

Diplomarbeitspräsentation der Fakultät für Informatik

Reeb Graph Based Image Representation for Phenotyping of Plants

Masterstudium: Visual Computing

Ines Janusch

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich: Mustererkennung und Bildverarbeitung Betreuer: O.Univ.-Prof. Dr. Walter G. Kropatsch

Introduction to Phenotyping

phenotype (Greek: phainein = to show) - composition of an **organism's observable characteristics**

Root characteristics described by Reeb graphs (according to height function and geodesic distance):

- nodes in Reeb graphs correspond to critical points (branching points and end points of branches)

- according to Morse theory: for all pairs of distinct critical points x_1 and x_2 , $f(x_1) \neq f(x_2)$ holds true [2]

Results

root17, day 12 is a subgraph of root 17, day16

combination of graph representations through isomorphic subgraphs

distance between two graphs through maximal common subgraph

$$d(G_1, G_2) = 1 - \frac{|G_{mcs}|}{max(|G_1|, |G_2|)}$$

Structural equality of graphs			
geodesic distance Reeb g.	height function Reeb g.	medial axis graph	
100%	0.06	0.25	distance
79%	100%	0.25	between
32%	26%	100%	graphs
isomorphic graphs			
	Structural equ geodesic distance Reeb g. 100% 79% 32% iso	Structural equality of graphsgeodesic distance Reeb g.height function Reeb g.100%0.0679%100%32%26%isomorphic graphs	Structural equality of graphsgeodesic distance Reeb g.height function Reeb g.medial axis graph100%0.060.2579%100%0.2532%26%100%isomorphic graphs

based on a dataset of 34 root images

root17, day 16 and root 17, day 20 are isomorphic graphs

normalised root representation root 17, day 12, day 16, day 20

Conclusion

- **Reeb graphs:**
- are **suitable descriptors** for root structures
- capture the main characteristics of roots well: branches and branch endings [3]
- branching points and overlaps by projection from 3D can be immediately distinguished (cycle in the Reeb graph)[3]
- the attributes of different graph representations can be combined for isomorphic subgraphs
- normalised representation: efficient comparison of roots of different plants or on different days of growth

References:

[1] S. Biasotti, D. Giorgi, M. Spagnuolo, and B. Falcidieno. Reeb graphs for shape analysis and applications. Theoretical Computer Science, 392(13):5–22, 2008.

[2] H. Doraiswamy and V. Natarajan. Efficient algorithms for computing Reeb graphs. Computational Geometry, 42(67):606–616, 2009.

[3] I. Janusch, W. G. Kropatsch, and W. Busch. Reeb graph based examination of root development. Proceedings of the 19th Computer Vision Winter Workshop, 2014.

Kontakt: ines.janusch@gmail.com