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Abstract In this paper, we present a new image segmenta-
tion algorithmwhich is based on local binary patterns (LBPs)
and the combinatorial pyramid and which preserves struc-
tural correctness and image topology. For this purpose, we
define a codification of LBPs using graph pyramids. Since
the LBP code characterizes the topological category (local
max, min, slope, saddle) of the gray level landscape around
the center region, we use it to obtain a “minimal” image rep-
resentation in terms of the topological characterization of a
given 2D grayscale image. Based on this idea, we further
describe our hierarchical texture aware image segmentation
algorithm and compare its segmentation output and the “min-
imal” image representation.
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1 Introduction

Given a grayscale digital image I , the local binary pattern
LBP(I ) [19,21] is again a grayscale digital image which
represents the texture element at each pixel in I . This is cur-
rently the most frequently used texture descriptor [15] with
outstanding results in applications ranging fromobject detec-
tion [18] to segmentation [4,11] and classification [25,27].

Considering image segmentation, the main idea is that
a good segmentation can capture perceptually important
regions, which reflect local and/or global properties of the
image [24]. These regions can then be used for classifica-
tion and higher level tasks such as image understanding.
Existing segmentation algorithms are based on threshold-
ing, histograms, edge detection, split and merge strategies,
watershed transformation or graph partitioning [26].

LBPs have already been used in segmentation approaches
in the past: first by Ojala et al. who presented an unsu-
pervised three-phase algorithm in [20]. In this paper, we
now present an evaluation of our LBP-based texture aware
segmentation [2] using the Berkley segmentation dataset
[16]. Contrary to existing LBP-based image segmentation
approaches, we do not use histograms of LBPs, but keep the
spatial information of the LBPs and consider it in the seg-
mentation process. Typically, the LBP operator is applied
to all 3 × 3 image windows of the considered texture
(region). Then the histogram provides the characteristic fea-
tures of the texture. After training the feature space with
the textures of interest, new textures can be classified with
very good discrimination. Also for segmentation approaches
based on LBPs, histograms of the LBPs were used. How-
ever, due the histograms, spatial information is lost in these
approaches.

In [3], we proposed a new equivalent LBP encodingwhich
transfers the code from the pixels to the neighbor rela-
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tions thus only using one bit per edge of the neighborhood
graph. We introduced a way to handle non-well-composed
images, as well as a repetitive contraction process lead-
ing to a hierarchy of successively smaller graphs—a graph
pyramid that preserves the basic topological categories (i.e.,
extrema, saddle points, plateaus and slopes). This approach
on its own already provides a topology-based, hierarchical
image segmentation. However, by adapting this approach
(i.e., the contraction criteria), we now define a texture aware
image segmentation using LBPs in this paper. Moreover,
we compare the segmentations obtained by our topologi-
cally minimal image representation and by our texture aware
image segmentation approach. For other non-LBP-based
hierarchical topological segmentation approaches, see, for
example, [1,22]. The paper is organized as follows: Sec-
tion 2 recalls the methodological background. In Sect. 2.1,
an overview of needed terms and their equivalent mean-
ings as well as a brief introduction to LBPs is given and
the topological category of the gray level landscape around
a pixel characterized by its LBP code is defined. Sec-
tion 2.2 recalls irregular graph pyramids. LBP pyramids
are introduced in Sect. 3, and an overview of the mini-
mal graph representation approach is given in Sect. 3.4.
In Sect. 4, we present our texture aware segmentation
approach that is based on LBP pyramids. Section 5 is
devoted to experiments, and Sect. 6 to conclusions and future
work.

2 Basic concepts and terminology

In this section, we give a definition of terms used within this
paper and provide a short recapitulation of the basic concepts
of LBPs and graph pyramids, which is needed as a basis
for the presented texture aware segmentation approach and
the topological minimal representation of the image. Table 1
gives an overview about terms used within this paper and
shows equivalences between them.

Table 1 Overview of terms in the image space, the primal graph and
the dual graph and their equivalences

Image Primal graph Dual graph

Pixel Vertex –

4-Neighbors Edge –

Region Connected set of vertices in
the base level

–

Superpixel Vertex at higher pyramid
level

–

Adjacent regions Edges at higher pyramid
level

–

Region boundary – Dual cycle

2.1 Local binary patterns (LBP)

The intensity of a pixel p = (x, y), denoted by g(p), is
expressed within a given range between a minimum and a
maximum, inclusive. Without loss of generality, we suppose
that the range is [0, 255]. The standard LBP code [19] is
computed for a (center) pixel as in Eq. (1), where P is the
number of neighbors, R is the distance between the center
pixel and the neighbors (we assume 1 here; therefore, the
values of P could only be 8 or 4), c is the center pixel of
the operator, and p is the local neighbor indexed by p. The
basic operator uses the sign function s(x) = 1 if x ≥ 0 and
s(x) = 0 otherwise.

LBPP,R =
P−1∑

p=0

s(g(p) − g(c))2p. (1)

The LBP code characterizes the topological category of the
gray level landscape around the center pixel. A pixel is a
local maximum if the LBP code is composed just by 0s. A
local minimum produces an LBP code only with 1s. Notice,
however, that an LBP code consisting of 1 only can also
be created by a plateau (a region composed by neighboring
pixels sharing the same gray value) due to the asymmetry of
the sign function s. The LBP code describes a slope if there
are exactly two transitions from 0s to 1s or 1s to 0s in the
code, when traversed circularly. More transitions identify a
saddle.

In this paper, the 4 neighbors (on its top, bottom, right,
left) of each pixel are considered for comparison with the
center pixel to obtain the LBP code. That is, follow these 4
pixels along a circle (for example, clockwise), whenever the
center pixel’s gray value is greater than the neighbor’s gray
value, i.e., when g(p) − g(c) < 0, write 0. Otherwise (i.e.,
when g(p) − g(c) ≥ 0), write 1. Example:

113 240 23
20 25 12
15 30 40

⇒
1

0 25 0
1

⇒ 1010

⇒ 1 · 23 + 0 · 22 + 1 · 21 + 0 · 20 ⇒ 10

This 4-neighbor LBP codification has been used for solv-
ing problems in image processing and analysis, such as face
detection and recognition [9], or iris extraction [8].

2.2 Irregular graph pyramids

A region adjacency graph (RAG) G = (V, E) encodes the
adjacency of regions in a partition. A vertex v ∈ V is associ-
ated with each region r . Vertices of neighboring regions are
connected by edges e ∈ E . Classical RAGs do not contain
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any self-loops nor parallel edges. An extended region adja-
cency graph (eRAG) contains self-loops and parallel edges
used to encode neighborhood relations to a region completely
enclosed by one or more other regions [12]. The dual graph
of an eRAG G is denoted by Ḡ = ( V , E) (G is said to be
the primal graph of Ḡ). The edges of E represent the bound-
aries (borders) of the regions encoded by G, and the vertices
of Ḡ represent points where boundary segments meet. G and
Ḡ are planar graphs if they represent a 2D decomposition
into regions. There is a one-to-one correspondence between
the edges of G and the edges of Ḡ, which induces a one-to-
one correspondence between the vertices of G and the 2D
cells (regions) of Ḡ. The dual of Ḡ is again G. The following
operations are equivalent: edge contraction in G with edge
removal in Ḡ, and edge removal in G with edge contraction
in Ḡ. Edge contraction preserves the topology (i.e., regions
are always homeomorphic to disks) [7]. A (dual) irregular
graph pyramid [12,13] is a stack of successively reduced
planar graphs P = {(G0, Ḡ0), . . . , (Gn, Ḡn)}. Each level
(Gk, Ḡk), 0 < k ≤ n, is obtained by first contracting edges
in selected contraction kernels of Gk−1, if the corresponding
regions should be merged, and then removing edges in Gk−1

to simplify the structure.
In this paper, pixels are considered unit square regions,

4-neighborhood is used for constructing the RAG, and each
vertex v of the RAG associated with each region r is labeled
with the gray value of the region, i.e., g(v) := g(r).

3 LBP pyramids

In this section, we define a codification of local binary
patterns (LBP) based on graph pyramids. The notion of well-
composed images and a way how to obtain well-composed
images by inserting dummy regions is described first, to be
able to deduce the topological characterization provided by
LBP8,1 from the topological characterization of theLBPcode

of the modified configuration. In order to obtain a minimal
graph representation of a given image I in terms of topolog-
ical characterization of the LBP code of I , we first merge
regions having the same gray value (plateaus) and finally
obtain a minimal graph representation by merging singular
slopes (a particular topological category that can be merged
without changing the topological category of the remaining
regions).

3.1 Creating well-composed images

A 2D image is well-composed [14] if it does not contain the
following non-well-composed configuration (modulo reflec-
tion and 90◦ rotation):

a b
c d

where g(a) < g(b), g(a) < g(c),

g(d) < g(b) and g(d) < g(c). (2)

Lemma 1 [3] If the image is well composed, the topological
category provided by LBP4,1 is the same as LBP8,1.

a b
r

c d

The main problem in a non-well-composed configuration
like Eq. (2) is that the relation between a and d (resp. b
and c) cannot be deduced from the relation of 4 adjacent
regions. To solve this, we insert a new “dummy” region
r in the center of the non-well-composed configuration.
The new region r with new gray value g(r) reflects the
relation between a, b, c, d in a way that the topological
category of the 8-connectivity LBP code can be deduced
from the LBP code of the modified configuration (Fig. 1a,
b). In general, the new value for r is computed as follows:

Fig. 1 An 8-bit grayscale image (highlighted grayscale values) is bmade well-composed, and c plateaus are merged (for color legend see Fig. 3c)
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Fig. 2 The plateaus of an image with highlighted values are first merged, and then structurally redundant edges are removed, a input, b merged
plateau, c removed edges

minima

maxima

doubly-singular slopes

singular slopes

other slopes

saddles

(a) (b) (c)

Fig. 3 Removing structurally redundant edges from the primal graph, a after merging plateaus, b after removing edges, c vertex colors

g(r) = (g(a)+ g(b)+ g(c)+ g(d)−max{g(a), g(b), g(c),
g(d)} − min{g(a), g(b), g(c), g(d)})/2. For some special
cases, see [3].

3.2 Merging plateaus and removing edges

The first step in our process to obtain a “minimal” image
representation with the same topological information as the
original is to merge plateaus. This way, by contracting adja-
cent vertices with the same gray value in the primal graph
(i.e., merging neighboring regions with same value in the
dual), we remove the asymmetry caused by the sign func-
tion. See Fig. 2b.

After merging all plateaus, a direction can be associated
with each edge between different vertices v �= u of the primal
graph G:

(u, v) ∈ E has direction u → v iff g(u) > g(v).

Proposition 1 [3] After merging plateaus, G\{self-loops} is
a directed graph such that: (a) G does not contain directed
cycles. (b) Vertices in Ḡ do not increase degrees.

An oriented edge (u, v) ∈ E is considered “structurally
redundant” if there exists a dual vertex w ∈ V bounded
by (u, v) and a directed path p(u, v) from u to v. Struc-
turally redundant edges can be removed in G (see Figs. 2c,
3b). Finally, the notion of well-composed configurations can
be extended to regions in Ḡ due to Prop. 1b.

3.3 Topological category of regions

After merging plateaus, in the same way as for pixels, we
can define the topological category of a vertex v of G by
considering the edges incident to v. See Figs. 1c and 3a.
Following the edges incident to v:

• v is a local minimum if it is the head of all the edges
incident to it.

• v is a local maximum if it is the tail of all the edges
incident to it.

• v is a doubly singular slope if it has degree two and it is
the tail of one of the edges incident to it and the head of
the other.

• v is a singular slope if it has degree greater than two and
it is the tail (resp. head) of exactly one edge incident to
it and the head (resp. tail) of the others.

• v is a regular slope if v is the tail of the first edges incident
to it and the headof the others, clockwise or counterclock-
wise.

• v is a saddle otherwise.

Proposition 2 [3]After removing redundant edges, the topo-
logical category of the vertices of G may be simplified:
Singular slopes may change to doubly singular slopes, and
regular slopes to singular slopes (Figs. 2c, 3b and 4b). Local
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Fig. 4 The primal graph G is successively reduced by merging plateaus and (doubly) singular slopes. Merge operations and removal of structurally
redundant edges are applied in an alternating fashion. The last image is considered “minimal,” a graph plateaus, b redundant edges, c singular
slopes, d minimal graph

maxima, minima and saddles are always preserved in the
primal graph.

After merging plateaus and removing structural redundant
edges, the topological category of the vertices is updated.

3.4 Minimal graph representation

Further steps in our process to obtain a simplified image
with same topological information as the original (mini-
mal representative) should remove topologically redundant
information by merging regions in the primal graph. In
general, a region obtained after merging slopes around a
local maximum (resp. minimum) is not a local maximum
(resp. minimum) anymore. Singular slopes make an excep-
tion. Merging singular slopes propagates well around local
extrema since a local extremum in the surrounding regions
often is or becomes a singular slope. However, non-well-
composed configurations (corresponding to saddles in the
dual graph) can block propagation. This is why we insert
dummy regions in non-well-composed configurations.

Proposition 3 asserts that contracting a singular slope p to
a vertex q in the primal graph does not change the topological
category of q.

Proposition 3 [3] Consider a vertex p which is a singular
slope in the primal graph. Let E be the set of edges incident
to p. Let p be the head (resp. tail) of exactly one edge e ∈ E,
and it is the tail of the rest. Let q be the tail (resp. head)
of e. Then the vertex obtained after contracting p to q (i.e.,
after merging the two associated regions in the dual graph)
inherits the topological category of the region q, i.e., local
max, min, saddle or slope.

Proposition 4 The result of merging all singular slopes does
not depend on the order we merge.

Proof Observe that no new singular slope can appear after
merging singular slopes, since the topological category of the

rest of the vertices remains invariant. But, new structurally
redundant edges can appear. Therefore, the removal of struc-
turally redundant edges and merging singular slopes can be
repeated until no more reductions are possible. 	


Finally, if regular slopes survive, theymay bemergedwith
saddles. On the top of the pyramid local maxima,minima and
saddles survive. Regular slopes can remain at the top level of
the pyramid. These surviving regular slopes then represent
bottlenecks in the image, for example a plateau surrounding
several minima and maxima. The number of local maxima,
minima and saddles of the original and reduced image coin-
cide (see Fig. 4). Note that after merging a singular slope
p, no “corner” adjacent regions with same gray values could
become adjacent later since it would mean that p would have
at least two 0s in its LBP code. Besides, as a result after con-
tracting plateaus, the reconstructed LBP code is defined for
regions thus having as many bits as adjacent regions. More-
over, aftermerging all plateaus, the LBP codes are symmetric
and the operations “image complement” and “LBP code” for
regions are commutative. Finally, observe that after merging
all singular slopes, each regular slope has at least two 1s and
two 0s in its LBP code.

Figure 5 shows theminimal graph representation approach
for two grayscale images. Aftermerging plateaus and remov-
ing redundant edges, (doubly) singular slopes were merged
successively in the primal graph. After each merging, redun-
dant edges were removed. Finally, the surviving regular
slopes could be merged with saddles. On the tops of these
pyramids only local maxima, minima and saddles survive.

4 Segmentation with LBPs

LBPs have been used in segmentation approaches, for exam-
ple by Chen et al. [4] and Heikkilä et al. [11]. However, these
approaches use LBP histograms, for which the spatial infor-
mation of LBPs is lost, thus having the drawback that two,
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image maxima minima saddles reg. slopes sing. slopes doubly-sing. slopes
(b) 109 103 179 625 693 7
(c) 109 103 179 196 971 158
(d) 109 103 179 0 0 0
(f) 134 131 224 359 361 6
(g) 134 131 224 108 404 214
(h) 134 131 224 0 0 0

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5 Images are reduced bymerging plateaus and then removing structurally redundant edges. After removing all (doubly) singular slopes, regular
slopes are merged with saddles, a original image1, b plateaus, c redundant edges, dminimal graph, e original image2, f plateaus, g redundant edges,
h minimal graph

visually completely different, imagesmay have the same his-
togram.

Modifications made to the so far proposed approach
(Sect. 3.4) in form of attributed vertices and contrast-
weighted edges allow the definition of texture aware image
segmentation algorithms. A first attempt made in this direc-
tion was presented in [2]: the “structurally correct image
segmentation” (SCIS) algorithm. SCIS is based on LBPs, but
does not use histograms. The segmentation builds a combi-
natorial pyramid (similar as presented in previous sections),
while using LBP classes and region contrasts as group-
ing criteria. This section gives a detailed description of the
approach.

Note that the topological categories of regions as defined
in Sect. 3.3 refer to vertices in the primal graph. Our segmen-
tation algorithm considers topological categories of the dual
graph. In the dual graph, vertices correspond to regions in the
primal graph, dual edges encode the boundary of the regions
and store the LBP information. In any correctly constructed
neighborhood graph (of a well-formed image), it is not possi-
ble that local extremaoccur in the dual graph. The topological

categories are therefore limited to plateaus, slopes and sad-
dles in the dual graph. Dual saddles (i.e., saddles in the dual
graph) correspond to non-well-composed configurations as
defined in Sect. 3.1 and “are moved” to the primal graph by
inserting dummy regions.

4.1 Structurally correct image segmentation

After removing all dual saddles (equals removal of non-well-
composed configurations in the primal graph),merging of the
primal plateaus (this equals removing dual edges with con-
trast 0) and merging all dual doubly singular slopes (equals
removal of redundant edges in the primal graph) the dual
graph (except for the outer face) only contains regular slopes.
SCIS is based on this idea (Algorithm 1).

The process of simplifying the structure (line 5–8 in Algo-
rithm 1) works as follows. First, notice that only structurally
redundant primal edges are determined and removed in the
algorithm (corresponding to a contraction of singular slopes
in the dual graph). A property of such redundant edges is
that neither of the incident vertices is covered by the other.
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Fig. 6 Original image and reduced version with 70 and 97% reduction in number of regions, a segmentation input, b 70% reduction, c 97%
reduction

Therefore, between two vertices u and v, there is always at
least one vertex w, such that g(u) < g(w) < g(v) holds.
Now, the remaining primal edges are sorted according to
their contrast between adjacent regions—note that this con-
trast is determined in the current SCIS implementation using
the CIEDE2000 color distance [28]: In the primal graph, the
contrast of an edge (u, v) is given as |g(u)− g(v)|. The pri-
mal edge with the lowest contrast is checked first if it can be
removed: A representative value for the new vertex obtained
after merging the primal vertices is computed as the color
mean of all included pixels in the region at base level of the
pyramid. Because of this re-calculation of the representa-
tive values of newly merged regions, the contrast of incident
edges needs to be adapted. If the value for the new vertex
satisfies the binary relationships stored at the incident dual
edges, then the primal edge is contracted. This process is
repeated until a suitable primal edge for merging is found.
This way, by merging primal edges with the lowest contrast
first, also regions with low dissimilarity are merged first.

We denote the graph computed by the SCIS algorithm
through removal of redundant edges Gred. The SCIS algo-
rithm preserves the structural correctness of the image, since
it skips during contraction all edges included in Gred\G∗
(whereG∗ is theminimum equivalent graph [17], which does
not contain any redundant edge). Therefore, only edges ofG∗
are contracted and no cycle is created.

Because of the preservation of structural correctness dur-
ing the segmentation process, lowly textured regions are
merged early in the segmentation hierarchy and highly tex-
tured regions aremerged late. Figure 6 shows one input image
and two reduced images.1 Note that, even with 97% reduc-
tion in the number of regions, the fine details in the feathers
of the bird are still well visible. Therefore, visual informa-
tion that is important for humans is preserved even at high
levels of reduction. This is also well visible in Fig. 7 where
the merging history is shown for one image—highly textured
regions correspond to bright regions in the merge history as
they are merged late in the hierarchy.

1 More images and segmentation results can be found at: http://prip.
tuwien.ac.at/research/scis_results.zip.

Algorithm 1 structurally correct image segmentation (SCIS)
input: 2D image
output: combinatorial pyramid

1: k := 0
2: initialize base level C of combinatorial pyramid
3: C ′ := remove dual saddles in C
4: C0 := merge plateaus in C ′
5: repeat
6: k := k + 1
7: simplify structure in current level Ck
8: until Ck = Ck−1

4.2 Internal and external contrast

A segmentation of a digital image is a partition of the pixels
into homogeneous regions such that adjacent regions are suf-
ficiently distinct. Observe that a pixel is the smallest region
and any connected set of pixels is a region. Criteria for homo-
geneity can be low contrast and variance, similarity in color
or texture. Felzenszwalb [6] uses an “internal contrast” as
the largest dissimilarity measurement of such a region, while
distinctness is measured by the “external contrast” which
is the smallest dissimilarity between adjacent regions. They
require that the internal contrast is smaller than the external
contrast for the segmentation. In the case of our LBP pyra-
mid, we slightly modify the internal contrast similar to the
definition in [10]. We first define low-contrast paths through
the neighborhood graph of the image. The contrast of an edge
is simply the absolute difference between the values of its two
end points. The contrast of a path is the contrast between its
endpoints divided by its length. In this way, contrasts of paths
of different lengths can be compared.

The contrast of a dual edge is the same as the correspond-
ing edge in the primal graph. The boundary of a simple region
(i.e., a region that does not contain any hole) separates the
region from its surrounding. It is a path in the dual graph,
and its contrast is the smallest contrast of its edges.

We further extend the definition of a low-contrast path
to a hierarchical version. In SCIS, a representative value is
computed for each region as the color mean of all included
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Fig. 7 In the merging history, dark regions were merged early and bright regions were merged late, a segmentation input, b merge history

pixels at base level of the pyramid. This re-calculation of the
representative values of newlymerged regions causes that the
contrast of incident edges needs to be adapted. This contrast
may increase, stay the same, or decrease. A contraction of
an edge at a certain level in the pyramid means that this
contraction did not create any cycles and that its contrast was
the lowest. For this reason, we will consider the hierarchical
contrast of a path to consist of edges at base level with the
contrast with which they were later merged at higher levels
of the pyramid.With these ingredients, we define the internal
and external contrasts for our segmentation.

Definition 1 (Internal contrast) The internal contrast of a
region is the lowest hierarchical contrast of all paths inside
the region connecting any pair of its vertices.

Observe that since a region is connected, there is a sequence
of neighboring pixels between anypair of pixels of the region.
Notice that this definition allows edges with higher con-
trasts inside the region, they can form branches connected
to the boundary, but they cannot form cycles disconnecting
the inside of the cycle from the outside. Such a cycle would
increase the internal contrast of the region. This definition
differs from most other criteria of homogeneity by the fact
that it is based on (1D) paths and not on properties of regions.

Definition 2 (External contrast) The external contrast of a
region is the contrast of the boundary of the region at the
current level of the pyramid.

Theorem 1 All the receptive fields of the SCIS pyramid
above plateaus satisfy the condition that the internal con-
trast of the corresponding region is less than its external
contrast. Hence, every level of the pyramid above plateaus
forms a segmentation.

Proof The equivalent contraction kernel of any receptive
field (RF) is a tree spanning the receptive field. Any ver-
tex of the receptive field is connected to any other vertex of
the RF by edges of the equivalent contraction kernel (ECK).

All edges of the ECK have been contracted before reaching
the top of the RF. In SCIS, primal edges are contracted by
increasing contrast except in the case when its contraction
would reverse the orientation of any adjacent edges. But in
this case, the edge is not contracted and cannot be part of the
contraction kernel. Edges of a plateau have all zero contrast;
hence, they are contracted before any other edges. After all
plateaus are reduced to a single vertex, all surviving edges
have a higher contrast than the contracted edges. No edge
of the boundary has been contracted. They might have been
removed by simplification, but this does not disconnect the
boundary nor does it decrease the contrast of the boundary.
Consequently, the contrast of the boundary of the RF is larger
than the internal contrast. Since the above reasoning applies
to all levels of the pyramid, any selection of higher level
vertices of the RF which partitions the base level forms a
segmentation of the underlying image. 	


5 Experiments

For our image segmentation approach (SCIS) presented
in Sect. 4, a quantitative evaluation was done on the 100 test
images (in grayscale and color) of the Berkley segmentation
database [16] and the segmentation results were compared
with the results of five other segmentation algorithms [2]:
Greedy, IntExtMST, Eff-Graph, Mean-Shift and Turbopix-
els. Upon comparisonwith the ground truth segmentations of
the Berkley database, the following observations were made:
Around 70% of the regions in a medium textured image may
be contracted, while perceptually observing only a minimal
change in the image. A test image from the Berkeley data-
base of size 481 × 321 = 154, 401 pixels may be reduced
to around 45,000 regions while keeping the most important
information (see also Fig. 6).

Because of the texture preserving property of our segmen-
tation approach,weakly textured regions are undersegmented
in favor of preserving highly textured regions. The highly
textured regions consist of a high number of very small con-
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Fig. 8 Comparative plot of all
algorithms for the GCE and the
PRI metric for color images for
regions in the interval [0, 1000]

nected components, whereas the weakly textured regions
are merged very early and generally consist of a few large
connected components. For the comparison with the other
segmentation approaches, the global consistency error (GCE)
and the probabilistic rank index (PRI) were used as metrics.
When comparing the maximum GCE error for color images,
the SCIS algorithm provides better results than the Greedy
and the Eff-Graph algorithms and is on the same level as

the Turbopixels algorithm. However, in the case of the PRI
error metric, the SCIS excels above all algorithm in terms of
a steady high PRI score. The PRI curve for the SCIS algo-
rithm drops faster than for the other algorithms, because of
the fact that most regions in SCIS are only a couple of pixels
large. Consequently, there are a few very large regions that
contribute to the bad evaluation. This way the whole curve is
shifted a little bit to the right (also for the GCE curve). Com-
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Fig. 9 Segmentation results for the input images, having the same number of regions, obtained using the SCIS algorithm and the minimum
representation, a airplane (67×72 px), b SCIS, c minimal graph, d statue (53×50 px), e SCIS, f minimal graph, g kangaroo (73×58 px), h SCIS, i
minimal graph

parative plots of all algorithms for the GCE and PRI metric
are shown in Fig. 8.

Wealso compared the results of our segmentation approach
with the segmentation obtained by the minimal graph repre-
sentation. For this comparison, we derive the minimal graph
representation of an image as described before (see Fig. 5 for
examples). An image segmentation is already given by this
minimal graph representation, since each node in the mini-
mal graph representation corresponds to an image region. In

order to compare the segmentations, we assigned the mean
color of the pixels of an image region as the color of the
region. The minimal graph is given as the apex of the pyra-
mid built when using the topology-based reduction scheme
presented in Sect. 3.4. The segmentation approach presented
in Sect. 4 proceeds in a similar way, although it primarily
considers the contrast of neighboring regions as merging cri-
teria. Therefore, the apex of this segmentation hierarchy is a
single node. For the comparison of the two approaches, we
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Fig. 10 Pairwise comparison of the pixelwise difference of the images
shown in Fig. 9. The differences were stretched to the interval [0, 1]
for the visualization, a airplane: original—SCIS, b airplane: original—
min. graph, c airplane: SCIS—min. graph, d statue: original—SCIS, e

statue: original—min. graph, f statue: SCIS—min. graph, g kangaroo:
original—SCIS, h kangaroo: original—min. graph, i kangaroo: SCIS—
min. graph

first derived the minimal graph and checked the number of
regions rmingraph it preserves. For the segmentation approach,
we used the level of the segmentation hierarchy for which the
number of regions rseg equals the minimal graph: rmingraph =
rseg. Region colors are again derived using themean. Figure 9
shows segmentation results together with the input images.

In Fig. 10, we further computed the pixelwise differences
comparing the original image with each of these segmenta-
tion results, as well as the two segmented images with each
other. Here we can see that the minimal graph segmenta-
tion introduces errors predominantly at the edges, whereas
the SCIS algorithm introduces errors evenly distributed over
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Table 2 Sum of absolute pixelwise differences of the comparisons
shown in Fig. 10, based on the three grayscale images (color values
in the interval [0, 1]) airplane, statue and kangaroo (Fig. 9)

Image Original—SCIS Original—min.
graph

SCIS—min.
graph

Airplane 13.61 98.63 108.15

Statue 12.68 70.18 78.82

Kangaroo 31.43 170.87 186.95

Table 3 Comparison of the number of individual LBP classes for the
two compared segmentation approaches: minimal graph and SCIS

Maxima Minima Saddles Reg.
slopes

(Doubly) sing.
slopes

Airplane

Plateaus
merged

378 379 632 2776 1663

Min graph 378 379 632 38 0

SCIS 182 148 183 111 803

Statue

Plateaus
merged

201 198 344 2776 1057

Min graph 201 198 344 19 0

SCIS 88 75 93 34 472

Kangaroo

Plateaus
merged

307 310 563 324 2503

Min graph 307 310 563 27 0

SCIS 111 98 131 88 779

the whole image. However, considering the overall absolute
error introduced for one image by SCIS, this error is con-
siderably smaller (see Table 2). Note that this is not visible
in Fig. 10 since the differences are stretched to the interval
[0, 1] for the visualization. Because of these properties of

the SCIS algorithm, it performs an image segmentation that
introduces less artifacts according to human perception, as is
well visible in the images in Fig. 9.

However, the number of local minima, maxima and sad-
dles is only preserved by the minimal graph representation,
not by the SCIS algorithm (see Table 3). For the SCIS algo-
rithm, a high number of singular and doubly singular slopes
remain preserved, while at the same time the number of sad-
dle points decreases. Figure 11 shows a small example for
such merged saddle points in SCIS. Here a saddle point is
in the middle of two local minima and two local maxima.
Since the difference in contrast between the two local min-
ima and the saddle point is the lowest, one of the minima
gets merged with the saddle point. This yields a new singular
slope, which can be merged again with the remaining local
minimum.Thisway, twoneighboring localminima separated
by a saddle point (which may, for example, be noise) can get
merged into a single local minimum. Such cases are reduced
by the SCIS algorithm, while the minimal graph preserves
all of the three vertices.

6 Conclusion and future work

We discuss a codification of local binary pattern using graph
pyramids. For well-composed images, we demonstrate that
from the 4 neighbors’ topological information, we can obtain
the 8 neighbors’ topological information as well. This ren-
ders the classical 8-neighbor LBP topologically redundant.
By inserting a few dummy regions, every image can be
made well-composed. A sequence of merging regions and
removal of edges obtains a “minimal” image I derived from
the minimal graph representation, with the same topological
information as the original.We further adapt this hierarchical
representation and present a texture aware image segmen-
tation approach (SCIS) that preserves structure in images

image maxima minima saddles reg. slopes sing. slopes
(b) 2 2 1 0 4
(c) 2 1 0 0 5
(d) 2 1 0 0 5

(a) (b) (c) (d) (e)

Fig. 11 Example for decreasing number of saddle points and increasing number of slopes in SCIS, a input image, b input, c merge, d redundant
edges, e SCIS
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(information that is important for human perception) up to
high levels of the segmentation pyramid.
Toward 3D. Several researchers have tried to extend the LBP
codification from 2D plane to 3D volume (see, for example,
[5,23]); however, it is not so straightforward as it appears at
first glance. In our case, the notion of well-composed images
and irregular graphpyramids alsoworks for 3D images.Char-
acterizations of pixels in 3D using LBP codes depend not
only on the number of connected components but also on the
number of holes (1-dimensional homology classes).
Shape LBP. Textures have particular shapes. The idea is to
label the edges as 0 or 1 in the dual graph depending on
concavity–convexity of the boundary of a region. Computing
LBP codification using the concavity–convexity rule could
help to recognize shapes.
Image compression. Due to its texture preserving properties
the SCIS algorithm may be used for image compression. It
allows a high reduction in region numbers, while keeping the
perceptively important information of an image, encoded as
textured regions, intact. There is, however, a distinction to
be made between reduction in region numbers and an over-
all reduction in terms of storage costs. Currently, the whole
merging history of the combinatorial pyramid can be stored at
the storage costs of the base combinatorial map. It is possible
to store only higher levels of the pyramid—a reduced com-
binatorial pyramid at lower storage costs. Even though this
reduced combinatorial pyramid uniquely stores the structure
of the image in terms of adjacency and inclusion relation-
ships of regions, it is still necessary to store the mapping of
regions onto the image grid. One open problems is to incor-
porate amethod to also store thismapping efficiently in terms
of storage costs.
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