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Abstract

Image spectroscopy in ultraviolet, visible and infrared regions provides a non-invasive
method for analyzing paintings. It is used by restorers and art-historians to get valu-
able information about works of art without causing any damage to them. The purpose
of this report is to analyze 15 different color pigments and three types of binder by means
of near infrared hyperspectral images taken from 15 testpanels. After calibration three
feature reduction methods, principal component analysis, block-based principal component
analysis and linear discriminant analysis, are applied to the near-IR spectroscopic imaging
data of the testpanels to reduce the originally 180 features to improve classification per-
formance. Both, principal component analysis and linear discriminant analysis, are linear
transformations (in contrast to e.g. Kernel PCA) that map the original data into a new
vector space where certain constraints are met. On the basis of the outcomes of the feature
reduction step k-nearest neighbor classification with leave-one-out cross validation is used to
accomplish three different classification tasks. These three tasks contain the identification
of the three binders, the identification of the color pigments for each binder separately and
the identification of color pigments and binders together. The results of our work reveal
that it is possible to distinguish the three types of binder as well as the color pigments for
each binder separately with an accuracy of more than 90 percent. Classifying the 15 color
pigments along with the three binders however results in a lower accuracy of at most 45
percent.
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1 Introduction

For restorers and art-historians it is of vital importance to uncover invisible information
contained in artworks like the combination of materials used or the working technique
followed by the artist [3]. For the restoration of a damaged part of a painting for instance
it is necessary to determine the composition of color pigments in adjacent areas in order
to guarantee that the new part does not differ from its surrounding. Another case where
one needs information of a painting, which is a priori not visible to the human observer
is if the underdrawing of a painting must be assigned to an artist [3].

The process of revealing hidden data in works of art requires an interdisciplinary
and systematic approach, which includes invasive analytical techniques for the physical,
chemical and structural characterization of the artwork. Analytical techniques are not
applicable to in situ analysis and require extraction of samples, which is an invasive
process and therefore unavoidably leads to permanent damage to the work of art [3].
However, the fact that every object of art is a unique piece emphasizes the necessity of
working with non-invasive methods [10].

Popular non-destructive methods include the use of X-ray radiation (radiography),
ultraviolet radiation (UV fluorescence) and near infrared radiation (IR reflectography).
They permit the gathering of spectroscopic information without any sampling and there-
fore overcome the drawbacks of invasive analytical techniques. Reflectance spectroscopy
provides the possibility of identifying pigments, monitoring the presence of alteration
products and color changes on paintings. It also enables the uncovering of underdraw-
ings due to the fact that pigment layers absorb much less infrared radiation compared to
visible radiation [11].

James R. Mansfield et al. [9] use near infrared spectroscopic imaging data to analyze
the remnants of a 16th century drawing damaged during a cleaning attempt. During the
conservation attempt all the ink in the drawing was removed. Using hyperspectral images
in the range from 650nm to 1050nm collected from the artwork and linear discriminant
analysis, Mansfield et al. are able to identify regions where small amounts of the ink or
its decomposition products are left.

Berns et al. [12] propose a method that uses visible spectrum imaging data to evaluate
potential pigment combinations in paintings. The additional use of visible spectrum
imaging data could be a complement to our work if we decided to identify the composition
of mixed color pigments too. In the experiment this report is about, however, we only go
for the identification of pure color pigments.

In detail, this report deals with the analysis of reflectance values of 15 different color
pigments and three types of binder on the basis of near infrared hyperspectral imaging
data. The goal of our work is to find out whether it is possible to distinguish between
the different pigments and binders by means of their reflectance values in the range from
900nm to 1700nm. The imaging data were obtained from 15 testpanels which are struc-
tured like real paintings with a grounding layer, an underdrawing and a single pigment
layer. Each pigment layer is a mixture of one color pigment and one of the three binders.
Since the color pigments themselves are powders, the binders are necessary to make the
pigments solvent for application. Because the three binders influence the transparency
of the color pigments differently, in Figures 1, 2 and 3 the calibrated and filtered mean
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reflectance values of the 15 color pigments are depicted separately for each binder. In
Figure 1 pigments are mixed with binder Scotch Glue (Hautleim), in Figure 2 with binder
Lineseed Oil (Leinoel), and in Figure 3 the color pigments are mixed with binder Egg
Tempera (Ei).

Our experiment consists of two main steps that lead us to the results of identification.
The spectral distributions in Figures 1, 2 and 3 show that there is high correlation between
neighboring bands in the original data what implies that not all of the 180 original bands
(features) are needed for discrimination. Therefore the first step is a feature reduction
step where three different approaches are tested. The first technique used is principal
component analysis (PCA), because it is a classical technique in multispectral image
analysis and because it maps the original bands into a new vector space where the new
features are uncorrelated. The second approach, block-based PCA, was chosen because
of the block-correlation nature of our data, as can be seen in Figure 7 in Section 3.3. The
third method, linear discriminant analysis (LDA), is used as contrast to the two principal
component transformations. Unlike PCA and block-based PCA, LDA maps the original
data into a vector space where the separability between classes is maximized.

In the second main step the k-nearest neighbor (KNN) classification algorithm is ap-
plied both, to the original data set and to the outputs of the three feature reduction
methods. KNN was chosen because it is a widespread algorithm for simple classification
problems that is easy to implement and does not make use of class statistics like mean
values or covariance matrices. In addition, an early research into our test data showed
that unsupervised clustering algorithms like K-means clustering are unsuitable because
within-class distances are too high compared to between-class distances, i.e. the classes
do not form distinct clusters in feature space (e.g. Section 3.4.1, Figure 10). The results
of our experiment show that it is basically feasible to distinguish the 15 color pigments
and the three binders with the experimental setup and methods described in this report.
From the three feature reduction algorithms LDA performed best in four out of five cases.

The next section explains the experimental setup and the goals of our experiment in
detail. In Section 3 the three feature reduction methods are discussed and the results for
each method are presented. Section 4 is concerned with the k-nearest neighbor classifica-
tion technique and the distance measures used in it. Finally Section 5 provides the results
of the classification step, which are discussed afterwards in Section 6.

2 Experiment

The first point in this section is concerned with the condition of the testpanels as well as
the structure of the hyperspectral images, which are the basis of our work. Furthermore
the purpose of the experiment which can be broken down into three tasks is outlined.
The second point, this section deals with, is a listing of the technical specifications of the
imaging system used for gathering the near-IR spectroscopic imaging data.
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Figure 1: Mean Value of the Pigments Spectral Distribution for Binder Scotch Glue

Figure 2: Mean Value of the Pigments Spectral Distribution for Binder Lineseed Oil
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Figure 3: Mean Value of the Pigments Spectral Distribution for Binder Egg

2.1 Testpanels, Data and Goals

The basis of our work is composed of hyperspectral images of different color pigments and
binders taken from 15 testpanels. The length of one panel is about 200mm at a width of
about 90mm and on each of them one specific color pigment is applied to three rectangular
areas whereas in each area the color pigment is mixed with one of the three binders Scotch
Glue, Lineseed Oil and Egg Tempera. Figure 4 shows the testpanels for Chrome Red and
Chromium Oxide Green as an example. Therein the three separate areas, which differ in
the binder used are readily identifiable.

Every 12 bit hyperspectral image file is given in ASCII format and contains one line of a
testpanel with a spatial resolution of about 40 pixels recorded in 180 different wavelengths
from 900nm to 1700nm. Altogether there are 15 panels corresponding to 15 different color
pigments. Our first approach was not to distinguish between the three types of binder
but only between the 15 color pigments, which would imply that there are 15 classes with
about 25 to 30 pixels per class and 180 features. Unfortunately after our first research into
the spectral curves of the pigments it became evident that the varieties between the types
of binder within one and the same class of color were too big to neglect them. Finally we
went for three classification tasks with different setups.

• Task 1: The first setup consists of the image pixels from all panels according to a
color pigment put together into one single matrix. The first classification goal is to
correctly identify the 44 classes composed of 15 color pigments and three binders
minus one because the panel of pigment Malachite lacks of binder Lineseed Oil since
Malachite can hardly be mixed with Lineseed Oil.
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Figure 4: 200x90mm Testpanels for Chrome Red and Chromium Oxide Green

• Task 2: The second setup equals the first but this time the aim of the classification
step is to distinguish between the three classes of binder.

• Task 3: For the last setup the matrix from one and two is split up into three smaller
matrices, where each one only contains image pixels according to one specific binder.
I.e. the first matrix defines 15 classes composed of the 15 color pigments mixed
with binder Scotch Glue and so on. This time we want to identify the different color
pigments (15 within Scotch Glue and Egg Tempera and 14 within binder Lineseed
Oil) separately for each binder.

So in fact the number of pixels per class averages out at approximately ten for tasks one
and three and at approximately 133 for task two.

All algorithms were implemented in MATLAB, the images were stored in two-dimensional
matrices where each row corresponds to the line from the testpanel recorded in a specific
wavelength. Each column represents a pixel vector consisting of the 180 reflectance values
recorded per image point.

In addition to the 15 images of testpanels a whiteboard and a blackboard reference
image were provided and used for calibration purposes in the first step. In the calibration
step the blackboard reference image, which represents the noise of the CCD sensor was first
subtracted from every image file. Afterwards the images were calibrated to compensate
for absorption bands due to varying sensitivity of the sensor as well as for variations in
reflectance values because of uneven illumination. This was done by first subtracting the
blackboard reference from the whiteboard reference and then dividing each image by the
new whiteboard reference image. I.e. Ic = (I − B) / (W − B) where Ic, I, B and W are
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the calibrated image, the original image, the blackboard reference and the whiteboard
reference respectively.

2.2 NIR - Spectral Imaging System

In this section the technical specifications of the spectrograph (Table 1) and the illumina-
tion system used to produce the near-IR spectroscopic imaging data for our experiment
are depicted.

Spectrograph:

Spectral Range 900 - 1700nm
Dispersion 120 nm/mm

Spectral Resolution 12 nm
Image Size 6.6 (spectral) x 8.8 (spatial) mm

Spatial Resolution 15 line-pairs/mm
Numerical Aperture F/2.8

Slit Width 80 µm
Effective Slit Length 9.8 mm

Total Efficiency > 50%, independent of polarization
Stray light < 0.5%

Table 1: Technical Specifications of the Spectrograph

Illumination:

NIR-radiator (HeLeN) with reflector for focusing.

Intensity of radiation: > 70% in the range of 900 - 1700nm

With this imaging system one line of every testpanel was recorded in 180 wavelengths
ranging from 900nm to 1700nm. The size of one pixel in an image is approx. 4.5mm,
which causes the small number of about 40 pixels per testpanel and increases the need
for a feature reduction step.

3 Feature Reduction

Classification cost (computational complexity and memory requirements) increases with
the number of features used to describe pixel vectors in multispectral space. Both in
training and in application the time needed for computation of e.g. the distance between
two pixel vectors, the covariance matrix of a training set or the product of a vector and
a covariance matrix is dependent on the size of the vector/matrix and thus dependent
on the number of features used. Moreover the memory requirements also depend on
the size (and hence the number of features) of vectors and matrices. For maximum
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likelihood classification for example the cost increase with features is quadratic. Therefore
it is sensible economically to ensure that no more features than necessary are used for
classification. Features which do not aid discrimination, by contributing little to the
separability of spectral classes, should be discarded since they will represent a cost burden.
Furthermore an increase in the number of spectral bands demands for an increase in the
number of training pixels as well to ensure reliable estimates of class statistics like mean
value or covariance matrix. Thus, adding more spectral bands is not helpful unless more
training pixels per class are available to train supervised classifiers for example [8].

There are two main forms of feature reduction. One is called feature selection and deals
with the removal of least effective features by means of separability measures. One such
measure for instance is the Jeffries-Matusita (JM) distance [1] which computes the degree
of separability for two classes on the basis of first and second order class statistics. The
second form of feature reduction is to transform the pixel vectors into a new coordinate
system in which the features that can be removed are made more evident [8].

In view of the small number of per class pixels in our experiment it is essential for
classification to reduce the large number of 180 features first. Therefore three different
linear transformations are applied to the pixel vectors independently from each other to
obtain the best result. Feature selection algorithms are not to be used for two reasons.
First the results of a distribution-based separability measure like the JM distance are
without meaning when using a non-parametric classifier like k-nearest neighbor and sec-
ondly the fact that 180 bands should be reduced to about five features or less implies a
computationally very expensive process [8].

The three transformations applied to our test data include PCA, block-based PCA
and LDA. These techniques will be explained in detail in the next three subsections.

3.1 Principal Component Analysis

The position of pixel points in hyperspectral space can be described by vectors, whose
components are the individual spectral responses in each band. Little correlation between
the components of the vector denotes that all components are necessary to describe where
the pixel lies in space. On the other hand a high degree of correlation between two bands
means that one of these two components is almost sufficient to predict where a pixel
lies in space. In other words, an increase or decrease in either component suggests a
corresponding increase or decrease in the other [8]. For a two dimensional example see
Figure 5.

For highly correlated data like our test data this means that not all features are
necessary for discrimination of the spectral distributions. Thus in a first approach we
carried out a principal components transformation to the data to obtain an uncorrelated
data set. The principal components transformation maps the feature vectors into a new,
uncorrelated coordinate system or vector space. Moreover it produces a space in which
the data has most variance along its first axes, the next largest variance along a second
mutually orthogonal axes, and so on. The later principal components, in general, show
little variance and it is thus assumed that they only represent noise and are not necessary
for reconstruction of the original data. From this it follows that they an also be omitted
for classification.
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Figure 5: Two Low Correlated Bands on Top vs. Two High Correlated Bands on Bottom
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It is fundamental to the development of the principal components transformation to
find a new coordinate system in which the covariance matrix is diagonal, i.e. the data can
be represented without correlation. So the first step is to compute the covariance matrix
Σx of the original pixel data x space.

Σx =
1

N − 1

N∑
n=1

(xn − m) (xn − m)T = ε{(x − m) (x − m)T}, (1)

where

m = ε{x} =
1

N

N∑
n=1

xn (2)

is the expectation value or mean pixel vector and the superscript T denotes the vector
transpose. The task now is to find a transformation matrix G such that

y = Gx (3)

holds under the constraint that the covariance matrix of the transformed pixel vectors in
y space is diagonal, i.e. the off-diagonal elements are zero. The covariance matrix in y
space is

Σy = ε{(y − my) (y − my)
T}

with
my = ε{y} = ε{Gx} = Gmx

and therefore

Σy = ε{(Gx − Gmx) (Gx − Gmx)
T}

which can be written as

Σy = Gε{(x − mx) (x − mx)
T}GT , i.e.

Σy = GΣxG
T (4)

Because of the constraint that Σy has to be diagonal, G can be recognized as a transposed
matrix consisting of normalized eigenvectors of Σx, sorted corresponding to decreasing
eigenvalues. The eigenvectors in G form an orthonormal basis and G performs a coordinate
transformation. In the new coordinate system the data have the largest variance along
the first axes corresponding to the eigenvector that belongs to the largest eigenvalue [8].

In our data, after PCA, over 90 percent of variance can be found along the first
principal axes. This result implies that the first principal axes alone could be enough to
separate our classes, if they can be discriminated at all.
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3.2 Linear Discriminant Analysis

Another transformation applied to our test data for feature reduction is linear discrimi-
nant analysis (LDA) or discriminant feature extraction (DAFE), which is often used for
dimension reduction in classification problems. It is also called a parametric feature ex-
traction method since it uses the mean vector and covariance matrix of each class. In
contrast to PCA that aims to preserve as much variance as possible in the reduced fea-
tures the purpose of LDA is to find a transformation matrix, such that the separability of
the transformed data is maximized [2]. Figure 6 [6] depicts the difference between PCA
and LDA for a two dimensional three-class problem where the x-axes corresponds to the
first principal axes whereas the y-axes accords to the first LDA axes.

Figure 6: Behavior of PCA vs. LDA

For LDA usually within-class, between-class and mixture scatter matrices are used to
formulate a measure of class separability [2].

The most commonly used method is to obtain as transformation matrix the set of
vectors dn such that the ratio of the between-class variance to the within-class variance
is maximized. This criterion can be expressed as

C =
dT

nBd

dT
nWd

(5)

In our case, the between-class covariance matrix B and the within-class covariance matrix
W are defined as

B =
K∑

i=1

Pi (mi − m) (mi − m)T

and

W =
K∑

i=1

PiΣi

where mi, Σi and Pi are the mean vector, covariance matrix and a priori probability of the
i-th class respectively and m is the total mean. Using criterion (5) the best discriminant
vector d1 is given by

W−1Bd1 = λd1.
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Here, d1 is the eigenvector of W−1B corresponding to the largest eigenvalue. In classical
LDA for K classes and N bands there exist at most K−1 eigenvectors if N > K−1, which
implies that LDA provides separability with reduced dimensionality. In our experiment
we do not use classical LDA but a slightly modified method that produces an orthogonal
set of vectors which have been shown [14] to provide a better discrimination ratio than
the classical discriminant vectors [5].

The first eigenvector is obtained directly by maximizing criterion (5), which is well
known as the Fisher linear discriminant. For the computation of the remaining discrimi-
nant vectors the same criterion

C =
dT

nBd

dT
nWd

must be maximized with regard to the following constraints:

dT
1 dn = dT

2 dn = . . . = dT
n−1dn = 0

and
dT

nWdn = 1.

In doing so we obtain an orthogonal set of vectors which provides both a greater discrim-
ination ratio and a better mean error probability than the classical transformation that
is W -orthogonal because of the constraint dT

nWd1 = 0. The resulting criterion to be
maximized for vector dn is(

I − W−1
[
D(n−1)

]T [
S(n−1)

]−1
D(n−1)

)
W−1Bdn = λdn. (6)

From this follows that dn is the eigenvector of

M =
(
I − W−1

[
D(n−1)

]T [
S(n−1)

]−1
D(n−1)

)
W−1B (7)

according to the largest eigenvalue. I being the identity matrix, S being a matrix with
S

(n−1)
ij = dT

i W−1dj and

D(n−1) =


dT

1

dT
2
...

dT
n−1

 .

This method furthermore permits to obtain at most N orthogonal features. For a detailed
derivation and declaration of this criterion see [5]. The composition of the obtained dis-
criminant vectors gives the resulting transformation matrix, which transforms the original
data into a new space where the classes are best separable along the first axes then along
the second axes and so on [5, 7].

3.3 Block-Based PCA

A serious problem with hyperspectral data is the need to estimate class statistics (mean
value, covariance matrix) both for feature reduction methods and classification algorithms.
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The problem lies in the relative small number of pixels per class compared to the number of
spectral bands, which makes the estimated statistics, especially the higher order statistics,
unreliable. To avoid this problem the number of per class pixels should be increased to at
least ten times the dimensionality of the data. Another way to overcome this drawback lies
in the nature of most hyperspectral data. In general, correlations between neighboring
bands are higher than for bands further apart and highly correlated bands appear in
groups. Therefore the correlation matrix is roughly block diagonal.

By assuming that the subgroups of bands within each block are independent of those
in other subgroups, feature reduction techniques can be applied to each group separately.
In this way the dimensionality of the data can be reduced to the number of bands in the
largest block, thus decreasing the number of pixels per class, required to ensure reliable
class statistics. In our data set there are three blocks of very high correlation as can be
seen in Figure 7. The correlation matrix has a block diagonal form where the bright areas
correspond to high correlation.

Figure 7: Grayscale Image of the Correlation Matrix of Our Test Data

In block-based principal component transformation the original data set is first parti-
tioned into K subgroups according to the highly correlated bands, identified either visually
(Figure 7) or by the use of an edge detection algorithm on the correlation matrix. Then
the principal components transformation is conducted separately on each subgroup and
finally feature selection is carried out on each of the transformed data sets. Feature se-
lection can be done either by using variance information, i.e. take the first n principal
components of each block, or by applying a separability measure to every transformed
data set and then taking those components which contribute most to discrimination. The
selected features can be regrouped and transformed again until the desired data reduction
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ratio is achieved for classification purposes [8].

3.4 Feature Reduction Results

In this section we will present the results of the feature reduction techniques when applied
to the single tasks as listed in Section 2.1. For task one and task two the results of PCA
and block-based PCA are the same because the setup is the same and both methods
do not use class information. For LDA however the results of tasks one and two differ
because of their diversity in class structure.

3.4.1 PCA

The principal components transformation was conducted by using the MATLAB function
pcacov that uses the covariance matrix of the data to compute a set of eigenvectors and
eigenvalues, which minimize the correlation in the transformed set of vectors. Table 2
shows the percentage of the total variance for the first ten principal components for tasks
one and two.

1 92.099 6 0.0161
2 6.724 7 0.0123
3 0.608 8 0.0105
4 0.357 9 0.0081
5 0.0531 10 0.0060

Table 2: Percentage of Total Variance for the First Ten PC’s

As one can see in Table 2 more than 98 percent of the variance is covered by the first two
principal components and the first three together account for 99.43 percent of total data
variance. This gives rise to the assumption that the later components contribute very little
information and could therefore be negligible for classification purposes. This becomes
evident in Figure 8 too, where we can see a plot of the first three principal components
in red, green and blue respectively. Figure 9 shows an image of the correlation matrix of
the transformed data which reveals no correlation between bands in contrast to Figure 7.

Figure 10 shows a scatterplot of the first three features of the pc-transformed data for
task 1. In this and in all following scatterplots each class is represented by one marker
style and color. Again one can see that they are not correlated but the strong blending of
the classes implies no good classification result. The scatterplot for task two in Figure 11
also reveals one big cluster as the transformation is the same as for task 1. But because
in this case there are only three classes better classification results seem to be possible.

For task three we obtain three results because we must conduct the transformation
on each matrix separately. In Table 3 the percentage of total variance of the first three
components are listed for every binder. Again these components account for more than
99 percent of total variance. As for task one and task two the covariance matrices for task
three are diagonal and the first three principal components should describe the structure
of the original data nearly without loss of information. In Figures 12, 13 and 14 we see
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Figure 8: First Principal Component in Red, the Second in Green and the Third in Blue

Figure 9: Correlation Matrix of the 180 Features After PCA Transformation
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Figure 10: Scatterplot of the First Three Bands After PC Transformation of Data for
Task1

Figure 11: Scatterplot of the First Three Bands After PC Transformation of Data for
Task2
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the scatterplots of the first three features of the pc-transformed data for each binder and
once again one can spot an area where the data points cluster but the mixture of data
points is not as strong as in task one.

Binder 1 91.026 7.839 0.579
Binder 2 95.963 3.206 0.573
Binder 2 90.371 8.235 0.627

Table 3: Percentage of Total Variance of the First Three PC’s of Each Binder

Figure 12: Scatterplot of the First Three Bands After PC Transformation of Data for
Task3 Binder1

3.4.2 Block-Based PCA

According to Section 3.3 three major blocks of high correlation can be identified within
our data set. The first block covers the first 50 bands, the second the next 68 and
the third block the last 62 bands. After dividing the whole data set into these groups,
principal component transformation was applied to each block separately. Table 4 shows
the amount of data variance in percentage according to the first principal component of
each group for tasks one and two.

In Figure 15 the first three principal components of the first block for tasks one and
two are depicted as an example. Due to the vast portion of variance we decided to take the
first component of every group and to put them together for classification. In Figure 16 we
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Figure 13: Scatterplot of the First Three Bands After PC Transformation of Data for
Task3 Binder2

Figure 14: Scatterplot of the First Three Bands After PC Transformation of Data for
Task3 Binder3
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Block Variance
1 98.507
2 98.795
3 99.5

Table 4: Percentage of Total Variance for the First PC of Each Block

can see a scatterplot of the first band of each of the three blocks after PCA was conducted
separately for every block. Although the correlation between the original blocks is low the
correlation of the three components is quite high compared to the result of the original
PCA. This plot also reveals a mixture of classes as in case of PCA.

Figure 15: First Three Principal Components of Block1

Therefore the reduction to three features was not as effective as with PCA what could
imply a worse classification result. As in case of pure PCA the result of block-based PCA
for task two is the same as for task one but again the existence of only three classes
promises a better outcome in the classification step as illustrated in Figure 17.

Table 5 shows the amount of data variance in percentage according to the first principal
component of each group for task three. Because once more the variances of the first
components are very high, we take the first PC of each block for every binder and put
them together for classification. Figures 18, 19 and 20 show the scatterplots of the first
component of each block for binder one, two and three. Again these results look more
promising than those from task one and task two.
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Figure 16: Scatterplot of the First Band of each Block After PC Transformation for Task1

Figure 17: Scatterplot of the First Band of each Block After PC Transformation for Task2
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Block1 Block2 Block3
Binder 1 98.31 98.66 99.41
Binder 2 99.57 99.27 99.67
Binder 2 97.95 98.32 99.29

Table 5: Percentage of Total Variance of the First PC of Every Block in Each Binder

Figure 18: Scatterplot of the First Band of each Block After PC Transformation for Task3
Binder1
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Figure 19: Scatterplot of the First Band of each Block After PC Transformation for Task3
Binder2

Figure 20: Scatterplot of the First Band of each Block After PC Transformation for Task3
Binder3
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3.4.3 LDA

Figure 21 plots the first three components of the result of LDA, when applied to the data
set of task one.

Figure 21: Scatterplot of the First Three Bands After LDA for Task1

Surprisingly the three components are highly correlated and no clusters can be recognized
although the separation between classes should have been maximized by the LDA trans-
formation. So the expected classification results for the first three LDA components in
task one should be very bad. For task two the result is visually much better as can be
seen in Figure 22. In this case the three classes are much more separable than the 44
classes in task one.

The outcomes of LDA transformation for task three are depicted in Figures 23, 24
and 25. They also look very promising with regard to nearest neighbor classification,
especially the results for binder Scotch Glue.

In conclusion one can say that the classification accuracy in task two and three should
be much better than in task one, when visually investigating the first three components
of each feature reduction technique. According to the figures plotted in this section and
with regard to nearest neighbor classification the best feature reduction results for task
one can be achieved with PCA and block-based PCA. For task two and three however
LDA seems to perform at least a little better than PCA and block-based PCA. In general
it appears as if three features would not suffice to achieve good results in classification.
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Figure 22: Scatterplot of the First Three Bands After LDA for Task2

Figure 23: Scatterplot of the First Three Bands After LDA for Task3 Binder1
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Figure 24: Scatterplot of the First Three Bands After LDA for Task3 Binder2

Figure 25: Scatterplot of the First Three Bands After LDA for Task3 Binder3

25



4 Classification

In this section we are going to describe both the k-nearest neighbor classification algo-
rithm, which is then used to classify our test data and the distance measures used within
the algorithm. For each task the classification method is applied both to the original data
set and to the results of the feature reduction step as specified in Table 6 below. The
outcomes of the classification process are finally depicted in the following section.

• Original data

• First three principal components

• First ten principal components

• First component of each PC-transformed correlation block put together to a single
matrix

• First three elements of the LDA transformation

• First n features of LDA transformed data, where n > 3 and specific for each task
to achieve a better result as with the first three features

Table 6: List of Feature Sets Used for Classification

4.1 K-Nearest Neighbor Classification

The K-nearest neighbor (KNN) algorithm is a non-parametric classification technique
which has been shown to be very effective in statistical pattern classification applications.
Non-parametric methods have the advantage of not needing an assumption of the class
density function and therefore can achieve high classification accuracy in problems which
have unknown or non-normal distributions [4].

The KNN algorithm assumes that pixels close to each other in feature space are likely
to belong to the same class. It is based on a distance measure d (x, y) that is applied
to every pair of observations. The distances used in our case (euclidean, standardized
euclidean, cityblock and minkowski) are described below. Suppose T = {t1, . . . , tr} is the
set of feature vectors used as training set labeled by their class labels C = {c1, . . . , cm}
and x is a vector whose class label is unknown. We then have to find the set Sx containing
the k closest neighbors of x according to the distance measure d in T . Let ci be the class
label that appears most often in Sx then x is assigned the class label ci. In case there is
more than one class label with equal occurrence in Sx there are different decision rules
for which one to take. In our case we decide for the class label of the vector nearest to x,
which turned out to yield the best results [4, 13, 15].

Because of the small number of samples per class we do not divide the data set into
training and test set and then classify the test set. Instead we use a leave-one-out cross
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validation approach, i.e. we try to classify each vector of the data set separately by taking
all remaining feature vectors as training set.

4.2 Distance Measures

For row vectors x1, . . . , xm of an m-by-n data matrix X the distances between two vectors
xr and xs are defined as follows:

• Euclidean Distance:

drs =
√

(xr − xs) (xr − xs)
T

• Standardized Euclidean Distance:

drs =
√

(xr − xs) D−1 (xr − xs)
T

where D is the diagonal matrix with diagonal elements given by v2
j , which denotes

the variance of the variable Xj over the m objects.

• City Block Metric:

drs =
n∑

j=1

|xrj − xsj|

• Minkowski Metric:

drs =

 n∑
j=1

|xrj − xsj|p
 1

p

where p was chosen 4 because with p = 4 the best results where achieved.

5 Results

In this section we will provide the results of the classification step for each task. Classifi-
cation was done using the k-nearest neighbor algorithm as described in Section 4.1. and
the feature sets listed in Table 6. The results are presented as bar charts where Original
stands for the 180 non-transformed features and the numbers behind LDA and PCA stand
for the number of features used for classification.

In Figure 26 we can see the classification results for task one. The results are quite
bad as expected after feature reduction, the maximum classification accuracy comes up
to 45 percent, achieved with the first ten principal components.
For task two the results are much better as can be inferred from Figure 27. The clas-
sification accuracy of 99 percent achieved with the first ten LDA transformed features
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corresponds to a correct classification of 396 samples out of 400. The best performance
in classification was attained within task three. There the correctness for binder Scotch
Glue reached a maximum of 99.3 percent, which conforms to only a single misclassified
sample point (Figure 28). Though not as good as the output for binder Scotch Glue the
results for binder Lineseed Oil (Figure 29) and binder Egg Tempera (Figure 30) at 92.3
and 91.4 percent respectively are quite acceptable nevertheless.

Obviously it is not possible to discriminate the 44 classes of task one with a satisfying
accuracy (at least with the setup and tools used in our experiment). A better way for
classifying color pigments could therefore be a two step approach that consists of the
identification of the binder in the first step and the classification of the pigments within
each class of binder in the second step.

Figure 26: Classification Results for Task1
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Figure 27: Classification Results for Task2

Figure 28: Classification Results for Task3 Binder1

29



Figure 29: Classification Results for Task3 Binder2

Figure 30: Classification Results for Task3 Binder3
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6 Conclusion

The results of our experiment concerning the classification of color pigments showed that
it is basically feasible to distinguish these pigments by means of hyperspectral images in
the range from 900nm to 1700nm. After calibration of the images three feature reduction
schemes were applied to the near-IR spectroscopic images to reduce the dimensionality
of the data (180 features) to a smaller and more meaningful set before classification.
While PCA and LDA are widely used transformations for multi- and hyperspectral data,
block-based PCA emerged from the nature of hyperspectral data which often exhibits
high correlation blocks. As classifier the cross-validatory k-nearest neighbor algorithm
was used to classify each sample vector against the remaining data set.

In the classification step it was possible to identify the 14 to 15 distinct pigments
for each binder with an accuracy of more than 90 percent with the best ratio being
99.3 percent. The experiment furthermore revealed that the three binders influence the
transparency of the color pigments with unequal strength and must therefore not be
neglected. Due to this slightly differences is it possible to discriminate the three kinds of
binder as well, what was done with an accuracy of 99 percent in our test data. Whereas
the attempt to identify 44 classes consisting of the color pigments mixed with each binder
was a disappointment because at most only 45 percent of the samples could be classified
correctly. In four out of five cases the best results were achieved using LDA for feature
reduction and only for the problem with 44 classes PCA performed best. In general, as
one can see by means of the bar charts in Section 5 the originally 180 features can not be
reduced to three features by attaining maximum classification accuracy at the same time.

The reason for the bad result in the 44 classes problem lies for the most part in the
small number of pixels per class compared with the number of classes and features. Firstly
the number of trainings pixel influences the reliability of class statistics required for LDA
analysis and secondly small differences between two classes can be lost if the number of
per class samples is to small. Therefore more images of each panel or a sensor with a
higher spatial resolution could avoid the problem of the high misclassification ratio for
task one.
Future Goals: For practical applications in painting analysis a more systematic evaluation
of all constituents of a painting has to be performed. Different types of grounding as well
as different materials used for underdrawings and color pigments in combination with
diverse binders have to be distinguished due to their different interdependencies with
respect to spectral response. Therefore a large database of all these configurations will be
necessary for analysis of paintings by means of IR spectroscopy.

A further improvement could consist in segmenting the applications of a painting
by using a scanning device that produces a spectral image of the painting both in the
near infrared and in the visible range. The image can than be segmented into regions
that contain parts of the underdrawing for classification of the type of drawing material
used and into regions with no underdrawing for classification of the color pigments used.
This would allow for a complete analysis of a painting including the extraction of strokes
of underdrawings for the distinction between strokes on the surface and strokes of the
underdrawing by integrating also the visual light range. In doing so one could get a useful
analysis tool for art historians and restorers.
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