

Maximum

Saddle (Branch)

Saddle (Merge)

Cycle

²Gregor Mendel Institute of Molecular Plant Biology Austrian Academy of Sciences

Reeb graph based examination of root development

Ines Janusch¹, Walter G. Kropatsch¹, and Wolfgang Busch²

¹Vienna University of Technology Institute of Computer Aided Automation Pattern Recognition and Image Processing Group

Computer Vision Winter Workshop 2014

Introduction to phenotyping

phenotype (Greek: *phainein* = to show) - composition of an organism's observable characteristics

phenotyping of the plant *Arabidopsis thaliana*:

- characteristics of the root such as branching points and branch endings are analyzed
- these characteristics can be efficiently described by a skeletal graph representation

Presented method

Root characteristics described by **Reeb graphs** (according to **height function**):

- Reeb graphs preserve topological information
- nodes in Reeb graphs correspond to critical points (points of change in topology)
- edges in Reeb graphs describe topological persistence [1]
- in 2D critical points (nodes in the Reeb graph) are minima, maxima or saddles [2]
- Reeb graphs are based on Morse theory but have been extended to the discrete domain
- according to Morse theory: for all pairs of distinct critical points x_1 and x_2 , $f(x_1) \neq f(x_2)$ holds[2]

Minimum

correction of critical points

connections in Reeb graph

graph pruning

critical points on same height

move integer coordinates of point p = (x, y)

to p' = (x, y + f)with $f = \frac{1}{w} \cdot (x - 1)$ and w = image width

graph pruning

to reduce number of spurious nodes in the Reeb graph

frayed borders = artefacts due to segmentation results in additional branches in graph

Results

numbers of nodes in the 34 root images:

cycles in the 34 root images:

	1 cycle in root
day 16	7, 19
day 20	4, 5, 7, 12, 20
))	
	2 cycles in root
day 20	19

#edges = (#nodes-1) + #cycles

Conclusion and future work

Reeb graphs:

- suitable descriptors for root structures
- capture the main characteristics of roots well: branches and branch endings
- branching points and overlaps in 3D can be immediately distinguished (cycle in Reeb graph)

Future work:

- different segmentation approach (larger dataset)
- various functions used to build the Reeb graph

References

Ines Janusch | ines@prip.tuwien.ac.at Walter G. Kropatsch | krw@prip.tuwien.ac.at

Contact

Wolfgang Busch | wolfgang.busch@gmi.oeaw.ac.at

[1] S. Biasotti, D. Giorgi, M. Spagnuolo, and B. Falcidieno. Reeb graphs for shape analysis and applications. Theoretical Computer Science, 392(13):5-22, Feb. 2008. [2] Harish Doraiswamy and Vijay Natarajan. Efficient algorithms for computing Reeb graphs. Computational Geometry, 42(67):606–616, Aug. 2009.