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Abstract. This paper discusses open problems and
future research regarding the recognition and rep-
resentation of structures in sequences of either 2D
images or 3D data. All presented concepts aim at
improving the recognition of structure in data (espe-
cially by decreasing the influence of noise) and at
extending the representational power of known de-
scriptors (within the scope of this paper graphs and
skeletons). For the recognition of structure critical
points of a shape may be computed. We present an
approach to derive such critical points based on a
combination of skeletons and local features along a
skeleton. We further consider classes of data (for
example a temporal sequence of images of an ob-
Jject), instead of a single data sample only. This so
called co-analysis reduces the sensitivity of analysis
to noise in the data. Moreover, a representative for a
whole class can be provided. Temporal sequences
may not only be used as a class of data in a co-
analysis process - focusing on the temporal aspect
and changes of the data over time an analysis of these
changes is needed. For this purpose we explore the
possibility to analyse a shape over time and to derive
a spatio-temporal representation. To extend the rep-
resentational power of skeletons we further present
an extension to skeletons using model fitting.

1. Introduction

A single 2D image is defined in the spatial
domain. By extending data from a single capturing
to a sequence of such data temporal information is
added and the data is defined in the spatio-temporal
domain [8]]. Instead of capturing a single 2D image
or 3D data (e.g. a 3D point cloud) the data may

be extended to an image sequence or a sequence
of 3D data. Temporal information as motion or
development over time are thereby added to the
representation. Therefore, this paper focuses on
novel concepts for the identification of structure
from sequences of images or 3D data and on the
representation of this structure.

Applications and spatio-temporal datasets for the
concepts proposed in this paper can, for example,
be found in biology or in medicine. For the latter,
spatio-temporal data may describe recurring se-
quences which may be the motion of an organ or
abnormal changes of an organ caused by an illness.
In biology, temporal image sequences can, amongst
others, be found in plant phenotyping where plants
or their roots are imaged on successive days of
growth [9]. Furthermore, phenotyping of animals
is currently still based on the manual analysis of
experts [4]. An analysis of a sequence of 3D scans of
an animal may be a future alternative as it provides
spatio-temporal data showing the animal as well as
its movements.

For any analysis of the captured object this object
first needs to be detected in the data and processed
to compute a suitable representation. Well known
representations are Reeb graphs (as described in [1]
and skeletons as for example a medial axis or a more
sophisticated 3D Curve Skeleton (as described in
[2]). For the computation of these representations a
binary segmentation of the input data into foreground
regions, representing the object to be analysed, and
background regions, showing the rest of the data
that is not in focus, is needed. However, such a
segmentation may introduce artefacts that falsify the
representation. We encountered this problem in [[10],



where we applied knowledge about the structure
to be represented and post-processing methods
as for example graph pruning in order to reduce
segmentation artefacts kept in the representation.
Werghi et al. applied a similar approach in [20].
They handle noise in the input data by knowledge
about the structure to be represented and in this way
detecting and discarding improper configurations in
the representation.

In this paper we discuss general methods to improve
representations of data based on a potentially flawed
segmentation. In this context we discuss the use
of co-analysis for classes of data as well as the
application of co-analysis and co-representation for
changing, respectively developing shapes. Mitra
[15] provides a detailed survey on co-analysis and
co-segmentation. Promising methods of co-analysis
have for example been presented by Golovinskiy et
al. in [[6] and van Kaick et al. in [[18]].

Additionally to co-analysis we propose two novel
skeleton based representations: A graph representa-
tion using skeletons together with local features and
a model based representation that is derived using
model fitting to an initial skeleton.

The rest of the paper is structured as follows:
Section [2] proposes the use of local features for
the computation of critical points while Section
bases this computation on a function according to
time. The analysis of a whole class of data using
so called co-analysis and the representation of such
classes using a co-representation is discussed in
Section 4l Section [3]introduces extensions to known
skeletons that improve their representational power
and Section [6] concludes the paper.

2. Critical Points Based on Local Features

Graph based representations or skeletons rely
on segmented input data. Thus, for the input
data a binary segmentation - a separation between
background (not of interest) and foreground (to be
represented) - needs to be known. However, such a
pre-processing of the data may introduce artefacts.
Representations based on flawed segmented data can
be improved using post-processing steps that detect
and correct spurious parts of the representation.
For graph representations a simple graph pruning
may for example be applied. However, graph
pruning may not remove all spurious branches (false
negatives) or discard true branches (false positives).
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Figure 1: Simple LBP computation.

A graph representation based on segmented data can
only provide reliable results for a correct segmenta-
tion.

Instead of applying post-processing techniques to
reduce artefacts introduced by the segmentation we
propose to base the representation on the original
unsegmented data. For a Reeb graph representation
critical points may be computed on the original data
instead of the segmented data. Local Binary Patterns
(LBPs) [17] are considered as one method to derive
such critical points on an unsegmented image.

LBPs were introduced as as a tool of texture
classification and work (in their simplest version) as
shown in Figure [Tt The center pixel is compared to
its neighbourhood. The relations of this comparison
are stored as a bit pattern: In case a neighbouring
pixel is larger or equal the center pixel its bit is set
to 1 otherwise to 0. The neighbourhood pattern is
encoded as the position of each neighbourhood pixel
in a binary data item [[16]].

Critical points on a shape according to a Morse
function build the nodes in a Reeb graph. Such
critical points (in 2D) are minimum, maximum and
saddle points. The configuration of the neighbour-
hood around a pixel encodes the local topology.
The region may be a (local) maximum (the bit
pattern contains only 0Os), a (local) minimum (the bit
pattern contains only 1s), a plateau (the bit pattern
contains only 1s, but all pixels of the region have
the same gray value), a slope (the bit pattern of the
region contains one connected component of 1s and
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Figure 2: Neighbourhood configuration detected by
LBPS. The red circle indicates the neighbourhood
used in the LBP computation for the pixel at the po-
sition of the center of the circle.

one connected component of 0s) or a saddle point
otherwise [[7]. Figure 2] shows examples for all these
region configurations that may be encoded by LBPs.

The original LBP operator was defined for the
spatial domain only. Similar to the work of Laptev
who extended the Harris and Forstner interest point
operator to space-time interest points in [12]] and
the LBP description of local structures was
extended in time to describe local features in the
spatio-temporal domain [21]]. The so called Volume
Local Binary Pattern (VLBP) represents dynamic
textures as volumes of (X,Y,7T), where X and
Y are the spatial coordinates, 7', as a temporal
coordinate, represents points in time. A sequence of
dynamic textures over time is therefore represented
by a VLBP.

Reeb graphs are derived on binary segmented
2D or 3D data using an analysis based on a Morse
function as for example a height function. In order
to analyse unsegmented data local descriptors as
for example LBPs may be used as Morse function,
provided that the descriptors satisfy the necessary
conditions, analog to the conditions of Morse
functions [3]].

Despite the idea to avoid segmentation as a pre-
processing step, this approach works on a segmented
image as a first input. However, the critical points are
computed on the unsegmented data, the segmented
image is only needed to guide the computation of

the critical points as follows:

On the initial segmentation the medial axis is
computed for the foreground region. The medial
axis is formed by the centers of maximal circles that
cover the shape completely. Therefore, the medial
axis implicitly provides a measure of width, as for
each point along the medial axis the radius of the
inscribed maximal circle (the distance to the bound-
ary) is known [I13]. Along this skeleton LBPs are
computed for each skeleton pixel. The LBP kernel
size is thereby determined by the radius associated
with the individual skeleton pixels. Minima, maxima
and saddle points that are encountered in this way
may then be used as critical points (nodes) in a
graph, connections of these nodes can be derived
from the skeleton.

In case the position of the skeleton, respectively
the critical points, can be estimated (for example in
video data based on the position in a previous frame)
the segmentation as well as the initial skeleton do
not need to be recomputed. Rather this known ap-
proximation can be reused to guide the computation
of the critical points (in the next frame).

3. Time as Morse Function

Analysing data over time adds one dimension to
the original data domain. Edelsbrunner et al. intro-
duced time varying Reeb graphs in [5]]. They present
an algorithm to maintain Reeb graphs through time
and to store the graph’s evolution.

For 2D images of shapes that change over time we
can augment the spatial information of the pixels
with temporal information by storing as a third coor-
dinate the point in time the according pixel was first

Figure 3: Spatial information of a growing root aug-
mented with temporal information: the image shows
a segmented lupine root, the colors indicate measure-
ment time. Image courtesy of Leitner et al.



encountered. Shapes that grow are imaged on sev-
eral points of time through this development process.
After an alignment of the acquired data according to
the last acquisition (the most mature one), parts of
the growing shape are labeled according to the time
they were first encountered. This representation aims
specifically at the representation of growth, temporal
deformations are not represented. Figure [3] acquired
by Leitner et al. shows an example for such a
dataset: individual parts of the root are labeled ac-
cording to the time these parts were first observed.
For such a configuration a height function along the
temporal axis (time function) may be used to extract
level sets. These level sets represent the evolution of
the shape over time. Figure[]illustrates the proposed
approach: Figure [#a] shows the augmented spatial in-
formation, Figure [db|shows level sets of this data ac-
cording to time.

A Reeb graph can be built, as the time is used equally
to a height function as Morse function. In order to
build the Reeb graph the individual components are
connected by tracing through the spatial information
from one time step to the next.

4. Co-Analysis and Co-Representation

For the recognition and representation of structure
methods based not only on a single object, but on a
class of similar objects may be used. This so called
co-analysis focuses on a common structure of all
objects in the class and on relations between parts
of the object and thereby reduces influence of noise
in the capturing of a single image. Co-analysis may
further reduce the time needed for a training phase,
as objects of a class are simultaneously analysed in
co-analysis [19].

To perform co-analysis an alignment of the indi-
vidual data samples is needed first. Van Kaick et
al. for example in assume the shapes to be
upright-oriented and partitioned into meaningful
parts. Golovinskiy et al. in [6] base the shape
alignment on the alignment of axis according to
a principal component analysis. We propose to
align 2D or 3D image data samples using standard
representations as for example skeletons or Reeb
graphs. Other than the alignment according to an
axis, skeletons and graphs allow for an alignment of
data samples of articulated or varying objects.

Spatio-temporal data may create classes of images
as for example in biological datasets a growing
organism may be imaged over time. Therefore, the
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Figure 4: Augmenting the spatial information of a
growing structure with temporal information adds
one dimension. A height function along this dimen-
sion provides a Morse function with respect to time.

data consists of sets of related data samples that
have certain features in common. An analysis of
a collection of data samples is called co-analysis
. The aim of this procedure is to label the
same entities with the same labels although they
may appear in variations. Considering for example
drinking glasses: in co-analysis a collection of
different glasses is used. All glasses have a body that
may hold liquids, some of them may have a stem.
Independent on the actual design of the stem (long
and thin or short and decorated) this part of the glass
should always be detected as stem.

Further knowledge based on co-analysis of a class of
data can be used to verify decisions for a single data
sample.

Considering the mentioned biological applications,
co-analysis of data samples could for example be
beneficial in the area of plant phenotyping. Here
classes of images are formed as images of several
different plants (therefore potentially different
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Figure 5: Application for co-analysis: root develop-
ment. Small branches (indicated by red arrows) may
only represent noise. An image of a later day can ver-
ify a decision - in this case true branches (indicated
by the green tickmark).

phenotypes) exits for the same genotype. Moreover,
the plants are imaged on successive days of growth.
The temporal stack of images of a single plant can
be seen as a class of images. Analysis decisions
are not taken for a single image but considering the
whole class. Artefacts may therefore be detected and
reduced as decisions for a single image are verified
considering the remaining images of the class.

After an initial segmentation and alignment of
the images, representational decisions, for example
whether a branch is a spurious branch or not, can
be verified using an image acquired at a later time.
Figure [5] shows such a temporal sequence of root
images. In Figure [5a] and [5b] two small branches
that may be identified as noise in a single image
are indicated by red arrows. The later images in
Figure [5b] and [5¢| identify these small branches as
true branches (indicated by the green tickmark). In
this case the small branches would be kept in the
final representations.

Co-analysis may further be used in the devel-
opment of representations of a whole class of data
(co-representation) instead of a single data sample.
The reduction of a class of data to its characteristic
properties provides a general representation of the
whole class of data. Such a co-representation can

for example be given by a graph that represents the
properties valid for the whole class of data. For
shape representation geometric graphs may be used.
Especially when analysing and representing the
content of an image, a node may be assigned to a
pixel, therefore geometry is implicitly represented.
In order to use a graph as a co-representation
of a class of data, we may represent each data
sample using a geometric graph. However, for the
general graph derived as a co-representation the
graphs representing single data samples may be
analysed for common topological structures which
are represented in the final co-representation graph.
Geometric properties are in this case disregarded in
the co-representation.

However, for a developing shape the representation
of the latest acquisition may be taken as the co-
representation for the whole sequence. In this way
geometric properties can be kept in the representa-
tion and further data samples can be mapped to the
co-representation.

5. Extensions to Skeletons

Skeletons (medial axes) given as a thinned version
of a shape with equal distance to the boundary, are
widely used shape descriptors. In order to extend
the definition and representational power of such
a common skeleton, we propose a combination of
skeletons and model fitting.

The contemplated approach works as follows:

1. The medial axis is computed for the shape first.
On the obtained skeleton a constrained distance
transform is performed - the geodesic distance
along the skeleton is computed in this way.

2. To allow for the fitting of simple models, the
axis needs to be straightened first. Therefore,
the medial axis is decomposed into single curve
segments at branching points. For each pixel
along the skeleton the distance to the starting
point of the segment (and further to a starting
point of the whole skeleton) as well as the dis-
tance to the boundary (the radius of the maximal
inscribed circle at this position) are known.

3. Simple models as a parabola, an ellipse, a cylin-
der or similar (higher order e.g. super-quadrics)
models can be fitted to the transformed data.



y=x’

p=(x,y)

X
d

Figure 6: Example parabola, together with focus f
and directrix d.

4. Fitted models may further be back-projected to
the original domain.

We describe the process of model fitting in more
detail using a parabola:

A parabola is defined as the locus of points
equidistant from one point (the focus) and one line
(the directrix). Figure|§| shows an example.

The straightened skeleton serves as the axis of
symmetry of the parabola to be found. In order to fit
this parabola to the data points two positions along
the axis of symmetry need to be determined:

a. position f along the axis: position of the focus

b. position d along the axis: position of the direc-
trix

For any point p = (x, y) of the parabola the follow-
ing equation holds:

Va2 + (f—y)?2=1ld—yl (1)

Reformulating equation|[T]yields the dependency of x
from y as follows:

2(y)? = (d—f)d+f—2y) 2)

We determine f and d by minimizing the sum of
squared errors between the actual measured values
x? (x; corresponds to the radius stored with each
skeleton pixel) and the value z(y;)? given by a model
parabola as formulated in equation [2] thus determine
the parameters of an optimal fitted parabola.

Skeletons enhanced in this way may amongst
others be used to:

e detect artefacts in an image segmentation;

e segment an object into meaningful parts based
on fitted models;

e represent a particular shape or its properties us-
ing the parameters of the fitted model.

Applications for the above mentioned enhanced
skeletons can for example be found in the analy-
sis of biological data: Roots due to their elongated
shape and narrow root tip can be approximated by a
parabola. The parabola model may be used to im-
prove the segmentation of an image into root region
an background. Such a segmentation tends to intro-
duce artefacts due to for example root hairs that fal-
sify the segmented regions. Figure [7 illustrates an
example of a parabola fitted to a root branch, accord-
ing to the described approach. Additionally, to an
improvement of the segmentation, the parabola pa-
rameters themselves may be used to describe the root
and to model its growth.

Another application for enhanced skeletons is pre-
sented by the segmentation of 3D objects into rigid

Figure 7: Root segment straightened according to a
medial axis and parabola model fitted to the root tip
(illustrative model).



Figure 8: Representation of rigid parts of a horse us-
ing fitted ellipses (illustrative model).

parts. Instead of basing this segmentation on a sim-
ple medial axis alone, a 3D model of for example a
horse can be segmented into rigid parts, by fitting el-
lipsoids to the individual parts. Elongated shapes as
for example the torso of a horse may be better repre-
sented by ellipsoids than by spheres which are fitted
for the medial axis representation. Moreover, the fo-
cal points of the fitted ellipsoids can be overlapped in
the individual rigid parts, thereby representing con-
nections between parts (in the horse model case these
connections are the joints). Figure [§]illustrates this
example.

6. Conclusion

The presented approaches are novel concepts and
extensions to the current state-of-the-art. Common
approaches for the extraction and representation of
structure (for example skeletons and Reeb graphs)
are sensitive to noise and depend on the quality of
the binary segmented input image. The concepts in-
troduced in this paper aim at decreasing this sensitiv-
ity towards noise.

An initial segmentation and an initial skeleton rep-
resentation may be improved by considering local
features along the skeleton or by model fitting using
straight segments of the skeleton as axis of symme-
try of a model. Both approaches in the end provide
compact representations of the input data. A poten-
tially noise flawed segmentation can be used as an
initial input as the contemplated approaches can cope
with a rough segmentation - while a representation is
found, the segmentation may simultaneously be im-
proved.

We further extend the known co-analysis to a more
general approach by aligning several data samples
according to skeletons or graphs instead of an axis.
Therefore, the limitation of the alignment to non-

articulated objects only is revoked. Based on graphs
or skeletons objects in varying poses may then be
used in the co-analysis by aligning their rigid parts.
For well aligned data samples over time we propose
to add the temporal information as an additional di-
mension. A Reeb graph representation may in this
case be built by using a height function along the
time axis and by tracing back the evolution of the
connected components.

These separate ideas may be joined together to im-
prove representations of structures in spatio-temporal
data: Robust skeleton representations may be used
as an alignment of several data samples respectively
their contained structure. Such aligned data sam-
ples in turn build the input for a Reeb graph repre-
sentation over time, representing temporal changes
in the structure. As well as for co-analysis which
may provide a co-representation - a representation
of a whole class of objects. For comparison of data
samples, new samples may then be mapped to the
co-representation and compared with the class. Fur-
thermore, an initial representation may be improved
by fitting a model to it. This model may even be back
projected to the input data thereby also improving the
segmentation.

Future work includes the implementation of these
presented ideas and evaluation on (for example the
mentioned biological roots and horses) data sets. An
investigation of further approaches to overcome the
discussed open problems in the recognition and rep-
resentation of structures in spatio-temporal data are
as well subject to future work.
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