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Abstract. We present a new method to determine contraction kernels
for the construction of graph pyramids. The new method works with
undirected graphs and yields a reduction factor of at least 2.0. This
means that with our method the number of vertices in the subgraph
induced by any set of contractible edges is reduced to half or less by a
single parallel contraction. Our method yields better reduction factors
than the stochastic decimation algorithm, in all tests. The lower bound
of the reduction factor becomes crucial with large images.

1 Introduction

In a regular image pyramid (for an overview see [KLB99]) the number of pixels
at any level l, is r times higher than the number of pixels at the next reduced
level l+1. The so called reduction factor r is greater than one and it is the same
for all levels l. If s denotes the number of pixels in an image I, the number of
new levels on top of I amounts to logr(s). Thus, the regular image pyramid may
be an efficient structure to access image objects in a top-down process.

However, regular image pyramids are confined to globally defined sampling
grids and lack shift invariance [BCR90]. In [MMR91,JM92] it was shown how
these drawbacks can be avoided by irregular image pyramids, the so called adap-
tive pyramids. Each level represents a partition of the pixel set into cells, i.e.
connected subsets of pixels. The construction of an irregular image pyramid is
iteratively local [Mee89,Jol02]:

– the cells have no information about their global position.
– the cells are connected only to (direct) neighbors.
– the cells cannot distinguish the spatial positions of the neighbors.
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Fig. 1. (a) Partition of pixel set into cells. (b) Representation of the cells and
their neighborhood relations by a dual pair (G, G) of plane graphs.

On the base level (level 0) of an irregular image pyramid the cells represent
single pixels and the neighborhood of the cells is defined by the 4-connectivity of
the pixels. A cell on level l + 1 (parent) is a union of neighboring cells on level l
(children). This union is controlled by so called contraction kernels. Every parent
computes its values independently of other cells on the same level. This implies
that an image pyramid is built in O[log(image diameter)] time. For more in
depth on the subject see the book of Jolion [JR94]. Neighborhoods on level l+1,
are derived from neighborhoods on level l. Two cells c1 and c2 are neighbors
if there exist pixels p1 in c1 and p2 in c2 such that p1 and p2 are 4-neighbors,
Figure 1(a). We assume that on each level l + 1 (l ≥ 0) there exists at least
one cell not contained in level l. In particular, there exists a highest level h .
Furthermore, we restrict ourselves to irregular pyramids with an apex, i.e. level
h contains one cell.

In this paper we represent the levels as dual pairs (Gl, Gl) of plane graphs Gl

and Gl, Figure 1(b). The vertices of Gl represent the cells on level l and the edges
of Gl represent the neighborhood relations of the cells on level l, depicted with
square vertices and dashed edges in Figure 1(b). The edges of Gl represent the
borders of the cells on level l, depicted with solid lines in Figure 1(b), possibly
including so called pseudo edges needed to represent the neighborhood relation
to a cells completely surrounded by a cell. Finally, the vertices of Gl, the circles
in Figure 1(b), represent meeting points of at least three edges from Gl, solid
lines in Figure 1(b). The sequence (Gl, Gl), 0 ≤ l ≤ h is called (dual) graph
pyramid.

The aim of this paper is to combine the advantage of regular pyramids (loga-
rithmic tapering) with the advantages of irregular graph pyramids (their purely
local construction and shift invariance). The aim is reached by exchanging the
selection method for contraction kernels proposed in [Mee89] by another itera-
tively local method that now guarantees a reduction factor of 2.0. Experiments
with both selection methods show that:

– the old method does not lead to logarithmic tapering graph pyramids, as
opposed to our method, i.e. the reduction factors of graph pyramids built by
the old method can get arbitrarily close to 1.0.

– the sizes of the receptive fields from the new method are much more uniform.



Not only stochastic decimation [Mee89], but also connected component analy-
sis [KM95] gains from the new method.

The plan of the paper is as follows. In Section 2 we recall the main idea of
the stochastic pyramid algorithm and in Section 2.2 we see that graph pyramids
from maximal independent vertex sets may have a very small reduction factor.
We propose a new method in Section 3, which guarantees a reduction factor of
2.0.

2 Maximal Independent Vertex Set

In the following the iterated local construction of the (stochastic) irregular image
pyramid in [Mee89] is described in the language of graph pyramids. The main
idea is to first calculate a so called maximal independent vertex set1 [Chr75]. Let
Vl and El denote the vertex set and the edge set of Gl, respectively and let ι(·)
be the mapping from an edge to its set of end vertices. The neighborhood Γl(v)
of a vertex v ∈ Vl is defined by

Γl(v) = {v} ∪ {w ∈ Vl | ∃e ∈ El such that v, w ∈ ι(e)}.

A subset Wl of Vl is called maximal independent vertex set if:

1. w1 /∈ Γl(w2) for all w1, w2 ∈ Wl,
2. for all v ∈ Vl there exists w ∈ Wl such that v ∈ Γl(w).

An example of a maximal independent vertex set is shown with black vertices in
Figure 2(a), the arrows indicate a corresponding collection of contraction kernels.

2.1 Maximal Independent Vertex Set Algorithm (MIS)

The maximal independent vertex set (MIS) problem was solved using heuristic
in [Mee89]. The number of iterations to complete maximal independent set con-
verges in most of the cases very fast, so called iterations for correction [Mee89].
MIS may be generated as follows.

1. Mark every element of Vl as candidate.
2. Iterate the following two steps as long as there are candidates:

(a) Assign random numbers to the candidates of Vl.
(b) Determine the candidates whose random numbers are larger than the

random numbers of all neighboring candidates and mark them as member
(of the maximal independent set) and as non-candidate. Also mark every
neighbor of every new member as non-candidate.

3. In each neighborhood of a vertex that is not a member there will now be a
member. Let each non-member choose its neighboring member, say the one
with the maximal random number (we assume that no two random numbers
are equal).

1 also called maximal stable set; we distinct maximal from maximum independent set,
which construction is NP-complete.
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Fig. 2. (a) Maximal independent vertex set. (b) A graph pyramid from maximal
independent vertex set.

The assignment of the non-members to their members determines a collection of
contraction kernels: each non-member is contracted toward its member and all
contractions can be done in a single parallel step. In Figure 2(a) the contractions
are indicated by arrows. A graph pyramid from MIS can be seen in Figure 2(b),
where G0, G1, etc. represent graphs on different levels of the pyramid. Note that
we remove parallel edges and self-loops that emerge from the contractions, if they
are not needed to encode inclusion of regions by other regions (in the example
of Figure 2(b) we do not need loops nor parallel edges). This can be done by the
dual graph contraction algorithm [Kro95].

2.2 Experiments with MIS

Uniformly distributed random numbers are given to vertices in the base graphs.
We generated 1000 graphs, on top of which we built stochastic graph pyramids.
In our experiments we used graphs of sizes 10000 and 40000 nodes, which cor-
respond to image sizes 100 × 100 and 200 × 200 pixels, respectively. Figure 3
summarizes result of the first 100 of 1000 tests. Data in Table 1 were derived
using graphs of size 200 × 200 nodes with 1000 experiments. We extract these
parameters, the height of the pyramid, the maximum and the mean of the degree
of vertices 2, and the number of iteration for correction to complete maximal in-
dependent set for any graph in the contraction process. We average these values
on the whole data set. The degree of the vertex is of importance because directly
related to the memory costs for the graph’s representation [Jol02].

The number of levels needed to reduce the graph at the base level (level 0)
to an apex (top of the pyramid) are given in Figure 3(a),(b). The vertical axis
indicates the number of nodes on the levels indicated by the horizontal axis.
The slopes of the lines correspond to the reduction factors. From Figure 3(a),(b)
we see that the height of the pyramid cannot be guaranteed to be logarithmic,
except for some good cases. In the worst case the pyramid had 22 levels for
2 the number of edges incident to a vertex
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Fig. 3. Comparing MIS and MIES. Number of vertices in levels of MIS and MIES
pyramids. The base levels are rectangular grid graphs containing 100× 100 and
200×200 vertices . Dashed lines represent the theoretical reduction factor of 2.0.

the 100 × 100, respectively 41 levels for the 200 × 200 node graph. In these
cases we have a very poor reduction factor. A poor reduction factor is likely,
as can be seen in Figure 3(a),(b), especially when the images are large. This is
due to the evolution of larger and larger variations between the vertex degrees
in the contracted graphs (Table 1). The absolute maximum vertex degree was
148. The a priori probability of a vertex being the local maximum dependents
on its neighborhood. The larger the neighborhood the smaller is the a priori
probability that a vertex will survive. The number of iterations necessary for
correction are the same as reported by [Mee89](Table 1 µ(#iter) = 2.95)).

To summarize, a constant reduction factor cannot be guaranteed.



3 Maximum Independent Edge Set

In the following we aim at a collection C of contraction kernels in a plane graph
G such that

– each vertex of G is contained in exactly one kernel of C, and
– each kernel C contains at least two vertices.

The contraction of all kernels in C will reduce the number of vertices to half or
less.

3.1 Maximum Independent Edge Set Algorithm (MIES)

We start with independent edge sets or matchings, i.e. edge sets in which no pair
of edges has a common end vertex. The maximal independent edge set (MIES),
C is done in three steps.

1. Find a maximal matching M of edges in G.
2. M is enlarged to a set M+ that induces a spanning subgraph of G.
3. M+ is reduced to a subset defining C.

A maximal matching of G is equivalent to a maximal independent vertex set
on the edge graph of G [Die97,Chr75] . Thus, a maximal matching may be
determined by the iterated local process as used in MIS algorithm.

Note that M is only required to be maximal, i.e. the edge set M cannot
be enlarged by another edge from G without loosing independence. A maxi-
mal matching M is not necessarily maximum: there may be a matching M ′

(Figure 4(b)) that contains more edges than M (Figure 4(a)). The collection
of contraction kernels defined by a maximal matching M may include kernels
with a single vertex. Let v denote such an isolated vertex (isolated from M) and
choose a non-self-loop e that has v as an end vertex. Since M is maximal, the
end vertex w 6= v of e belongs to an edge that is contained in the matching. Let
M+ denote the set of edges that are in M or that are chosen to connect isolated
vertices to M .

The subgraph of G that is induced by M+ spans G and its connected com-
ponents are trees of depth one or two (Figure 4(c)). In the second case, the tree
can be separated in two trees of depths one by removing the central edge ∈ M ,
indicated by the crosses in Figure 4(c). Still, each vertex of G belongs to a tree,
now of depth one. The arrows in Figure 4(d) indicate possible directions of con-
tractions. Since each vertex of G is now contained in a non-trivial contraction
kernel, we proved the following.

Proposition 1 (Reduction factor of MIES at least 2.0). The MIES algo-
rithm yields contraction kernels for parallel contractions with a reduction factor
of at least 2.0.
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Fig. 4. (a) M : a maximal matching. (b) M ′: a matching with more edges than
in (a). (c) M+: the matching from (a) enlarged by connecting formerly isolated
vertices to the maximal matching. (d) trees of depth two split into trees of depth
one.

Note that in case of kernels with more than one edge the directions within the
kernel cannot be chosen independently of one another. This is why the pro-
posed method cannot be extended to applications in which there are a priori
constraints on the directions of the contractions. However, the proposed method
works for the stochastic case (no preconditions on edges to be contracted) and
for connected component analysis, where the attributes of the end vertices are
required to be identical.

3.2 Experiments with MIES

The same set of 1000 graphs was used to test MIES. The numbers of levels needed
to reduce the graph on the base level to an apex of the pyramid are shown in
Figure 3 (c),(d). Again the vertical axis indicates the number of vertices in the
levels indicated by the horizontal axis. The experiments show that the reduction
factor of MIES is indeed never smaller than the theoretical lower bound 2.0
(indicated by the dashed line in Figure 3(c),(d). MIES is more stable than MIS,
as can be seen in Figure 3(c),(d) the variance of the slopes is smaller than in
case of MIS, Figure 3(a),(b).

In Table 1 are given the height of the pyramid; the maximum vertex degree;
the mean of vertex degree; and the number of iteration for correction averaged
over the whole data set. The µ and σ of the height of the pyramid is smaller
for MIES than for MIS. The same observation is also for maximal degree of
vertices. The number of iterations for correction is higher for MIES (4.06) than



for MIS (2.95). The two methods lead to almost the same mean vertex degree.
The dependence of the data on this value seems to be little in both cases.

Table 1. Comparison of MIS and MIES.

Process µ(height) σ(height) µ(max) σ(max) µ(mean) σ(mean) µ(#iter) σ(#iter)

MIS 20.78 5.13 70.69 23.88 4.84 0.23 2.95 0.81
MIES 14.01 0.10 11.74 0.71 4.78 0.45 4.06 1.17

4 Conclusion and Outlook

Experiments with (stochastic) irregular image pyramids using maximal indepen-
dent vertex sets (MIS) showed that reduction factor could not be bound as the
image get larger. After an initial phase of strong reduction, the reduction de-
creases dramatically. This is due to the evolution of larger and larger variations
between the vertex degrees in the contracted graphs. To overcome this problem
we proposed a method (MIES) based on matchings which guarantees a reduction
factor of 2.0. As in the case of independent vertex sets, the method based on
matchings constrains the directions of the contractions. Future work will focus
on improving the reduction factors also for the case of directional constraints
i.e. directed edges. First experiments with a modification of the algorithm that
addresses these constraints show comparable results to MIES.
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