. That will be
stored in the error logfile. Once a CE object is completely set up with packets, the CE-header
is extracted. Accurate information how the CE-header is set up can be found in [3]. Then the
data without packet and CE header information gets decompressed.

4.1.2 Decompression and Output of data

As soon as the data in a CE has been put together completely the decompression of the CE
will start. Several different compression algorithms are used on-board to compress the data.
The system uses lossy and lossless compression algorithms. The exact reversals of the lossless
compression algorithms are applied to the compressed data on-ground to get the original data,
after lossy compression, back. A description of the basic function of the compression
algorithms implemented so far can be found in the appendix. There is lots of literature where
these algorithms are described closely [2,11,13]. New compression algorithms can easily be
added to the program by adding a class with the new algorithm which implements the
IImgDecompression interface. The selection of the used compression algorithms for a given
set of data can be done with a config-file or even dynamically during the data reconstruction
sequence.
The data in a compressed entity consists of two parts: the Compressed DEC/MEC Header
(CDH) and the Compressed Science Data (CSD), which itself contains the Compressed
Science (CS) the Raw Channel (RC) data. The CDH is the final Header information, which
contains control information. The exact form of this header and all its fields and their meaning
is described precisely in [3]. The CS contains the real image data. The RC is some additional
raw channel information. For each type of camera, that means spectroscopy or photometry,
different sets of compression algorithms on-board and thus different sets of decompression
algorithms on-ground are used.
If there are options or parameters used for decompression algorithms they are added either at
the beginning or at the end of the data. Some of the parameters used are not contained in the
data and thus come from outside. Therefore the IImgDecompression interface constitutes a
parameter array which is assigned to the decompression algorithm.
When all the algorithms of a decompression sequence finish, the decompressed data is saved
in files arranged in subdirectories in the output directory on hard disk. Each subdirectory is
for one CE. The output directory has date and time information to distinguish it from others, if
more decompression runs are done. The files have the file extension .raw. That means

On-Ground Data Processing 11

CDH.raw, CS.raw, and RC.raw. If upon program start the –f option is chosen the CS data is
saved in frames rather than in one single file. The frame size depends on what camera the CE
is from. The filenames in that case are Frame001.raw, Frame002.raw, etc.
Any error happening during the computation will be saved in the error log file which is then
placed into the output directory on the hard disk. In such a case also the decompressed data is
accordingly marked. If, due to an error, the data cannot be processed at all it is saved in raw
compressed form and the user is warned.

4.2 Description of classes and class diagram

In this section we will give a short description of the implemented classes. Figure 4 and 5
show the class diagrams to give an overview. Note that these diagrams are not intended to be
detailed class diagrams, but to show every class implemented and the most important fields
and operations of the classes.
The program is separated into two packages, dataprocessing.decompression which includes
all classes for the compression algorithms and dataprocessing which includes all control and
entity classes.

Figure 4: Class diagram of dataprocessing.decompression package

All Decompression algorithms are associated to the dataprocessing.decompression package.
Every class that implements a new algorithm needs to implement the IImgDecompression
Interface. If done so, simple change and upgrade of Compression methods are guaranteed. In
the Config-File the algorithms get chosen by the class name.

On-Ground Data Processing 12

Figure 5: Class diagram of dataprocessing package

�� DataProcessing is the main control class of the program. This class has the main
function so everything gets started from there. Upon program start, input and output
directories are evaluated as well as OS-depending information. The decompression
sequence from the config-file is interpreted with this class as well. Before terminating
the program, the finish function is invoked which ensures that all data is processed
correctly and none gets lost and also the log file is written with a LogWriter object if
this is necessary. If upon program start one of the test options is selected a new Test
object is created after the reconstruction of the data.

�� LogWriter writes information according to the decompression run to a log file.
�� Test allows for testing the resulting data of the decompression run. A Test object

checks the reconstructed data with a reference data and computes reconstruction error
measures.

�� FileListener checks the working directory for incoming data. The files get selected
via a FileFilter object which is initialized with the base filename given as a parameter
at program start.

�� DirectoryListener is used by FileListener, to read the directory information and
provide the current reading directory which is especially important in case of –d mode.

�� FileReader class is for reading the input files and for evaluating the checksum values.
�� CRCTest does the computation of the CRC16 value.

On-Ground Data Processing 13

�� FileCheck is the class which controls all the handling of the packets and appropriate
buffering of the input data. A unique CE-number is created and assigned to the data
packets. FileCheck evaluates the packet headers and assigns the Packet objects to the
adequate CompressedEntity objects which themselves are stored in the
CompressedEntityList. The end of this chapter shows Figure 6 which represents an
overview flow chart of the collecting and buffering sequence.

�� CompressedEntityList is the data structure for saving the CE’s.
�� CompressedEntity is the class for combining all the data and operations for a CE. As

soon as all packets are set in a CompressedEntity object, it starts its own
decompression through invoking the decompression method in the
IImgDecompression objects selected during evaluation of the decompression
sequence stated in the config-file. This sequence, finally saved in an array of
IImgDecompression vectors, starts the right decompression algorithms by using the
classes in dataprocessing.decompression.

�� IImgDecompression interface is necessary for a standardized use of compression
algorithms.

�� FileWriter saves the data onto hard disk upon decompression.
�� Utility combines useful methods such as methods for transforming between little and

big endian and so on.
�� IConstants interface holds all constants, being relevant for the program, in one place.

On-Ground Data Processing 14

Figure 6: Flowchart of data buffering

On-Ground Data Processing 15

5 Evaluation of the Software

Several tests have been done with the software. For this matter test data files were created
with the telescope simulator program. This program is exactly the same software later running
on the DSP of the telescope. On-ground it only differs in the fact, that it creates random image
data instead of handling real image data. The process of lossy and lossless compression and
the alignment of the data in packets is the same as it will be at the spacecraft later on. This
simulator program outputs two types of reference data. First of all it creates the generate-files
which are the frames of the random images before lossy compression. It also outputs the three
main data files (DEC/MEC Header, Image data, Raw Channel data) after lossy compression
but before lossless compression. Hence it’s possible to compare the decompressed files
generated by the on-ground software with the reference data from the telescope simulator
program. Generally, the test was to process the images from 24 hours, which is around 160
MB of CE-data, without any failure or errors for the decompression. All possible running
modes of the program have been used in this test, to check them independently.
During this correctness test, the program was also tested for time performance. This was done
on two different machines, one Linux and one Windows platform both on the same hardware,
which was basically the following machine:
AMD XP2600+ processor (1916 MHz) running on an ASUS-A7N8X main board with
512MB DDRAM.
The time performance on Linux is better than on Windows, especially on higher data rate.
This is due to the file management of Windows. Thus more time for reading input data is
needed on the Windows machine. The time for reading input files is about 30% of the total
computation time when processing 160MB of CE data in Windows. Usually the time rate
between reading and decompression is about 3:97. We recommend, saving the files in
subdirectories and use the –d option for the program to improve time performance,
particularly when using Windows. The tests have shown that it is the best way to save the
files in directories which hold about 2500 files. It is to mention that the time needed for
processing the data will slightly depend on the shape of the data. Generally the time needed
for the decompression of 160MB of data, which later in reality would be approximately the
amount of data from images collected in 24 hours, is around 90 minutes. The exact values are
shown in Figure 7 and 8.

CE # Files Data size [MB] Time perfomance
in Windows [sec]

Time perfomance
in Linux [sec]

Time perf. in Win. with
subdirectories [sec]

98718 200164 154 9150 5760 6145
49389 100082 77 4963 2923 3642
24695 50041 38 2431 1450 1312
12347 24560 19 889 723 452
6059 12280 9,5 270 272 272
3029 6140 4,7 153 122 150
302 614 0,5 14 12 14

Figure 7: Time performance table

On-Ground Data Processing 16

Time Performance

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 20000 40000 60000 80000 100000 120000

#CE

Ti
m

e
[s

ec
]

T ime Perf. in Win. with
subdirectories [sec]

T ime Perfomance
in Windows [sec]

T ime Perfomance
in Linux [sec]

Figure 8: Time performance diagram

The program was also tested on how to deal with errors in the input data. This could be
missing data packets or corrupted data. Generally, in those cases the data will either be
decompressed and marked or saved unprocessed. An error logfile is created with accurate
information about the problem.
If the program is started in –t testmode the software computes a reconstruction error measure
between the reference files created from the telescope simulator and the decompressed data.
The type of values computed are the ones described in section 2.2. These measurements
describe the amount of information lost in a compression/decompression run. This is
especially useful to apply on a lossy compression run to evaluate the lossy compression
method. For instance one can evaluate the compression method with the reconstruction error
versus the achieved compression ratio. Therefore we compute the reconstruction error
between the original data files stored in the generate-files and the files before lossless
compression or the files after decompression, assuming no fault during data processing with
the OGDPSW. An example of images before and after lossy compression is shown in Figure
9 - 11. Figure 12 shows the computed reconstruction error measures. Please note that these
infrared type images are post processed with virtual colours. The lossy compression method
in this case was to compute the average frame out of four frames.

Figure 9: Original image sequence of an astronomy object 1

On-Ground Data Processing 17

Figure 10: Original image sequence of an astronomy object 2

Figure 11: Image 1 and 2 after lossy compression

 MAE RMSE SNR PSNR
Max values in Image Sequence 1 7,6 12,0 19,3 26,6
Max values in Image Sequence 2 4,9 8,6 22,0 29,4

Figure 12: Reconstruction error measures for both sequences

On-Ground Data Processing 18

6 Conclusion and Outlook

This paper describes the design of a software tool which can be used for handling and
decompressing data which has been compressed, using various compression algorithms, and
arranged in a way, which allows for transmission over channels like the internet or a satellite
link for instance. It is described for use in an astronomy application. Hereby is it a part of a
larger software package for handling astronomy information. This part of the Software
provides the functionality for the first processing step of the received data from the telescope.
This SW does all the necessary steps to provide raw data which later can be semantically
analysed and further processed. It evaluates all parameter information for the appropriate
decompression of the data. It supplies the on-ground system not just with the image data but
also with additional and control information gathered at the sender.
Further parts of the on-ground software are using this raw data and deal with reconstructing
and analysing the real images collected with the cameras and sensors on-board the telescope.

Acknowledgements

This work was done at the Vienna University of Technology, Institute of Computer-Aided
Automation, Pattern Recognition and Image Processing Group (PRIP) in cooperation with
the Institute for Astronomy of the University of Vienna. I wish to thank my advisors
Dr. Robert Sablatnig and DI. Ahmed Nabil Belbachir for their support.

References

[1] Official ESA Website at: http://www.esa.int/science/herschel

[2] G. Held, “Data and image compression: Tools and techniques”, J. Wiley and Sons,

England 1996

[3] A.N. Belbachir, “SPU HIGH LEVEL SOFTWARE Specification Document’’,

Document Ref.: PACS-TW-GS-001 Issue: 4.1, Austria 2003

[4] J.Sanchez and M.P. Canton, “Space Image Processing”, CRC Press, Florida 1999

[5] Data compression Website at: http://www.datacompression.info

[6] V. Bhaskaran and K. Konstantinides, “Image and Video Compression standards”,

Kluwer, Boston 1997

[7] J. A. Storer, “Image and Text Compression”, Kluwer International Series, Boston

1992

[8] D.A. Lyon, “Image Processing in Java”, Prentice-Hall 1999

On-Ground Data Processing 19

[9] A. Bovik, "Handbook of Image and Video Processing", Academic Press 2000

[10] A.N. Belbachir and H. Bischof, "On Board data compression", PRIP Technical Report

Austria 2003

[11] K. Sayood, “Introduction to data compression”, Academic Press 1996

[12] Lossless Data Compression, CCSDS 121.0-B-1, Blue Book, Issue 1, May 1997

[13] J.A. Storer, “Data compression: methods and theory”, Computer Science Press 1988

[14] M. Nelson and J.I. Gailly, “The data compression book”, M&T Books New York, NY

1995

[15] D. Salomon, “Data Compression: The Complete Reference”, Springer 2000

[16] A. Moffat and A. Turpin, “Compression and Coding Algorithms”, Kluwer Academic

Publishers 2002

[17] I.S. Glass, “Handbook of Infrared Astronomy”, Cambridge University Press, Oct.1999

[18] W. Wijmans and P. Armbruster, “Data Compression techniques for Space

Applications”, DASIA’96, Italy 1996

[19] M. Datcu and G. Schwarz, “Advanced Image Compression: Specific Topics for Space

Applications”, DSP’98, Int. Workshop on DSP techniques for Space Applications
1998

[20] J. Blommaert et al, “CAM - The ISO Camera”, ISO Handbook Volume III, V2, June

2003

[21] http://www.iso.vilspa.esa.es

[22] http://irsa.ipac.caltech.edu/IRASdocs/iras.html

[23] http://www.spitzer.caltech.edu/

[24] A. Poglitsch et al, “The Photoconductor Array Camera & Spectrometer (PACS) for the

Far Infrared and Submillimetre Telescope (FIRST)”, Germany 2000

On-Ground Data Processing 20

A Basics of Compression Algorithms used

In this chapter we want to explain the basic functioning of the already implemented
compression algorithms.

A.1 Arithmetic Coding

Arithmetic coding is a compression technique where each symbol in a set of symbols is
assigned to an interval between 0 and 1 according to its probability of occurrence in the
message. Arithmetic coding encodes a stream of data into a large binary fraction. It can
achieve near-optimal entropy encoding [15,16].

The process of encoding can basically be described as follows:

1. Determine the probability of each symbol in the message, which means determine the
frequency of the symbol.

2. Build a table which lists all the symbols and their assigned probabilities. That is build
a range for every symbol which is sum of occurrence of the symbol divided by the
total number of all symbols. The sum of all ranges is always 1. This table must be
used in the same order for encoding as well as decoding.

3. Take the first symbol in the message and select the range associated with it.
4. Select the next symbol and multiply the range from the last symbol with the low and

the high bounds of the range of the current symbol. This results in a new range. Add
the results to the low value of the prior symbol.

5. Continue doing this until all symbols are processed.
6. Select any number of the resulting range. This is the encoded value.

The computation of the coded value can be summarized as follows:

�� Start with range [0.0 1.0[�
�� Then for 1i � where i is the index of the symbols in the message.

[] [1] [1] []assocRangelow i low i range i low i� � � � � where: [] [] []range i high i low i� �
[] [1] [1] []assocRangehigh i low i range i high i� � � � �

The following example shows an encoding procedure:

Symbol Assoc. Range Input Current Interval
a [0.0 - 0.4[[0.0 - 1.0[
b [0.4 - 0.6[b [0.4 - 0.6[
c [0.6 – 0.9[c [0.52 – 0.58[

EOF [0.9 – 1.0[a [0.52 - 0.544[
 EOF [0.5416 - 0.5440[

Figure 12: Example for arithmetic coding with result values

The coded value representing this short message is any value in the range 0.5416 to 0.5440.
Let’s say for example 0.542.

On-Ground Data Processing 21

The process of decoding which uses the same formulas can be written as follows:

1. Check the range the coded message falls in. In our case 0.542 is inside 0.4 – 0.6 range,
which yields the first symbol b.

2. To get the next symbol we have to subtract the low value of the first symbol. This
brings us to 0.142. Because the range of b was 0.2 we have to divide the new value by
0.2 which gets us to a value of 0.7. That value falls into the range 0.6 – 0.9 resulting in
the second symbol c.

3. We have to repeat this until we find EOF. This leads us to 0.367 which is in range
0.0 – 0.4 resulting in symbol a. 0.367 divided by the range of symbol a, which is 0.4
results in 0.9175 which is in range of the symbol EOF.

As the length of the message increases the computed range gets narrower. It is obvious that,
this would soon exceed the precision available at the computer.
To perform arithmetic coding on a computer we have to use finite-precision binary integer
arithmetic. More about arithmetic coding and how to implement it can be found in [2,3,11].

A.2 RZIP Compression

RZIP is a compression algorithm specially designed to achieve maximum compression ratios
for little processing power. It is a lot faster and much more efficient than encoders using
DPCM [3,12]. Hence it’s optimally feasible for this task.

The Encoding in RZIP goes as follows:

Hereby is: SOURCE: source data of size SSIZE

ALPHA: temporary working buffer of size SSIZE which is filled
with 0 integers initially

 DEST: destination buffer where the coded data is written to
RANGEWIDTH: the # of bits, the offset of a symbol is encoded in

 RANGE: the range to search for one symbol – which sets the offset
 YES/NO: 1 bit symbol to determine if new symbol is started or not

Symbols in destination are 32 bits, offset is RANGEWIDTH bits, YES/NO is 1 bit wide

1. Select first symbol and output it immediately. Set ALPHA buffer to 1 at this index.
2. Iterate through source and check if same symbol can be found somewhere again

within RANGE. If yes code YES and code an offset, which represents the number
of index between last and current symbol of this kind. Increase offset just if index
has a 1 in the ALPHA buffer.

3. If no symbol of the same kind can be found within RANGE code NO.
4. Select next symbol in source where ALPHA is 0.
5. Goto 2 until source buffer is finished.

For example this source data with its ALPHA buffer:

Source data A B B C A B A D
Alpha array before coding A 0 0 0 0 0 0 0 0
Alpha array after coding A 1 0 0 0 1 0 1 0

On-Ground Data Processing 22

Destination data after coding symbol A: AY3Y1N
At the end the coded data will look like this: AY3Y1NBY0Y1NCNDN

More information on the method of RZIP compression can be found in [3].

A.3 Simple Zero Repetition Suppression (ZRS)

ZRS is a compression algorithm to get rid of zeroes in the data. All it does is to ignore zero
symbols in the buffer and instead output the number of zero symbols between two nonzero
symbols. Note that this algorithm is only useful if there are more zero symbols than nonzero
symbols in the data [3,14].

How this procedure works can easily be shown in an example:

A buffer like this A 0 B 0 0 0 0 C 0 0 D

Is coded to this: A 0 B 1 C 4 D 2

Zero count for the first symbol is always zero. Offset and symbols in destination are written in
the same quantity of bits.

A.4 Redundancy Reduction

Before any of the compression algorithms are used two different methods for redundancy
reduction are applied to the data. These two methods are Static+Dynamic and
Temporal+Spatial Redundancy Reduction (SDRRED, TSRRED). These algorithms are
described exactly in [3].

On-Ground Data Processing 23

B Abbreviations

ARC Arithmetic coding
CDH Compressed DEC/MEC Header
CE Compressed entity
CSD Compressed science data
CR Compression ratio
CDH Compressed DEC/MEC header
DSP1 Digital signal processor 1
DSP2 Digital signal processor 2
DPCM Differential pulse code modulation
HSO Herschel space observatory
ISO Infrared Space Observatory
IR Infrared
IRAS InfraRed Astronomical Satellite
MAE Mean absolute error
OGDPSW On-ground data processing software
PSNR Peak signal to noise ratio
PACS Photodetector array camera and spectrometer
RMSE Root mean square error
RC Raw channel data
SNR Signal to noise ratio
SW Software
SDRRED Static and dynamic redundancy reduction
TSRRED Temporal and spatial redundancy reduction
ZRS Zero repetition suppression

C Manual of the Program

The name of the program (JAVA archive) is DataProcessing.jar. If one types
java –jar DataProcessing.jar –help the following help screen appears:

Usage: java -jar DataProcessing.jar MODE [OPTION] FILEBASE
MODE -o for decompression of fixed set of files
 -c for continuous decompression (keep checking for new files
 and stop after 3 minutes without new data!)

OPTION -f for framebased Decompression of science data
 -d for including files in subdirectories of working directory
 -t for doing a testrun after decompression
 -l for doing a testrun which computes also reconstruction error

 measures for lossy compression

FILEBASE basename of files to decompress

This help screen shows all the possible running modes with all the options
available and describes them briefly.

