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Abstract

This report presents an automatic method for the surveying of cutaneous hemangiomas by
means of a fully automatic hemangioma segmentation and a ruler visible in the images to be
examined. The segmentation of regions belonging to the hemangioma is accomplished with
a pre-segmentation based on a perceptron followed by a postprocessing step where regions
with untypical properties are rejected. The spatial resolution of the images is determined
by computing the maximum euclidean distance between two marks of the ruler. Various
experiments with the images gathered are reported, showing not only the satisfactory results
on most of the images but also the problems arising on particular images.



1 Introduction

Cutaneous hemangiomas are benign tumors made up of newly-formed blood vessels in the
skin. They occur in about 5-10 percent of one year olds and can grow very large if not
treated early. Although they are not life-threatening, they may impinge on vital struc-
tures and interfere with breathing, vision, eating, or hearing and, especially if occurring
in the face, can also cause psychological problems [2].
For the investigation of various methods of treatment it is necessary to determine the
area which the hemangioma covers to find out, how much it has increased or decreased
since the last examination. In order to make the evaluation of various methods easier,
faster, more comfortable and in most cases more precise than a manual segmentation and
surveying of the affected skin area, an automated method is highly desirable.
This technical report presents an automated method for surveying cutaneous heman-
giomas that were photographed along with a ruler to determine the scale of the image.
The problem can be divided in two main tasks:

1. Determining the scale of the images by means of the ruler visible in the image.

2. Segmentation of the skin area belonging to the hemangioma.

The images used in this project have been kindly provided by the Department of Der-
matology at the Vienna General Hospital which is making a long-range study to compare
different methods of treatment for cutaneous hemangiomas. The photos were taken using
an analog photo camera and digitalized with a scanner. All images have a resolution of
512x768 pixels and a bit depth of 8 bits per color channel.
Because of the circumstance that nearly all patients of the study are infants who normally
do not keep still when being photographed, and the bad illumination in the examination
room, the quality of the images is partially quite poor. For instance sometimes parts of
the hemangioma are located in dark areas (shadows), because they are not sufficiently
illuminated by the flash of the camera, or the sharpness of the whole image is very low.
In order to increase reliability there are always taken two or more images of the heman-
gioma, i.e. there are at least two images of a specific hemangioma at a specific date. All
images are labeled with a five-digit code to uniquely identify them.
Fig. 1 shows five different images of hemangiomas describing also their miscellaneous
appearances. Fig. 1(a) shows a hemangioma with the usual strawberry-red color and a
rough surface. Fig. 1(b) shows a more nodule-shaped hemangioma with a flat surface.
In Fig. 1(c) there can be seen a hemangioma with regressing, slight reddish parts. Fig.
1(d) and (e) are good examples for images with poor quality. In Fig. 1(d) parts of the
hemangioma are situated in an inadequately illuminated region and Fig. 1(e) is generally
of low sharpness.
The report is organized as follows: Section 2 explains in detail the algorithm used for
determining the scale of the images. In Section 3.1 first various segmentation algorithms
are evaluated for our purpose, followed by a presentation of the complete segmentation
process used for this project, divided into Preprocessing (3.2), Classification (3.3) and
Postprocessing (3.4). In Section 4 several experiments performed on the data gathered
with the algorithm proposed are presented and discussed. A Conclusion is finally given
in Section 5.
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(a) (b)

(c) (d)

(e)

Figure 1: Five images of hemangiomas

2 Computing the Scale of the Images

All images of the study show a ruler beside the hemangioma. The ruler has 4 bold lines
in 1 cm distance steps. Therefore the task of the algorithm is to compute the euclidean
distance between two lines to get the spatial resolution of the images. The area of the
hemangioma is then simply calculated by multiplying the number of hemangioma pixels
with the area of one pixel. We neglect the error due to the fact that normally both
hemangioma and ruler are not situated on a planar surface parallel to the image plane.
The main steps of the algorithm are:

1. Segment the ruler

2. Calculate the ruler orientation and rotate it in a horizontal position

3. Get the number of pixels between two lines by scanlining through the ruler
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1. Segmenting the ruler: First we have to segment the ruler. Since all rulers are
white and differ extremely from the rest of the image, this can simply be done by global
thresholding with the H and V channel of the HSV color model. Sometimes small regions
not belonging to the ruler can also remain by this operation, so we take only the largest
region in the computed mask [Fig. 2(a) and 2(b)] .

2. Rotation in horizontal position: In the next step we determine the orientation of
the region describing the ruler. For this purpose we calculate the angle between the x-axis
and the major axis of the ellipse that has the same second-moments as the region (the
ellipse with the same orientation as the ruler). Once we have this angle, we can rotate
the ruler in a horizontal position [Fig. 2(c)].

3. Scanlining: For robustness we use three scanlines to determine the number of pixels
between two marks (a scanline is a vector containing the pixel values of a specific line
(y-value) of an image from left to right). The first scanline is on the midpoint between
the top and bottom y-value of the ruler. The two others are 10 pixels above and below,
respectively [Fig. 2(d)]. To determine the scale we take the maximum number of pixels
between two marks in all of the three scanlines. With this method we use the part of the
ruler which lies most normal to the camera and has the smallest curvature and therefore
has to be the most precise measurement. Occasionally it can happen that one or more
marks are not recognized in the scanline (e.g. when the ruler has a strong curvature),
hence too large distances with more than 200 pixels between two marks are rejected (in
all 122 images appropriated for us no greater distance than 155 pixels could be found).
If n denotes the number of pixels coming to one cm, the area of one pixel in the image is
(1/n)2. The example given in Fig. 2 results in a maximum distance of 138 pixels between
two marks, i.e. one pixel of the image has an area of ∼0.0000525 cm2.

3 Segmentation of the Hemangiomas

The task of the segmentation algorithm is to find the regions in an image belonging to the
hemangioma. In the next Section we first give an overview about several existing methods
proposed in publications dealing with the segmentation of skin lesions and explain the
problems with them for our purpose and why we finally decided to use a perceptron for
segmentation. After that our segmentation method is described in detail, divided into a
preprocessing step (Section 3.2), a classification step (Section 3.3) and a postprocessing
step (Section 3.4).

3.1 Evaluation of Existing Skin Lesion Segmentation Methods
for Hemangioma Segmentation

Thresholding: A thresholding operation is often used for the segmentation of skin le-
sions [3], [4]. However, finding reliable parameter values for thresholding operations with-
out user interaction working well with all of our images can not be done. This is mainly
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(a) (b)
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Figure 2: Example for determining the scale of an image

caused by the low contrast between skin and hemangioma regions, since hemangiomas
mainly appear in bright red [13].

Intensity image thresholding: A more interesting method for our purpose is given
in [14]. Here an image showing a melanoma is first transformed into an intensity image
where the intensity at a pixel shows the visual difference of that pixel to the background
(i.e. the skin). Then a threshold value is determined from the average intensity of the
p% highest gradient pixels in the obtained intensity image to find approximate lesion
boundaries. Finally the lesion boundary is refined using edge information in the image.
The problem of this algorithm for our task is chosing an eligible value for p. For an image
containing a large hemangioma this value should be taken larger than for an image con-
taining a small lesion. For a set of images with small variance of lesion sizes a failure made
here can be compensated in the refining step. But hemangioma sizes vary strongly from
one image to another. In Fig. 3 this problem is demonstrated with an image containing
a small spot-shaped hemangioma [Fig. 3(a)] and an image containing a comparatively
large hemangioma [Fig. 3(b)]. For the small hemangioma image a percentile p=0.01%
looks adequate [Fig. 3(c)]. Segmenting the other image with this percentile detects the
borders too far inside the hemangioma [Fig. 3(d)]. For that image a percentile p=25% is
optimal [Fig. 3(e)]. However, this value is too large for the image containing the small
hemangioma [Fig. 3(f)]. Nevertheless, the intensity image describing the visual difference
between skin and hemangioma is a useful feature for our purpose and is used slightly
modified as a feature for the classification step (see Section 3.3.3).
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(a) (b)

(c) (d)

(e) (f)

Figure 3: Results of intensity image thresholding of two images with different values for
p.

Region-based methods: Further possibilities for segmenting skin lesions are region-
based segmentation algorithms. With region-based algorithms not only the color values
of pixels but also their spatial relationships are considered. Split-and-merge is a widely
used region-based segmentation algorithm [7]. It first splits an image into homogeneous
sub-regions and then merges together regions with similar average color values. Round et
al’s work on segmentation of skin lesions is basically an application of the split-and-merge
algorithm [10]. Schmid and Fischer presented an region-based approach working with
two-dimensional histogram analysis and fuzzy c-means clustering technique [12]. For our
purpose we tested the region-based method explained in [5] on our images. The algorithm
proposed in this work first splits the image into smaller regions until all the regions meet
the homogeneity criteria set by a threshold. Second, the small split regions are grouped
by DBSCAN clustering algorithm to form the final regions. The results of applying this
method on two of our images are shown in Fig. 4.
The method was rejected due to the reason that after the clustering process it is very
difficult to decide which clusters belong to the hemangioma and which do not. Although
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the clustering of Fig. 4(a) induces a large cluster containing the major part of the he-
mangioma [Fig. 4(b)], note that the black regions are detected to be non skin before, see
Section 3.2.2), there are several clusters near the border of the hemangioma which cannot
be classified easily. A solution for that problem would be to change the parameters of
the algorithm to merge together regions having more different color values. This would
give us a single cluster containing the whole hemangioma. But although the image of Fig.
4(c) was clustered with the same parameters like the image of Fig. 4(a), the result [Fig.
4(d)] shows clusters, where skin and parts of the hemangioma were merged together. It
was impossible to find a set of parameters working well with most of the images.

(a) (b)

(c) (d)

Figure 4: Result of DBSCAN clustering of two images.

As a conclusion the problem of all color segmentation algorithms is to determine
which of the segmented regions are hemangioma regions. Making use of specific a priori
knowledge about the general appearance of hemangiomas is difficult because of several
reasons:

1. Hemangiomas can consist of several unconnected regions, so more than one region
has to be classified as hemangioma then

2. Hemangiomas do not have a specific shape (with the exception that very longish
regions can be classified as non hemangioma, see Section 3.4.2)

3. The hemangioma size in the images differs to a high extent

Our Methodology

Due to the difficulties mentioned previously we decided to use a classifier for segmenting
the images that classifies each pixel in the image as hemangioma or non hemangioma on
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the basis of its color values. Although postprocessing is still necessary (see Section 3.4),
we get a basic segmentation by this method and can reject regions that are classified
erroneously as belonging to the hemangioma later on.

Choice of the Classifier

In the following we had to determine the type of classifier suitable for our purpose. To get
satisfactory classification results the data to be classified (i.e. the color values) have to
show some form of clusters, where a cluster describes data values belonging to the same
class. To test that we first normalized the RGB color values of 10 images in such a way
that the skin has nearly the same color values in all images (see Section 3.2.3). By plotting
their RGB values in 3D space [Fig. 5(a), the side views are shown in Fig. 5(b)-(d)] it
can be seen that the color values of the hemangioma (red) are mostly separated from the
other values (blue).

(a) (b)

(c) (d)

Figure 5: 3D Plot of normalized RGB color values in 10 images. The red points represent
the color values of the hemangioma pixels.

Single-layer perceptron: The single-layer perceptron is a simple type of binary classi-
fier having the advantage of a simple and fast classification [9]. Looking at it geometrically
a single-layer perceptron classifies the data of Fig. 5 by putting a plane in the 3D space
that divides the data set in two classes. Therefore an adequate basic segmentation result
can be assumed on our images by applying a single-layer perceptron. As we see later this
assumption is confirmed, especially if we take more appropriate color values from other
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color models (see Section 3.3.2).

Neural network: Beside the single-layer perceptron various other classifiers exist. A
neural network (multi-layer perceptron) is an improvement of the traditional single-layer
perceptron with the ability of setting non-linear decision boundaries instead of only linear
ones. In other words, a neural network can put a curved surface in 3D space as decision
boundary. We have tested neural networks for segmenting our images with the conclusion,
that the results are not better than by segmenting with a single-layer perceptron. Since
a single-layer perceptron is simpler and faster in classification, we kept the perceptron.

k-Nearest Neighbor classifier: The k -Nearest Neighbor (k-NN) classifier determines
the k nearest feature vectors of a reference set for every feature vector [1]. The specific
feature value is mapped to the class having the majority in the k nearest feature vectors.
Due to the complex feature distribution a k -NN classifier with k = 5 achieved better
segmentation results than the single-layer perceptron on our images. The k-NN classi-
fier achieved an average false positives rate of 9.2% and an average false negatives rate
of 16.1% on 7 images, where the perceptron achieved an average false positives rate of
26.6% and an average false negatives rate of 16.9% on the same 7 images. Nevertheless,
the k-NN classifier is not practical for our purpose because of its high computation time,
since for our images with a resolution of 512x768 pixels in total 393216 feature vectors
have to be classified for only one image.

Due to the similar results of the neural network and the bad computation time of the
k -NN classifier we finally came to the decision to use the single-layer perceptron for clas-
sification.

3.2 Preprocessing

Before the classification step the images have to be preprocessed to improve the accuracy
of the perceptron classifier and to reduce computation time. To remove noise a median
filter is applied on the images. Furthermore, image regions containing no skin are masked
out and the images are normalized in such a way that skin has nearly the same color
values in all images.

3.2.1 Noise Removal

The task of the noise removal process is to reduce small structures in the images. Smooth-
ing the images causes less color variations in the skin and hemangioma and makes thereby
the segmentation process more accurate. With low-pass filtering an image is smoothed by
replacing each pixel by a weighted sum of its neighbors. However, with median filtering,
the value of an output pixel is determined by the median of the neighborhood pixels. The
advantage of this method in contrast to low-pass filtering is that it preserves the edges of
the image while reducing the noise. In this work we use a median filter with a window size
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of 5x5, i.e. the value of an output pixel is determined by the median of all pixel included
in 5x5 window surrounding the particular pixel. By testing this window size was decided
to be the best compromise between reducing noise and preserving relevant information in
the images.

3.2.2 Non Skin Masking

A simple test for masking out non skin regions is used after the median filtering to exclude
regions that likely are not part of the skin or the hemangioma (e.g. the ruler or dark areas
in the background). That step is necessary for a robust determination of the skin’s color
(see Section 3.2.3) and enhances the speed of the overall segmentation step as well, since
not all pixels of the image have to be classified. Our method is based on a heuristic
proposed in [6] but substantially simpler. We only check two criteria for each pixel (R, G
and B are the red, green and blue color values of the RGB color model):

1. R < G

2. R < B

If one of the criteria is given, the particular pixel is marked as non skin. This test
makes use of the fact that skin has usually a reddish color and therefore shows a greater
red portion than green and blue portion. By applying this test on all 122 images we got a
almost perfect result for 96 images (classification error less than 1%). The rest shows an
average classification error of about 5%. The non skin masking never causes problematic
results for the further steps, because the hemangioma and the bigger part of the skin is
never masked out. Fig. 6 shows the non skin masking results of three particular images
(non skin regions are marked blue). Non skin masking of the image in Fig. 6(a) induces
a nearly perfect result [Fig. 6(b)]. Worse results are achieved in Fig. 6(c) and (e). The
failure of Fig. 6(d) is mainly caused by a red cloth in the dark background of the image. In
Fig. 6(e) some parts of the skin are erroenously masked out in a rather badly illuminated
region of the image. Here the skin loses its reddish appearance.

3.2.3 Normalization with Skin Color

To achieve more accurate classification results a normalization with the skin color has to
be done on the images. In other words, we have to determine the color value of the skin
in an image and subtract these value from all pixels with the aim of having nearly the
same color value of (0,0,0) for skin pixels in all images. The necessity of this step is shown
in Table 1 where we have computed the classification result (false positives and false
negatives rate) of the perceptron for 15 images without normalization and compared it
with the results achieved with normalization. The same feature set as for the classification
step was used (see Section 3.3.2) and all images were reduced to a resolution of 256x384
and randomly divided into a training set (30%) and a test set (70%). For normalization
we have tested three different variants of computing the skin color:

1. Manual Normalization: the user chooses three 3x3 windows near the border of
the hemangioma and the mean color value of all windows is chosen to be the skin’s
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(a) (b)

(c) (d)

(e) (f)

Figure 6: Non skin masking results of three images.
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Test Set Training Set
False Pos. False Neg. Sum False Pos. False Neg. Sum

No Norm. 0.0% 99.8% 99.8% 0.0% 99.8% 99.8%
Manual Norm. 29.7% 14.8% 44.5% 29.5% 14.5% 44.0%
Median Norm. 30.2% 15.5% 45.7% 30.0% 15.2% 45.2%
Histogram Norm. 29.4% 14.7% 44.1% 29.2% 14.4% 43.6%

Table 1: Classification results after various normalization methods.

color (this is only for testing, since we want an automated procedure with no user
interaction).

2. Median Normalization: the median value for each color channel in the image is
chosen

3. Histogram Normalization: a 3D histogram of the RGB color channels is created
and the maximum RGB value, which has a brightness greater than 120, is chosen.
This threshold was decided to be the most appropriate by empirical tests.

Both Median and Histogram Normalization make use of the fact that after non skin
masking the majority of the remaining pixels in an image represent skin.
As can be seen in Table 1, without normalization the perceptron is not able to find an
useful decision boundary. The perceptron has set a decision boundary that classifies
nearly all pixels as non hemangioma and therefore we get a false positives rate of 0.0%
and a false negatives rate of 99.8% without normalization. With normalization we obtain
more usable decision boundaries resulting in a total error rate (false positives rate plus
false negatives rate) of 44.5% (Manual Normalization), 45.7% (Median Normalization)
and 44.1% (Histogram Normalization) in the test set. Although median and histogram
normalization accomplish nearly the same results, the subjective visual result on particular
images is better with histogram normalization. It can also be seen that the manual
normalization does not achieve better results than the histogram normalization (44.1%
against 44.5% total error rate in the test set) which is an indication that the histogram
normalization works accurately.

3.3 Classification of the Hemangiomas

As mentioned before, our segmentation method is based on a perceptron that classifies
all pixels in the images by means of their color values. As we see later in Section 3.4,
this first segmentation result has to be postprocessed to exclude non hemangioma regions
with hemangioma-like color values.
In Section 3.3.1 first the general functioning of the single-layer perceptron is explained.
In Section 3.3.2 and 3.3.3 the selection of adequate features for our images is discussed.
Finally Section 3.3.4 describes the training phase of the perceptron.
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3.3.1 The Single-Layer Perceptron

The single-layer perceptron is a simple binary classifier based on a mathematical model
for the behavior of a single biological neuron.
Assume that we have a d-dimensional feature vector x ∈ Rd and two classes w1, w2. Our
goal is to find a mapping g : Rd → R with

g(x) > 0 if x ∈ w1 (1)

g(x) < 0 if x ∈ w2 (2)

g is often called the discriminant function and has the form

g(x) =
d∑

i=1

wixi − θ = wTx− θ (3)

where

x =


x1

x2

· · ·
xd

 ,w =


w1

w2

· · ·
wd

 (4)

w is normally called the weight vector and θ the bias. If we call o(x) the output of the
perceptron, we have

o(x) = g(wTx− θ) =

{
1 if wTx ≥ θ

−1 if wTx < θ
(5)

where g() is the signum function:

sgn(a) =

{
+1 if a ≥ 0

−1 if a < 0
(6)

It is common practice to ”pull” the bias into the weight vector by introducing addi-
tional coordinates x0 = 1 and w0 = −θ.

ax =


1
x1

x2

· · ·
xd

 , aw =


−θ
w1

w2

· · ·
wd

 (7)
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Perceptron training

Let STr = {X, t} denote a set of N augmented input vectors X = (x1, . . . ,xN) ∈ R(d+1)×N

and corresponding class labels t = (t1, . . . , tN), ti ∈ {1,−1}, called training set.
Goal: find an augmented weight vector w such that

o(xi) = sgn(wTxi) = ti, 1 ≤ i ≤ N (8)

Perceptron Learning Rule: if a training vector xj with tj = 1 is misclassified, add
a multiple of xjtj to w: wnew = w + γxjtj. Likewise if a training vector xj with tj = −1
is misclassified, subtract a multiple of xjtj from w: wnew = w + γxjtj. The factor γ is
called learning rate.

3.3.2 Feature Selection

For classification we have to define a set of features showing a big difference between skin
and hemangioma pixels. Possible features for the classification are at first all the three
color channels of these three significant color spaces [8]:

1. RGB: In RGB color space, each color is represented by a three number triple. The
components of this triple specify, respectively, the amount of red, green and blue in
the color.

2. HSV: In the HSV color space, each color is again represented by a three number
triple. The first component, Hue, describes the basic color in terms of its angular
position on a ”color wheel”. The Hue is normally described in terms of degrees.
The second component of the HSV triple is Saturation, which can be thought of as
the ”pureness” of the color. The third component is Value, which is a measure how
”bright” the color is.

3. CIE 1976 L*a*b*: The CIE 1976 L*a*b* color space was created by the Com-
mission Internationale de l’Eclairage and has the special ability, that the color
differences perceived by the human eye correspond to colorimetrically measured dis-
tances. The L* -axis in this three-dimensional color space is known as the lightness,
the other two coordinates a* and b* represent redness-greenness and yellowness-
blueness, respectively.

Further we have created a 10th feature called abdist (see Section 3.3.3). To find an
appropriate set of features we have ascertained the false negatives and false positives rate
for every meaningful group of features on a test set of 15 normalized images (Table 2).
The images were reduced to a resolution of 256x384 before and randomly divided in a
training set (30%) and test set (70%).
Although the best result was obtained with all ten features (22% false positives and 17.9%
false negatives on the test set), the set {G, H, a*, abdist} is the better choice. It has pro-
duced the lowest false negatives rate of all groups (14.7%), which is more important in
the classification step. This is because of the fact that in the postprocessing step mainly
the false positives rate will be improved. Therefore, we have decided to use the features
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G, H, a* and abdist for classifying the pixels of an image. As can be seen in Fig. 7, each
of these features has a rather big difference between pixels belonging to the hemangioma
and pixels belonging to the skin.

Features Test Set Training Set
False Pos. False Neg. False Pos. False Neg.

L a* b* 23.2 % 37.9 % 23.1 % 37.2 %
abdist 33.8 % 25.2 % 33.7 % 25.0 %
a* 30.0 % 31.7 % 29.9 % 31.3 %
G H a* 30.2 % 34.9 % 30.0 % 34.3 %
H S a* 23.3 % 46.3 % 23.3 % 45.5 %
V abdist 28.0 % 27.0 % 27.7 % 26.6 %
G H a* abdist 29.4 % 14.7 % 29.2 % 14.4 %
R G H S V a* 24.8 % 41.5 % 24.8 % 41.0 %
H S abdist 21.3% 23.9 % 21.3 % 23.6 %
all 22.0 % 17.9 % 21.9 % 17.6 %

Table 2: False positives and false negatives of a set of feature groups of 15 images trained
with a perceptron.

(a) (b)

(c) (d)

Figure 7: The intensity images of the four features (a) G, (b) H, (c) a and (d) abdist of
the image in Fig. 6(a).

It must be noticed that for classification the H values have to be rotated 180 degrees to
cope with the circular fashion of the data. In the HSV color model the red color value lies
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at 0◦, i.e. similar red color values can have very different H values. Since hemangiomas
are red, the red color values of H are the most relevant for classification and we have to
bring these values in a linear range.

3.3.3 The Feature abdist

The feature abdist stands for the Euclidean distance between the skin and the hemangioma
in the L*a*b* color space without consideration of the luminance L* and intensification
of the a* component. This feature is adopted from [14] (see Section 3.1). In this paper the
proposed method works on an intensity image describing the Euclidean distance between
the skin and the lesion.
The advantage of the CIE 1976 L*a*b* color space compared with other color spaces
is that it defines color in such a way that the Euclidean distance between two colors is
proportional to their visual difference. This property is very useful for our purpose, since
the color distance in RGB space between hemangioma and skin regions is not as high as
the perceived difference.
If as, bs denotes the a* and b* values of the skin (obtained from the normalization step,
see 3.2.3) and ah, bh that from the hemangioma, abdist is computed as follows:

abdist =
√

(2as − 2a)2 + (bs − b)2 (9)

The difference of the a* channel is multiplied with the factor 2, because the a* value
differs more between hemangioma and skin pixels than the b* value. At last for contrast
enhancement we apply a Gaussian function of the form G(x) = 1/

√
2πσ(1−exp (x2/2σ2))

with σ = 0.5 on the intensity image. As can be seen in Fig. 8, this function increases
higher values (hemangioma) and decreases lower values (skin) in the intensity image. For
an example of abdist see Fig. 7(d).

Figure 8: Gaussian function G(x) = 1/
√

2πσ(1− exp (x2/2σ2)) with σ = 0.5
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3.3.4 Training of the Single-Layer Perceptron

To train the perceptron we took a training set of 15 images representing a wide variety of
different appearances of hemangiomas as shown in Fig.1. The ground truth, i.e. the class
labeling of every pixel of the images, was manually determined by ourself by drawing
the borders of the hemangiomas in a paint program. All features were brought in the
range [0, 1] and normalized with histogram normalization. Best results were achieved
with a learning rate γ = 0.0001 and 50 training cycles. Thereafter no improvement of the
classification error was recognized. On the training set the trained perceptron achieved a
false positives rate of 30.9% and a false negatives rate of 14.2%.

3.4 Postprocessing

In the postprocessing step several operations are applied to the mask obtained from the
classification. To improve the false negatives rate we have to find a way to detect highlights
on the hemangioma that were erroneously classified as non hemangioma. Contrariwise we
also have to reject regions, which have similar color values to those of the hemangioma
but do not belong to it. These regions include mostly:

• The red five-digit code in the lower right corner of the image

• Parts of the human body that naturally have a similar color to hemangiomas (i.e.
lips)

• Skin regions near the border between skin and dark background regions (that seems
to be a special property of the film used in the study)

• Other red objects like earrings, baby-soothers etc.

In the following we describe all operations used to get the final mask.

3.4.1 Hole Closing

For solving the highlights problem mentioned above all holes occurring in the mask are
closed. Since hemangiomas with large holes of normal skin could not be found in the 122
images appropriated for us, they seem to be very rare and a possible error resulted from
that operation can be neglected. The effect of hole closing can be seen in Fig. 9: the
highlights detected as non hemangioma by the classifier [Fig.9(a)] are added to the mask
by hole closing [Fig.9(b)].

3.4.2 Rejecting Regions

Size-based: First of all regions with a size smaller than 40 pixels are deleted from the
mask. In all images no hemangioma region with a size smaller than 60 pixel is contained,
therefore this value is proven to be adequate to exclude artifacts.
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(a) (b)

Figure 9: Result of hole closing on a particular image.

Position-based: To exclude regions belonging to the five-digit code of the photo, re-
gions having their centroid in a 30x100 frame in the lower right corner of the image are
also taken out. The hemangiomas are normally located vaguely in the middle of the im-
age. Even if parts of it are overlapping with this region, still their centroid is close to the
middle of the image.

Roundness-based: To detect the regions near the border between skin and dark back-
ground areas we take advantage of the fact that they mostly stretch over a thin, long
line. To discern this regions from hemangioma regions we use shape descriptors [11], in
particular the roundness. The roundness of a region is defined as:

roundness =
4A

πD2
max

(10)

where A is the area and Dmax the length of the major axis of the ellipse that has
the same second-moments as the region. Hemangiomas are rather compact and round,
so we reject regions with a very small roundness (in this project we used a empirically
determined threshold of 0.1).

Color-based: The last criterion we check for each region has to do with his saturation
and value (from the HSV color model). The classifier often chooses by mistake dark and
less saturated regions (in comparison to the other regions of the image) to be part of
the hemangioma, because they have high values in the abdist feature. To exclude these
regions we calculate the mean S and V values of the whole image after non skin masking
and compare it with the mean values of the region. That is to say we calculate

Mean(Sreg)

Mean(Simg)
+

Mean(Vreg)

Mean(Vimg)
(11)

whereas Mean(Sreg), Mean(Simg), Mean(Vreg) and Mean(Vimg) are the mean values
of the S and V values of the image and the region. This computed value is small for
regions with a relative low saturation and/or brightness compared to the rest of the image.

17



Therefore, all regions having a lower value calculated with this formula than a specific
threshold are deleted from the mask (by testing we found an appropriate threshold of
1.3).
Recapitulating the following steps are performed in postprocessing:

• Close holes

• Reject regions with:

1. Area < 40

2. Roundness < 0.1

3. Centroid in frame (440-470,610-710)

4. Mean(Sreg)

Mean(Simg)
+ Mean(Vreg)

Mean(Vimg)
< 1.3

Fig. 10 shows the computed hemangioma borders before [Fig. 10(a)] and after [Fig.
10(b)] the postprocessing step of a particular image. The two large, longish regions are
rejected because of their low roundness. The false positives rate of this segmentation is
decreased from 90.3% to 5.5%, the false negatives rate from 17.7% to 2.2%.

(a) (b)

Figure 10: Example of the changes made by the postprocessing step.

4 Experiments

In this section we report experiments with the data gathered and our algorithm applied
on it to evaluate the proposed method. First of all we test the precision of the scale com-
puting algorithm solely (Section 4.1). Then the improvement of the postprocessing step
is shown by comparing the results of 29 images before and after postprocessing (Section
4.2). Furthermore, we analyze the differences between images of the same hemangioma
photographed at the same date in terms of their computed area to get an estimation of
the precision of the method (Section 4.3). For evaluating time series of the images another
test is made with two series of hemangioma images photographed in monthly intervals
(Section 4.4). The performance of our classifier is evaluated by means of leave-one-out
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testing (Section 4.5). At last the possibility of performing a second iteration of the seg-
mentation step with new normalization values is evaluated (Section 4.6).
Like for the data used in the training phase (Section 3.3.4), the ground truth of the images
is annotated manually.

4.1 Precision of the Scale Computing Algorithm

For this experiment we computed the euclidean distance between two marks of the ruler
of 20 images with the algorithm proposed in Section 2 and compared it with manually
determined values (Table 3). These values are achieved by manually choosing the longest
euclidean distance between two marks of the ruler visible in the image. Nevertheless, these
values do not represent the real spatial resolution of the image since we do not take into
account the curvature and position of the ruler just as in our algorithm. In addition the
manually determined euclidean distance is not exact too, a failure of 1-2 pixels is possible.
As can be seen in Table 3 the algorithm works well for most of the images (average error
rate 1.55%).

Image Computed
Euclidean
Distance

Manually
Determined
Euclidean
Distance

Error

1 130 px 129 px 0.78 %
2 127 px 124 px 2.42 %
3 132 px 129 px 2.33 %
4 136 px 134 px 1.49 %
5 140 px 138 px 1.45 %
6 135 px 133 px 1.50 %
7 139 px 135 px 2.96 %
8 139 px 139 px 0.00 %
9 130 px 130 px 0.00 %

10 133 px 131 px 1.53 %
11 134 px 141 px 4.96 %
12 130 px 129 px 0.78 %
13 145 px 145 px 0.00 %
14 141 px 151 px 6.62 %
15 98 px 100 px 2.00 %
16 140 px 141 px 0.71 %
17 146 px 146 px 0.00 %
18 130 px 132 px 1.52 %
19 141 px 141 px 0.00 %
20 146 px 146 px 0.00 %

Average 1.55 %

Table 3: Comparison between the computed and the manually determined euclidean
distance between two marks of the ruler in 20 images.

Problems arise only with images 11 and 14. These are shown in Fig. 11. In image
11 [Fig. 11(a)] there can be seen a white cloth that is segmented together with the ruler.
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Therefore, in the computed, rotated ruler mask the three scanlines (red) are too far below
and erroneously the distance between the numbers instead of the marks is taken for scale
computing [Fig. 11(b)]. The same problem occurs in image 14 [Fig. 11(c) and 11(d)] but
this time caused of the fact that only about the half of the ruler is visible in the image.
Generally the algorithm works well on images with completely visible rulers that are
surrounded only by skin.

(a) (b)

(c) (d)

Figure 11: Image 11 and 14 of Table 3 with corresponding computed ruler masks. The
three scanlines are marked red.

4.2 Results on Images and Improvement by Postprocessing

We have tested the segmentation of 29 single images to get an approximation of the overall
error rate of the segmentation algorithm proposed. In addition we have tested the effect
of the postprocessing step by comparing the false positives and false negatives rate of the
same 29 images before and after postprocessing (Table 4). On average by postprocessing
we get primarily an improved false positives rate (from 39.0% to 15.5%) and also the false
negatives rate is decreased (from 17.4% to 13.1%). It can also be seen in the table that
no image’s error rate is increased significantly by the postprocessing step (merely images
1, 3, 22 and 25 show a negligible deterioration of the false negatives rate).
In Fig. 12 we show images of both good and bad segmentation results. Fig. 12(a)-(e)
correspond to images 6, 8, 13, 23 and 28 in Table 4, respectively, and belong to the best
segmentation results. Fig. 12(f)-(j) correspond to images 7, 14, 15, 19 and 21 in Table 4,
respectively, and belong to the worst segmentation results.
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Before Postprocessing After Postprocessing
Image False Positives False Negatives False Positives False Negatives

1 17.7 % 13.3 % 15.9 % 14.3 %
2 0.3 % 12.2 % 0.3 % 10.4 %
3 21.5 % 36.3 % 1.3 % 36.4 %
4 6.3 % 16.1 % 0.8 % 7.9 %
5 41.6 % 27.7 % 9.9 % 27.2 %
6 26.2 % 7.7 % 2.9 % 5.9 %
7 67.6 % 3.2 % 51.4 % 3.2 %
8 1.1 % 8.4 % 0.8 % 2.4 %
9 0.5 % 48.0 % 0.2 % 15.8 %

10 32.3 % 4.0 % 7.1 % 3.9 %
11 3.1 % 12.6 % 2.7 % 10.5 %
12 90.0 % 18.0 % 4.2 % 2.2 %
13 1.3 % 9.1 % 0.6 % 5.3 %
14 89.4 % 46.9 % 11.7 % 46.6 %
15 76.2 % 3.8 % 63.8 % 1.8 %
16 9.2 % 40.8 % 0.0 % 5.8 %
17 75.4 % 9.2 % 6.4 % 9.2 %
18 67.9 % 6.7 % 58.9 % 6.7 %
19 29.0 % 14.8 % 24.1 % 14.8 %
20 72.3 % 19.7 % 19.2 % 18.3 %
21 96.2 % 16.1 % 96.2 % 14.2 %
22 26.1 % 8.2 % 6.9 % 8.3 %
23 3.6 % 5.1 % 3.6 % 5.1 %
24 97.2 % 17.2 % 5.2 % 17.2 %
25 52.4 % 5.1 % 43.3 % 5.7 %
26 0.0 % 10.0 % 0.0 % 9.3 %
27 24.0 % 46.9 % 9.4 % 45.7 %
28 49.0 % 6.9 % 1.7 % 4.6 %
29 54.3 % 30.2 % 1.8 % 20.8 %

Average 39.0 % 17.4 % 15.5 % 13.1 %

Table 4: False positives and false negatives rate of 29 images before and after the post-
processing step.
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(a) (f)

(b) (g)

(c) (h)

(d) (i)

(e) (j)

Figure 12: Computed segmentation borders (green) of 10 images with our algorithm.
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4.3 Comparing Computed Areas of the Same Hemangioma

As mentioned above, all hemangiomas were photographed at least twice, which gave us
the possibility to test the precision of the complete algorithm proposed, i.e. the scale
computing algorithm combined with the segmentation algorithm. With a ”perfect” al-
gorithm both images should have precisely the same computed hemangioma area. Table
5 shows the computed areas of two different images displaying the same hemangioma at
a specific time of 20 hemangiomas in total. The average error (difference in percent) of
all 20 hemangiomas is 11.3%. This error is mainly caused by the circumstance that two
photos of the same hemangioma are never photographed from exactly the same angle.

Area Image 1 Area Image 2 Difference %
2.626 cm2 2.397 cm2 0.229 cm2 8.7 %
0.185 cm2 0.219 cm2 0.034 cm2 15.5 %
0.348 cm2 0.363 cm2 0.016 cm2 4.3 %
3.755 cm2 3.600 cm2 0.154 cm2 4.1 %
0.215 cm2 0.222 cm2 0.007 cm2 3.2 %
0.097 cm2 0.119 cm2 0.023 cm2 18.9 %
0.635 cm2 0.592 cm2 0.043 cm2 6.8 %
2.119 cm2 1.889 cm2 0.230 cm2 10.9 %
0.128 cm2 0.130 cm2 0.002 cm2 1.8 %
0.524 cm2 0.569 cm2 0.045 cm2 7.9 %
0.197 cm2 0.176 cm2 0.021 cm2 10.8 %
0.147 cm2 0.123 cm2 0.024 cm2 16.5 %
2.901 cm2 2.475 cm2 0.426 cm2 14.7 %
0.839 cm2 0.735 cm2 0.104 cm2 12.4 %
0.193 cm2 0.115 cm2 0.078 cm2 40.5 %
0.091 cm2 0.106 cm2 0.015 cm2 14.1 %
0.217 cm2 0.204 cm2 0.013 cm2 6.0 %
2.061 cm2 2.057 cm2 0.004 cm2 0.2 %
0.610 cm2 0.659 cm2 0.049 cm2 7.4 %
0.153 cm2 0.120 cm2 0.033 cm2 21.3 %

Average 0.078 cm2 11.3 %

Table 5: Difference in computed areas between two images of the same hemangioma.

4.4 Tests on Series of Hemangioma Images

In this experiment we observed the course of computed areas on two series. Both series
contain three images of an hemangioma photographed in intervals of about one month
to record their development. The results can be seen in Table 6. Series 1 shows a slight
enlargement of the hemangioma in the first five weeks, but after 10 weeks the hemangioma
has become very small. In series 2 the area of the hemangioma is quite constant. It seems,
that the small differences between the three measurements are caused by error and the
hemangioma has not changed his size. Fig. 13(a)-(c) shows the three segmentation results
of series 1 in chronological order and Fig. 13(d)-(e) the segmentation results of series 2.
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Series 1 Series 2
Date Area Date Area

2003-08-26 0.348 cm2 2003-07-15 0.202 cm2

2003-10-07 0.414 cm2 2003-08-19 0.152 cm2

2003-11-11 0.003 cm2 2003-09-16 0.187 cm2

Table 6: Results for computing the area of two series of hemangioma photographed in an
interval of about a month.

(a) (d)

(b) (e)

(c) (f)

Figure 13: Segmentation results of two series photographed in an interval of about a
month.
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4.5 Leave-One-Out Test

The leave-one-out test (or round robin test) is an elegant and straightforward technique
for estimating a classifier’s error rate. The perceptron is trained with 28 images and tested
on the 29th image. This is done 29 times, each time training a perceptron on all but one
images and testing it on the single remaining image. Table 7 shows the false positives and
false negatives rates obtained by this method for the 29 images that were already utilized
for Table 4. For training the same parameters as in the training phase (Section 3.3.4)
were taken. On the average a false positives rate of 36.1% and a false negatives rate of
21.9% is produced by this test.

Image False Positives False Negatives
1 11.9 % 19.3 %
2 0.1 % 14.8 %
3 18.6 % 45.1 %
4 8.4 % 10.6 %
5 42.6 % 41.8 %
6 20.9 % 14.3 %
7 61.0 % 7.0 %
8 0.5 % 12.6 %
9 0.2 % 55.1 %

10 24.9 % 4.6 %
11 0.9 % 18.5 %
12 89.7 % 14.2 %
13 0.5 % 8.6 %
14 90.0 % 44.0 %
15 74.2 % 3.4 %
16 4.7 % 45.3 %
17 72.7 % 25.0 %
18 64.1 % 8.5 %
19 23.4 % 21.2 %
20 76.9 % 20.6 %
21 96.2 % 20.1 %
22 27.2 % 9.3 %
23 2.3 % 8.9 %
24 97.4 % 16.8 %
25 25.8 % 15.5 %
26 0.1 % 14.3 %
27 13.5 % 58.5 %
28 37.5 % 10.1 %
29 59.3 % 47.5 %

Average 36.1 % 21.9 %

Table 7: False positives and false negatives rate of the leave-one-out test with a set of 29
images.
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4.6 Second Iteration of Classification

We tested the possibility to classify the hemangioma a second time to get better results.
The idea was to obtain better normalization values, if we take the mean color value of
the bounding box surrounding the regions segmented in the first iteration (without the
color values of the already segmented regions). This should give us a good estimation of
the skin color near the borders of the hemangioma. We have tested this method with the
images 1-15 of Table 4. The results are shown in Table 8.

Image False Positives False Negatives
1 12.0 % 17.4 %
2 0.2 % 10.8 %
3 1.1 % 37.5 %
4 0.6 % 22.8 %
5 6.9 % 32.1 %
6 5.4 % 4.2 %
7 41.3 % 5.5 %
8 0.6 % 2.8 %
9 0.3 % 15.0 %

10 3.3 % 5.8 %
11 1.8 % 12.8 %
12 58.0 % 3.0 %
13 0.4 % 5.9 %
14 11.8 % 51.9 %
15 63.6 % 1.9 %

Average 13.8 % 15.7 %

Table 8: False Positives and false negatives rate achieved by a second iteration of the
segmentation step. Significant changes compared to Table 4 are marked blue.

Due to the received results the idea was rejected. Both the average false positives and
the false negatives rate is increased from 11.6% to 13.8% and from 12.9% to 15.7%. The
results for particular images are similar to those of the first iteration, only image 7 evinces
an improvement and images 4 and 11 are classified significantly worse. The different
segmentation results of these three images are shown in Fig. 14. By normalizing image 7
[Fig.14(a)] with the new values we get a better segmentation result since the normalization
values correspond more to the reddish skin near the hemangioma [Fig.14(b)]. The main
problem of this procedure is that there are also included reddish color values at the
hemangioma border in the bounding box and therefore the new values do not represent
the skin color accurately in most cases. By this reason the second iteration segmentation
of image 4 [(Fig.14(c)] does not detect the whole hemangioma [(Fig.14(d)]. Another
problem is caused by falsely classified image regions causing an improper bounding box.
This can be seen by the second segmentation iteration of image 12 [(Fig.14(e)]. The
computed bounding box is too large because of a misclassified small region at the left side
of the image. Therefore, by the second iteration new regions belonging to skin are added
to the hemangioma segmentation [(Fig.14(d)].
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(a) (b)

(c) (d)

(e) (f)

Figure 14: Three images segmented with a second iteration and without a second iteration.
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5 Conclusion

For analyzing the course of evolution of cutaneous hemangiomas an automatic and fast
method for determining their area in photographs is very useful. The algorithm proposed
first computes the spatial resolution of an image by determining the euclidean distance
between two marks of a ruler contained in the images. Then a hemangioma segmentation
is accomplished by a single-layer perceptron classification by means of the pixel’s color
values. In a postprocessing step holes caused by highlights are closed and each segmented
region is checked for various properties to exclude falsely classified regions.
Experimental results show that the segmentation works precisely on the majority of the
images. Bad segmentation results are primarily caused by large regions with hemangioma-
like color values that are not be rejected in the postprocessing step either. For these
images a workaround could be to manually cut out the parts of the image containing
these regions. Inaccuracies in computing the hemangioma area are mainly caused by the
fact that often the images are not photographed from an optimal position and also do
not contain an optimally placed ruler since the algorithm does not consider the spatial
position of both the hemangioma and the ruler in the images. For an optimal result
both hemangioma and ruler should be situated on a planar surface parallel to the image
plane. Therefore, better results can be expected by photographing the hemangiomas
from an angle of 90 degrees and placing the ruler as near as possible to the hemangioma.
Generally an improvement of the algorithm’s overall performance can be assumed by a
better image acquisition process. This includes beside an optimal camera position and
ruler placement an adequate illumination of the hemangiomas and the use of a digital
instead of an analog photo camera.
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