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Abstract

Regions in an image graph can be described by their spanning tree. A graph pyramid is a stack
of image graphs at different granularities. Integral features capture important properties of these
regions and the associated trees. We compute the depth of a rooted tree, its diameter and the
center which becomes the root in the top-down decomposition of a region. The integral tree is
an intermediate representation labeling each vertex of the tree with the integral feature(s) of the
subtree. Parallel algorithms efficiently compute the integral trees for subtree depth and diameter
enabling local decisions with global validity in subsequent top-down processes.
Keywords: Hierarchical graph-based skeleton, irregular graph pyramids, topology preserving
contraction.
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1 Introduction

Viola and Jones introduced the ’Integral Image’ [30] as an intermediate representation for the
image to compute rapidly rectangular features. Each pixel of an integral image stores the sum
of values of a window defined by the left upper image corner and the pixel as the lower right
corner. The computation of the integral image is linear and the computation of the sum of
any rectangular window uses only four pixels of the integral image. Its effectiveness has been
demonstrated in people tracking [3]. Rotated windows and articulated movements of arms and
legs cause still problems. We follow the strategy to adapt the data structure to the data and
compute features on the adapted structures.

On a graph vertices take the role of pixels in images. Image graphs are embedded in the
plane and can take many different forms: the vertices of the ’neighborhood graph’ correspond
to pixels and vertices are connected by edges if the corresponding pixels are neighbors. In
the ’region-adjacency-graph’ vertices correspond to regions in the image and edges connect
two vertices if the two corresponding regions share a common boundary. Graphs of different
granularity can be related through the concept of dual graph contraction [14] giving rise to graph
pyramids representing the regions of an image at multiple resolutions.

We start by further motivating the research by similar problems and solutions in thek−trave-
ling salesperson problem and other visual problems. Section3 transfers the classical parallel
algorithm for computing the distance transform [6, 8, 29] of a discrete binary shape from the
discrete grid to the plane graphG. We then formulate an algorithm which computes a spanning
tree of a given shape by successively removing edges that connect a foreground face with the
background (section4). This is similar to the distance transform and to well-known shrinking
and thinning algorithms [19, 20, 21]. However, in contrast to those algorithms, the goal is not
to prune the branches of a skeleton of the shape but to determine its ’internal structure’. This
internal structure is used in section5 to determine the diameter and the center of the spanning
tree. The diameter of a graph is the longest among the shortest paths between any pair of
vertices. Its determination involves the search for the shortest path between any pair of vertices.
This is much less complex if the graph is a tree. This is one of the reasons why we first search for
a tree spanning the graph and find then the diameter of this tree. Of course it may be longer than
the diameter of the graph but it has other advantages as we will see. Partly as a by-product we
compute the maximal path lengths of all branches of the subtrees and the respective diameters
(section6.1). These ’integral features’ describe a property of a complete subtree. That is why
we chose the name ’integral tree’ in analogy to integral image. We will show first experimental
results for an top-down decomposition of the spanning tree into a disjoint set of subtrees with
balanced diameters (section6).
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a) cities b) One tour TSP
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c) k-TSP d)k-TSP with roots

e) stark-TSP f) rooted stark-TSP

Figure 1: Traveling salesperson problem.

2 Further Motivation: TSP and visual problem solving

Let us consider the traveling salesperson problem (TSP) in whichn cities must be visited in
the shortest time. Suppose that the regulation allows an agent to travel to at most10 cities.
The solution to this problem requires many agents, breaking the original TSP problem intok
TSP problems. In Fig.1 the cities are the vertices and the costs are associated with the edges
connecting the cities. A simple solution is to cover the vertices of the graph withk−tours and to
balance the load of the agents, for example by minimizing the maximal tour, or by minimizing
the diameter of the subgraph (Fig.1c,d,e,f). The traveling salesperson problem (TSP) is that of
finding a shortest tour (minimum length) that visits all the vertices of a given graph with weights
on edges [11] Ch.8. This problem has received considerable attention in the literature [18, 9].
The problem is known to be computationally intractable (NP-hard) [2]. Several heuristics are
known to solve practical instances [9]. A problem similar to TSP on a weighted graph, is the
Chinese postman problem: find the shortestclosed walkthat traverses each edge at least once.
It can be solved optimally in polynomial time [1]. The travelingsalespersonproblem has been
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generalized tomultiple salespersons(k−TSP), allowing each salesperson to visitn/k out of n
cities. This is a version ofvehicle routing, where one wants to schedule vehicles to carry objects
from specified source vertices (root) to specified destinations, for an overview see [9]. Another
closely related problem is the multiple minimum spanning tree (k−MST) problem. In [32, 31],
k trees are generated where each tree contains a root, and the size of the largest tree in the forest
is minimized.

Our goal is to generate a spanning forest that consists ofk trees with roots, such that the
diameters of the trees are balanced, i.e. none of the diameters of trees in the forest is greatly
larger than the other tree diameter.

More recently, pyramid algorithms have been used to model the mental mechanisms in-
volved in solving the visual version of the Traveling Salesman Problem [10], as well as other
types of visual problems [23, 24].

Humans seem to represent states of a problem by clusters (recursively) and determine the
sequence of transformations from the start to the goal state by a top-down sequence of approx-
imations. This approach leads to algorithms whose computational complexity is as low as that
of the mental processes (i.e. linear), and which produce solution paths that are close to optimal.
It follows that pyramid models may provide the first plausible explanation of the phenomenon
of the directedness of thought and reasoning [12].

It is important to emphasize that by ”pyramid algorithms” we mean any computational tool
that performs image analysis based on multiple representations of the image forming a hier-
archy with different scales and resolution, and in which the height (number) of a given level
is a logarithmic function of the scale (and resolution) of the operators. Multiresolution pyra-
mids form a subset of the general class of exponential pyramid algorithms. In multiresolution
algorithms the computation of the mean intensity is the only operation.

Pyramid algorithms, which incorporate a wider class of operators, are adequate models for
the Gestalt rules of perceptual organization such as proximity, good continuation, common fate
(e.g. [26, 22]). They also provide an adequate model of Weber’s law and the speed-accuracy
tradeoff in size perception, as well as of the phenomenon of mental size transformation [25]. In
the case of size processing, modeling visual processes involves both bottom-up (fine to coarse)
and top-down (coarse to fine) analyses. The top-down processing seems also critical in solving
the image segmentation problem, which is a difficult inverse problem (e.g. [7]). This problem
has received much attention in psychological literature, and is known as figure-ground segrega-
tion phenomenon [13].

3 Distance Transform

Let G(V, E) denote a graph embedded in the plane andG(F, E) its dual. Algorithm1 labels
each vertex of the graphG(V, E) with the (shortest) distancedmin : V 7→ {1, . . . ,∞} from
the background. Assume that the vertices of the graph describe a binary shape and the edges
determine the vertice’s neighbors.
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Algorithm 1 Parallel Distance Transform on a Graph

1. Initialize distancesdmin : V 7→ {0, 1, 2, . . . ,∞}

dmin(v) :=

{
1 if v is on the boundary
∞ otherwise

2. repeat for all verticesv ∈ V in parallel:
dmin(v) := min(dmin(v), min{l(e) + dmin(w)|(v, w) ∈ E or (w, v) ∈ E})

It is the direct translation of the well known parallel algorithm from grids to graphs [28]
[Chap.12]. Distances of vertices on the boundary to the background are initialized to1. In some
implementations on grids distances on the shape are chosen greater than0 because pixels in
the background are explicitely represented whereas in the graph formulation there is only one
background face. The results differ by the constant value of1.
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Figure 2: Distance transform

Edge lengthsl(e) > 0 are considered in Algorithm1 to accommodate the fact that lengths
other than 1 can appear. On square grids diagonal connections could be weighted by

√
2 or by

appropriate chamfer distances [5]. In the contracted graphs of graph pyramid edges correspond
to paths connecting two vertices. In such cases the length of the contracted edge could hold the
length of the corresponding path. In case that the length of the edgesl(e) = 1 for all edges
e ∈ E we simply add1 to the minimum of all edges incident onv in step2. The resulting
distances to the boundary are shown in Fig.2.

The integral property resulting from the distance transform is the fact that the boundary of
the shape can be reached from any vertexv in at mostdmin(v) steps, or with a path of length
dmin(v) at most.
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4 Determine the Spanning Tree

The smallest connected graph covering a given graph is a spanning tree. The diameter of a
tree is easier and more efficient to determine than of a graph in general. In addition elongated
concave shapes force the diameter to run along the shape’s boundary, which is very sensitive to
noise and varies with articulated motion.

4.1 Minimal Spanning Tree

The following greedy algorithm2 was used in several experiments because of its efficient im-
plementation. We noted some drawbacks like non-optimal spanning trees with respect to the
shape. Skeletons based on morphology or distance transform give usually better results but it
showed that the subsequent algorithms were able to cope with these deficiencies.

Algorithm 2 Minimal Spanning Tree

1. compute distance transformdmin(v),∀v ∈ V :

2. compute edge weightsw(e) = −dmin(u)dmin(v) for all edgese = (u, v) ∈ E.

3. find minimal spanning tree using Kruskal’s greedy algorithm [17].

The reasons for choosing weight−dmin(u)dmin(v) are as follows:

• MST is computed on the weighted graph,

• local computation combinesd−values of two end points of the edge, and

• ab→ max for a + b = const. ⇒ a = b; in our case|a− b| ≤ l(e)1⇒ a + b ≈ const in
local neighborhood. To enforcemax to increase in distance we take−ab as local decision.

4.2 Spanning Skeleton

The construction of the spanning tree is related to the computation of the distance transform
and the skeleton of the shape. It operates on the dual graphG = (F, E) consisting of facesF
separated by dual edgesE. Let us denoteB ⊂ F the background face(s) and bydegb(f) :=
|{(f, b) ∈ E}| the number of edges connecting a facef ∈ F with the backgroundB. For the
sake of simplicity we assume a single background faceb. If there are more than one background
faces, i.e. if the shape is not simply connected and has holes, all background faces are collected
in a setB of background faces.

1l(e)=1
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Algorithm 3, spanning skeleton, uses dual graph contraction [14] to successively remove
edges connecting the interior of the shape with the backgroundB while simplifying the bound-
ary by removing unnecessary vertices of degree one and two. In our case dual removal of an
edgee merges facef with the background faceb and corresponds to contracting edgee = (f, b)
in the dual graphG. The result is a set of contraction kernels used to build the graph pyramid
up to the apex. The searched spanning tree is then the equivalent contraction kernel [15] of the
apex. We denote the edges of this equivalent contraction kernel byEeck ⊂ E. Fig. 3 illustrates

Algorithm 3 Spanning Skeleton

1. dually contract vertices of degree 1 and 2 in G; (the connecting edges correspond to self-
loops and multi-edges in the dual graphG.)

2. dually remove all edgese ∈ E (in parallel) if

• edgee = (f, b) ∈ E, b ∈ B separates

• a foreground facef ∈ F \B from the background

• in a unique way:degb(f) = 1.

3. for all facesf ∈ F multiply connected with the background,degb(f) > 1, do:

(a) select an edgee = (f, b) ∈ E ⊂ (F \B)×B and

(b) dually removee from E.

4. repeat steps1 – 3 until F = ∅

5. the spanning skeleton is the equivalent spanning tree of the surviving vertex ofG.

the algorithm. After three passes through steps1 − −3 the apex is reached in our example.
The resulting spanning tree concatenates the equivalent contraction kernels used in step1 of the
algorithm.

4.3 Discussion and Computational Complexity of Algorithm3

In Step1 of the Algorithm3, Spanning Skeleton, we distinguish two cases:

• If the vertices of degree less than3 are adjacent to the backgroundB a complete subtree
externally attached to the shape is removed after a number of (sequential) steps corre-
sponding to the length of the longest branch of the tree.

• Vertices of degrees1 and2 may also exist inside the shape if they are not adjacent to the
background. They are removed similar to the external tree in the very first step. As before
the complexity depends on the longest branch.
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Figure 3: Spanning Skeleton of Example

Since the dual contraction of all trees is independent of each other, the parallel complexity is
bound by the longest branch of any tree.

Step2 removes all edges on the boundary of the graph as long as the non-background face
is not multiply connected to the background. They are all independent of each other and hence
can be removed in one single parallel step.

Step3 removes one of the edges of faces which are multiply connected to the background.
Since vertices of degree2 have been eliminated in step1 this can only happen at ’thin’ parts of
the graph (where the removal of2 or more such edges would disconnect the graph). Only one
edge need to be removed to allow the face to merge with the background. Since different faces
multiply connected to the background are independent of each other all dual removals can be
done in one single parallel step.

The total number of steps needed to complete one iteration of steps1 − −3 depends on
the longest branch of a tree in step 1 and needs two additional steps. The branches contracted
in step one become part of the final spanning tree hence in total, all steps1 need at most as
many steps as the longest path through the tree (i.e. its diameter). The number of iterations is
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limited by the thickness of the graph since at each iteration one layer of faces adjacent to the
background is removed. Hence we conclude that the parallel complexity of the algorithm in the
worst case isO( diameter(G)+ thickness(G)) .

4.4 Control Parameters

There are only few non-deterministic decisions in the algorithm: which edge to select in step
3(a)? If the goal is to build a spanning tree of shortest total length then the longest edge among
the edges separating the face from the background can be chosen. This length can either stem
from the original geometry or it may have been accumulated during dual contraction of vertices
of degree2 in step1.

The construction of the spanning tree combines the trees dually contracted in step1 and all
but one edges of the connecting paths corresponding to edges dually removed in steps2 and
3. Here a plausible strategy would be to choose the middle edge of the connecting path for not
being added. This would keep the depth of the tree low since the remaining set of edges would
be split in half and attached to different branches of the tree. If the shrinking is to be controlled
by geometry then the distance of the faces from the background can be used to prohibit faces
from being merged with the background in steps2 and3.

5 Diameter and Integral Tree of Depths

Given a (spanning) tree adapted to the shape we would like to measure distances between any
vertices of the tree. Algorithm4 labels each vertex with the lengthdmax of the longest tree
branch away from the center. The result is the same as produced by [16] but it differs by
its parallel iterated and local operations. Given the (spanning) treeT = (V, Eeck) Algorithm
Subtree Depthcomputes the vertex attributedmax in O(|diameter|/2) parallel steps. If the

Algorithm 4 Subtree Depth

1. Initialize distancesdmax : V 7→ {0, 1, 2, . . . ,∞}

dmax(v) :=

{
0 if v is a leaf, e.g.degT (v) = 1
∞ otherwise

2. repeat for all verticesv ∈ V in parallel:
dmax(v) := min(dmax(v), max2{l(e) + dmax(w)|(v, w) ∈ Eeck or (w, v) ∈ Eeck})

tree is cut at any edgee = (u, v), dmax(v) gives the depth of the remaining tree which includes
vertexv. It has the integral property that any leaf of the subtree can be reached along a path not
longer thandmax(v). The function max2{M} returns the second largest value of the argument

9



setM , i.e. max2(M) := max(M \ {max(M)}).2

5.1 Center and Diameter of the Spanning Tree

The sample result is shown in Fig.5. Each vertex is labeled with two values, the first being the
subtree depth. Thediameter is the longest path3 through the tree and consists of the two sub-
pathsv0, v1, . . . , v9 andw9, w8, . . . , w0 with dmax(vi) = dmax(wi) = i, i = 0 . . . 9. Its length is
19. There is one edge(v9, w9) of which both ends have (maximal) depth9. This is thecenter
of the treewith the (integral) property that all leafs (i.e. all vertices!) of the tree can be reached
in maximally dmax(v9) = 9 steps. The diameter of this tree is obviously19, an odd number.
All trees with an odd diameter have a central edge. Trees with an even diameter have a single
maximumdmax-value, e.g. a vertex is the center.

Similar information is contained in the subtree depth of the other vertices: Given the center
of the tree, we can orient the edges such that they either point towards the center or away from
the center. Let us assume in the following that alledges of the tree are oriented towards the
center.

5.2 Computational Complexity of Algorithm Subtree Depth

We consider the number of repetitions of step2 and the number of steps required to compute
max2. First we note that the algorithm stops if the functiondmax(v) does not change after
updating of step2. It starts with vertices of subtree depth0 and increases the distance values at
each (parallel) iteration. Hence step2 need not be repeated more than half the diameter times.
To compute thedmax-value in step2 all the neighbors of a vertex need to be considered. Hence
this is bounded by the degree of the vertex. In summary the parallel computational complexity
is O(diameter∗maximal vertex degree) .

6 Decomposing the Spanning Tree

In [16] we presented an algorithm to decompose a spanning tree into subtrees such that the di-
ameter of each subtree is maximally half the diameter of the original tree. Recursively continued
until the subtrees have a diameter less equal2, this strategy creates a hierarchy oflog(diameter)
height. The only parameter used for this decomposition is the length of the diameter and the
center of the tree.

We studied the relation between the shape (two sample examples are shown in Fig.4) and
the resulting graph pyramid. Table1 lists the observed properties of the contraction kernels used

2If set M has less than two elements, then the function isnot definedin general. If, however, it appears as a
member of a set like inmin(·) or max(·) then it can simply be ignored or, mathematically more correct, replaced
by the empty set: max2(∅) = max2{x} = ∅.

3Edge lengthl(e) = 1 is used in all examples.

10



a) Bister(2× 1581 + 9 pixel) b) Disc (1581 pixel) c) Hand (100× 109)

Figure 4: Example images used in experiments.

at levelk to produce levelk+1 (k → k+1). For every level the histogram of kernel’s degrees is
given together with the largest diameterδ of all subtrees at the respective levels. The similarity
of the substructure ’Disc’ to ’Bister’ is obvious and not surprising. The length of the diameter
and the center appear to be very robust whereas the fine substructures are sensitive to noise. In
particular we observe many spurious branches (deg(v) = 0) and high splitting degrees. This
can be avoided to a large extend and optimized using subtree diameters.

6.1 The Integral Tree of Diameters

Subtree depthsdmax are upper bounds for reach-
ing any vertex in the outer subtree. Consider the
following configuration :c denotes the center,
li are the leafs,v, w, u, si are intermediate ver-
tices. dist(x, y) denotes the distance between
verticesx andy.

c→ · · · → v 6→ w


→ s1 · · · → l1

→ u


→ s2 · · · l2
→ s3 · · · l3
→ s4 · · · l4

→ sn · · · → ln

The depth of the centerc is not shorter than the distance to any leaf4: dmax(c) ≥ dist(c, li). The
actual distance between the center and any vertexv is also bounded: dist(c, v) ≤ dmax(c) −
dmax(v). Along the tree’s diameter-path the above inequalities are equalities. Assume we cut
the tree between verticesv andw. The diameter of the outer subtree ofw goes either through
w or it connects two subbranches excludingw. If it goes throughw its length is the sum of the
subtree depth ofw and the length of its second longest subbranch. The length of a subbranch is
the length of the edge connecting the branch tow plus the subtree depth of the first son in this
subbranch:δ(w) = dmax(w) + max2{l((w, s)) + dmax(s)|(w, s) ∈ Eeck}. The max2-function
is well defined becausedmax(w) > 0 implies the degreedeg(w) ≥ 2.

If the diameter of subtreew does not go throughw it connects two leafs through a vertex,
e.g. u : l2 · · · s2 ← u → s4 · · · l4. In this case vertexu calculates the diameter asw above
and propagates the length of the diameter up to vertexw. The diameters of all subtrees can be
calculated similar to the Subtree Depth: Alg.5 generates diametersδ (2nd values in Fig.5).

4Odd diameters create a central edge splitting the tree in two subtrees for which the above inequalities hold.
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Table 1: Degrees of the contraction kernels.
’Bister’

level\deg 0 1 2 3 4 5 6 8 δ

0 → 1 1653 759 1
1 → 2 2340 24 2
2 → 3 2124 48 24 6
3 → 4 1779 99 8 8 8 10
4 → 5 1111 199 21 22 19
5 → 6 451 244 8 18 8 25
6 → 7 75 174 16 4 8 32
7 → 8 13 48 16 8 43
8 → 9 3 8 2 8 50

9 → 10 1 2 62
10 → 11 1 120

’Disc’

level\deg 0 1 2 3 4 5 6 8 δ

0 → 1 821 380 1
1 → 2 1165 12 2
2 → 3 1057 24 12 6
3 → 4 877 52 4 4 4 10
4 → 5 529 110 8 10 19
5 → 6 229 116 4 8 4 25
6 → 7 37 86 8 2 4 32
7 → 8 5 24 8 4 43
8 → 9 4 1 4 50

9 → 10 1 62

’Hand’

level\deg 0 1 2 3 4 5 6 7 8 9 11 12 13 21 25 40 r max Li

0 → 1 2999 1108 1.27 1
1 → 2 4098 3 1 3
2 → 3 3830 89 1 1.05 7
3 → 4 2549 444 4 2 1 1 1.31 13
4 → 5 779 719 6 3 2 2 1.99 25
5 → 6 70 445 3 6 1 1 2 1 1 1 2.85 49
6 → 7 137 3 2 1 3 1 1 1 1 1 3.52 97
7 → 8 20 1 2 2 1 5.81 193
8 → 9 1 26 385

6.2 Using Integral Trees for Decomposition

The integral features of depthdmax and diameterδ should enable us to decide locally where it
is best to split the spanning tree. Criteria could be a good balance of diameter lengths, a small
degree of the top contraction kernels (”a hand has5 fingers”) or more object specific properties
that could be known to the system.

Let us consider what happens if we cut the tree at a certain distance from the center by
removing the cut-edge. A cut-edge(v, w) is selected if the depth of the outer tree is smaller
than a thresholddT , dmax(v) < dT ≤ dmax(w) (’cut-edge condition’). Note that the threshold
dT can depend on the length of the overall diameterδ(c).

After cutting, the longest possible diameter of the outer treeδmax is twice the subtree depth
of dmax(v) (this was used in [16]). This can be improved using the actual diametersδ(v) cal-
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Algorithm 5 Subtree Diametersδ

1. Initialize diametersδ(v) := dmax(v)

2. repeat for all verticesv ∈ V in parallel:

δ(v) := max( max{δ(s)|(v, s) ∈ Eeck},
max2{dmax(v) + l((v, s)) + dmax(s)|(v, s) ∈ Eeck}
)
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Figure 5: Integral trees of depths and diametersdmax, δ.

culated by algorithm subtree-diameters (Fig.5). If all edges satisfying the cut-edge condition
are rigorously removed the depth of the remaining central tree is reduced by the subtree depth
of new leafdmax(w) = dT . Consequently the diameter of the central tree shrinks by the dou-
ble amountδnew(c) = δold(c) − 2dT . Table2 lists the different diameters and degrees for all
possible cut-depthsdT . The decomposition should first split the ’important’ components and
not be too much influenced by spurious subtrees. Therefore we consider the degrees of the
resulting contraction kernels. The degree of the contraction kernel corresponds exactly to the
number of cut-edges. While the ’cut-degree’ counts all rigorously created new subtrees includ-
ing trees with very small depth and diameter (0 in Table2), the ’min’-value gives the degree
after re-connecting all cut-edges to the central tree which do not increase the largest diameter
of all outer and the inner trees. The remaining subtree diameters are bold faced in Table2.
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Table 2: Cuts through example tree Fig.5
cut diameters of outer trees and center tree deg((CK))
dT δmax δleft δ(c) δright cut min

9 16 9 1 10 2 2
8 14 0, 7 3 10 3 2
7 12 0, 7 5 0,7, 2 5 3
6 10 0, 7, 0 7 0,0, 6, 0 , 2 8 6
5 8 0, 0, 2, 5, 0 9 0, 0,4, 0, 0,2 11 6
4 6 0, 0,2, 0, 3, 0, 0 11 0, 0,4, 0, 0, 2 13 5
3 4 0, 0, 2, 0,3, 0, 0 13 0, 0,0, 2, 0, 0, 2 14 3
2 2 0, 0, 2, 0,1 ,0, 0, 0 15 0, 0, 0,1, 0, 0, 1 15 3
1 0 0, 0, 0, 0, 0,0, 0, 0, 0 17 0, 0, 0,0, 0, 0, 0 16 2

Table 3: Cuts through spanning tree of example’Bister’

cut diameters of outer trees and center tree deg((CK))
dT δmax δleft δ(c) δright cut

60 118 62 0 62 2
59 116 62 2 62 2

· · ·
37 72 62 46 62 2
36 70 44, 62 48 44, 62 4
35 68 44,19, 62 50 44,19, 62 6
34 66 44,19,19, 62 52 44,19,19, 62 8
33 64 44,19,19, 62, 20 54 44,19,19, 62, 20 10
32 62 44,19,19,20,50, 60, 20 56 44,19,19,20,50, 60, 20 14
31 60 44,19,19,20,50,21, 60, 21,20 58 44,19,19,20,50,21,60,21,20 18
30 58 44,19,19,20,50,21,50,20,50,21,20 60 44,19,19,20,50,21,50,20,50,21,20 22

· · ·

6.3 Experiment: Two Connected Balls (’Bister’)

The example of Fig.6 consists oftwo large balls connected by a thin curve. Bister etal. [4]
used a similar example to demonstrate the shift variance of regular pyramids. The goal of this
experiment, referred to as’Bister’, is to check whether the simple decomposition expressed by
the above description could be derived from the integral tree.

Table3 lists the different subtree depths and diameters in the example’Bister’ (see sub-
tree depth and diameters of central part in Fig.7). This shows clearly that the diameters of
the two circles (62) propagate up to the center which receives diameter120. Cutting the path
which connects the two large circles produces three subtrees (degree of contraction kernel2) of
which both outer subtrees have diameter62 from cut-edge with subtree depths (59,60) down to
(36,37). With smaller subtree depth the degrees of the contraction kernels start to grow since
extra branches of the two circles are cut. We continued the table down to cut-edge (29,30) where
the diameter of the center-tree becomes larger than any of the outer trees. We also note that no
spurious branches can be integrated in this first level decomposition.

We cut the tree at cut-edge (36,37) indicated in Fig.6 by darker vertices. Of the remaining
three subtrees the center tree is a single path of length46 and the two symmetric circles have
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Figure 6: Cutting at 37 example’Bister’
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Figure 7: Center part of left circle of exampleBister before and after cut
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Table 4: Cuts through the left subtree of example’Bister’

cut diameters of outer trees and center tree deg((CK))
dT δmax δleft δ(c) δright cut

31 60 60,21 0 60,21 4
30 58 50,20,50,21 2 50,20,50,21 8
29 56 20,48,20,48,21 4 48,20,48,20,21 10

· · ·
17 32 4× 29+ path lengths[14, 16] 28 4× 29+ path lengths[14, 16] 55
16 30 4× 27+ path lengths[12, 15] 30 4× 27+ path lengths[12, 15] 59

· · ·

diameter62 and will be decomposed recursively. After the cut the subtree depth and the diame-
ters need to be updated for the path that leads to the center (see Fig.7). Table4 summarizes the
decomposition after cutting the left circle from the example’bister’.

6.4 Experiment: Hand

The image of the hand is a range image segmented from the NRCC image database [27] 5. The
goal of this experiment, referred to as’Hand’, it is the same as previously, is to check whether
the simple decomposition, expressed by the above description could be derived from the integral
tree, like”a hand has5 fingers”. Table5 lists the different subtree depths and diameters in the
example’Hand’ (bold face values are the largest depths). The boundary from the center of
’Hand’ can be reached in at mostdmin(c) = 25 steps, i.e. with the path of lengthdmin(c) = 25.
From the Table5 usingdT ≥ dmin can be used to separate the longest branches from the center,
e.g.74 < dT ≤ 77 we have4 long branches and a center branch (see numbers depicted in bold
in row 4, Table5); for 64 < dT ≤ 74 we get5 long braches and a center branch; fordT ≤ 64
we got 7 long branches and a center branch; and so on. In order to understand how these
branches are created, imagine that we cut the graph (Figure8) with ‘circles’ having center(s) at
the graph’s center. In Figure8 the main branches are highlighted6.

7 Conclusion

We have introduced integral trees that can store integral features or properties. The author
in [21] uses as the center of the skeleton the maximum of the minimum of a distance (significant)
measure7. In this paper we use as a center of the skeleton minimum of a maximum of a distance
measure. Efficient parallel algorithms have been presented for computing

• the boundary distancedmin of a binary shape;

5The authors would like to thank Kaleem Siddiqi for making the images available.
6The branches are given with different colors, to help follow the Table5.
7Residual function.

16



�
�

�
�

�
�

�
�

�
�

�
�

�
�

���

center of graph

Figure 8: Hand example

17



Table 5: Cuts through spanning tree of example’Hand’

cut diameters of outer trees and center tree deg((CK))
dT max(δ) δleft δ(c) δright cut

92 182 2, 167, 23 1 134, 27 5
91 180 2, 167, 2×23, 24 3 134, 27 7
90 170 2, 134, 126, 2×23, 2×24 5 134, 27 9

· · ·
77 152 56, 14, 16, 18, 21,126, 2×23, 3×24, 26,

2×27, 2×28
31 134, 20, 2×21, 2×22, 47, 3, 1, 27, 2, 21,

22, 2×19, 18, 4×0, 86
34

· · ·
74 146 3×12, 56, 14, 16, 18, 21,126, 2×23,

3×24, 2×25, 26, 2×27, 2×28, 29, 28
37 94, 73, 2×20, 2×21, 2×22, 47, 3, 1, 27, 2,

21, 22, 2×19, 18, 4×0, 86
46

· · ·
64 126 9, 10, 11, 6×12,56, 14, 16, 18, 21, 22, 21,

20, 19, 17,60, 9, 73, 9, 18, 2×19, 20, 22,
2×23, 3×24, 2×25, 26, 2×27, 2×28, 29,
28

57 94, 63, 2×20, 2×21, 2×22,47, 3, 1, 27, 2,
21, 22, 2×19, 18, 9×0, 11, 2×9, 8,72

73

63 124 9, 10, 11, 6×12,56, 14, 16, 18, 21, 22, 21,
20, 19, 17,60, 2×9, 72, 9, 18, 2×19, 20,
22, 2×23, 3×24, 2×25, 26, 2×27, 2×28,
29, 28

59 94, 63, 2×20, 2×21, 2×22,47, 3, 1, 27, 2,
21, 22, 2×19, 18, 9×0, 11, 2×9, 2×8, 71

76

62 122 8, 9, 10, 11, 6×12, 56, 14, 16, 18, 21, 22,
21, 20, 19, 17,60, 3×9, 71, 9, 18, 2×19,
20, 22, 2×23, 3×24, 2×25, 26, 2×27,
2×28, 29, 28

61 94, 63, 2×20, 2×21, 2×22,47, 3, 1, 27, 2,
21, 22, 2×19, 18, 9×0, 11, 2×9, 2×8, 69

78

61 120 8, 9, 10, 11, 6×12, 56, 14, 16, 18, 21, 22,
21, 20, 19, 17,60, 4×9, 70, 9, 18, 2×19,
20, 22, 2×23, 3×24, 2×25, 26, 2×27,
2×28, 29, 28

63 94, 63, 2×20, 2×21, 2×22,47, 3, 1, 27, 2,
21, 22, 2×19, 18, 9×0, 11, 2×9, 2×8, 7,
68

80

60 118 8, 9, 10, 11, 6×12, 56, 14, 16, 18, 21, 22,
21, 20, 19, 17,59, 5×9, 69, 9, 18, 2×19,
20, 22, 2×23, 3×24, 2×25, 26, 2×27,
2×28, 29, 28

65 94, 63, 2×20, 2×21, 2×22, 47, 3, 1, 27,
2, 21, 22, 2×19, 18, 9×0, 11, 2×9, 2×8,
2×7, 66

82

59 116 6, 8, 9, 10, 11, 6×12,56, 14, 16, 18, 21, 22,
21, 20, 19, 17,58, 6×9, 68, 9, 18, 2×19,
20, 22, 2×23, 3×24, 2×25, 26, 2×27,
2×28, 29, 28, 29

67 87, 70, 63, 2×20, 2×21, 2×22, 47, 3, 1,
27, 2, 21, 22, 2×19, 18, 9×0, 11, 2×9,
2×8, 2×7, 65

86

· · ·

• the depth of all subtreesdmax; and

• the diameterδ of the outer subtrees.

These integral features are not just sums over all elements of the subtree but capture properties
of the complete substructure. The integral trees have been used to decompose the spanning tree
of the shape top-down. The decomposition can use following optimization criteria:

• balance the diameters of the subtrees more efficiently than cutting at a fixed distance
from the center or the leafs; unfortunately this often generates contraction kernels of high
degree.

• set the degreen of the contraction kernel beforehand and find then subtrees with largest
integral feature, e.g. diameter.
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• define the optimization criteria which can be solved using local information provided by
the integral tree and some global properties like global size or diameter proportion that
are propagated during the top-down process.

In future research we plan to apply integral tree for new solutions of the TSP problem as well
in tracking articulated motion.
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ing in Media and Education, 28tḧOAGM Workshop, pages 71–78. OCG-Schriftenreihe,
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