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Abstract

The focus of this work is to examine root plant development by means of topological image
analysis. As roots grow and develop they change their shape (for example when branches
are formed). Due to this aspect this application is well suited for a topological analysis.
The aim of the scientific practical is to represent the root images as Reeb graphs. A method
to compute critical points using a height function and to build a Reeb graph based on these
points, is presented. All nodes in the graph are classified according to their type and their
color. There are four different types of nodes in a Reeb graph: minima, maxima, saddle
nodes and regular nodes. When storing color information with the nodes and interpret
the graylevels as levels of elevation, the nodes can be further classified according to their
elevation.



1 Introduction

Shape description by means of topological image analysis is a good choice in
this context, as roots change their shape when they are growing (for example
branches are formed). A shape description based on contours and shading
is due to this not suitable here. But topological attributes are necessary to
allow for an abstraction of shape according to invariant aspects of geometry.
Topology can be seen as a method for shape understanding. A topological
exploration of the shape according to quantitative geometric properties pro-
vided by real-valued functions defined on the shape is performed. Different
choices of functions allow for different properties to be considered [5]. The
first milestone in the examination of the root development using topological
persistence is to build Reeb graphs representing the dataset images.“Reeb
graphs are compact shape descriptors which convey topological information
related to the level sets of a function defined on the shape.”[4, p. 1] There-
fore these Reeb graphs are compact representations of the underlying images.
An analysis of the Reeb graphs allows for categorization of the nodes of the
graph according to the neighboring nodes.
These Reeb graphs can be of use in several applications: Plant characteristics,
for example the number of branches in a root or the position and number of
branch-endings, can be read off the graphs. Moreover with the projection of
a 3-dimensional structure (here the roots) to a 2-dimensional space, overlaps
of this structure with itself may arise in the 2-dimensional representation. To
distinguish between a branch and an overlap may not be easy when using an
analysis simply based on contours. Using a topological analysis an overlap
and a branch can be easily distinguished, as for an overlap the Reeb graph
representing the structure holds a loop that comes along with the overlap.
Another application for Reeb graphs lies in the comparisons of images. The
Reeb graph can be seen as a skeletonized and therefore simplified represen-
tation of the image content. Such an approach is described in [7].
The paper is organized as follows: the dataset is presented in Section 2,
the segmentation approach used is discussed in Section 3 as this approach
uses combinatorial maps, a brief insight into this topic is given in Section
4. Section 5 discusses the data-structure used. A theoretical overview of
critical points and Reeb graphs is given in the Sections 6 and 7. The actual
computation of these critical points, the building of the Reeb graph and the
classification of nodes within the graph are shown in the Sections 8, 9, 10
and 11. Section 12 and 13 show the results.
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2 Data set

There are two different datasets analyzed in this paper: a synthetical test
dataset and the root dataset. The test-dataset was created to serve as ground
truth and to allow for a quick evaluation of this approach.
The approach is tested and evaluated on the test dataset before examination
of the root data is done.

2.1 Test dataset

A test dataset containing possible types of regions was assembled. The im-
ages are synthetically created and range from simple images of only one
foreground region to more complex ones with several foreground regions of
different gray-values. To generate these more complex images a distance
transformation was applied to some of the simpler images. In order to ob-
tain clear regions, the distance transformed image is spread so that it covers
the whole 8bit intensity interval of [0,255]. Next the regions are formed ac-
cording to gray values; all values of [0,255] are mapped to the nearest of the
six values: 0, 50, 100, 150, 200 and 255.

The dataset consists of 23 gray-scale images showing 1 to 7 foreground re-
gions and up to 2 holes in the foreground structure. The whole test-dataset
used here is shown in Appendix A.

2.2 Root dataset

The root images dataset was acquired by the research group of Dr. Wolfgang
Busch at the Gregor Mendel Institute of Molecular Plant Biology. For this
dataset images of the plant Arabidopsis thaliana are taken. This plant is a
model organism which is widely used in plant sciences, due to the small size
of its genome, the small size of the plant itself and its rapid life-cycle[10].
The plants are grown in liquid between glass plates. All plants in one plate
belong to one dataset. One dataset/plate consists of 2 rows of 12 plants. The
plates are placed in a growth chamber that allows for controlled conditions
as constant temperature or humidity.

There are two types of data obtained:
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Type 1: Microscopy images on cellular resolution showing the root only: A root
needs to be colored using a fluorescent contrast agent that is not able
to enter the cells but stays in the cell membranes, coloring them in
this way. The data is then obtained by means of confocal microscopy.
Therefore the object is at no time pictured as a whole, but it is sampled
by a laser in points. Only one point of the object is illuminated at a
time. All points pictured in this way are then combined to one image
of the object. This approach increases the optical resolution and the
contrast. As the laser is able to enter the root (the laser can enter a
medium for a maximum of 150 µm, the roots are about 120 µm thick)
3D data is acquired, as there is a stack of 2D images of different layers
of the root.

Type 2: Images of the whole plant (including root and leafs): These images are
taken using an image scanner. A special fixture allows for two datasets
to be placed in an exact known position inside the scanner. The images

Figure 1: Example images of root dataset

3



are acquired with a scan at 1200 dpi resolution with 8bit color depth,
therefore one image is of approximately 6000x6000 pixels in size. The
images are stored as bmp files of about 150MB. Along time several
images are acquired this way as each plate is scanned at several days of
the growth process. A 3D stack of 2D images over time is thus created
for each root.

This work considers the scanned images of the whole plants (type 2 as
mentioned above) only. Moreover the images used are pre-processed to sim-
plify the work with such large images. The 24 plants per plate are cropped
to single images: one image per plant with an image size in the range of
500x1300 to 800x1300 pixels resolution and a file size of 1,5-2,5Mbyte. Ex-
ample images of this dataset are shown in Figure 1.

The whole set of plant images used here consists of 9 sets of time series.
Each set holds 6 images of one plant taken over time (day 1, day 4, day 8,
day 12, day 16, day 20). Of these 54 images, 34 images are analyzed, the
other images are too early in the growth process and therefore to small in
structure to be represented by a non-trivial Reeb graph. All images ana-
lyzed consist of 2 foreground regions (leaves and root) and up to 3 holes in
the foreground structure. The dataset is shown in Appendix B.
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3 Image segmentation

An image segmentation is needed first, as all following steps are performed
on the segmented data. The segmentation results are checked and corrected
manually to generate ground truth.

There are several approaches available for this segmentation step. A pyra-
mid based approach is used here. Image pyramids describe the content of an
image at multiple levels of resolution; from a high resolution at the base to a
coarse resolution at the top of the pyramid. Lower resolutions are computed
using a reduction function which takes as input the cells in the reduction
window[13].

The approach given in this paper was done using graph pyramids (based
on [13]):

Images can be represented as graphs, each pixel can for example be de-
scribed as a vertex, connected by edges to neighbouring vertices (=pixels). A
graph pyramid is a pyramid where each level is a graph consisting of vertices
V and edges E. Graph pyramids can be used for image segmentation. On
the base level each pixel (each vertex) is a homogenous region. On the next
level certain homogeneity criteria for regions are checked. If these conditions
are fulfilled regions are merged.

”
Using 2D images, combinatorial maps may

be understood as a particular encoding of a planar graph, where each edge is
split into two half-edges called darts.“[9, 3] Using a stack of region adjacency
combinatorial maps an irregular combinatorial pyramid is built [11].

”
A com-

binatorial map in two-dimensions is composed of vertices, edges and faces,
respectively defined as cells of 0, 1 and 2 dimensions and noted i-cells.“[9, 2]

Definition for a two-dimensional combinatorial map:
“A two-dimensional combinatorial map (or 2-map) M is a triplet M =
(D, β1, β2) where:

• D is a finite set of darts;

• β1 is a permutation on D;

• β2 is an involution on D. “[9, 2]
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“ Each dart belongs to a single vertex, edge and face of the map. The
β1 permutation links each dart of a face to the next dart encountered while
turning clockwise around the face. The β2 involution links each dart of an
edge to the other dart of the edge which has an opposite orientation. ” [9,
3]

One advantage when using a segmentation approach based on combinato-
rial maps is, that there is no need to detect region borders as these are
already defined by the darts in the combinatorial map. The positions of
such darts in the image can be obtained by exploiting the hierarchy of the
segmentation pyramid. At the bottom level each pixel forms a single region.
The position of the darts describing the one-pixel region are therefore known.

The implementation of the segmentation used, takes an arbitrary image as
input and returns a hierarchy of segmented images. The segmentation based
on an irregular graph pyramid can be changed by user input: in a graphical
user interface the user can place its modifications[8]. The user has the possi-
bility to merge regions or prevent them from being merged in higher levels of
the hierarchical segmentation (as shown in Figure 2). For changes made by
the user the pyramid is recomputed to adapt the underlying combinatorial
maps [8]. A metadata file for each level of the hierarchy is generated as well.
This file contains labeled regions (one label for each connected component)
which correspond to the segmented regions in the image.

As illustrated in Figure 2, the automatic segmentation is not able to seg-
ment the given root correctly. On the coarsest level of the segmentation
(level 31) the root is even entirely missing. With the possibility to inhibit
some segments on a level of fine segmentation by user input, it is possible to
correctly segment the root and the background as shown in the manual seg-
mentation example. Therefore by using this segmentation approach ground
truth in terms of a distinction between foreground and background can be
generated. This user interaction was needed for all images in the dataset as a
correct segmentation was not possible based on the automatic segmentation
alone (see Figure 2). The segmentation takes about one hour and a half per
root image, this sums up to a total of 50 hours for the segmentation step.
Despite using the interactive segmentation, some region borders were not
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original image automatic seg-
mentation level
18

automatic seg-
mentation level
31 (top level)

manual seg-
mentation

Figure 2: Levels of segmentation

segmented correctly but appear frayed due to the segmentation process (see
Section 10.1). This problem appears mostly for images in the dataset that
were taken on day 16 of the plant’s growth period. For the images taken on
day 16 the glass surface appears stained when compared to images of other
days which leads to these segmentation artifacts.
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4 Correspondence: image - combinatorial map

The combinatorial map is based on vertices, edges and faces which describe
the underlying image. However these vertices, edges and faces are not the
vertices, edges and faces a human would use to describe an image.

Figure 3 shows a white rectangle on a black background. Describing this
image using vertices, edges, faces we can describe this image with 4 vertices
(the 4 corner points of the rectangle), 8 edges (the 4 edges bordering the
white rectangle and 4 edges forming the border of the black area) and two
faces (the white region of the rectangle and the black region of the back-
ground).
Using a combinatorial map this image is described with 2 vertices, 3 edges
and 3 faces. This map is shown in figure 4. Vertices are marked by circles
and labeled with red numbers, edges are marked by lines, labeled with blue
numbers and faces are white regions labeled with gray numbers (there are 3
faces, as the combinatorial map extends the image by a virtual background
face labeled 0 in this example). The basic element of a combinatorial map,
the darts, are labeled using green numbers here [14].
“Each dart belongs to a single vertex, edge and face of the map. The β1 per-
mutation links each dart of a face to the next dart encountered while turning
clockwise around the face. The β2 involution links each dart of an edge to

Figure 3: simple image: white rectangle on black background

Figure 4: corresponding combinatorial map
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the other dart of the edge which has an opposite orientation.[9]”
Although darts describe the borders of region, these darts do not directly
contain information about the location of these borders in the image. By
using a hierarchical segmentation approach it is possible to trace the darts
back to the bottom level. On this level each pixel forms one region described
by a dart and the location of these darts is known. Using the pyramidal
structure the border locations thus can be obtained at higher levels as well.

“There are two possible methods for the representation of the region-boundaries:

1. The boundaries may be inside-pixel-boundaries or outside-pixel-boundaries.
However, this approach has a severe drawback:

• 2 adjacent regions do not share the same boundary element

2. Alternatively define the boundaries on a set that is retrieved by trans-
lating (shifting) the original image domain Z2 by (−1/2,−1/2). This
new set is called half-integer plane or boundary plane as opposed to
the image plane. The boundaries defined in the half-integer-plane are
called inter-pixel-boundaries.” [12]

In the following we will use inter-pixel-boundaries. Details on the imple-
mentation are given in Section 5.
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5 Data structure

The segmentation pyramid is saved layer-wise as a label-image. These files
are imported into the Matlab environment.
At the bottom level of the pyramid each pixel is seen as a region and there-
fore represented by linked darts. As pixels and regions are merged darts are
removed/contracted.
The whole pyramid can be stored as a list in the size of the maximum number
of darts (number of darts on the bottom level).

However, for this approach the darts are not linked and resorted for all levels
of the pyramid:
A list of all pixels is generated for the bottom level. The location of such
a pixel in the image can be obtained easily due to the naming convention
used: the pixels are labeled by successive numbers. For the bottom level of
the pyramid, we start with the pixel in the upper left corner of the image
and label it 1, we then label the whole first row with ascending numbers,
move to the next row and label it with further ascending numbers in a left
to right order. Therefore the top left pixel is named 1 while the bottom left
pixel is named n ∗m for an image of size n x m.Next the final segmentation
on the top level is analyzed. For each region in this segmentation result, the
pixels forming the inside-pixel boundary are located. These pixels are now
linked in a clockwise order around the region, all pixels that do not belong
to a border are left unlinked.
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6 Critical points

”
A point (a, b) is called a critical point (or a stationary point) of a function
f(x, y) if both derivatives fx(a, b) = 0 and fy(a, b) = 0, or if one of these
partial derivatives does not exist. If f has a local maximum or minimum at
(a, b), then (a, b) is a critical point of f . However, not all critical points give
rise to maxima or minima. At a critical point, a function could have a local
maximum or a local minimum or neither.“[15, p. 959]
Such a critical point can either be a degenerate or a non-degenerate critical
point. These two cases can be distinguished via the Hessian matrix. The
Hessian matrix is the square matrix of second-order partial derivatives of
a function. The determinant of the Hessian matrix at a critical point x is
then called the discriminant. If this determinant is zero then x is called a
degenerate critical point of f (or non-Morse critical point of f). Otherwise
it is non-degenerate (or Morse critical point of f).

”
Let Md denote a d manifold with or without boundary. A smooth, real-

valued function f : Md → R is called a Morse function if it satisfies the fol-
lowing conditions:

• all critical points of f are non-degenerate and lie in the interior of Md,

• all critical points of the restriction of f to the boundary of Md are non
degenerate

• for all pairs (p, q) of distinct critical points of f and its restriction to
the boundary, f(p) 6= f(q).“[6, p.4]

Critical points of such a real-valued function are those points where the
gradient becomes zero. At regular points no topology changes occur. Topo-
logical changes occur at critical points only. In 2D these are minima, maxima
or saddles [6].
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7 Reeb graph

“Reeb graphs are compact shape descriptors which convey topological infor-
mation related to the level sets of a function defined on the shape.“[4, p. 1]
A Reeb graph is a topological graph. µ : M → R is a continuous, scalar
function on a compact manifold. The Reeb graph M concerning µ is the
quotient space of M [4]. Vertices of the Reeb graph correspond to critical
points of the function (points where the topology of M changes), edges de-
scribe topological persistence[4].
These critical points / nodes in a Reeb graph are shown in Figure 5. In
order to categorize a critical point all neighboring points in the Reeb graph
are analyzed. “In the case of saddles, the corresponding node has degree 3 if
the saddle merges/splits components, and degree 2 if it is a genus modifying
saddle.”[6, p. 5]

Degenerated critical points (= non-isolated critical points such as plateaus
or flat areas) represent a typical problem. Therefore extended Reeb graphs
were introduced[4]. The Extended Reeb Graph is able to faithfully represent
the surface shape, even in case of degenerate critical points[4]. The concept
of critical points is hereby extended to critical areas. There are simple and
complex maximum / minimum areas as well as simple and complex saddle
areas[4]. The distinction among the different types of critical areas is done
by analyzing the coordinates of the vertices which are edge-adjacent to the

Figure 5: Different types of critical points and corresponding nodes in the
Reeb graph.
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Figure 6: “The Reeb graph of a bitorus and some cross sections. Each contour
determines an equivalence class which is represented in the Reeb graph by a
single point.”[2, p. 5]

region boundary that is, by checking the ascending/descending directions[3].

Once the critical points are computed the Reeb graph will be built based on
these points as its nodes (see Figure 6 for an example of a Reeb graph). As
the critical points occur with changes in topology (changes in the number of
components when analyzing the root in direction of growth), a Reeb graph
built on these nodes can be seen as a kind of skeleton representation of the
root.
When organizing the nodes and arcs in the Reeb graph according to their

position in the image, proportions of the roots characteristics are taken into

Figure 7: Example of a root with changing direction of growth, dataset
“complex“- root001 day 5
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Figure 8: “Construction of the Reeb-graph encoding topological features of a
surface with respect to the elevation of surface points. (a) Level sets induced
by quantization of elevation values into 4 levels. (b) The Reeb-graph of (a).
(c) Level sets induced by quantization of elevation values into 8 levels. (d)
The Reeb-graph of (c).”[1, p. 12]

account. This allows for a more reliable representation of the root images.

For roots with a main direction of growth that is not perpendicular to the
rows of the image or with changing direction of growth (as shown in Figure
7), the Reeb graph built in this way might not describe branches and merges
in the root in a correct way (due to overlappings). Using the height func-
tion to find critical points might describe several independent components
although they form only one component.
By changing the base function of the filtration this issue can be handled.
Fore example Eccentricity Transform or a strategy similar to step 1 in [7]
could be used instead of the height function to compute the critical points.

The nodes of the Reeb graph can be attributed with color / graylevel in-
formation. This allows for further differentiation between saddle points. In
order to describe changes of color in a component, regular nodes will be
needed in such a Reeb graph (as shown in Figure 8).
This approach will be of particular use when working with the test dataset.

With the root data, an analysis of the color information is not needed, as
the roots are all similar in color and shading. What is of interest though, is
the location of the transition of leaves to root. This location can be found
by analyzing the color distribution in the root. So storing color information
with the Reeb graph nodes can be used here.
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8 Computation of critical points

The underlying idea is to analyze the border of flat-regions in the image.
Critical points indicate topology changes and these changes might only oc-
cur at the border of a region but not within a region. Therefore the border
of a region needs to be examined in order to find such critical points.

The two types of critical points that can be used with the root data are:

1. Critical points along the outer edge of the root. These occur with
topological changes in the shape of the root like branches.

2. Critical points inside the root. Here the gray levels are understood as
encoding of elevation, a kind of terrain model is built this way. These
critical points occur in places of zeros of the first derivative.

As all roots are similar in color and gray levels the second approach might
not allow for a reliable classification of a root. Therefore we will concentrate
on the first type of critical points (along the outer edge of the root) only.

8.1 Critical points along the outer edge of a root

As in the image in Figure 9 the roots are pictured in the direction of nat-
ural growth, thus the leaves are in the top part of the image and the roots
are in a mainly vertical direction facing downwards. The main direction of
growth of roots is downwards and branches occur mainly in this direction.
Therefore the height function can be used as measuring function here.

A critical point in this case indicates either a birth or death of a compo-
nent. There are 4 different cases to distinguish:

1. birth of a component while other components remain unchanged

2. birth of a component by splitting one component into two components

15



Figure 9: Example of a root with vertical direction of growth

3. death of a component while other components remain unchanged

4. death of a component by merging two components to one component

Figure 10 illustrates these four different types of critical points.

birth case 1 birth case 2 death case 3 death case 4

Figure 10: Four different types of critical points: critical points are marked
by red crosses.
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The critical points are computed based on the region borders obtained during
segmentation. As the height function is used to compute the critical points,
the region borders are analyzed with regard to horizontal borders as these
might describe a change in the number of components. For each horizontal
border its endpoints are checked for connected vertical borders:

• no change in topology - no critical point: one endpoint connected to a
vertical border going up, the other connected to a vertical border going
down

• split or birth: both endpoints connected to a vertical border going down

• merge or death: both endpoints connected to a vertical border going up

The so found critical points are located at the center of such a horizontal
border.

As changes in the color information are described as well, a fifth type
of node is introduced: changes in color information are described by regular
nodes. For each critical point its position, the color at its position and its
type (birth, split, merge, death, regular node) are stored.
To distinguish between the five types of nodes, for each node of type birth
or death certain neighboring pixels (in a 4-neighborhood) are checked. For
nodes of type birth the neighboring pixel in the previous row is checked, if
this pixel belongs to a background-region, the critical point is of type birth,
if it belongs to a foreground-region the critical point is of type split. Similar
to this, for a pixel of type death the neighboring pixel in the following row
is checked. If this pixel belongs to a background-region the critical point is
of type death, otherwise it is of type merge. The simultaneous occurrence
of a critical point of type split and merge indicates a change in the color
information and therefore a regular node, in this case the two critical points
originally computed (split and merge) are substituted by a regular node.
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Figure 11: Example images with critical points marked.

Figure 11 shows the critical points computed for three different images. The
critical points are marked in five different colors: red for critical points of type
birth, green for type death, blue for type split and yellow for type merge,
regular nodes due to changes in the color are marked in pink. For more
results on the test dataset or the root dataset see Section 12 and 13.
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9 Building the Reeb graph

Based on the computed critical points the Reeb graph is built.
Therefore these critical points need to meet the conditions of Morse functions
(see Section 6). If these conditions are not met the Reeb graph can not be
built.

To determine the connections between two critical points the following ap-
proach which resembles a flood fill algorithm is used:

1. The critical points are sorted according to the rows in an ascending
order to be processed sequentially (starting with the topmost). For
each critical point the successive rows are checked for critical points in
a raster scan order.

2. The row of a critical point is followed to the right of it until a pixel
belonging to a background region is reached.

3. Here the search is moved one row down and this row is followed to the
left until a background pixel or a critical point is found.

4. If a background pixel is found the search is moved to the next row. In
case of a critical point, the search terminates.

5. If the critical point that was chosen as start point is of type split, the
search for the two connected critical points is carried out to the left
and the right of the critical point.

The Figures 12, 13 and 14 show examples for such a search: The white
region is the foreground region, the critical points are labeled and highlighted
in purple. The green and blue marked regions show the regions that are vis-
ited during the search for a critical point. The numbers describe the order in
which the pixels are checked. A search starting with critical point 1 (Figure
13) and starting with critical point 2 (Figure 14) is shown.
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Figure 12: Example image, foreground area marked white

Figure 13: Search performed when computing adjacency of critical points.

20



Figure 14: Search performed when computing adjacency of critical points.

An adjacency matrix is created for the critical points and the connections
are marked in the adjacency matrix. As the Reeb graph is an undirected
graph it suffices to only put one entry in the adjacency matrix for an edge,
this means for an edge between point i and j the adjacency matrix is set to
1 for the element (i, j) but not for (j, i). In case of a cycle in the graph, a
critical point of type split is connected to a critical point of type merge by
two edges. This cycle is described in the adjacency graph, by setting both
coordinates describing the split and the merge node in the matrix to 1.

Based on this adjacency matrix the Reeb graph is drawn. There are two
types of graphs generated as output:

1. Reeb graph shown as a layer on top of the segmented image: the graph
is drawn as simple nodes connected by arcs. The default color is set to
red for both arcs and nodes.

2. Reeb graph without the image layer, the nodes are drawn as circles
showing the color stored with the critical point and are labeled. The
default color of the arcs is set to black.
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Figure 15: Example image with Reeb graph built on it.

Figure 15 shows examples for both types of Reeb graph built this way.
For more results on the test dataset or the root dataset see Section 12 and
13.
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10 Problems on the rootset

Two problems were encountered when analyzing the root dataset:

1. Additional critical points

2. Two or more critical points at same height

10.1 Additional critical points

In the final foreground/background image borders of image regions might
be frayed due to the segmentation process. Figure 16 shows an example of
such a frayed border. For these frayed borders additional critical points that
describe no actual split or merge of the root are computed. These critical
points alter the Reeb graph and complicate a comparison or matching of
these graphs.

10.2 Two or more critical points at same height

Due to the resolution of the images, the discretization of the root to be
analyzed and the further distortion during the segmentation process it is
possible that several critical points at different horizontal positions in the
image are at the same vertical position (same height) in the image (see Figure
17 for an example). Thus the third condition for Morse functions (see Section
6) is not met and no Reeb graph can be built. This problem arises for 32 out

Figure 16: Detail dataset “older age” - root09, day 20: Example of frayed
border and additional computed critical points
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of the analyzed 34 root images in the root dataset.

10.3 Problem handling

Especially the problem of two or even more critical points at the same height,
described in section 10.2, needs to be handled, as it occurs with 94% of all
images in the root dataset. This problem is overcome by implementing the
following solution:
Due to the discrete pixel-space, the coordinates (x, y) of a pixel p = (x, y) are
integers. Critical points at the same height (same y-coordinate) are shifted.
The height of such critical points is changed by an added factor f , 0 ≤ f < 1.
A critical point p = (x, y) is shifted to p′ = (x, y + f), f is computed using
the following formula: f = 1

w
∗ (x − 1), with w = width of the image. The

y-coordinate is thereby changed from an integer to a decimal number. Crit-
ical points at the same height are moved downwards in a left-to-right order,
thus for two critical points p1 = (x1, y) and p2 = (x2, y) with x1 < x2, it is
valid that, after shifting the points to p′1 = (x1, y1) and p′2 = (x2, y2), y1 < y2
holds. The actual order of heights is preserved by this correction procedure
as only critical points that were primarily at the same height are changed.
All critical points are at different heights, although when rounding down the
y-coordinate of the critical points to an integer, they stay in the actual pixel
line. A Reeb graph can therefore be built.
It is important to shift the heights in a fixed approach. A random decision
choosing one of two critical points at the same height when building the

Figure 17: Detail dataset “older age” - root09, day 20: Example of several
critical points at same height
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Reeb graph cannot be used, as the results may vary with repeated tests.
Reeb graphs built on such random decisions are not unique and therefore
useless for i.e. comparison of two images.

Considering the problem of additional critical points described in section 10.1
a solution is not implemented in this approach as it does not influence the
possibility of building a Reeb graph. This problem is based on the resolution
of the root images, the fine structures in the images and the segmentation
needed as a pre-processing step when computing the critical points. As these
additional critical points occur with frayed borders of segmented regions,
smoothing these borders in a post-processing step could reduce these addi-
tional critical points. However, thin structures that actually describe the
root, could be lost as well.
Persistence diagrams might pose another possible solution as such frayed
borders (and the critical points caused by them) are comparable to noise in
images.
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11 Categorization of nodes

The five different types of critical points computed result in four different
types of nodes in a Reeb graph: minimum nodes, maximum nodes, saddle
nodes, regular nodes. Figure 5 illustrates these different types of critical
points together with the corresponding nodes in the Reeb graph.

When additionally considering the gray-values (or color-values) of regions,
even more types of nodes can be distinguished. For each critical point the
color information is stored together with this point. Considering gray-values,
these values can be understood as dimension of elevation. The gray-values
range between black (value 0) and white (value 255 in an 8-bit image and
65535 in a 16-bit image). White, as the maximum value, is considered to be
the highest elevation.

Taking this into account, we can define 12 categories to classify the criti-
cal points:

1. critical point of type maximum with:

(a) maximum elevation

(b) minimum elevation

(c) intermediate elevation

2. critical point of type saddle with:

(a) maximum elevation

(b) minimum elevation

(c) intermediate elevation

3. critical point of type minimum with:

(a) maximum elevation

(b) minimum elevation

(c) intermediate elevation

4. regular node with:

(a) maximum elevation
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(b) minimum elevation

(c) intermediate elevation

This classification is based on the type of the critical point/node com-
puted and the color/gray-value of each node compared to the colors/gray-
values of all nodes.
As output a list of all nodes holding the classification of each node is gener-
ated.
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12 Results on the testset

Table 1 shows the occurrences of the 12 categories described in Section 11 in
the test dataset.

For each image in the test-dataset (Appendix A) four images are shown:

• The input image

• Critical points marked in the image (as described in Section 8). The
critical points are marked in five different colors: red for critical points
of type birth, green for type death, blue for type split and yellow for
type merge, regular nodes due to changes in the color are marked in
pink.

• Reeb graph drawn on the image (as described in Section 8)

• Reeb graph with nodes colored according to the image regions(as de-
scribed in Section 11)

All critical points and connections in the Reeb graphs were checked and
verified manually.

types of nodes types of elevation
maximum minimum intermediate

maximum 16 9 1
minimum 15 8 3
regular 15 23 54
saddle 15 3 2

Table 1: Occurrences of the 12 categories described in Section 11 in the test
dataset
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Figure 18: Results on the synthetical test dataset - image 1, 2
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Figure 19: Results on the synthetical test dataset - image 2, 3
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Figure 20: Results on the synthetical test dataset - image 4, 5
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Figure 21: Results on the synthetical test dataset - image 5,6
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Figure 22: Results on the synthetical test dataset - image 7, 8
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Figure 23: Results on the synthetical test dataset - image 8, 9
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Figure 24: Results on the synthetical test dataset - image 10 ,11
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Figure 25: Results on the synthetical test dataset - image 11, 12
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Figure 26: Results on the synthetical test dataset - image 13, 14
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Figure 27: Results on the synthetical test dataset - image 14, 15
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Figure 28: Results on the synthetical test dataset - image 16, 17
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Figure 29: Results on the synthetical test dataset - image 17, 18
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Figure 30: Results on the synthetical test dataset - image 19, 20
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Figure 31: Results on the synthetical test dataset - image 20, 21
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Figure 32: Results on the synthetical test dataset - image 22, 23
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Figure 33: Results on the synthetical test dataset - image 23
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13 Results on the rootset

For each image in the root-dataset (Appendix B) three different results were
computed:

• The segmented input image

• Critical points marked in the image (as described in Section 8). The
critical points are marked in five different colors: red for critical points
of type birth, green for type death, blue for type split and yellow for
type merge, regular nodes due to changes in the color are marked in
pink.

• Reeb graph drawn on the image (as described in Section 8)

• Reeb graph with nodes colored according to the image regions(as de-
scribed in Section 11)

All critical points and connections in the Reeb graphs were checked and
verified manually.

Table 2 shows the possible connections between different kinds of critical
points and according nodes in the Reeb graph. These connections are given
for two nodes A = (x1, y1) and B = (x2, y2) with y1 < y2, as a height function
was used as basic function to compute the critical points. In addition table 3
describes the numbers of connections (inbound and outbound) each of these

Possible connections between two nodes
type node A type of node B

maximum saddle (split) saddle (merge) minimum regular
maximum � X X X X

saddle (split) � X X X X
saddle (merge) � X X X X

minimum � � � � �
regular � X X X X

Table 2: Connections from node A to node B. Xstands for a possible con-
nection, for combinations marked with � no such connection is possible
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nodes has in the graph. These tables are intended to help in understanding
the given result images, as some markers for the critical points overlap due
to their location close to each other and due to their size. All result images
are also saved as images in the Matlab fig format. This allows to zoom in on
the images in order to solve the problem of overlapping markers.

Numbers of connections for nodes
types of nodes inbound outbound

maximum 0 1
saddle (split) 1 2

saddle (merge) 2 1
minimum 1 0
regular 1 1

Table 3: Numbers of inbound and outbound connections for different types
of nodes

The result images for the root dataset are organized according to the
computed results. For all images in the dataset first the computed critical
points are shown in section 13.1, section 13.2 shows the Reeb graphs based on
these critical points as an overlay on the images. Reeb graphs with labeled
nodes are given in section 13.3. A discussion of the results is given in section
14.
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13.1 Results: critical points

Figure 34: Results: critical points on root04 day 8, 12, 16 and 20
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Figure 35: Results: critical points on root05 day 8, 12, 16 and 20
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Figure 36: Results: critical points on root07 day 8, 12, 16 and 20

Figure 37: Results: critical points on root09 day 8, 12, 16 and 20
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Figure 38: Results: critical points on root12 day 8, 12, 16 and 20
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Figure 39: Results: critical points on root17 day 12, 16 and 20
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Figure 40: Results: critical points on root19 day 8, 12, 16 and 20
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Figure 41: Results: critical points on root20 day 8, 12, 16 and 20
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Figure 42: Results: critical points on root20 day 12, 16 and 20
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13.2 Results: Reeb graph (image overlay)

Figure 43: Results: Reeb graph on root04 day 8, 12, 16 and 20
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Figure 44: Results: Reeb graph on root05 day 8, 12, 16 and 20
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Figure 45: Results: Reeb graph on root07 day 8, 12, 16 and 20

Figure 46: Results: Reeb graph on root09 day 8, 12, 16 and 20
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Figure 47: Results: Reeb graph on root12 day 8, 12, 16 and 20
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Figure 48: Results: Reeb graph on root17 day 12, 16 and 20
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Figure 49: Results: Reeb graph on root19 day 8, 12, 16 and 20
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Figure 50: Results: Reeb graph on root20 day 8, 12, 16 and 20
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Figure 51: Results: Reeb graph on root20 day 12, 16 and 20
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13.3 Results: Reeb graph (labeled nodes)

Figure 52: Results: labeled Reeb graph of root04 day 8
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Figure 53: Results: labeled Reeb graph of root04 day 12 and 16
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Figure 54: Results: labeled Reeb graph of root04 day 20 and root05 day 8
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Figure 55: Results: labeled Reeb graph of root05 day 12 and 16
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Figure 56: Results: labeled Reeb graph of root05 day 20 and root07 day 8
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Figure 57: Results: labeled Reeb graph of root07 day 12 and 16
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Figure 58: Results: labeled Reeb graph of root07 day 20 and root09 day 8

69



Figure 59: Results: labeled Reeb graph of root09 day 12 and 16
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Figure 60: Results: labeled Reeb graph of root09 day 20 and root12 day 8
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Figure 61: Results: labeled Reeb graph of root12 day 12 and 16
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Figure 62: Results: labeled Reeb graph of root12 day 20 and root17 day 12
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Figure 63: Results: labeled Reeb graph of root17 day 16 and 20
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Figure 64: Results: labeled Reeb graph of root19 day 8 and 12
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Figure 65: Results: labeled Reeb graph of root19 day 16 and 20
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Figure 66: Results: labeled Reeb graph of root20 day 8 and 12
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Figure 67: Results: labeled Reeb graph of root20 day 16 and 20

78



Figure 68: Results: labeled Reeb graph of root24 day 12 and 16
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Figure 69: Results: labeled Reeb graph of root24 day 20

80



14 Discussion of the results

The results show that Reeb graphs, respectively the different types of nodes
building the graph, are able to represent and describe image content based on
critical points. The results on the test dataset (given in Chaper 12) demon-
strate, that even changes in color in the foreground region can be described
using regular nodes in the Reeb graph.
Representing the root images by graphs allows for an easy comparison of
roots. Moreover characteristics such as distances between branches, numbers
of branches or overlappings due to the 2D representation of a 3D structure
can be measured directly on the graph.
The description of image content by Reeb graphs is however first of all de-
pendent on the function used to compute the critical points. But image
characteristics as resolution and the quality of the segmented images are of
importance as well. Some problems on the root dataset that trace back to
segmentation and image quality were already discussed in Section 10.
Especially the problem of additional critical points that was addressed in
Section 10.1 can be observed (in varying degrees of occurance) for all images
in the dataset.These additional points are introduced because of frayed bor-
ders of image regions due to the used segmentation method. These frayed
borders are small structures in the image (compared to the whole root struc-
ture). Therefore the resulting critical points are positioned near to each
other and the nodes in the Reeb graph might overlap when displaying the
Reeb graph. In Figure 55 this can be seen in the lower part of the root.
While the segmentation for root05 day20 did not fray at the borders and
no additional critical points were introduced in these part, for root05 day16
several additional critical points were computed in the lower part of the root.
These nodes are correctly computed and are based on frayed borders in the
segmented image. For the root dataset this is a common problem, especially
for images taken on day 16, details on this problem are given at the end of
Section 3.
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A Test dataset

Figure 70: Synthetical test dataset - image 1-9
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Figure 71: Synthetical test dataset - image 10-18
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Figure 72: Synthetical test dataset - image 19-23
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B Root dataset

Figure 73: Root dataset “older age” - root004, day 1, 4, 8, 12, 16, 20
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Figure 74: Root dataset “older age” - root005, day 1, 4, 8, 12, 16, 20

Figure 75: Root dataset “older age” - root007, day 1, 4, 8, 12, 16, 20

Figure 76: Root dataset “older age” - root009, day 1, 4, 8, 12, 16, 20
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Figure 77: Root dataset “older age” - root012, day 1, 4, 8, 12, 16, 20

Figure 78: Root dataset “older age” - root017, day 1, 4, 8, 12, 16, 20
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Figure 79: Root dataset “older age” - root019, day 1, 4, 8, 12, 16, 20

Figure 80: Root dataset “older age” - root020, day 1, 4, 8, 12, 16, 20
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Figure 81: Root dataset “older age” - root024, day 1, 4, 8, 12, 16, 20
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