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Abstract

Active Appearance Models (AAM) provide a compact statistical model of data encom-
passing both shape and texture variations. This report introduces a novel and fast search
algorithm for AAMs based on canonical correlation analysis (CCA). In contrast to the
standard AAM matching approach CCA exploits the correlation between texture residuals
and model parameters more efficiently. In a set of experiments using face and medical
images we show that CCA based search consistently outperforms the convergence speed of
the standard method by a factor of four. The time needed for training is reduced by 80%.
Since the implementation effort of the standard approach and CCA are similar our results
suggest that CCA can replace the standard AAM search.
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1 Introduction

This report documents the efforts to implement a flexible framework for active appearance
models (AAMs). It was then used for the investigation of advanced parameter prediction
techniques using canonical correlation analysis (CCA).

1.1 Motivation

Active appearance models, first introduced by Cootes et al. [8] in 1998, build a linear
model of both shape and texture out of a set of training images and can then be used to
find an object in a new image. Areas of successful applications include face recognition [8]
and many areas of medical imaging, e.g. in spine radio-graphs [26], diaphragm computer
tomography (CT) images [2] and hand radio-graphs [15].

During search, AAMs follow an iterative gradient descent approach to find the optimal
model parameters. Hence their search speed and the accuracy of their results depend
heavily on the quality of the parameter prediction at each iteration.

In this report we investigate the potential of canonical correlation analysis for improv-
ing this prediction step. CCA finds the directions of maximum correlation between two
sets of data, thus forming a powerful regression tool.

1.2 Active Appearance Models

Appearance based image processing approaches represent both the internal structure of
the object to be modeled like shape and texture changes as well as external influences
like illumination and reflectance properties. Furthermore the encoded a priori knowledge
leads to a robust search behaviour and ensures the results to be reasonable.

Several different approaches to modeling appearance exist. Turk and Pentland [33]
employed an eigenspace representation of faces, introducing the term eigenfaces for this
method.

Active shape models (ASMs) [12], although they do not model the whole texture, are
the direct predecessors of AAMs. ASMs build a statistical linear model of the shape of
the objects to be modeled as a set of points along the outline. In addition, they build a
mean representation of a small texture patch orthonormal to the landmarks. The texture
differences between these patches and the image are used during search to iteratively
update the positions of all landmarks and then confine these positions to the model. The
result is a good approximation of the objects’ border.

AAMs use the same shape information as ASMs, but use the entire texture of the
object. Each training object is warped to the mean shape, and out of the resulting
shape-free textures a texture model is built. So instead of using only the mean texture
information, the texture variability is modeled, too. The shape and texture models are
then combined, yielding the active appearance model, which is able to construct photo-
realistic images of the training objects and all linear interpolations using only a handful
of parameters, which are the PCA coefficients of the underlying model plus additional
modes for rotation, scaling and contrast/brightness. During search these parameters are
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estimated using an iterative gradient descent optimization, with the texture difference
between model and image as objective.

AAM History and New Developments Since their initial proposition AAMs many
modifications and improvements were developed. Cootes in [10] gives a brief time line
of the milestones in AAM evolution. The training scheme introduced in [13], which has
replaced the initial multivariate linear regression (MLR) approach, will be investigated
in this report. Novel texture representations were investigated [31], leading to the incor-
poration of feature based approaches to AAMs [28].

Several publications focus on how to model and combine the shape and the texture
information. Direct AAMs [21] store only the texture parameters as model parameters
and try to implicitly map the according shape parameters. Shape AAMs [11] also separate
shape and texture parameters, as they only update the shape parameters trough regres-
sion and then map the encountered texture to the texture parameters directly. Non-linear
models utilising kernel-PCA (principal component analysis) were proposed in [27] . Inter-
esting work has also been conducted on the topic of robust AAMs [3]. Small adjustments
to the search routine aimed at improving robustness [7].

Due to the limited variance of global models several attempts have been undertaken
to incorporate additional degrees of freedom into the optimization process, like the use of
linked sub-models [26].

Applications AAMs have been employed in various domains like face modelling [16],
studying human behavior [22] and human computer interaction [1]. The main area of
application is medical imaging, like the segmentation of cardiac images obtained through
magnetic resonance imaging (MRI) [24] or the diaphragm in CT data [2], and registration
in functional heart imaging [30]. In [29] an extensive overview of existing applications is
given.

1.3 Canonical Correlation Analysis

Canonical Correlation Analysis a versatile method that is especially well suited for relating
two sets of measurements (signals) [4]. Like PCA, CCA also reduces the dimensionality
of the original signals, since only a few factor-pairs are normally needed to represent
the relevant information; unlike PCA, however, CCA takes into account the relationship
between two signal spaces (in the correlation sense), which makes them better suited for
regression tasks than PCA.

Recent work on CCA includes the formulation of a unified approach to PCA, partial
least squares (PLS), MLR and CCA [4]. Investigations into developing robust CCA were
conducted by [17].

1.4 Contributions and Structure

The main contribution of this report is the utilization of CCA for parameter prediction
in AAM search. The accuracy of the predictions outperforms the standard approach,
leading to a more compact regression model and faster search convergence.
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Sec. 2 provides a comprehensive description of active appearance models. It describes
the prerequisites for building AAMs and how to obtain the model, mainly through the
utilization of normalization, Procrustes analysis for alignment and principal component
analysis for dimensionality reduction. Then the process of regression on the difference
images and the parameter displacements by the standard regression approach is described,
leading to a formulation of the search procedure.

Sec. 3 first introduces canonical correlation analysis in Sec. 3.1 in order to derive an
improved parameter prediction scheme for AAMs in Sec. 3.2. Empirical results will be
presented in Sec. 4. Sec. 5 provides a summary and an outlook. Finally, the appendix
contains the documentation of the AAM software implementation.

1.5 Nomenclature

CCA Related Symbols

N number of samples
p dimensionality of the input space
q dimensionality of the output space
k number of factors or eigenspace dimension
w parameter vector
ρ(w) objective function
w∗ extremum (stationary) point of ρ(w)
X p × N training sample matrix
Y q × N output sample matrix
x = (x1, . . . , xp)

T random vector
x[k] = (x1, . . . , xk)

T projection onto the first k dimensions

AAM Related Symbols

n number of training samples
w width of training images
h height of training images
S = (s1, . . . , sn) matrix containing the training shapes
G = (g1, . . . ,gn) matrix containing the training textures
Ps eigenvectors of the shape eigenspace
Pg eigenvectors of the texture eigenspace
Pc eigenvectors of the combined shape/texture eigenspace
p = (cT |tT |uT ) model parameter vector consisting of sub-vectors c, t and u
R regression matrix
n number of training samples
n number of training samples
r(p) texture residual
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2 Active Appearance Models

Active appearance models are a method to build a statistical model of a priori knowledge
and then to utilize this model to perform a robust search on a hitherto unseen image [14].
This section will detail the steps involved in training and using AAMs.

2.1 Using Models in Image Segmentation

Active appearance models belong to the family of methods based on the alignment ap-
proach, which try to maximize a certain measure of fit (e.g. texture residual) between
the representation given by the model and the image. The necessary transformation can
either be applied to the image or the model, the later being the case for AAMs.

The type of model employed in AAMs is a statistical one, the parameters of which are
learnt during training. The advantage of statistical models over more generally deformable
ones is that applying constraints on the parameters, which are estimated from training
data, ensures that the model output remains reasonable, e.g. the image still looks like a
human face. This leads to higher robustness to noise in the images.

In addition to that, the model is a global one, capturing the correlation of different
parts of the model. This allows to predict the expected appearance of parts of the object
which are missing or occluded in the image.

2.2 Training

The concept of active appearance models as described in [9] is based on the idea of
combining both shape and texture information of objects to be modeled into a common
statistical model, that can express the variations encountered in the training data.

For fitting the model the difference between the current model state to the image is
used as objective function, which is assumed to be approximable by a quadratic function.
This assumption leads to the use of an iterative Gauss-Newton optimization procedure,
resulting in a search result closely resembling the underlying image.

To provide the necessary parameter predictions at each iteration the relation between
the difference images (between model and image) and the corresponding parameter offsets
has to be learnt.

2.2.1 Modelling Shape

Landmarks and annotation The prerequisites for building an active appearance
model are images of the objects to be modeled. In addition to the images, which provide
the information about the texture (gray level intensities), information about the shape of
the object is needed. This has to be provided through a list of points corresponding to
samples of the contours of interest.

These contours have to be provided by a human expert, who manually selects the
contours or points of interest, preferably with semi-automated tools.

For further processing the contours of each image i first have to be encoded as sets
of points in the form of xi = (x1, . . . , xm, y1, . . . , ym)T . To extract equi-distanced points
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Figure 1: Example of an annotated face image. Image originating from [25].

(a) (b) (c)

Figure 2: Landmarks for 20 face images (a) before and (b) after alignment. In (c) the
variance of the individual landmarks is depicted. Ellipses fitted using [18].

from curves, which only contain information orthogonal to the curve, i.e. do not move
along the curve between different training samples, the approach described in [32] is used.

The resulting m points are called landmarks and contain all the shape information
that is used by the AAM. For example, on annotated face images usually the contours of
the eyes, the nose and mouth and the chin are marked, while for the metacarpal bones
the outline is annotated (Fig. 1).

Shape alignment using Procrustes analysis The m landmarks, i.e. the shape, of
the n training images are stored in vectors si = (x1, . . . , xm, y1, . . . , ym)T . Their length
gets normalized before they are aligned using Procrustes analysis [20]. Procrustes analy-
sis1 ensures that the distribution of positions of one landmark is not due to translation,
rotation or scale. See Fig. 2 for a display of the unaligned and aligned landmarks.

All shapes can now be combined in an m × n matrix S = (s1, . . . , sn), whose dimen-
sionality will be reduced in the next step, yielding the parameters of the shape model.

1Procrustes analysis is named after Procrustes, a character of Greek mythology, who stood at the
sides of roads with a bed, waiting for tired travelers. As soon as they lied down in his bed, he would
torture them by pulling at or cutting off their limbs, until they would fit his bed.
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(a) (b) (c)

Figure 3: Eigenvalues corresponding to (a) the shape eigenvectors Ps, (b) the texture
eigenvectors Pg and (c) the combined model eigenvectors Pc, with the eigenvalues re-
sponsible for 98% variance highlighted

Formulating the shape model By applying PCA to the data set S we obtain the
eigenvectors Ps which are sorted by descending eigenvalues. As stated above the eigen-
values are proportional to the variance of the signal. In image processing it is generally
assumed (for images that display little noise), that the eigenvectors corresponding to the
smallest eigenvalues model the noise. So a index k is chosen so that

k∑
i=1

λi ≥ α
∑

λi,

with α commonly set to 98%, and only the projections of S onto the first k eigenvectors are
subsequently used. A bar plot of the eigenvalues with an indication of the 98% variance
limit is shown in Fig. 3.

2.2.2 Modelling Texture

The mean shape s is needed to establish a so-called normalized reference frame. The
training images get warped to the mean shape using piecewise affine warping or more
elaborated warping methods like b-spline warping, yielding shape free images which are
called the texture of the objects. For an overview of warping methods see [19]. The
textures are normalized yielding the texture vectors gi, which are of equal length, so they
can be stored in a (w ∗ h× n) matrix G = (g1, . . . ,gi, . . . ,gn), where w and h denote the
common width and height of the shape free images. Fig. 4 depicts 2 input images and
their shape free representation.

By applying PCA to the data sets S and G we obtain the eigenvectors Ps and Pg,
which are sorted by descending eigenvalues (Fig. 3). Only the leading as respectively ag

eigenvectors are used which cover 98% variance of the data, as the remaining 2% are
considered as noise.

A given training image 〈si,gi〉 can now be described by parameters 〈bs,bg〉 using a
linear model:

si = s + Psb
s
i

gi = g + Pgb
g
i
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(a) (b) (c) (d)

Figure 4: 2 input faces before (a,c) and after (b,d) being warped to the mean shape. Note
that the brightness of the images appears different due to a subsequent normalization
step.

where s,g are the mean vectors and Ps,Pg constitute the orthogonal modes of varia-
tion.

The parameter vectors bs
i and bg

i are much shorter than the original vectors si,gi,
illustrating the dimensionality reduction performed by the PCA. A typical example would
be bs

i and bg
i being of lengths 50 and 10000, while si and gi being of lengths 20 and 30.

2.2.3 Combining the Shape and Texture Models

The resulting shape and texture parameters may still be correlated, so to eliminate the
correlations and gain an even more compact model PCA is applied once more to the
concatenated vector

bi =

(
Wsb

s
i

bg
i

)
=

(
WsP

T
s (si − si)

PT
g (gi − gi)

)

where Ws is a diagonal matrix scaling the shape parameters to allow for the difference
in range between shape and texture space. Ws is set to the ratio of the total texture
variation to the total shape variation, Ws = I

∑
λg/

∑
λs.

Applying PCA to these vectors yields the final combined linear model

b = Pcc. (1)

The shape free images and the corresponding shapes defining the deformation of the
texture can thus be expressed directly using c by

s = s + PsW
−1
s Pcsci

g = g + PgPcgc,

where

Pc =

(
Pcs

Pcg

)
.
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Mode 1, -2 std Mode 1, -1 std Mean image Mode 1, +1 std Mode 1, +2 std

Mode 2, -2 std Mode 2, -1 std Mean image Mode 2, +1 std Mode 2, +2 std

Mode 3, -2 std Mode 3, -1 std Mean image Mode 3, +1 std Mode 3, +2 std

Mode 15, -2 std Mode 15, -1 std Mean image Mode 15, +1 std Mode 15, +2 std

Figure 5: Modes of the resulting AAM model. Mode 1, encompassing the largest variance,
is depicted at the top, followed by mode 2, 3 and the last mode (15). For each mode the
resulting appearance at parameter values of (-2std, -1std, 1std, 2std) are shown.

The resulting model (modes depicted in Fig. 5) represents the shape and texture vari-
ation of the modeled objects utilizing a single parameter vector c. Each element of c
controls one mode of combined texture and shape variation, with the first modes being
responsible for the highest variation, in descending order. Examples for the first three
and the last mode are depicted in (Fig. 5).

In addition to these modes we need to account for basic operations as translation, scal-
ing and rotation, further texture contrast and brightness. We thus introduce additional
parameter vectors t and u, resulting in a combined parameter vector

p = (cT , tT ,uT ). (2)

c denotes the parameter vector from Eq. (1) controlling shape and texture.
t = (sx, sy, tx, ty)

T is a linear parameter vector controlling rotation θ, scaling s and
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translation (tx, ty), with sx = (s cos θ − 1) and sy = s sin θ.
u = (u1, u2)

T = (α − 1, β)T controls gray-level image contrast α and brightness β of
the texture according to gu(g) = (1 + u1)g + u2I.

Note that all parameters express linear relations, i. e. AAMs are linear models.

2.3 AAM Training Search

Provided we have a trained AAM where model parameters p generate synthetic images
Imodel(p). The standard search for an optimal match minimizes the difference between
a given image Iimage and the reconstructed image Imodel(p). The search for the model
parameters p can be guided by using knowledge about how the difference images correlate
with the parameter displacements. This knowledge is obtained during training.

During each search step the current image residual between the model texture gm(p)
and the sampled image patch gs(p) (warped to the mean shape) is computed using

r(p) = gs(p) − gm(p). (3)

The search procedure aims at minimizing the sum of square (pixel) error

1

2
r(p)T r(p). (4)

Following the standard Gauss-Newton optimization method one approximates (lin-
earizes) Eq. 3 using the first-order Taylor expansion

r(p + δp) ≈ r(p) +
∂r

∂p
δp,

with the ijth element of matrix ∂r
∂p

being ∂ri

∂pj
.

Building the derivative of Eq. 4 w.r.t. p and setting it to zero gives

δp = −Rr(p), where R =

(
∂r

∂p

T ∂r

∂p

)−1
∂r

∂p

T

=

(
∂r

∂p

)†
, (5)

with † denoting the pseudo-inverse. Instead of recalculating ∂r
∂p

at every step it is
computed once during training using numeric differentiation.

During training each parameter is displaced from its optimal value in h steps from -1
to +1 standard deviations, and a weighted average of the resulting difference images over
the training set is built:

dri

dpj

=
∑
h

ω(δpjh)
(ri(p + δpjh) − ri(p))

δpjh

During the actual search, each iteration updates the model parameters using pnext(s) =
pcurrent − s δppredicted, with δppredicted = −Rrcurrent and s being a scaling factor sequen-
tially chosen from ssteps = 〈1, 0.5, 1.5, 0.25, 0.1, 2, 0.025, 0.01〉, as proposed in [14]. At each
of these scaling steps, the image patch is compared to the synthesized image Imodel, which
is computationally expensive. Let E(pcurrent) = |r(pcurrent)|2 = |gs − gm|2 be the error of
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the current model. An iteration is declared successful for the first step s to produce an
error E(pnext(s)) < E(pcurrent). pcurrent is then set to pnext(s) and the search continues
with the next iteration. If no pnext(s) better then pcurrent can be found, convergence is
declared and pcurrent is the best estimate for the model parameters. As will be shown
in subsection 4.1 our approach eliminates the need for using different step sizes, as the
parameter predictions are more accurate.

3 Advanced Parameter Prediction

In this section a new parameter prediction scheme based on CCA will be developed which
leads to more accurate predictions and thus faster convergence of the search process.

The most crucial part in AAMs apart from the actual model itself is the issue of
parameter prediction. To minimize the texture residual the parameter update has to be
computed from the difference image at each iteration. Different approaches used for this
prediction will lead to different behavior in robustness, performance and accuracy.

Canonical correlation analysis, being a method to find the optimal relation in the sense
of maximized correlation of the projections, is very well suited to perform this regression
on the difference images and the corresponding parameter differences.

3.1 Canonical Correlation Analysis

Given two zero-mean random variables x ∈ IRp and y ∈ IRq, CCA finds pairs of directions
wx and wy that maximize the correlation between the projections x = wT

x x and y = wT
y y

(in the context of CCA, the projections x and y are also referred to as canonical variates).
This is illustrated in Fig. 6.

More formally, the directions can be found as maxima of the function

ρ =
E[xy]√

E[x2]E[y2]
=

E[wT
x xyTwy]√

E[wT
x xxTwx]E[wT

y yyTwy]
, (6)

ρ =
wT

x Cxywy√
wT

x CxxwxwT
y Cyywy

. (7)

whereby Cxx ∈ IRp×p and Cyy ∈ IRq×q are the within-set covariance matrices of x and y,
respectively, while Cxy ∈ IRp×q denotes their between-set covariance matrix. A number of
at most k = min(p, q) factor pairs 〈wi

x,w
i
y〉, i = 1, . . . , k can be obtained by successively

solving

wi = (wiT
x ,wiT

y )T = arg max(wi
x,wi

y){ρ} (8)

subject to ρ(wj
x,w

i
y) = ρ(wi

x,w
j
y) = 0 j = 1, . . . , i − 1 (9)

The factor pairs wi can be obtained as solutions (i.e., eigenvectors) of a generalized
eigenproblem (for details see e.g., [23]). The extremum values ρ(wi), which are referred
to as canonical correlations, are obtained as the corresponding eigenvalues.
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Figure 6: Principle of canonical correlation analysis. CCA finds the subspaces of maxi-
mum between-set correlation. Regression is performed on the projections of signal space
x and the signal space y (not projected).

By employing CCA, we perform regression on only a small number (compared to the
original dimensionality of the data) of linear features, i.e. derived linear combinations of
original response variables y. Thus, CCA can be used to compute the (reduced) rank-m
regression parameter matrix by using only m < k factor pairs. Thereby, in contrast to
standard multivariate regression CCA takes advantage of the correlations between the
response variables to improve predictive accuracy [6].

Analogously to standard multivariate regression, CCA can also directly be formulated
as a linear least squares problem. It can be easily shown that minimizing

RSS(wx,wy) = E[(wT
x x−wT

y y)2] (10)

= E[wT
x xxTwx] (11)

−2E[wT
x xyTwy] + E[wT

y yyTwy] (12)

= wT
x Cxxwx (13)

−2wT
x Cxywy + wT

y Cyywy (14)

subject to the constraints

wT
x Cxxwx = 1, (15)

wT
y Cyywy = 1. (16)

yields the first canonical factor pair. An iterative (online) CCA algorithm based on the
above formulation is described in [5]. This formulation also allows to successively obtain
multiple factor pairs.
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Figure 7: Using CCA for parameter prediction in AAMs. Regression is performed during
training (top), allowing to obtain a prediction for a given difference image during search
(bottom).

3.2 Utilizing CCA for AAM Parameter Prediction

Our concept is based on the idea of finding the directions of maximum correlation be-
tween the difference images G and the displacement predictions δP. The resulting CCA
prediction function δp(r) is used during the AAM search, which is otherwise analogous
to the standard method.

Applying CCA to this data means to maximize

ρ =
wT

g Cgpwp√
wT

g CggwgwT
p Cppwp

, (17)

yielding the canonical factors pairs Wg = (w1
g, . . . ,w

k
g) and Wp = (w1

p, . . . ,w
k
p), where

k = min(l, n,m).
To improve generalization we use only the first k∗ factors pairs, setting k∗ so that

only correlations larger than a certain threshold are used. The resulting factors Wg =
(w1

g, . . . ,w
k∗
g ) and Wp = (w1

p, . . . ,w
k∗
p ) are the linear combinations which predict δp best.

This means that we are performing rank-k∗ regression on the leading canonical variates.
To be able to later match new difference images to displacement vectors, the least

squares mapping depicted in Fig. 7 is used:

l = G†
projP (18)

where G†
proj denotes the pseudo-inverse of Gproj.

During search a new parameter prediction has to be obtained at each iteration. Instead
of using Eq. 3, the prediction can now be obtained by

δp = lrproj where rproj = WT
g r. (19)
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This yields the displacement prediction function δp(r):

δp(r) = lWT
g r. (20)

As Rcca = lWT
g can be computed once during training the final formulation of the

prediction function is
δp(r) = Rccar, (21)

allowing for an AAM search utilizing the correlations between parameter displacement
and image difference as captured by CCA. The computation of these predictions is as fast
as for the standard approach, therefore one step of an iteration of CCA search is as fast
as one step using the standard approach.

4 Experiments

Number of images and cross validation To be able to build a meaningful statistical
model of shape and texture the number of required images depends on the variation of
both properties throughout the images.

The images of the data set are separated into training and test sets, and only the
training images are used to build and train the AAM. If training images were to be used
for testing the result would ideally be a perfect fit, but as with all pattern recognition
methods and model based approaches the main interest lies in the performance of the
algorithm on unseen data, i.e. the test set.

In our experiments we used at least 30 images to build the models while testing was
performed on the remaining images, while for final numerical results we run leave-one-out
tests.

4.1 Setup

Experiments were conducted on 36 face images [25] and 36 metacarpal bone images man-
ually annotated by a medical expert (Fig. 8). The algorithm was evaluated using 4-fold
cross validation. Following the standard AAM training scheme, a set of difference images
and corresponding parameter displacements were obtained by randomly perturbing the
AAM modes in the interval -1 to +1 standard deviation. While the calculation of R
(cf. Eq. 5) by numerical differentiation requires separate variation of each AAM mode,
CCA-AAM training allows simultaneous variation of all modes.

To compare search performance in both cases AAM search was performed on the test
data using varying lengths of ssteps. Scaling factors available during search are chosen by
using the first y elements of ssteps. As a performance measure we use the total number of
steps accumulated over all iterations (cf. subsection 2.3).

Searches were initialized using equal initialization (randomly generated by translations
of up to 10 pixels and mean shape and texture) for both approaches. 180 search results
provide the data for each of the result bars plotted.
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(a) (b)

Figure 8: Types of data used for evaluation. (a) Faces images and (b) medical images
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Figure 9: Comparison of landmark errors. The 8 bars correspond to y, i.e. the length of
ssteps, ranging from 1 to 8, from left to right. Note how the CCA yields better (bones) or
equal (faces) results faster (at ≈3 steps) then the standard approach (at ≈12 steps).

4.2 Results

Faster training CCA-AAM training needs fewer synthetic difference images. Using 24
modes for face data and 18 for bone data, 6480 synthetic face images and 4860 synthetic
bone images were generated for standard training. For CCA training no improvement
was observed when using more than 200 synthetic difference images. Thus, although the
computation of the CCA is expensive, training is still considerably faster than standard
training. For a Matlab implementation on a PowerMac G5 1.8GHz a speed-up factor of
4.9 and 3.5 was achieved.

Faster convergence with equal accuracy In Fig. 9 the mean landmark error (point
to point distance) over the corresponding number of overall search steps until convergence
is depicted. Error bars are 1 standard deviation. The 8 results plotted correspond to y
ranging from 1 to 8 as stated above. In contrast to full rank of 24 (faces) and 18 (bones)
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Figure 10: Comparison of texture errors. The 8 bars correspond to y (length of ssteps),
ranging from 1 to 8, from left to right. Again, the CCA approach yields its best results
already at y = 1 at ≈3 steps while the standard approach needs ≈12 steps for equal error
levels.
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Figure 11: Influence of CCA regression rank. Mean landmark error against the number
of steps for different choices of k (number of factors for CCA regression) for the face data
set.

CCA employed ranks of 10 and 9 respectively.
It can be observed that the CCA performance is considerably better than the one of

the R-matrix. Already with ssteps = 〈1〉, i.e. no scaling of δp, the CCA approach yields its
best result, in 3.07 steps for the faces data and 3.16 steps for the metacarpals, respectively.
The standard approach needs at least ssteps = 〈1, 0.5〉 to perform equally well, requiring
12.23 and 12.11 steps. The CCA approach is thus 3.98 and 3.83 times faster. The mean
texture errors in Fig. 10 show a similar picture. Again, the CCA approach yields its best
results already at y = 1. The standard approach is dependent on the availability of further
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Faces Standard CCA
Training samples 6480 200
Mean landmark error 5.7 5.7
Mean texture error (·106) 5.7 9.1
Necessary search steps 12.23 3.07
Search speed-up 1.00 3.98

Bones Standard CCA
Training samples 4860 200
Mean landmark error 7.8 6.4
Mean texture error (·106) 7.9 8.9
Necessary search steps 12.11 3.16
Search speed-up 1.00 3.83

Table 1: Result summary. Mean landmark and texture errors and corresponding number
of search steps for both data sets.

scaling factors (ssteps = 〈1, 0.5〉) to equal this performance. The results are summarized
in Tab. 1.

Influence of rank reduction In a separate experiment the influence of rank reduction
by CCA was investigated. In Fig. 11 the dependency of the mean landmark errors after
search convergence is depicted for rank k set to 1, 4, . . . , 24 for the face data set. It can
be seen that for k = 7 the search yields the lowest landmark errors, and for k = 13 the
lowest texture errors. The number of necessary steps is lower than for full rank in both
cases.

5 Conclusion and Outlook

CCA-AAMs introduce a search algorithm based on canonical correlation analysis (CCA).
CCA efficiently models the dependencies between image residuals and parameter correc-
tion. Taking advantage of the correlations between these two signal spaces CCA makes
sensible rank reduction possible. It accounts for noise in the training data and thereby
yields significant improvements of the AAM search performance in comparison to the stan-
dard search approach. After computing CCA, linear regression is performed on a small
number of linear features which leads to a more accurate parameter prediction during
search, eliminating the need for the expensive variable step size search scheme employed
in the standard approach.

Empirical evaluation on two data sets shows that the CCA-AAM search approach is
up to 4 times faster than the standard approach. As fewer training samples are needed,
training is up to 5 times faster. Our approach can be adopted in most of the existing ex-
tensions of the original AAM search approach based on linear regression. Future research
will focus on the use of non-linear CCA (Kernel CCA) and the application of CCA to
obtain more compact and more descriptive active appearance models.
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A Software Documentation and Users Guide –

matlAAM Documentation

In the following section you will find a quick-start guide for the AAM implemented in
Matlab. This will enable you to build and test your first AAM within an hour. Section ??
provides more insight into matlAAM, while all source code file are extensively documented.
Please see matlaam/htmldocs/index.html for an automatically generated, hyper-linked
version of the source code documentation!

The implementation closely follows the AAM description in [9].

A.1 See an Example in Action

1. If you use matlAAM for the first time and you are using a system other than Windows
or Mac OS X, please compile matlAAM/AAM/cwarp.c by issuing mex cwarp.c.

2. Add matlAAM/AAM to your Matlab path using addpath.

3. Run matlAAM/AAM/examples/example1/aamRun_BuildModel.m, then aamRun_standard!2

This will build and train your AAM before running 4-fold cross validation runs.

4. Take a look at the aamResults/Images directory, where the search results are stored.
Use aamResults for a graphical representation of the numerical results.

A.2 Quick-start Guide

1. If you use matlAAM for the first time and you are using a system other than Windows
or Mac OS X, please compile matlAAM/AAM/cwarp.c by issuing mex cwarp.c.

2. Add matlAAM/AAM to your Matlab path using addpath.

3. Create a directory of your choice (e. g. yourdir) and copy the contents of matlAAM/examples/template
to yourdir.

4. To build an AAM, you need the following input data, which should be stored in
yourdir/data:

• Input images, which may be in JPEG (any other image file format understood
by Matlab) or DICOM format. Create a file called filenames.txt containing
the names of the images, with one filename per line:

image1.jpg

image2.jpg

...

2The annotated images used in this example were taken from [25]
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• Landmark data for the input images. Landmarks are stored in a (n, m)-matrix,
where n is the number of landmarks and m the number of images. Coordinates
are stored as complex numbers, x+y∗i, x being in the range of [1,image width]
and y in the range of [1,image height]. Save the matrix as landmarks.mat.

• Initialization data for the AAM search. Create a (4, m)-matrix where m is the
number of images. In each (4, 1)-column store the following information:

(a) x coordinate

(b) y coordinate

(c) scale estimate, default is 0

(d) rotation estimate, default is 0

5. Run yourdir/model/aamRun_Buildmodel.m, followed by aamRun_standard.m! The
AAM will get built and you can observe the search working. Take a look at aamRun.m
to familiarize yourself with the structure of matlAAM!

A.3 The Configuration and Management File aamRun

The highlighted function aamRun will usually be the only file you need to change when
building your own AAMs. The sample included in matlAAM/examples/example/aamRun.m

looks like this:

p = aamInit;

for set = 1:aamGet(p,’manyfold’)

p = aamLoadPFromModel(p,set);

p = aamSet(p,’method’,’standard’);

aamTraining(p);

p = aamSet(p,’recordsearchmovie’,1);

p = aamSet(p,’saveoverlaidresult’,1);

aamRunSearch(p, loadedimages);

end

matlAAM is built around the concept of using one configuration variable that contains
all the information necessary to build an AAM and to run a search with it. Using this
configuration variable, called p in our example, you can even control implementation
details, thus generally you don’t have to edit any other file than aamRun.m.

In the above example we first initialize p by executing aamInit.m:

function p = aamInit()

p={};

p = aamSet(p,’datapath’, ’../faces/’);

p = aamSet(p,’levels’,[1]);

p = aamSet(p,’manyfold’,4);
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This sets the path where the data is to be found, that it should only work on full
resolution images (and not any other level of a Gaussian pyramid) and that 4-fold cross
validation should be used. The number of images used, 36, is extracted from the number
of lines of filenames.txt.

Back in aamRun_standard, we start the training procedure to estimate the regression
matrix.

With the next two statements we configure that each search will be recorded as an
avi-movie (it will be shown on screen during search, too) and that the converged result
of the AAM search overlaid on the unseen image shall be saved as a jepg image.

We then start the search by invoking aamRunSearch. As you can see, aamRun contains
all commands to control the build-search cycle of an AAM.

A.4 Reference of all Configuration Variables

Following you find a list of all variables available to control the AAM build-search cycle.
The default values are set in matlAAM/aamGetDefaultValue.m. All variables are changed
using

p = aamSet(p, ’variablename’, 123);

p = aamSet(p, ’variablename’, [1 2 3]);

p = aamSet(p, ’variablename’, ’astring’);

depending on the type of variable. To create an empty set of variables set p = {}.

usecwarp Defines whether image warping should use the implementation in C (1, default)
or in Matlab (0).

’imagetype’ File format of the input images. Either ’jpg’ (default) or ’dicom’.

’flipdicom’ Defines whether DICOM images shall be flipped upside down (1) or not (0,
default).

’datapath’ The path to the input data, i. e. the images and landmarks. Defaults to
’../data/’.

’filenames’ The name of the file that contains the list of image filenames. Defaults to
’filenames.txt’.

’landmarks’ The name of the file containing the landmark data. Defaults to ’landmarks.mat’.

’searchinitialisations’ The name of the file containing the search initialisation data
(see A.2 for details).
Defaults to ’searchinitialisations.mat’.

’useconvexhull’ Defines how the image warping routine masks the warped images.
If the convex hull of the landmarks will produce a satisfactory mask, set it to 1

(default), as this speeds up mask calculation. In cases where the convex hull is not
exactly what we want, i. g. for bones, we set it to 0.
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’standardtrainingimagecount’ Defines how many synthetic images are used to train
the R-matrix. On each of these images all parameters are displaced one-by-one.
Default is 20.

’standardtrainingdisplacementsteps’ Defines in how many steps the parameters are
displaced during training of the R-matrix. Default is 10.

’standardsearchstepsizes’ Defines which step sizes are available during search scale
the parameter predictions.
Default is [1 0.5 1.5 0.25 0.1 2 0.025 0.01].

’suffix’ This string is used to differentiate between different models built. When eval-
uating different training parameters it makes sure that the data of one model is not
overwritten by the data of an other model. Default is ’’.

’searchsuffix’ and ’searchsuffix2’ This strings ate used to differentiate between
different search results. When evaluating different search parameters it makes sure
that the results of one model are not overwritten by the results of an other model.
Both default to ’’. There is no difference in meaning between the two, but if you
test 2 sets of parameters in 2 nested loops, you can use the one for paramter 1 and
the other for parameter 2.

’method’ Defines whether the R-matrix (the standard AAM training scheme), ’standard’
(default), shall be used or the parameter prediction based on CCA, ’cca’.

’showintermediateresults’ Controls whether the current model image, overlaid over
the test image, shall be displayed at each iteration (1) or not (0, default). Note:
Interferes with recordsearchmovie!

’recordsearchmovie’ Defines whether each search shall be recorded as an avi-movie (1)
or not (0, default).
Note: Interferes with showintermediateresults!

’forcediteration’ Controls whether the first parameter prediction of each hierarchy
level shall be accepted even if does not improve the texture error. 1 turn it on, 0
off (default).

’levels’ Defines the number of levels of the hierarchical AAM implementation used. If,
for example, 3 levels shall be used, is has to be set to [4 2 1]. Default is 0, i. e.
the number of necessary levels is computer automatically (the highest level has a
least a size of 20-by-20 pixels.

’usesubregion’ and ’subregion’ If ’usesubregion’ is set to 1, only the area defined
by the landmarks listed in ’subregion’ will be used to compute the texture error.
For example, if your models have 10 landmarks, but you want the search to minimize
only the texture error of the area between landmarks 2,4,8 and 10, set subregion

to [2 4 8 10]. Defaults are 0 and [].
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’initxydistortion’, ’initxydistortioncount’ and ’initxydistortionrange’

If initxydistortion is set to 1, then for each test images not only one search
will be start using the initial position given in searchinitialisations.mat, but
initxydistortioncount searches will be performed. Each initial position of these
searches will be randomly displaced by up to initxydistortionrange pixels, both
horizontally and vertically. Defaults are 0, 0, 0.

’ccaimagecount’ and ’ccaincpcaloops’

For the training of the CCA-search ’ccaimagecount’ times ’ccaincpcaloops’

synthetic difference images are generated. As using all images at the same time
would exceed practical memory amount, they are processed in ’ccaincpcaloops’

steps and only their PCA-coefficients are stored for the actual CCA-computation.
Defaults are 100 and 10.

’ccanoincpca’ If ’ccanoincpca’ is set to 1 no incremental PCA is used when comput-
ing the CCA and all ’ccaimagecount’ times ’ccaincpcaloops’ are used directly.
Note: Using this option might easily increase memory requirements by several hun-
dred MBs. Default is 0.

’ccathreshold’ The threshold for the correlations used when computing the CCA. De-
fault is 0.8.

’usemotionfield’ If set to 1 motion vectors are used instead of the difference images for
parameter prediction. Default is 0. Note: Only works in conjunction with method

set to cca.

’motionfieldcellsize’ When using motionvectors, controls the size of the tiles on
which the motion vectors are computed. Default is 20. Note: Only works with
usemotionfield enabled.

’robustnessmode’ If set to 1, for each tile motion vectors outside of the range of the
motion vectors occurring during training will be set to 0. This is meant to increase
stability of the search, i. g. in presence of occlusions. Default is 0. Note: Only
works with usemotionfield enabled.

’bordercolor’ pixel value used to designate masked areas when warping images. De-
fault: 10e100

’DelaunayTriangulation’ determines wether landmarks are triangulated automatically
(delaunay) or by a given triangulation. If set to 1 landmarsk are triangulated
automatically, if set to 0 tirangulation ist taken by aamGet(p,’tri’) Default: 1.
Note: if set to 0 a triangulation has to be defined

’tri’ works in conjunction with ’DelaunayTriangulation’. A n×3 matrix defines the
triangulation of the landmarks instead of the automatically determined delaunay
triangulation.
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A.5 The Inner Workings of matlAAM

In this section all functions of matlAAM will be discribed, in the order of their execution.

aamRun sets up the configuration for both the build and the search process. For a
detailed description please see sections A.3 and A.4.

aamInitCrossValidation is called with information about how many images are used
in total and how they should be split into sets containing training and test images.
Returns the configuration variable p prepared accordingly.

aamBuildModel Builds the actual AAM. Calls the functions to load the landmarks and
images, to create the shape and texture eigenspaces and the the combined AMM
eigenspace, then calls the training function aamRTraining or aamCCATraining de-
pending on the method chosen.

aamLoadLandmarks Loads the desired landmarks, which are the ones of the training
images if called during training. During search it returns the landmarks of the test
images.

aamAlignLandmarks Given a set of landmarks it normlized the corresponding shapes
and aligns them using Procrustes analysis.

aamLoadImages Load the desired images, which are the training images during training
and the test images during search.

aamWarpImages Warps the training images to the shape defined by the mean of the
training landmarks. Also creates the masking image that defines the area where the
texture error is computed.

aamRTraining / aamCCATraining Computes the regression between synthetic dif-
ference images and the corresponding parameter differences, either using the Jaco-
bian scheme presented in ?? or the CCA.

aamRunSearch Manages the search process. Loads the test images and initial search
positions, calles aamSearch for each images and stores the search results.

aamSearch Performs the actual search.

Additional matlAAM functions not depicted in the flowchart:

A.5.1 Main AAM Funtions

aamCompute r.m Computes the texture residual. Calls aamSampleFromImage to sam-
ple from the image according to the current shape and subtracts it from the current
model texture.

aamInitCrossValidation.m Divides the images from the data set into training and test
sets, and a parameter set if necessary.
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aamLoadImages.m Load the images, which can be JPEG or DICOM.

aamLoadLandmarks.m Load the Landmarks.

aamMotionField.m Computes the image gradient.

aamNormalizeImage.m Normalizes the texture vectors.

aamNormalizeLandmarks.m Normalizes the shape vectors.

aamProcrustes.m Performs the actual alignment of the shapes.

aamRTraining.m Creates a number of difference and the corresponding parameter dif-
ferences and computes regression on them, i. e. it computes the R-matrix.

aamRunSearch.m Manages the search on the test set, where parameters can be se-
quentially chosen from a given range, to evaluate the influence of these parameters
on the search.

aamSampleFromImage.m Samples from the image at the current model shape.

aamSwitchtolevel.m Sets internal variables when moving from one level of the Gaussian
pyramid to another.

aamTestPredictions.m Generates a set of difference images and compares the resulting
parameter predictions to the parameter displacements that generated the difference
images.

A.5.2 Image Warping Funtions

aamWarp.m Warps an image according to the landmarks specified. Takes care of the
exact offsets of the 2 shapes.

aamWarpImages.m Warps all input images to the mean shape.

aamQuickWarp.m Wrapper around the warping function implemented in C. In addi-
tion it contains the same algorithm as the C function in matlab.

cwarp.c C image warping function.

A.5.3 Data Visualisation Functions

aamMakeImage.m Returns the current model texture.

aamMakeModeMovie.m Creates a movie of parameter variations.

aamMakeMovie.m Creates a movie of images that are passed as parameter.

aamMakeShapedImage.m Return the current model texture warped to the current
shape.
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aamsurfg.m Displays a 3D view of a texture vector / a difference image.

aamshowAAMgui.m Allows to investigate an AAM model by providing a graphical
interface in which the first 6 modes can be set trough scroll bars. The resulting
model output is displayed.

aamshowdicom.m Displays data stemming from a DICOM image correctly.

aamshowimagewithshape.m Displays the current model state.

aamPlotShape.m Plots a shape that is passed as parameter.

aamPlotStatistics.m Plot the results of a search.

A.5.4 Configuration Variable Management Functions

aamDel.m Removes and entry from the configuration variable list.

aamExistsParameter.m Checks for the existence of a parameter in the configuration
variable list.

aamGet.m Return the value of a configuration variable form the configuration variable
list. If the parameter was not set, aamGetDefaultValue is called.

aamGetDefaultValue.m Returns the default value for a configuration variable.

aamSet.m Set a configuration variable from the configuration variable list to the speci-
fied value.

A.5.5 CCA related Functions

aamCCA.m Computes the CCA between the PCA factors of the difference images and
the parameter displacements.

aamCCATraining.m Similar to aamRTraining, creates a number of difference and the
corresponding parameter differences. Computes the PCA on the difference images
using incremental PCA to lower memory requirements, calls aamCCA.

aamCCAmatch.m During search, this function returns the parameter displacement
estimate to a given difference image.

A.5.6 Internal Functions

aamsvdpca2.m Computes the PCA using the SVD.

aamcomp2real.m Internal conversion between the complex and the real landmark for-
mat. See Sec. A.6 for details.

aamRotate.m Rotates a shape.

aamcenterofgravity.m Computes the center of gravity of a shape.
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aamdicom2img.m Adjusts the value range of DICOM images.

aamgausswin.m Creates a vector of specified length with values according to a Gaussian
distribution.

aamreal2comp.m Internal conversion between the real and the complex landmark for-
mat. See Sec. A.6 for details.

A.5.7 Helper Functions

aamimport stegmann asf.m Convert landmark data from the format used by Stegmann
to the matlaam format.

aamAddLmsCorridor.m Given a set of landmarks, this function adds a border or
corridor by duplicating each landmark at a 10 pixel distance outside of the shape.

A.6 Data formats

Througout matlAAM the following data structures and formats are being employed:

Landmarks are stored in (n, m)-matrices, where n is the number of landmarks and m is
the number of samples. So training landmarks could be stored in a (64, 30)-matrix
and test landmarks in a (64, 10)-matrix, for example.

The coordinates of each landmark are stored as a complex number, with the x-
coordinate being the real part and the y-coordinate being the imaginary part. Both
coordinates are in the range of [1, image width] and [1, image height], respectively.

Internally landmarks are sometimes stored as (x1, x2, . . . , xn, y1, y2, . . . , yn)T -vectors,
but all interfaces use the complex number format.

Images are stored in (n, m)-matrices, where n is the number of pixels (= image width ∗
image height) and m is the number of images. The value range of each pixel is [0,
255]. DICOM images are transformed by mapping the minimum pixel value found in
the image to 0 and the maximum pixel value to 255.
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