Technical Report Pattern Recognition and Image Processing Group
Institute of Computer Aided Automation
Vienna University of Technology
Favoritenstr. 9/183-2
A-1040 Vienna AUSTRIA
Phone:  +43 (1) 58801-18351
Fax: +43 (1) 58801-18392

krw@prip.tuwien.ac.at,
E-mail:  yll@prip.tuwien.ac.at,

pizlo@psych.purdue.edu
URL: http://www.prip.tuwien.ac.at/

PRIP-TR-92 15 September 2004

Integral Trees: Subtree Depth and Diameter

Walter G. Kropatsch', Y1l Haxhimusa® and Zygmunt Pizlo?

Abstract

Regions in an image graph can be described by their spanning tree. A graph pyramid is a stack
of image graphs at different granularities. Integral features capture important properties of these
regions and the associated trees. We compute the depth of a rooted tree, its diameter and the
center which becomes the root in the top-down decomposition of a region. The integral tree is
an intermediate representation labeling each vertex of the tree with the integral feature(s) of the
subtree. Parallel algorithms efficiently compute the integral trees for subtree depth and diameter
enabling local decisions with global validity in subsequent top-down processes.
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1 Introduction

Viola and Jones introduced the ’Integral Imag&Q| as an intermediate representation for the
image to compute rapidly rectangular features. Each pixel of an integral image stores the sum
of values of a window defined by the left upper image corner and the pixel as the lower right
corner. The computation of the integral image is linear and the computation of the sum of
any rectangular window uses only four pixels of the integral image. Its effectiveness has been
demonstrated in people tracking].[ Rotated windows and articulated movements of arms and
legs cause still problems. We follow the strategy to adapt the data structure to the data and
compute features on the adapted structures.

On a graph vertices take the role of pixels in images. Image graphs are embedded in the
plane and can take many different forms: the vertices of the 'neighborhood graph’ correspond
to pixels and vertices are connected by edges if the corresponding pixels are neighbors. In
the ‘region-adjacency-graph’ vertices correspond to regions in the image and edges connect
two vertices if the two corresponding regions share a common boundary. Graphs of different
granularity can be related through the concept of dual graph contratdpgiying rise to graph
pyramids representing the regions of an image at multiple resolutions.

We start by further motivating the research by similar problems and solutionsin-tinave-
ling salesperson problem and other visual problems. Se8tioansfers the classical parallel
algorithm for computing the distance transforf) 8, 29] of a discrete binary shape from the
discrete grid to the plane gragh We then formulate an algorithm which computes a spanning
tree of a given shape by successively removing edges that connect a foreground face with the
background (sectiod). This is similar to the distance transform and to well-known shrinking
and thinning algorithmsi[9, 20, 21]. However, in contrast to those algorithms, the goal is not
to prune the branches of a skeleton of the shape but to determine its 'internal structure’. This
internal structure is used in sectiério determine the diameter and the center of the spanning
tree. The diameter of a graph is the longest among the shortest paths between any pair of
vertices. Its determination involves the search for the shortest path between any pair of vertices.
This is much less complex if the graph is a tree. This is one of the reasons why we first search for
a tree spanning the graph and find then the diameter of this tree. Of course it may be longer than
the diameter of the graph but it has other advantages as we will see. Partly as a by-product we
compute the maximal path lengths of all branches of the subtrees and the respective diameters
(section6.1). These ’'integral features’ describe a property of a complete subtree. That is why
we chose the name ’integral tree’ in analogy to integral image. We will show first experimental
results for an top-down decomposition of the spanning tree into a disjoint set of subtrees with
balanced diameters (sectiéh
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Figure 1: Traveling salesperson problem.

2 Further Motivation: TSP and visual problem solving

Let us consider the traveling salesperson problem (TSP) in whicities must be visited in

the shortest time. Suppose that the regulation allows an agent to travel to at(hwses.

The solution to this problem requires many agents, breaking the original TSP problemn into
TSP problems. In Figl the cities are the vertices and the costs are associated with the edges
connecting the cities. A simple solution is to cover the vertices of the graphkwittburs and to
balance the load of the agents, for example by minimizing the maximal tour, or by minimizing
the diameter of the subgraph (Fig,d,e,f). The traveling salesperson problem (TSP) is that of
finding a shortest tour (minimum length) that visits all the vertices of a given graph with weights
on edges]1] Ch.8. This problem has received considerable attention in the literat@e].

The problem is known to be computationally intractable (NP-ha2H) $everal heuristics are
known to solve practical instanced][ A problem similar to TSP on a weighted graph, is the
Chinese postman problerfind the shortestlosed walkthat traverses each edge at least once.
It can be solved optimally in polynomial timé][ The travelingsalespersoproblem has been
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generalized tonultiple salesperson@&—TSP), allowing each salesperson to visitc out of n

cities. This is a version ofehicle routingwhere one wants to schedule vehicles to carry objects
from specified source vertices (root) to specified destinations, for an overvie®|séadther

closely related problem is the multiple minimum spanning tkeeNIST) problem. In B2, 31],

k trees are generated where each tree contains a root, and the size of the largest tree in the forest
iS minimized.

Our goal is to generate a spanning forest that consiskstdes with roots, such that the
diameters of the trees are balanced, i.e. none of the diameters of trees in the forest is greatly
larger than the other tree diameter.

More recently, pyramid algorithms have been used to model the mental mechanisms in-
volved in solving the visual version of the Traveling Salesman Probleij s well as other
types of visual problemsp, 24].

Humans seem to represent states of a problem by clusters (recursively) and determine the
sequence of transformations from the start to the goal state by a top-down sequence of approx-
imations. This approach leads to algorithms whose computational complexity is as low as that
of the mental processes (i.e. linear), and which produce solution paths that are close to optimal.
It follows that pyramid models may provide the first plausible explanation of the phenomenon
of the directedness of thought and reasonitf.|

It is important to emphasize that by "pyramid algorithms” we mean any computational tool
that performs image analysis based on multiple representations of the image forming a hier-
archy with different scales and resolution, and in which the height (number) of a given level
is a logarithmic function of the scale (and resolution) of the operators. Multiresolution pyra-
mids form a subset of the general class of exponential pyramid algorithms. In multiresolution
algorithms the computation of the mean intensity is the only operation.

Pyramid algorithms, which incorporate a wider class of operators, are adequate models for
the Gestalt rules of perceptual organization such as proximity, good continuation, common fate
(e.g0. k6, 22)). They also provide an adequate model of Weber's law and the speed-accuracy
tradeoff in size perception, as well as of the phenomenon of mental size transforrd&tidn [
the case of size processing, modeling visual processes involves both bottom-up (fine to coarse)
and top-down (coarse to fine) analyses. The top-down processing seems also critical in solving
the image segmentation problem, which is a difficult inverse problem (4)g.This problem
has received much attention in psychological literature, and is known as figure-ground segrega-
tion phenomenoni3].

3 Distance Transform

Let G(V, E) denote a graph embedded in the plane &td, F) its dual. Algorithm1 labels

each vertex of the grap&(V, E) with the (shortest) distancé,;, : V — {1,...,00} from

the background. Assume that the vertices of the graph describe a binary shape and the edges
determine the vertice’s neighbors.



Algorithm 1 Parallel Distance Transform on a Graph

1. Initialize distance€,,;, : V — {0,1,2,... ,00}
1 if vis onthe boundary

dmin(v) = .

oo otherwise

2. repeat for all vertices € V' in parallel:
Aimin (V) := min(dyin (v), min{i(e) + dpin(w)|(v,w) € E or (w,v) € E})

It is the direct translation of the well known parallel algorithm from grids to graglf [
[Chapl12]. Distances of vertices on the boundary to the background are initialiZzedncsome
implementations on grids distances on the shape are chosen greatéritbeause pixels in
the background are explicitely represented whereas in the graph formulation there is only one
background face. The results differ by the constant value of
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Figure 2: Distance transform

Edge lengthd(e) > 0 are considered in Algorithrh to accommodate the fact that lengths
other than 1 can appear. On square grids diagonal connections could be weigkf2dblgy
appropriate chamfer distancég.[In the contracted graphs of graph pyramid edges correspond
to paths connecting two vertices. In such cases the length of the contracted edge could hold the
length of the corresponding path. In case that the length of the é@iges- 1 for all edges
e € E we simply addl to the minimum of all edges incident anin step2. The resulting
distances to the boundary are shown in Rig.

The integral property resulting from the distance transform is the fact that the boundary of
the shape can be reached from any vetté at mostd,,;,(v) steps, or with a path of length
dpmin (v) @t most.



4 Determine the Spanning Tree

The smallest connected graph covering a given graph is a spanning tree. The diameter of a
tree is easier and more efficient to determine than of a graph in general. In addition elongated
concave shapes force the diameter to run along the shape’s boundary, which is very sensitive to
noise and varies with articulated motion.

4.1 Minimal Spanning Tree

The following greedy algorithn2 was used in several experiments because of its efficient im-
plementation. We noted some drawbacks like non-optimal spanning trees with respect to the
shape. Skeletons based on morphology or distance transform give usually better results but it
showed that the subsequent algorithms were able to cope with these deficiencies.

Algorithm 2 Minimal Spanning Tree

1. compute distance transfori,;,(v), Vv € V:
2. compute edge weights(e) = —din (u)dmin(v) for all edges = (u,v) € E.

3. find minimal spanning tree using Kruskal’'s greedy algoritiim [

The reasons for choosing weightl,,i, (v)dmin (v) are as follows:
e MST is computed on the weighted graph,
e |local computation combines—values of two end points of the edge, and

e ab — max for a + b = const. = a = b; in our casda — b| < l(e)! = a + b ~ const in
local neighborhood. To enforeeax to increase in distance we takeb as local decision.

4.2 Spanning Skeleton

The construction of the spanning tree is related to the computation of the distance transform
and the skeleton of the shape. It operates on the dual giaph(F, E) consisting of faces”
separated by dual edgés Let us denote3 C F the background face(s) and Hyg,(f) =

[{(f,b) € E}| the number of edges connecting a fgfce F with the background3. For the

sake of simplicity we assume a single background ad¢ithere are more than one background
faces, i.e. if the shape is not simply connected and has holes, all background faces are collected
in a setB of background faces.

li(e)=1



Algorithm 3, spanning skeleton, uses dual graph contractigh fo successively remove
edges connecting the interior of the shape with the backgrauwtiile simplifying the bound-
ary by removing unnecessary vertices of degree one and two. In our case dual removal of an
edgee merges facg with the background faceand corresponds to contracting edge (f,b)
in the dual graplC;. The result is a set of contraction kernels used to build the graph pyramid
up to the apex. The searched spanning tree is then the equivalent contraction Kgrokie
apex. We denote the edges of this equivalent contraction kerngl by E. Fig. 3 illustrates

Algorithm 3 Spanning Skeleton

1. dually contract vertices of degree 1 and 2 in G; (the connecting edges correspond to self-
loops and multi-edges in the dual gra@h)

2. dually remove all edgesc< FE (in parallel) if

e edgee = (f,b) € E,b € B separates
e aforeground facg € F'\ B from the background
e in a unique waydeg,(f) = 1.

3. for all facesf € F multiply connected with the backgroundkg,(f) > 1, do:

(a) selectan edge = (f,b) € E C (F'\ B) x B and
(b) dually remove: from E.

4. repeat steps —3 until F = ()

5. the spanning skeleton is the equivalent spanning tree of the surviving verd&x of

the algorithm. After three passes through stéps —3 the apex is reached in our example.
The resulting spanning tree concatenates the equivalent contraction kernels used of gtep
algorithm.

4.3 Discussion and Computational Complexity of Algorithm3
In Step1 of the Algorithm3, Spanning Skeleton, we distinguish two cases:

o If the vertices of degree less tharare adjacent to the backgroumtda complete subtree
externally attached to the shape is removed after a number of (sequential) steps corre-
sponding to the length of the longest branch of the tree.

e \ertices of degrees and2 may also exist inside the shape if they are not adjacent to the
background. They are removed similar to the external tree in the very first step. As before
the complexity depends on the longest branch.
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Configurations of first iteration:
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Figure 3: Spanning Skeleton of Example

Since the dual contraction of all trees is independent of each other, the parallel complexity is
bound by the longest branch of any tree.

Step2 removes all edges on the boundary of the graph as long as the non-background face
is not multiply connected to the background. They are all independent of each other and hence
can be removed in one single parallel step.

Step3 removes one of the edges of faces which are multiply connected to the background.
Since vertices of degreehave been eliminated in stéghis can only happen at 'thin’ parts of
the graph (where the removal ®for more such edges would disconnect the graph). Only one
edge need to be removed to allow the face to merge with the background. Since different faces
multiply connected to the background are independent of each other all dual removals can be
done in one single parallel step.

The total number of steps needed to complete one iteration of steps3 depends on
the longest branch of a tree in step 1 and needs two additional steps. The branches contracted
in step one become part of the final spanning tree hence in total, all stegsd at most as
many steps as the longest path through the tree (i.e. its diameter). The number of iterations is
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limited by the thickness of the graph since at each iteration one layer of faces adjacent to the
background is removed. Hence we conclude that the parallel complexity of the algorithm in the

worst case isO( diamete(G)+ thicknessG)) |.

4.4 Control Parameters

There are only few non-deterministic decisions in the algorithm: which edge to select in step
3(a)? If the goal is to build a spanning tree of shortest total length then the longest edge among
the edges separating the face from the background can be chosen. This length can either stem
from the original geometry or it may have been accumulated during dual contraction of vertices
of degree2 in stepl.

The construction of the spanning tree combines the trees dually contracted inestéall
but one edges of the connecting paths corresponding to edges dually removed i atelps
3. Here a plausible strategy would be to choose the middle edge of the connecting path for not
being added. This would keep the depth of the tree low since the remaining set of edges would
be split in half and attached to different branches of the tree. If the shrinking is to be controlled
by geometry then the distance of the faces from the background can be used to prohibit faces
from being merged with the background in st@@and3.

5 Diameter and Integral Tree of Depths

Given a (spanning) tree adapted to the shape we would like to measure distances between any
vertices of the tree. Algorithrd labels each vertex with the length,. of the longest tree

branch away from the center. The result is the same as producetbphut it differs by

its parallel iterated and local operations. Given the (spanning)itree (V, E..;) Algorithm

Subtree Depthcomputes the vertex attributg,.. in O(|diameter|/2) parallel steps. If the

Algorithm 4 Subtree Depth

1. Initialize distancegl,,.x : V — {0,1,2,... 00}
0 ifvisaleaf, e.gdeg;(v) =1
Apax (V) 1= )
oo otherwise

2. repeat for all vertices € V in parallel:
Aimax (V) 1= min(dpax(v), MaxZi(e) + dmax(w)|(v, w) € Eeer, OF (W, v) € Eeer })

tree is cut at any edge= (u, v), dnax(v) gives the depth of the remaining tree which includes
vertexwv. It has the integral property that any leaf of the subtree can be reached along a path not
longer thand,,,.x(v). The function max2M } returns the second largest value of the argument



setM, i.e. max2M) := max(M \ {max(M)}).?

5.1 Center and Diameter of the Spanning Tree

The sample result is shown in Fig.Each vertex is labeled with two values, the first being the
subtree depth. Thdiameter is the longest paththrough the tree and consists of the two sub-
pathsvg, vy, ... ,v9 @andwg, ws, . . . , wo With dyax(v;) = dmax(w;) = 4,9 =0...9. Its length is

19. There is one edg@,, wy) of which both ends have (maximal) degthThis is thecenter

of the tree with the (integral) property that all leafs (i.e. all vertices!) of the tree can be reached
in maximally d,..x(ve) = 9 steps. The diameter of this tree is obviousty an odd number.

All trees with an odd diameter have a central edge. Trees with an even diameter have a single
maximumd,,...-value, e.g. a vertex is the center.

Similar information is contained in the subtree depth of the other vertices: Given the center
of the tree, we can orient the edges such that they either point towards the center or away from
the center. Let us assume in the following thatealbes of the tree are oriented towards the
center

5.2 Computational Complexity of Algorithm Subtree Depth

We consider the number of repetitions of skepnd the number of steps required to compute
max2. First we note that the algorithm stops if the functin,(v) does not change after
updating of step. It starts with vertices of subtree deftland increases the distance values at
each (parallel) iteration. Hence stemeed not be repeated more than half the diameter times.
To compute thel,,..-value in ste all the neighbors of a vertex need to be considered. Hence
this is bounded by the degree of the vertex. In summary the parallel computational complexity

is| O(diameter maximal vertex degree

6 Decomposing the Spanning Tree

In [16] we presented an algorithm to decompose a spanning tree into subtrees such that the di-
ameter of each subtree is maximally half the diameter of the original tree. Recursively continued
until the subtrees have a diameter less equtiis strategy creates a hierarchylef(diametey
height. The only parameter used for this decomposition is the length of the diameter and the
center of the tree.

We studied the relation between the shape (two sample examples are showndinafid.
the resulting graph pyramid. Tahldists the observed properties of the contraction kernels used

2If set M has less than two elements, then the functionasdefinedn general. If, however, it appears as a
member of a set like imin(-) or max(-) then it can simply be ignored or, mathematically more correct, replaced
by the empty set: max@) = maxZz} = 0.

3Edge lengthi(e) = 1 is used in all examples.
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a) BisterQ x 1581 + 9 pixel) b) Disc (1581 pixel) c¢) Hand (00 x 109)
Figure 4: Example images used in experiments.

atlevelk to produce levek +1 (k — k-+1). For every level the histogram of kernel’'s degrees is
given together with the largest diameteof all subtrees at the respective levels. The similarity

of the substructure 'Disc’ to 'Bister’ is obvious and not surprising. The length of the diameter
and the center appear to be very robust whereas the fine substructures are sensitive to noise. In
particular we observe many spurious branchkg(v) = 0) and high splitting degrees. This

can be avoided to a large extend and optimized using subtree diameters.

6.1 The Integral Tree of Diameters

Subtree depthg,,., are upper bounds for reach-
ing any vertex in the outer subtree. Consider the
following configuration : ¢ denotes the center,
l; are the leafsy, w, u, s; are intermediate ver-
tices. dist(x,y) denotes the distance between
verticesr andy.

S S—

s Sgrly
c— - > UvAw] —ug — Szl
— sy ly

_>8n_>ln

The depth of the centeris not shorter than the distance to any feaf,..(c) > dist(c, ;). The
actual distance between the center and any vertisxalso bounded: digt, v) < dpax(c) —
dmax(v). Along the tree’s diameter-path the above inequalities are equalities. Assume we cut
the tree between verticesandw. The diameter of the outer subtreewfgoes either through
w Or it connects two subbranches excludinglf it goes throughv its length is the sum of the
subtree depth ab and the length of its second longest subbranch. The length of a subbranch is
the length of the edge connecting the branchtplus the subtree depth of the first son in this
subbranchd(w) = diax(w) + maxZl((w, s)) + dmax(s)|(w, s) € Eex}. The max2-function
is well defined becausg,,..(w) > 0 implies the degredeg(w) > 2.

If the diameter of subtre@ does not go throughv it connects two leafs through a vertex,
eg.u: ly---s9 «— u — s4---1l4. In this case vertex. calculates the diameter asabove
and propagates the length of the diameter up to verteXhe diameters of all subtrees can be
calculated similar to the Subtree Depth: Afggenerates diametefg2nd values in Fig5h).

40dd diameters create a central edge splitting the tree in two subtrees for which the above inequalities hold.
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Table 1. Degrees of the contraction kernels.

‘Bister’
lcvcl\deg 0 I 1 I 2 I 3 I 4 I 5 I 6 I 8 II J
01 1653 [ 759 1
1—2 2340 24 2
2-3 2124 48 | 24 6
34 1779 9 8] 88 10
45 1111 199 [ 21| 22 19
56 451 244 8188 25
67 75 17416 | 4| 8 32
78 13 48 16 8 43
8—9 3 8 28 50
9— 10 1 2| 62
10 — 11 1 120
Disc’
e\l O] 1] 2] 3[ 4[5]6[8] o
0—1 821 [ 380 1
12 1165 12 2
253 1057 24 [ 12 6
34 877 52 4] 44 10
1-5 529 110 | 8 [ 10 19
56 229 116 | 4| 8| 4 25
6—7 37 86 8| 2|4 32
78 5 24 8 ] 43
8=9 4 1[4 50
910 162
"Hand’
lovel | 1°8 ol 1] 2[3J4]s5[6]7][8]o]11]12]13[21][25]40] r | maxL,
01 2999 [ 1108 127 1
152 4098 3 1 3
23 3830 89 [ 1 1.05 7
34 2549 A a2[1]1 131 13
T 779 7196322 1.99 25
556 70 445 (36112 T 1] 1 2.85 49
6—7 B¥7[3[2]1 3|11 1 1] 1 352 97
78 20 1 2| 2 1] 581 193
8=9 1 26 385

6.2 Using Integral Trees for Decomposition

The integral features of depth,.. and diametebt should enable us to decide locally where it

is best to split the spanning tree. Criteria could be a good balance of diameter lengths, a small
degree of the top contraction kerné€la band has?5 fingers”) or more object specific properties

that could be known to the system.

Let us consider what happens if we cut the tree at a certain distance from the center by
removing the cut-edge. A cut-edde, w) is selected if the depth of the outer tree is smaller
than a thresholdy, dp.x(v) < dr < dmax(w) (cut-edge conditior). Note that the threshold
dr can depend on the length of the overall diameétey.

After cutting, the longest possible diameter of the outer drgg is twice the subtree depth
of dmax(v) (this was used in16]). This can be improved using the actual diametgrs cal-

12



Algorithm 5 Subtree Diameters

1. Initialize diameters(v) := dpax(v)
2. repeat for all vertices € V' in parallel:
d(v) := max( max{d(s)|(v,$) € Feer},

;naxz{dmax(v) + l((v, 5)) + dmaX(5>|(U7 S) S Eeck}

00 99 910

9 8,10

6,7 00 0,0 |7,10 2,2

0,0 00 |67 0,0

34 44 56 00

1,1 0,0 22 11 0,0
Figure 5: Integral trees of depths and diametgrs,, 6.

culated by algorithm subtree-diameters (Y. If all edges satisfying the cut-edge condition

are rigorously removed the depth of the remaining central tree is reduced by the subtree depth
of new leafd,,..(w) = dr. Consequently the diameter of the central tree shrinks by the dou-
ble amountnew(c) = dg|g(c) — 2dr. Table2 lists the different diameters and degrees for all
possible cut-depthd;. The decomposition should first split the 'important’ components and
not be too much influenced by spurious subtrees. Therefore we consider the degrees of the
resulting contraction kernels. The degree of the contraction kernel corresponds exactly to the
number of cut-edges. While the 'cut-degree’ counts all rigorously created new subtrees includ-
ing trees with very small depth and diameterirf Table 2), the 'min’-value gives the degree

after re-connecting all cut-edges to the central tree which do not increase the largest diameter
of all outer and the inner trees. The remaining subtree diameters are bold faced i@.Table
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Table 2: Cuts through example tree Fig.

cut diameters of outer trees and center tree deg((CK))
dr | Omax 5Ieft 4(c) 5right cut min
9 16 9 1 10 2 2
8 14 0,7 3 10 3 2
7 12 0,7 5 0,7,2 5 3
6 10 0,7,0 7 0,0,6,0,2 8 6
5 8 0,0,2,50 9 0,04,00,2 11 6
4 6 0,0,2,0,3,00 11 0,04,0,0,2 13 5
3 4 0,0,2,030,0 13 0,00,20,0,2| 14 3
2 2 0,0,201,00,0 15 0,0,01,0,0,1| 15 3
1 0| 000000000 17 0,0,00,0,0,0| 16 2

Table 3: Cuts through spanning tree of exanipister’

cut diameters of outer trees and center tree deg((CK))
dr | Smax Oleft é(c) dright cut
60 118 62 0 62 2
59 116 62 2 62 2
37 72 62 46 62 2
36 70 44, 62 48 44,62 4
35 68 44,19, 62 50 44,19, 62 6
34 66 44,19,19, 62 52 44,19,19, 62 8
33 64 44,19,19, 62, 20 54 44,19,19, 62, 20 10
32 62 44,19,19,20,50, 60, 20 56 44,19,19,20,50, 60, 20 14
31 60 44,19,19,20,50,21, 60, 21,20 58 44,19,19,20,50,21,60,21,20 18
30 58 | 44,19,19,20,50,21,50,20,50,21,20 60 44,19,19,20,50,21,50,20,50,21,20 22

6.3 Experiment. Two Connected Balls ‘Bister’)

The example of Fig6 consists oftwo large balls connected by a thin curv8ister etal. #]
used a similar example to demonstrate the shift variance of regular pyramids. The goal of this
experiment, referred to @Bister’, is to check whether the simple decomposition expressed by
the above description could be derived from the integral tree.

Table 3 lists the different subtree depths and diameters in the exaiB@ter’ (see sub-
tree depth and diameters of central part in Fig. This shows clearly that the diameters of
the two circles §2) propagate up to the center which receives diamgér Cutting the path
which connects the two large circles produces three subtrees (degree of contractiof)kafrnel
which both outer subtrees have diaméi2from cut-edge with subtree depth(60) down to
(36,37). With smaller subtree depth the degrees of the contraction kernels start to grow since
extra branches of the two circles are cut. We continued the table down to cut26cige (vhere
the diameter of the center-tree becomes larger than any of the outer trees. We also note that no
spurious branches can be integrated in this first level decomposition.

We cut the tree at cut-edgg6(37) indicated in Fig6 by darker vertices. Of the remaining
three subtrees the center tree is a single path of letignd the two symmetric circles have
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Figure 7: Center part of left circle of examéster before and after cut
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Table 4: Cuts through the left subtree of examipister’

cut diameters of outer trees and center tree deg((CK))
dr Omax 6|eft 5(6) 6r|ght cut
31 60 60,21 0 60,21 4
30 58 50,20,50,21 2 50,20,50,21 8
29 56 20,48,20,48,21 4 48,20,48,20,21 10
17 32 | 4 x 29+ path lengthfl4, 16 28 4 x 29+ path lengthfl4, 16 55
16 30 | 4 x 27+ path lengthfl2, 15 30 4 x 27+ path lengthfl2, 15 59

diameter62 and will be decomposed recursively. After the cut the subtree depth and the diame-
ters need to be updated for the path that leads to the center (s&¢. Higble4 summarizes the
decomposition after cutting the left circle from the exanipister’.

6.4 Experiment: Hand

The image of the hand is a range image segmented from the NRCC image da?abasélie

goal of this experiment, referred to &$and’, it is the same as previously, is to check whether

the simple decomposition, expressed by the above description could be derived from the integral
tree, like"a hand has?5 fingers”. Table5 lists the different subtree depths and diameters in the
example’Hand’ (bold face values are the largest depths). The boundary from the center of
'Hand’ can be reached in at maét;,(c) = 25 steps, i.e. with the path of length,;, (c) = 25.

From the Tablé usingd; > d,,;, can be used to separate the longest branches from the center,
e.g.74 < dr < 77 we havet long branches and a center branch (see numbers depicted in bold
in row 4, Tableb5); for 64 < dp < 74 we get5 long braches and a center branch; der< 64

we got7 long branches and a center branch; and so on. In order to understand how these
branches are created, imagine that we cut the graph (F&yuvigh ‘circles’ having center(s) at

the graph’s center. In Figu&the main branches are highlightgd

7 Conclusion

We have introduced integral trees that can store integral features or properties. The author
in[21] uses as the center of the skeleton the maximum of the minimum of a distance (significant)
measuré. In this paper we use as a center of the skeleton minimum of a maximum of a distance
measure. Efficient parallel algorithms have been presented for computing

e the boundary distancg,;, of a binary shape;

The authors would like to thank Kaleem Siddigi for making the images available.
5The branches are given with different colors, to help follow the Table
’Residual function.
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Table 5: Cuts through spanning tree of exaniplend’

e the depth of all subtrees,,.; and

e the diametep of the outer subtrees.

These integral features are not just sums over all elements of the subtree but capture properties
of the complete substructure. The integral trees have been used to decompose the spanning tree

cut diameters of outer trees and center tree deg((CK))
dr | max(d) Oleft d(c) 5right cut
92 182 | 2,167 23 1 134 27 5
91 180 | 2,167, 2x23, 24 3 134 27 7
90 170 | 2,134,126 2x23,2x24 5 134 27 9
77 152 | 56, 14, 16, 18, 21126, 2x23, 3x24, 26, 31 134 20, 2x21, 2x22, 47, 3, 1, 27, 2, 21 34
2x27,2x28 22,2x19, 18, 4<0, 86
74 146 | 3x12, 56, 14, 16, 18, 21,126 2x23, 37 9473 2x20,2x21,2x22,47,3,1,27, 2, 46
3x24, 2x25, 26, 227, 2x28, 29, 28 21, 22, 219, 18, 40, 86
64 126 | 9, 10, 11, 612,56, 14, 16, 18, 21, 22, 21, 57 94, 63, 2x 20, 221, 2x22,47,3, 1, 27, 2, 73
20, 19, 1760, 9,73, 9, 18, 219, 20, 22, 21,22, 219, 18, %0, 11, 29, 8,72
2x23, 3x24, 225, 26, 227, 2x 28, 29,
28
63 124 | 9,10, 11, 612,56, 14, 16, 18, 21, 22,21, 59 94,63, 2x20, 2x21, 2x22,47, 3,1, 27, 2, 76
20, 19, 17,60, 2x9, 72, 9, 18, 219, 20, 21,22, 219, 18, %0, 11, 2«9, 2x8,71
22, 2x23, 3x24, 2x25, 26, 227, 2x28,
29, 28
62 122 | 8,9, 10, 11, &12,56, 14, 16, 18, 21, 22, 61 94,63, 2x 20, 2x21, 2x22,47,3, 1, 27, 2, 78
21, 20, 19, 1760, 3x9, 71, 9, 18, 219, 21,22, 219, 18, K0, 11, 2«9, 2x8, 69
20, 22, %23, 3x24, 2x25, 26, 227,
2x28, 29, 28
61 120 | 8,9, 10, 11, &12,56, 14, 16, 18, 21, 22, 63 94,63, 2x 20, 2x21, 2x22,47,3, 1, 27, 2, 80
21, 20, 19, 1760, 4x9, 70, 9, 18, 219, 21, 22, %19, 18, %0, 11, 2<9, 2x8, 7,
20, 22, %23, 3x24, 2x25, 26, 227, 68
2x28, 29, 28
60 118 | 8,9, 10, 11, &12,56, 14, 16, 18, 21, 22, 65 94, 63, 2x20, 2x21, 2x22,47, 3, 1, 27, 82
21, 20, 19, 1759, 5x9, 69, 9, 18, 219, 2,21, 22, %19, 18, %0, 11, 2«9, 2x8,
20, 22, %23, 3x24, 2x25, 26, %27, 2x7,66
2x28, 29, 28
59 116 | 6,8,9,10, 11, &12,56,14, 16, 18,21,22, 67 87, 70, 63, 2x20, 2x21, 2x22,47, 3, 1, 86
21, 20, 19, 1758, 6x9, 68, 9, 18, 219, 27, 2, 21, 22, %19, 18, X0, 11, 2«9,
20, 22, %23, 3x24, 2x25, 26, 227, 2x8, 2x7,65
2x28, 29, 28, 29

of the shape top-down. The decomposition can use following optimization criteria:

e balance the diameters of the subtrees more efficiently than cutting at a fixed distance
from the center or the leafs; unfortunately this often generates contraction kernels of high
degree.

¢ set the degree of the contraction kernel beforehand and find theubtrees with largest
integral feature, e.g. diameter.

18




¢ define the optimization criteria which can be solved using local information provided by

the integral tree and some global properties like global size or diameter proportion that
are propagated during the top-down process.

In future research we plan to apply integral tree for new solutions of the TSP problem as well
in tracking articulated motion.
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