
Technical Report Pattern Recognition and Image Processing Group
Institute of Computer Aided Automation
Vienna University of Technology
Favoritenstr. 9/1832
A-1040 Vienna AUSTRIA
Phone: +43 (1) 58801-18351
Fax: +43 (1) 58801-18392

E-mail:
lech@prip.tuwien.ac.at,
hanbury@prip.tuwien.ac.at

URL: http://www.prip.tuwien.ac.at/

PRIP-TR-99 December 13, 2005

Segment Feature Co-ocurrence Based Texture Detection

Lech Szumilas, Allan Hanbury

Abstract

This work on texture detection was inspired by the general problem of object recognition
in two dimensional still images. One of the crucial challenges associated with the object
recognition is selecting and obtaining discriminative features. In analysis of real scenes, like
nature or urban places, many objects contain textures, which can be considered as one of
the object features. Texture detection may also significantly improve image segmentation,
which is one of the tools used for object recognition. This report presents a novel method
named Feature Co-ocurence Texture Detector (FCTD) which allows for fully automatic
detection of textures common in real scenes, like water in lakes, tiger skin, fields of flowers
or tree crowns. The method searches for an alternating color pattern, like for example black
and orange stripes covering tiger skin, which is very often present in those textures. The
final result is a hierarchy of textures (described by their boundaries and a set of features)
detected at multiple precision levels, which can be used for further analysis or texture
classification. It is achieved through hierarchical clustering of color pairs related to adjacent
image segments, where each segment represents a low color gradient, simple shaped patch
of pixels in the image. The results are presented on some images from the Berkeley database.

Keywords: texture, hierarchical clustering, symmetry points, watershed.

Contents

1 Introduction 2

2 Overview of the Method 3
2.1 Image Segmentation . 4
2.2 Feature Extraction . 5
2.3 Feature Clustering . 8
2.4 Texture Detection . 10

3 Discussion of the Results 12

4 Conclusion 22

1

1 Introduction

Texture detection and classification play an important role in many image analysis tasks.
Detection of texture boundaries is crucial for general image segmentation algorithms [9, 8],
while texture classification can provide extremely useful information for object recognition
methods.

The term “texture” typically describes a presence of some regularity in a continuous
image region, which may manifest itself as a spatially repeating color pattern or shape,
but it is not defined how regular it must be. In many industrial applications a texture is
considered as a number of identical elements uniformly distributed in 2 dimensional space,
which allows for example for detection of faults in analyzed materials [1]. This definition
however is too strict to detect less regular patterns frequently appearing in natural scenes.
The ripples on the water create an easily noticeable pattern from a human perspective
though they differ in size, direction and are not uniformly distributed. The same is true
for the skin of a tiger which consists of bright and dark stripes, but varied in width,
length and direction. These textures usually contain spatially mixed elements with some
common features like color, shape, size, etc. but varied to some degree. Very often we can
distinguish two or more types of elements, where each type has common features so that
the final pattern consists of alternating features in 2D space like dark and bright patches
in Figure 1. Discrimination of such patterns is a common problem in image segmentation
algorithms, which attempt to divide images into regions of uniform color or texture. Here
the question arises of how regular a pattern must be in order to be classified as a texture.
It is impossible to define any hard limits, as they may differ between textures. This in
turn implies that any texture detection should be based on prior knowledge.

The method “Feature Co-ocurence Texture Detector” (FCTD) does not use a priori
knowledge to detect textures, instead it detects textures at various “regularity levels” and
produces a hierarchy of textures, which can be later used for texture classification. The
advantage of such an approach is the ability to capture less and more regular patterns
automatically and then to make a knowledge based selection.

Figure 1: Example of a texture, where texture elements are not perfectly regular.

Let us assume that we start texture detection with no prior knowledge and that our
task is to find all possible patterns in the image. The primary problem associated with this
task is the lack of any information about texture elements. This seems to be a “chicken

2

and egg” problem as it is impossible to find a pattern not knowing features related to
texture elements and it is impossible to find texture element boundaries without knowing
the texture characteristics. Fortunately a very common pattern found in textures is the
alternation of two or more colors or just luminance levels (like in Figure 1). Therefore
FCTD initially uses only color features to do a coarse texture detection. The general
idea is to segment the image into small segments with a relatively uniform color and then
find alternating color patterns among those segments. Since a single segment is a patch
of similar color pixels, the pattern we are looking for is a group of similar color segments
neighboring with another group of segments (or potentially more groups) but with different
color. For example in Figure 1 we can distinguish two groups of bright and dark elements.
Furthermore each dark element neighbors with at least one bright element. The word
element is intentionally used instead of segment as in practice it can be difficult to obtain
segments covering a whole texture element, nevertheless FCTD uses segments to find color
patterns.

In Section 2 we describe the FCTD algorithm in detail. Section 3 presents results along
with a discussion. Finally Section 4 concludes and discusses future work. For example,
the coarse texture detection performed by FCTD provides information, which could be
later used to obtain texture element boundaries and then use more features (like shape) to
perform fine texture detection as well as texture classification.

2 Overview of the Method

The FCTD searches for simple color patterns and at this stage all other potential texture
invariants are ignored. For example even if texture elements vary significantly in size,
shape, direction or are not uniformly distributed a texture is detected assuming there is
a clear alternating color pattern present. This may also lead to detection of image areas
which would not be classified as texture by most humans. However any false positives can
be eliminated by further analysis and therefore the best strategy is to allow some false
positives rather than miss important textures.

The FCTD method can be divided into several steps outlined below:

• Image Segmentation – The primary goal of this step is to produce segments with
uniform color and low shape complexity. The second requirement is necessary to
avoid segments which may span over several texture elements.

• Feature Extraction – The only feature type used is color, however the feature itself
consists of color pairs or triplets from neighboring segments. This allows the grouping
together of segments with similar color and with neighboring segments having other
specific color(s).

• Feature Clustering – All segment color-pairs are hierarchically clustered producing
a cluster tree with 2 clusters at the top and many at the bottom.

3

• Texture Detection – Relatively large clusters from all clustering levels are separated
from the rest and clustered separately until texture is detected or maximum clustering
level is reached. This process also produces duplicated textures, which are removed
at the end.

The result of the FCTD is a set of textures, for which boundaries and color patterns
are known. We now describe each of theses steps in detail.

2.1 Image Segmentation

An image is segmented into small segments, where each segment is a continuous, preferably
convex shaped patch of similar color pixels. These constraints guarantee that segments do
not exceeded a texture elements size in the majority of cases and allow the use of average
segment color as a primary feature.

A typical segmentation algorithm attempts to create segments covering continuous
patches of pixels of uniform color or uniform color and texture. This approach does not
guarantee that the segment shape is convex. The algorithm closest to our requirements is
the well known Watershed [11], however it may also generate complex shaped segments.
FCTD uses a marker based version of the Watershed in which locations of markers (typi-
cally local gradient minima) are aligned with local symmetry maxima. A radial symmetry
is calculated over the area surrounding each pixel using the following equation:

s(xc, yc) = −
π∑

α=0

R∑
r=1

∣∣∣I(xc,yc)(r, α)− I(xc,yc)(r, α + π)
∣∣∣ (1)

where I(xc,yc)(r, alpha) is an image pixel at polar coordinates (r, α) with the center at
image Euclidean coordinates (xc, yc). Positions of local symmetry maxima are then used
as Watershed seeds (see Figure 2).

Direct implementation of Equation 1 would require conversion of the coordinate system
from Euclidean to Polar coordinates, which is computationally costly, especially if each
pixel in polar coordinates is interpolated for better accuracy. A simpler method exists,
which calculates a difference for every pixel pair at coordinates (xc + i, yc + j) and (xc −
i, yc− j) inside a square region of the image, centered at (xc, yc). The sum of all pixel pair
differences is the symmetry measure:

s(xc, yc) = −
R∑

i=−R

R∑
j=0

∣∣∣I(xc + i, yc + j)− I(xc − i, yc − j)
∣∣∣ (2)

The symmetry measure resulting from equations 1 and 2 are similar but not identical.
In both cases an exact result cannot be achieved. The first method suffers from inaccuracies
associated with coordinate system transformation, while the second method uses square
pixels, which is an approximation only of pixel shape in polar coordinates. The inaccuracies
however are relatively small in both cases, therefore the second and most efficient method
is used.

4

The symmetry measure has several useful properties, which help to achieve convex
shaped and low color gradient segments:

• The symmetry measure s reaches maximum (equal to 0) if all corresponding pixel
pairs (at angles α and α + π) are identical. Therefore a local symmetry maximum
corresponds to the image location with the most similar pixel pairs.

• Symmetry is maximized at the center of radially symmetric shapes (like a filled circle,
star, etc.) or along their symmetry axis (for elongated shapes)

• An edge irregularity produces more symmetry maxima and more segments, which in
turn prevents generation of segments with complex boundaries (see Figure 2).

The proposed symmetry measure tends to generate an excess of local maxima points,
but it does not miss any symmetrical regions in the image (assuming sufficiently large R).
Other symmetry transforms exist [7], intended primarily as interest point detectors. The
comparison of texture detection using other symmetry measures is part of the future work.

The final shape of segments depends also on the image gradient used for the Watershed,
therefore even the use of symmetry does not fully guarantee shape convexity. However
the primary goal of the segmentation is to avoid creation of segments larger than texture
elements. In that case relatively small irregularities in the segment boundary do not matter.
All the results in this report are produced using a color gradient, which is an average of

gradients
∣∣∣∇Ic

∣∣∣ calculated over each color channel c:∣∣∣∇Ic

∣∣∣ =
∣∣∣∂Ic

∂x
+

∂Ic

∂y
i
∣∣∣ (3)

We are able to decrease the overall number of segments by applying symmetry max-
ima as Watershed seeds (see Figure 3), however in the majority of cases images are still
over-segmented. The notion of over-segmentation refers to the fact that texture elements
contain multiple segments. If we can avoid over-segmentation we could use segment (and so
texture element) geometry as a feature for clustering, but it is impossible to achieve perfect
segmentation without some prior knowledge. This forces us to limit segment clustering to
only basic color features (as discussed in 2.2). Section 4 discusses possible improvements
allowing the use of additional features.

2.2 Feature Extraction

In this step a feature vector is assigned to each segment resulting from the Watershed
segmentation. The feature vector contains the color of the segment it is assigned to and
the color or colors of segments surrounding the current one. Such features allow one to
analyze alternating color patterns, however there are several possibilities as to how colors
are calculated and how many colors the feature vector contains. The most basic option
would be a feature vector consisting of two colors (six real values) – one belonging to
the segment the feature vector is assigned to and another belonging to the most different

5

Figure 2: Example of symmetry maxima. Note that slight irregularities in the tiger stripe
or grass stalk boundaries produce higher numbers of symmetry maxima along them and
thus the number of Watershed segments is increased. Refer to Figure 14 to see the full
image.

Figure 3: Example of Watershed segmentation based on symmetry maxima seeds (right)
and without it, using only gradient minima (left). Note the number of segments on the
right side is significantly lower than on the left side, but the segments on the right have
still relatively low complex shapes in majority of cases.

6

color among segments surrounding the current one (see option 1 in Figure 4). The color
difference is measured as the Euclidean distance in three dimensional color space (typically
CIE-Lab [4]):.

dij = (Ci −Cj)(Ci −Cj)
T (4)

where Ci and Cj are three element vectors containing color descriptions for segments i
and j respectively.

Another option is to average the color of the surrounding segments for which the color
distance to the current segment is larger or equal to 0.5dmax, where dmax is a color distance
between the current segment and the one with the most different color among surrounding
segments (see option 2 in Figure 4).

It is also possible to use more than one color for the description of the surrounding
segments like in option 3 in Figure 4.

The particular choice of features depends on the expected pattern characteristics. Noth-
ing prevents us from performing texture detection multiple times using different features
and then selecting the best results as explained in Section 3, however all results presented
there use “option 2”.

Figure 4: Extraction of color features from neighboring Watershed segments

The feature extraction step also produces a region adjacency graph stored as an array,
used for obtaining color pairs and cluster co-occurrence measures as described in Sec-
tion 2.4. A list of neighboring segments is generated for each segment and stored in the
corresponding row of the array.

Depending on the color space used we may have to adjust different color channels, to
make the value range equal for all channels. For example CIE-Lab color space uses different
value ranges for channels L, a and b. If used directly all three channels would have uneven
influence on the distance measure between feature vectors and thus on the clustering. All
results presented in following sections were generated using the CIE-lab color space with
channels normalized to value range between 0 and 1.

7

2.3 Feature Clustering

Our primary goal is to detect alternating color patterns, which can be achieved by grouping
segments with similar feature vectors (similar color pairs). Here, the problem of a similarity
measure arises, as we do not know how similar objects should be in order to be assigned to
the same group. Unfortunately if the similarity measure is simply an Euclidean distance
between two feature vectors, then we may have to use different thresholds for different
textures on the same image, which are not known a priori. We propose a different approach
based on multi-level hierarchical clustering. Color clustering has been applied in the past
for color reduction and segmentation [2, 6] as well as other problems, but it was always
performed in three dimensional space, where each feature vector contained a description
of a single color. Since our goal is detection of color patterns we cluster color pairs, which
means using a six dimensional space.

Before the clustering starts, color pairs are sorted by their luminance. The color with
the lower luminance value always occupies the first three elements of the feature vector and
the color with higher luminance value occupies another three elements. This way adjacent
texture elements containing different colors are represented by similar feature vectors and
will fall into the same cluster. For example tiger body is covered with the bright and
dark stripes. Without color sorting the bright and dark stripes would be splitted into two
different clusters.

FCTD uses aglomerative hierarchical clustering [3] using the average linkage to build a
cluster hierarchy of color pairs (and corresponding Watershed segments). The first step of
the clustering is building a binary tree, where each node of the tree corresponds to a single
cluster. The bottom of the tree contains nodes corresponding to each segment feature
vector. The closest nodes in terms of the Euclidean distance between two feature vectors
are paired together and form the next level of tree nodes. Each tree node is assigned the
average value of paired feature vectors. The operation of node pairing is repeated until only
two nodes remain at the top of the tree. Two nodes are paired only if both are the closest
nodes to each other. If a node happens to have a closest neighbor, which has another
even closer neighbor, then the node is not paired at this tree level and progresses to the
next tree level without change. The paired node is assigned with the average value of all
feature vectors at the tree bottom, which are linked to it through tree branches and nodes
at previous tree levels. The two nodes at the top level of the tree are referred as a tree level
2 and all levels below are indexed with the increasing numbers. Only a limited number
of tree levels (typically 10) are considered for further processing, however this number is
application specific.

The clustering process itself does not take into account any geometrical dependencies,
except for the fact that color pairs correspond to the neighboring segments. This in turn
may produce non-continuous clusters - several unconnected patches of the image may be
selected as a single cluster. If this happens FCTD splits such a cluster into as many clusters
as the number of unconnected patches the initial cluster contains. As a result each cluster
may be divided into more than two clusters at next clustering level.

Figure 5 is an example of a color-pair cluster hierarchy. At clustering level 2 the whole

8

image is divided into two relatively big clusters and several smaller clusters (containing
1-4 segments), separated from the big ones as unconnected patches. Level 3 seems to be
nearly identical to level 2, except that a few outlier color-pairs are separated from the
bigger clusters. More significant clusters appear at level 4. Also a number of segments on
the boundary between the tiger and water form a separate cluster (see Figure 5). This is a
side-effect of the method used for color-pair extraction, based on finding the most different
color in the neighborhood of each segment. The majority of color pairs extracted from
the tiger body represent bright (orange) and dark segments corresponding to bright and
dark stripes. However at the tiger boundary, bright (orange) segments belonging to the
tiger body and dark segments belonging to the water create the most different color pairs.
At clustering level 4 this difference is large enough to cause separation of most boundary
segments from the tiger body. Although this problem is not addressed in this report, it
is possible to re-attach separated boundary clusters to the tiger body based on statistical
analysis of the segment features and their position. We know that a relatively small number
of separated boundary segments has a very similar color to the segments belonging to the
tiger body. Also most of the boundary segments are adjacent to the segments belonging to
the tiger body, representing both dark and bright stripes. This allows us to assume that
boundary segments belong to the tiger body as well.

It is important to note that the segment boundaries and the final clustering result will
differ if a different gradient is used or radius R used for the symmetry measure calculation
is changed. Nevertheless those differences are typically small and in each case allows us to
find similar clusters. It is impossible to define a single rule for choosing the optimal radius
R or gradient type, but nothing stops us from repeating the clustering many times with
different parameters and then performing a selection among all results. This is practical
as image segmentation and clustering time on a modern computer usually takes less than
one minute 1.

The example from Figure 5 shows that different textures may be better detected at
different clustering levels. This is caused by the fact that feature spread varies between
textures and as it was already explained feature spread inside clusters decrease with clus-
tering level growth. For example at clustering level 3 the water is represented by only
single segment, but at clustering level 4 it is divided into two clusters and at level 5 it is
divided inti 5 relatively big clusters. Top left and right water clusters are less illuminated
than the one in the center, while the cluster at the bottom contains reflections of the tiger
and therefore its color is changed. All those differences become significant only at cluster
levels 4 and higher. At the same time the tiger body is divided into more smaller clusters
at higher clustering levels, which makes them less usable in this case.

The main advantage of hierarchical clustering is that it enables texture detection at
different levels, thus allowing us to choose between less and more precise results. We can
also observe that some image regions remain stable in a number of different clustering
levels, i.e belong to a single cluster across multiple clustering levels, like most of the tiger
body or a number of water regions, which may be a useful tool for texture detection and

1a multi-scale analysis is another possibility

9

classification.

Figure 5: Example of a cluster hierarchy (R = 5, gradient calculated using luminance). It
is best viewed in color.

2.4 Texture Detection

The texture detection step attempts to discover color patterns in each cluster separately.
It means that only features belonging to a single cluster are clustered again, but this time
color pairs in feature vectors are not sorted. Let us reconsider the color pattern from

10

Figure 1. If divided between two clusters (at level 2), then one cluster would contain dark
color segments, which have bright color neighbors and another would contain bright color
segments, which have dark color neighbors (without color sorting). In this case it is clear
that almost all segments in both clusters have at least one neighboring segment belonging
to another cluster and that is the color pattern we are looking for at this stage. Following
this path we can say that if two or more clusters have a high percentage of segments
neighboring each other, then we should treat them as a potential texture. Since segments
vary in size and they are counted as neighbors even if they only share a one pixel long
boundary it is actually better to measure the length of the boundary between two clusters,
instead of counting neighboring segments. The texture is detected then if the length of
the boundary Bkl in the image between groups of pixels belonging to two clusters k and
l, relative to their total boundary length Bk and Bl exceeds a cluster co-occurrence ratio
threshold τ (in range 0 to 1):

Bkl

Bk

≥ τ ∧ Blk

Bl

≥ τ (5)

Here, Bk and Bl describe the total boundary length of clusters k and l respectively (ex-
cluding boundary with background), Bkl specifies the boundary length between cluster k
and l and τ is a cluster co-occurrence ratio in the range 0 to 1. If τ is set to 0 then every
pair of clusters would fulfill this condition (even unconnected), however if τ is set to 1, then
only clusters fully connected would be considered as potential textures. Typical values for
τ vary in the range from 0.5 to 0.7 due to the fact that clusters are usually of different size
and we also allow for a small number of segments in both clusters to not be neighbors of
the segments in the other cluster.

Calculation of Bkl and Blk is based on the segment adjacency graph, described in Sec-
tion 2.2.

Each cluster from each clustering level obtained in the previous step is re-clustered
using non-sorted color pairs. Re-clustering is performed until the adjacency condition in
Equation 5 is fulfilled or the maximum clustering level is reached, which means that no
textures were detected. If the adjacency condition is fulfilled then a texture consisting
of two adjacent clusters is detected. Instead of ending texture detection here clustering
is continued in an attempt to divide the detected texture (two adjacent clusters) into 2
textures (4 clusters altogether). It means that up to three textures can be detected from a
single cluster. This way we provide a choice of less and more generalized results for further
processing.

The final result is a list of potential textures, each consisting of at least two clusters
obtained from a single clustering level (see an example in Figures 6 and 7). Comparing
results from Figures 6 and 7 we can clearly see that higher clustering levels are better suited
to the detection of textures with less color spread among texture elements, while lower
clustering levels do the opposite, which explains why the texture detection is performed
across all clustering levels.

11

The list of detected textures describes regions of the image containing some color pat-
tern. However, depending on the value of the threshold τ in Equation 5, clusters may
have very few neighboring segments or even if τ is close to 1, clusters may be connected
through a single boundary (for example two elongated clusters as in Figure 8), which is
far from the alternating color pattern we are looking for. The other problem relates to the
fact that many potential textures overlap each other, because the co-occurrence analysis is
performed for each clustering level, producing many very similar potential textures. It is
relatively easy to remove duplicates from the list, by leaving only the single biggest texture
out of a set of highly overlapping textures. Removal of textures which do not contain al-
ternating color patterns requires the usage of features other than color for clustering (like
segment geometry) and will be addressed in future work.

Figure 6: An example of textures detected in image (a) at image clustering level 3. Image
(b) shows a texture detected from cluster marked with the red boundary line. Black lines
show boundaries of the two adjacent clusters constituting the texture. Images (c) shows
textures detected at the next texture clustering level.

3 Discussion of the Results

The current version of FCTD method is designed to automatically detect color patterns
only. It uses segment color pairs for clustering, which does not allow for detection of
purely geometrical regularities (when only the shape of texture elements is regular, but
color varies significantly among those). We assume however that in the majority of cases,
especially in natural scenes, textures contain both color and geometrical patterns, and
color pattern analysis is a good first approximation to the texture detection problem. The
method will be later improved with the addition of geometrical pattern analysis (Discussed
in Section 4).

The final result of the texture detection depends on a few parameters listed below:

• R – the maximum radius over which the symmetry measure is calculated for each pixel
neighborhood. Small values tend to generate more and denser distributed symmetry

12

Figure 7: An example of textures detected in image (a) at image clustering level 10.
Images (b) and (c) show textures detected at various texture clustering levels. Images
were manually enhanced for better visibility.

Figure 8: Example of two clusters with 100% segment neighborhood ratio which does not
represent an alternating color pattern.

13

maxima, while bigger values do the opposite. Since each segment is associated with a
single symmetry maximum, the number and the size of segments is strongly correlated
to the value of R (see Figure 9), which also has implications on final clustering and
texture detection. In practice a texture detection should be repeated for multiple
values of R.

• τ – the cluster co-occurrence ratio is typically set to 0.8 to avoid analysis of clusters
with very few neighboring segments, but also to allow analysis of cluster pairs which
do not have all segments neighboring each other and/or are different in size.

• maximum clustering level – generally at higher clustering levels clusters become
smaller and the feature spread between segments belonging to the same cluster nar-
rows down. Different textures may be better detected at different levels, therefore
multilevel analysis is essential. The maximum clustering level is typically set to 12,
which allows the detection of all presented textures in this section. The higher the
limit for the clustering level, the more processing time is needed to complete the
texture detection. Figures 6 and 7 show an example of texture detection at different
clustering levels.

While usage of color-pair based features allows us to capture alternating color patterns
it also sometimes leads to inaccuracies in the detected texture boundaries. It may happen
that some segments at the texture boundary have neighbors with colors which are more
different than the colors of neighbors belonging to the texture. In this case the color pair
for these boundary segments will be different than inside the texture and in effect those
segments will belong to a different cluster. This is well visible in Figure 12, where the
boundary of starfish (detected as a single texture) includes also some of the green back-
ground. Another similar example is shown in Figure 14. This problem however can be
easily solved as discussed in Section 2.3.

All results presented below were obtained using a two color feature vector (see Sec-
tion 2.2). This means that color patterns containing more than two significantly different
alternating colors would not be detected or some colors would be missing in the detected
texture. Such patterns can be detected using more colors in the feature vector.

Since the textures are detected from multiple clustering levels and in addition the
texture detection phase can extract up to three textures out of a single cluster (see 2.4),
the FCTD result is a texture hierarchy typically consisting of multiple bigger textures and
a number of smaller textures containing a subset of segments belonging to the bigger ones,
as in Figure 10.

Most of the results were obtained using R = 5, normalized CIE-Lab color space and
averaged color gradient. These parameters influence the size, number and boundaries
of watershed segments, thus producing different features for clustering. These parameters
primarily affect the boundary of the detected textures. The highest influence has parameter
R, which for the image size used for experiments was varied from 3 to 16 pixels. For
example the results of clustering at level 2 in Figure 5 divide the whole image into two large

14

Figure 9: The influence of R parameter on segmentation result (R equal to 3 and 8 respec-
tively).

15

Figure 10: An example of texture detection from an image of size 481x321 pixels (R = 5,
normalized CIELAB color space, averaged color gradient, 10 clustering levels). Textures
are detected at various clustering levels shown on the texture images – the first number in-
dicates the image clustering level, while the second number indicates the texture clustering
level. A total of 12 textures were detected.

16

Figure 11: An example of texture detection from an image of size 481x321 pixels (R = 5,
normalized CIE-Lab color space, averaged color gradient, 10 clustering levels). Total of 14
textures discovered with three of the most distinctive shown, the rest of the textures are
subset of these three and are not shown to conserve space.

Figure 12: An example of texture detection from an image of size 481x321 pixels (R = 5,
normalized CIE-Lab color space, averaged color gradient, 10 clustering levels). Total of
18 textures were detected, but only the most representative one is shown. Other textures
contain parts of the starfish body and background.

17

Figure 13: An example of texture detection from an image of size 481x321 pixels (R = 3,
not normalized CIE-Lab color space, averaged color gradient, 10 clustering levels). Total
of 29 textures were detected, but only the most representative subset is shown. Other
textures contain parts of the shown ones.

18

Figure 14: An example of texture detection from an image of size 481x321 pixels (R = 5,
normalized CIE-Lab color space, luminance gradient, 10 clustering levels). Total of 27
textures were detected, but only the most representative subset is shown. Other textures
contain parts of the shown ones.

19

Figure 15: An example of texture detection from an image of size 481x321 pixels (R = 5,
normalized CIE-Lab color space, averaged color gradient, 10 clustering levels). Total of 24
textures were detected, but only the most representative subset is shown. Other textures
contain parts of the shown ones.

20

Figure 16: An example of texture detection from an image of size 481x321 pixels (R = 5,
normalized CIE-Lab color space, averaged color gradient, 10 clustering levels). Total of 8
textures were detected, but only the most representative subset is shown. Other textures
contain parts of the shown ones.

21

regions, one associated with the tiger and another with mostly the water. If the clustering is
repeated with R set to 8 instead of 5, then the tiger and part of the water reflecting the tiger
become a single cluster. The tiger body will be separated from the water at higher levels and
make possible detection of the characteristic color pattern associated with the tiger. This
example shows that though the boundaries of clusters will differ, the same color patterns
will be detected when using various R parameters, but it may happen at different clustering
levels. Nothing stops us from repeating the detection process using different parameters.
This may generate a higher number of similar textures detected, but these results may
be further selected, for example using texture classification. The whole texture detection
time did not exceed 60 seconds on an average modern PC computer. If repeated for a
combination of a different parameter values it could consume approximately 10 minutes
(for example for R=3,5,8 and 10, two gradient types and with color normalization switched
off and on). Figure 17 represents a difficult case from the color pattern detection point
of view, because the color pattern of the lizard and background are quite similar. It was
possible to detect a part of the lizard using typical parameter values, but the texture
detection in this case is more sensitive to parameter values.

4 Conclusion

FCTD is a method for fully automatic detection of textures in two dimensional still images.
It is based on a novel idea of color pair hierarchical clustering, where color pairs are
extracted from neighboring Watershed segments, which allows detecting color patterns in
the images. The method proved capable of detecting a variety of color patterns, at different
accuracy levels, from natural scenes as discussed in Section 3. The results obtained lead
to the conclusion that the analysis of color patterns alone allows the detection of the
majority of the significant textures in natural scenes, although texture boundaries are not
very precise. FCTD has several important features, which can be used for several image
analysis tasks including image segmentation, texture classification and object recognition:

• FCTD generates a texture hierarchy, which captures most of the textures in the image
(with higher and lower feature spread). This allows FCTD to be used in a variety
of applications, which may require more or less accurate patterns to be detected or
classified.

• FCTD is fully automatic and therefore can be used as a black box by other methods.

• FCTD provides not only texture boundaries, but also important texture features, like
dominant colors and color spread. This information can be easily extracted, because
detected texture always consist of two clusters (in the case of two color patterns) of
specific color and specific color neighbor (see Section 2.4).

• The clustering step of FCTD can be considered as an image segmentation. Together
with the texture detection it can provide segment boundaries as well as information
on which regions contain textures.

22

Figure 17: An example of texture detection from an image of size 481x321 pixels (R = 5,
normalised CIE-Lab color space, averaged color gradient, 10 clustering levels). Total of 27
textures were detected, but only the most representative subset is shown. Other textures
contain parts of the shown ones.

23

The FCTD is different from other texture detection methods in many ways. There are
few other algorithms which attempt general texture detection [5] or try to detect textures
and find their boundaries [10], but neither uses the same texture detection approach nor
produces a texture hierarchy. It is difficult to do a performance comparison, as we do
not have results of other methods on identical images and other methods do not provide
a hierarchy of textures. Segmentation algorithms are another group of methods utilizing
texture detection, which attempt to find boundaries of uniform color and/or uniform tex-
ture regions. Segmentation algorithms also use a non-hierarchical approach for texture
detection. This means that they typically contain fixed parameters governing texture de-
tection and discrimination [8] or require user to specify the most characteristic textures on
the image [9]. FCTD generates a hierarchy of textures, because different textures may be
better/only captured at different accuracy levels (which directly correspond to clustering
levels). In addition FCTD extracts at the same time high level texture features, which can
be used for texture classification. Nevertheless FCTD in many cases provides similar tex-
ture boundaries as segments in methods described in [9, 12] on the same image (compare
tiger and leopard textures in Figures 14 and 10 with segmentation of identical images in
[9]).

The current version of FCTD is the first step towards a general texture detector and
classifier, capable of analyzing color and geometrical patterns. It is therefore necessary to
address several issues discussed in Sections 2.4 and 3. Several improvements are planned:

• Over-segmentation - The current version of the image segmentation produces rather
small and dense segments, which often divide texture elements (like tiger stripes in
Figure 9) into several parts. This in turn has two negative effects:

– we do not have texture element boundaries so geometrical analysis of those is
impossible.

– because of the image over-segmentation the interior and boundary of texture
elements may be inserted into different clusters. Segments inside the element
have neighbors with similar colors, while boundary segments neighbor with sig-
nificantly different colors of another texture element (observe tiny segments in
the middle of bright tiger stripes in Figure 9).

Both issues will be resolved using adaptive segment merging, based on current color
pattern detection. Currently detected textures are the source of information about
color spread inside the cluster, which can be used to select which adjacent segments
should be merged. Special care must be taken to avoid the creation of complex
shaped segments. For example stripes on the tiger body often join. If the method
creates a single segment covering multiple stripes, then geometrical analysis of those
would be very difficult.

• Boundary segments - As discussed in Section 3 sometimes segments belonging to the
texture boundary are separated from the texture itself. This will be solved using

24

statistics of the segment features belonging to the texture and those adjacent to the
texture with similar features.

• Features - The color pattern is usually not the only one occurring in textures, there-
fore other features, especially geometry related, must be applied in order to obtain
more precise texture boundaries and improve texture classification. The current plan
assumes that other features will be obtained after the detection of color patterns,
which can be compared to a two pass texture detection. Detection of color patterns
allows for segment merging, which in turn will enable the extraction of basic geo-
metrical properties of the segments - for example segment elongation, size, direction,
etc.

• Scale - At present a textures with very small elements, i.e less than 3 pixels in diame-
ter, are not detected due to the Watershed implementation limitations. This problem
can be solved either by inflating the image 3 times across vertical and horizontal axes
or using an improved Watershed implementation.

The present version of FCTD can be treated as a first approximation to the texture
detection and despite several problems discussed in Section 3, provides useful texture de-
tection.

Future plans include using the FCTD results for texture classification.

25

References

[1] D. Chetverikov. Pattern regularity as a visual key. Image and Vision Computing,
18:975–985, 2000.

[2] G. Dong and M. Xie. Color clustering and learning for image segmentation based on
neural networks. IEEE Transactions on Neural Networks, 16:925–936, 2005.

[3] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. Wiley-Interscience,
2000.

[4] G. Hoffmann. CIELab Color Space.
http://www.fho-emden.de/h̃offmann/cielab03022003.pdf.

[5] K. Karu, A. K. Jain, and R. M. Bolle. Is there any texture in the image? Pattern
Recognition, 29:1437–1586, 1996.

[6] G. Li, C. An, J. Pang, M. Tan, and X. Tu. Color image adaptive clustering segmen-
tation. In Proc. Image and Graphics Conference, pages 104–107, 2004.

[7] G. Loy and A. Zelinsky. Fast radial symmetry for detecting points of interest. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 25(8):959–973, 2003.

[8] J. Malik, S. Belongie, T. Leung, and J. Shi. Contour and texture analysis for image
segmentation. International Journal of Computer Vision, 43:7–27, 2001.

[9] B. Mičuš́ık and A. Hanbury. Steerable semi-automatic segmentation of textured im-
ages. In Proc. Scandinavian Conference on Image Analysis (SCIA), pages 35–44,
2005.

[10] R. E. Sanchez-Yanez, A. Moral-Perea, and V. Ayala-Ramirez. Fuzzy texture detection
using homogeneity cues. In IEEE International Conference on Systems, Man and
Cybernetics, volume 7, pages 6429–6433, 2004.

[11] P. Soille. Morphological Image Analysis. Springer, 2002.

[12] B. Sumengen, B. S. Manjunath, and C. Kenney. Image segmentation using curve
evolution. In 16th International Conference on Pattern Recognition, volume 2, 2002.

26

