Technical Report Pattern Recognition and Image Processing Group
Institute of Computer Aided Automation
Vienna University of Technology
Favoritenstr. 9/1832
A-1040 Vienna AUSTRIA
Phone: +43 (1) 58801-18351

Fax: 143 (1) 58801-18392

E-mail: {saib,yll,glz}@prip.tuwien.ac.at

URL: http://www.prip.tuwien.ac.at/
PRIP-TR-69 March 14, 2002

Dgc_tool version 1.0
Building Irregular Graph Pyramid Using Dual Graph Contraction

—_

Maamar Saib and Y1l Haxhimusa and Roland Glantz

Abstract

In this technical report the new version of the software Dgc_tool is presented. This tool
allows us to build up irregular graph pyramids by dual graph contraction. The graph
pyramid consists of a stack of levels (pair of graphs), each of which has a primal level and
its dual. Every successive level is a reduced version of the level below. Primal level and its
dual represent a primal graph and its dual, respectively. The primal graph base level of the
pyramid may represent a two dimensional image.

IThis Work was supported by the Austrian Science Foundation under P14445-
MAT and P14662-INF.

Contents
1 Introduction
2 Building Irregular Image Graph Pyramid

3 Application of the dgc_tool
3.1 Examples of the dgc_tool

4 Programming Interface
4.1 pyramid Class
4.2 levelpair Class
4.3 level Class
4.4 dgcmode Classo
4.5 dgcedge Class.o

5 Where to find dgc_tool ?
6 Conclusion
7 Acknowledgment and Notes

8 Appendix: Some Snapshots of dgc_tool

11
11
15
16
19
20

22

22

22

25

1 Introduction

Building irregular pyramids (for an overview see [KLB99]) by dual graph
contraction (DGC) was explained theoretically in the technical report TR-35
[Kro94] and [Kro95] and can be used in line image analysis [BK99, KB98|, de-
scription of image structure [GEK99], connected component analysis [KM95]
etc. In this technical report we explain a new version of the software dgc_tool,
which allows us to build irregular graph pyramids. The new version of
dgc_tool was developed by Y1l Haxhimusa , Saib Maamar and Roland Glantz
in C++ using the version 3.8 of LEDA C++ class library [MN99]. We
decided to use LEDA (Library of Efficient Data types and Algorithms) be-
cause of the versatile of data types like GRAPHS, h_array, node, edge,
list, edge_array, node_array etc.,iterators like forall_nodes, forall_edges,
forall_out_edges etc. and good graphical unit interface (GUI) to draw and
test graphs .

The old version of dgc_tool was developed in C4++ and LEDA class li-
brary [KBBS98] by Mark Burge, Roman Englert, Roland Glantz and Walter
G. Kropatsch. In the old version, no pyramid was constructed. Dual graph
contraction was always performed in the same dual pair of graphs. How-
ever, the old version allowed to contract run graphs as described in [BK99].
Moreover, it was possible to draw the primal graph with a mouse.

In the new version of dgc_tool the pyramid is stored in a data struc-
ture called hashing array (h-array < int,levelpair >) [MN99], where each
levelpair is an element and int is the index of h_array. The index denote
the levels of the pyramid. Every element of the pyramid (levelpair, levels of
the levelpair, graph of the level, nodes, edges etc.) can be accessed directly.

The new version of the dgc_tool contains five principle classes:

e dgc_node,

e dgc_edge,

o level,

e [evelpair, and

e pyramid.

Ltp.prip.tuwien.ac.at/pub/dgc_tool

The plan of this technical report is as follows. In Section 2 we will out-
line the construction of the image graph pyramid using a simple example
to find connected component. In Section 3 the usage of the dgc_tool will
be described, and in Section 4 we will explain in detail the classes of the
dgc_tool.

2 Building Irregular Image Graph Pyramid

Irregular image graph pyramid is simply a stack of attributed graphs of
smaller size, meaning the number of nodes and edges decreases.

The idea of the construction of the irregual graph pyramid is as follows:

We start with a pair of base levels each of which contains an attributed
graph. For example, at the base level an attributed graph could represent a
2D image (Figure 1(a)), where the pixel attributes could be stored in vertices
and edges would represent the spatial relationship of pixels (Figure 1(b)). But
it is also possible to store other numerical or/and symbolical information in
vertices and edges. The other base level (the dual level) would contain the
dual graph (Figure 1(c), in this figure it has no attributes).

In order to reduce the number of vertices and edges of the base level
and construct new levels with smaller number or vertices and edges (reduced
level), we need to know which vertices survive and which edges are to be
contracted i.e. we need to know so called decimation parameters or contrac-
tion kernels (Figure 2(a)(d) the dashed frames). Decimation parameters are
choosen using maximal independent set algorithms [Mee89, BK93, HGST02].
Note in the Figure 2(a)(d) that contraction kernels are rooted (black vertices)
trees with maximum depth of one. After we find contraction kernels we do
dual graph contraction [Kro95].

Dual graph contraction consists of two steps:

e Ist step - We apply edge contraction to the primal graph pg and
the corresponding edges in the dual graph dpg are deleted as in Fig-
ure 2(a)(b). Black arrow edges denote the directions of contractions
and dashed edges in Figure 2(b) denote the edges to be deleted. Thus
a new reduced level and a new dual level is created (see Figure 2(c)(d)).

e 2nd step - Then we apply edge contraction to the dual graph dg
and the corresponding edges in the primal graph pg are deleted, see
Figure 2(c)(d). Black arrow edges in Figure 2(d) denote the directions

3

i 255
0

(b) pbg (c) dbg

Figure 1: (a) Simple gray value image with 11 regions. (b) Primal base
graph pbg, and (c) Dual base graph dbg. The big square in (c¢) represents the
background vertex.

of contractions and dashed edges in Figure 2(c) denote the edges to
be deleted. If needed we repeat this step until we simplify most of the
multiple edges and self-loops, but not those enclosing any surviving part
of the graphs, which are necessary to preserve the correct structure.

We iterate these two steps until there is no more edge to contract. In case
of connected component analysis example Figure 2 shows that we cannot
continue with the edge contraction, because we have found all the regions in
the image.

The image graph pyramid for the example of the image shown in Fig-
ure 1(a) is given in Figure 3. For the sake of simplicity of the figure some
of the relations between fathers (surviving vertices) and sons (non-surviving
vertices) on different levels of the pyramid are not shown.

The number of nodes at the highest level of the pyramid correspond to

4

Primal graphs pg Dual graphs dg

Figure 2: (a) Contraction kernels of the graph in Figure 1(b). (a),(d) Sur-
viving vertices depicted with black, edges to contract with black arrows and
(b),(c) edges to delete with dashed line. Small frames denote contraction
kernels. (e),(f) After repeating DGC several times. The number of vertices
in primal graph pg (e) correspond to the number of regions in the image
Figure 1(a).

o ." -p" ll\w —i
L A '"""', ;o

I
I

Figure 3: Image graph pyramid built on top of the image. Surviving ver-
tices (fathers) are depicted with black, contracted edges with arrows, and
non-surviving vertices (sons) with white (Go, G1). G4 the top of the graph
pyramid.

the number of regions in image, see Figure 3 level G5 has 11 vertices, note
the colours of the vertices.

3 Application of the dgc_tool

Before we start the construction of the graph pyramid, the image? is con-
verted into a dual pair, primal base level pbl and dual base level dbl of (base)
pairlevel (see Figure 1 as an example of how an image can be represented by
graphs). Let the primal base graph in pbl be denoted by pbg and dual base
graph in dbl be denoted by dbg, respectively.

In some cases, like digital elevation model, the value of a pixel refers to a
point. In other cases, like gray level images from cameras, the value of a pixel
refers to an area. The option gray levels onto borders interprets the vertices
of pbg as pixel centers (points). With the option gray levels into faces the
vertices of dbg represent the pixels (faces). In any case pbg and dbg form a

2in our implementation only no-compressed tiff images

dual pair of plane graphs. The attribute attrib of the edges and vertices is
initialized for monotonic dual graph contraction [GEK99]. In this version of
dgc_tool the initialization of the attributes is as follows:

gray levels onto borders The attrib value of the vertices of pbg are set to
the gray values of the corresponding pixels. The attrib values of the
edges of pbg are set to the minimum attrib value of the incident vertices.
The attrib values of the edges of dbg are set to the attrib values of the
corresponding dual edges in pbg. The attrib values of the vertices of
dbg are set to the minimum attrib value of the incident edges in dbg
(see Figure 4, left graphs).

gray levels into faces The attrib values of the vertices of dbg are set to the
gray values of the corresponding pixels. The attrib value of the edges
of dbg are set to the maximum attrib value of the incident vertices.
The attrib values of the edges of pbg are set to the attrib values of the
corresponding dual edges in dbg. The attrib values of the vertices of
pbg are set to the maximum attrib value of the incident edges in pbg
(see Figure 4, right graphs).

The structure of the pyramid depends on the contraction kernels. The
contraction kernels are required to be trees of maximum depth of one. Con-
traction kernels are formed from a preselection of edges that is determined
by the application, using maximal independent vertex set (MIS) [Mee89] or
maximal independent edge set (MIES) [HGS'02]. That far, there are three
applications implemented in the dgc_tool:

e (1) stochastic decimation [Mee89],

e (2) connected component analysis [KM95],

e (3) monotonic dual graph contraction [GEK99].
The command synopsis for the dgc_tool is :
dgc_tool option [filename]
We have these options:

e -i — Internal. A small picture (Figure 1) is used for testing purposes.

Grey lev Grey level
onto border into faces

Fiy

primal graphs

Image grid

: dual graphs

Backgroung Vertex

Figure 4: The attribute of the vertices.

e -t — TIFF? images. Only no compressed tiff images can be used.
e -0 — Output. To down-project the basins into an output file.

During the executions of the dgc_tool a menu is given (see Figures 7) to
help the user to choose where to put attributes; gray levels on borders with
option 1 or gray levels into faces with option 2; then the user must decide
which maximal independent set algorithm he/she chooses; MIS with option
1 [Mee89] or MIES with option 4 [HGST02] and finally the user must choose

3Tag Image File Format. More info [ASI02]

one of the application mentioned above; for stochastic decimation (default)
option 1, connected component analysis option 2 (see Figures 9 and 8) or
watershed segmentation with option 3.

3.1 Examples of the dgc_tool

To make these more clearly some examples are given. To test that everything
is properly installed* the user should type the command:

dgc_tool -i

followed by the input 1 for gray level onto borders, 1 for the maximum
independent algorithm and 1 for the application.
Tiff images can be put into the dgc_tool with the command:

dgc_tool -t tiff_filenamel [-o tiff_filename?2]

To do connected component analysis on tiff image® for example the user
should type:

dgc_tool -t circle.tif

followed by the input 1 (gray levels on borders), 1 (maximal independent
algorithm) and 2 (connected component analysis) yields a graph consisting
of two self-loops - one for the border of the circle, the other one for the edges
of the image, see Figure 5.

Or another example:

dgc_tool -t circle_soebel.tif

followed by the input 1 (gray levels on borders), 1 (maximal independent
algorithm) and 3 (watershed segmentation) yields a graph consisting of two
self-loops - one for the border of the circle, the other one for the edges of the
image.

To do watershed segmentation the options —t plus the filtered image
and —o plus the name of the image (makes sense for monotonic dual graph
contraction, only) are choosen.

4To check for example if LEDA libraries are properly installed.
5See Section 7 for images used in examples.

dgc_tool -t circle_sobel.tif -o circle.tif

followed by the input 1 (gray levels on borders), 1 (maximal independent
algorithm) and 3 (watershed segmentation) yields down-projection of basins
into Output.pgm. The basins are filled with the mean gray levels from orig-
inal image circle.tif.

In both examples the dual of the graph is shown, if "done” is pressed in
the graph window (see snapshots of the graph window Figure 9). In the dual
graph the background vertex is depicted by the large square.

(a) (b) (c)

Figure 5: (a) Input image and the output of the dgc_tool for the connected
component analysis; (b) primal graph and (c¢) dual graph.

10

4 Programming Interface

In this section the five principle classes: pyramid, levelpair, level and dgc_node,
dgc_edge of dgc_tool are given in detail. A pyramid is a stack of levelpair,
each of them consists of a pair of levels. Each level consist of a GRAPH
among others and each GRAPH is made from dgc_edge and dgc_node, as
can be seen from the class diagram (Figure 6).

4.1 pyramid Class

The class pyramid represents the hierarchies of levelpairs. A pyramid is
created using the method

bool Image2Pyramid(string, int , string = "") ;

e Typdefs and constants:

e Member function index:

pyramid() ;
“pyramid() ;
int DgcAlternate(int, int) ;
bool Image2Pyramid(string, int , string = "") ;

bool TIFF2Raster(string, string) ;

bool Internal2Raster(void) ;

void Raster2Pyramid(level *, level *, u_int, u_int) ;
void WriteAttribs(level *, level *, int) ;

void WriteGNodeAttribs(level *, level *, int) ;

void WriteGEdgeAttribs(level *, level *, int) ;

void WriteDGNodeAttribs(level *, level *, int) ;
void WriteDGEdgeAttribs(level *, level *, int) ;
void WriteExtraAttribs(level *, level *, int) ;
void WriteExtraGNodeAttribs(level *, level *, int) ;
void WriteExtraDGNodeAttribs(level *, level *) ;
void DownProject(u_long *) ;

void GraphToRaster(u_long *, int) ;

11

pyramid

-e2de: h_array<edge, edge>

-de2e: h_array<edge, edge>
-node_attributes: node_array<int>
- edge_attributes: edge_array<int>
- pyr: h_array<int, level pair>
-max_l evel : int

-whereLT3 : int

+ fr

+DgcAl ternate(int,int)

+ Construct Pyram d()

+ WiteAttribs(level*, *level,in
+ WiteGNodeAttribs(*level,|leve
+ WiteCEdgeAttribs(level *, |eve
+WiteSegnentation(*u |ong,int)

end

,int)
cint) !

- - — - = = - - - ==

levelpair level

-thel evel : |evel -l evel graph: GRAPH<dgc_node, dgc_edge>
-t hedual | evel : | evel - node id : h array<int, node>

+operator= (levelpair&: levelpair& rli end+Col | ect Edges1(): int
+Dual Contraction(level pair*, |evelpair*) + ReductionFunction_attrib(node*): int
+ GetLevel (): level + Max| ndependent Set 1()

+ Get Dual Level (I evel) ;
+ SetLevel (I evel) fri end
+Set Dual | evel (1 evel)

friend

——:int '
«LEDA™T[F """ "
h_array

dgc_node dgc_edge
-survive : bool -survive: bool
-ld: int -1d: int
- attrib: double -attrib: double
-sungray: u_long -sungray: u_l ong
-size: u_long -size: u_long
+Set Sur vi ve(bool) +Set Sur vi ve(bool)
+Get Survi ve(): bool +CGet survive(): bool
+Set 1 d(int) +Set | d(int)
+Getld(): int +Get ld(): int

|mmmmmm
s ggc_ngde !
—Eaderede
GRAPH,

Figure 6: Presentation of a Class Diagram of the dgc_tool

12

e Member function description:

int DgcAlternate(int, int) ;

Let pg and dg denote the primal graph and the dual graph, respectively.
The dual graph contraction is done as follows:

— outer loop - Graph contraction on pg,

— inner loop - Graph contraction on dg until there are no more
redundant edges in dg i.e. self loops and parallel edges, which do
not enclose a part of a graph that has survived.

Repeat these two steps until there is no edge in pg to be contracted
(see [Kro94]). The input parameters of this method are application
dependent.

bool Image2Pyramid(string, int , string = "") ;

Initializes the pyramid, using the raster which is created by the method
TIFF2Raster().

bool TIFF2Raster(string, string) ;
Reads the TIFF picture and makes a raster from it.
bool Internal2Raster(void) ;

Creates a raster from the internal picture. The internal picture can be
called by option —¢ in the command line.

void Raster2Pyramid(level *, level *, u_int, u_int) ;

Creates the structure of the base levelpair (level 0) of the pyramid from
raster.

13

void WriteAttribs(level *, level *, int) ;
Assigns attributes in the graph and its dual in the correct order.

void WriteGNodeAttribs(level *, level *, int) ;
void WriteGEdgeAttribs(level *, level *, int) ;
void WriteDGNodeAttribs(level *, level *, int) ;
void WriteDGEdgeAttribs(level *, level *, int) ;

Assigns attributes in the vertices and edges of the graph G (pg) and
DG (dg) respectively using pixels in the image i.e. raster. That is
application dependent.

void DownProject(u_long *) ;

The vertex attributes in the highest level of the pyramid are projected
onto the receptive fields (ié. into the raster).

void GraphToRaster(u_long *, int) ;

The resulting raster, which is a 2 dimensional array, is written to a
pgm-file .

SPortable Graymap file format

14

4.2 levelpair Class

The class levelpair represents the relationship between levels. Two new levels
are created from two old ones using the method

void DualContraction(levelpair *, levelpair *,
h_array<edge, edge> *, bool, int)

e typdefs and constants:

e Member function index:

levelpair(level, level)

levelpair()

“levelpair()

levelpair(const levelpair&)

void DualContraction(levelpair *, levelpair x,
h_array<edge, edge> *, bool, int)

level* GetLevel() ;

level* GetDualLevel() ;

void SetLevel(level) ;

void SetDuallevel(level) ;

e Member function description:
void DualContraction(levelpair *, levelpair x,
h_array<edge, edge> *, bool, int)

Contraction of pg or dg by means of a maximal independent set of
vertices.

level* GetLevel() ;

level* GetDualLevel() ;
void SetLevel(level) ;
void SetDuallevel(level) ;

Methods to set respectively to get levels and dual levels, respectively.

15

4.3 level Class

The class level contains the principle methods necessary to select the con-
traction kernels.

e Typdefs and constants:

typedef int (*CollectEdges) ()
enum { count = 4 }

e Member function index:

level() ;

level(CollectEdges f) ;

level(const level&) ;

~“level() ;

void RandFunc() ;

bool MaxRandEdge(edge) ;

bool MaxRandNode(node) ;

bool MinRandSourceNode(edge) ;
int CollectEdges1(void) ;

int CollectEdges2(void) ;

int CollectEdges3(void) ;

int CollectEdges4(void) ;

int CollectRedundantEdges(int) ;
void MaxIndependentSetEdge() ;
void MaxIndependentSetVertex() ;
void DisplayOut(u_int, u_int, bool) ;
void ShowNodeAttribs(void) ;
void ShowEdgeAttribs(void) ;
void CountNodeSurvive(void) ;
void CountEdgeSurvive(void) ;

e Member function description:
void RandFunc() ;

Assigns uniformly distributed random number as randomld to the ver-
tices and edges. The seed is initialize with 0. Every time this function
is called the seed is assigned a different value.

16

bool MaxRandEdge(edge) ;

Returns true if the input edge has the largest random value in its neigh-
borhood, false otherwise.

bool MaxRandNode(node) ;

Returns true if the input node has the largest random value in its
neighborhood, false otherwise.

bool MinRandSourceNode(edge) ;

For each input edge e this method returns true if source(e) < target(e),
false otherwise.

int CollectEdges1(void) ;

Collects edges whose end vertices have identical attributes (for con-
nected component analysis).

int CollectEdges2(void) ;
Collects all edges (for stochastic decimation).
int CollectEdges3(void) ;

Collects edges if attrib(target(edge)) > attrib(edge) > attrib(source(edge))
(for monotonic dual graph contraction).

int CollectEdges4(void) ;

Collects edges if attrib(target(edge)) < attrib(edge) < attrib(source(edge))
(for monotonic dual graph contraction).

17

int CollectRedundantEdges(int) ;

Collects parallel edges and self-loops which do not contain a part of
the surviving graph, i. e. edges incidented with a vertex with in-degree
< 2.

void MaxIndependentSetEdge() ;

Let E; be the preselection of (survive = false) edges from one of the
CollectEdges methods and let Gy be the subgraph of the primal or dual
graph induced by Fy. This method finds a maximal subset E,, of E;
such that each component of the subgraph induced by E,, is a tree of
depth smaller or equal to one. The algorithm of Peter Meer [Mee89] is

applied to edges instead of vertices. The neighborhoods of an edge is
defined in [HGST02].

void MaxIndependentSetVertex() ;

This method finds a maximal independent vertex set (so called MIS)
as described by Peter Meer [Mee89).

void DisplayOut(u_int, u_int, bool) ;
Displays the graph pbg or dbg.

void ShowNodeAttribs(void) ;
void ShowEdgeAttribs(void) ;

Shows the attributes of the vertices of pg or dg.
Shows the attributes of the edges of pg or dg.

void CountNodeSurvive(void) ;
void CountEdgeSurvive(void) ;

Some statistics of surviving nodes and edges.

18

4.4 dgc_node Class

This class corresponds to a node of a graph.

e Typdefs and constants:

e Member function index:

int Id ;

int size ;

int attrib ;
double randomId ;
bool survive ;
int sumgray ;
void SetAttrib(u_long) ;
int GetAttrib(void) ;
void SetSurvive(bool) ;
bool GetSurvive(void) ;
void SetId(int) ;

int GetId(void) ;

void SetRandomId(double) ;
double GetRandomId(void

A
-

e Member function description:

int Id
Number attached to vertex for identification of vertex.
The x and y coordinates of a vertex are id, mod, width and id / width

respectively. The variable width indicates the number of pixels in the
rows of the image

int size ;
The number of vertices in the receptive field of a node.
int attrib ;

19

see Section 3 for more details.

bool survive ;

True if the vertex survives, false otherwise.

double randomId ;

The random Id of the vertex.

int sumgray ;

Sum of the attrib values in the receptive field of a vertex.

void SetAttrib(u_long) ;

int GetAttrib(void) ;
void SetSurvive(bool) ;
bool GetSurvive(void) ;
void SetId(int) ;

int GetId(void) ;

void SetRandomId(double) ;
double GetRandomId(void) ;

Methods to set, respectively to get the attribute, the state of surviving
of a vertex, the unique vertex Id and the random Id.

4.5 dgc_edge Class

This class corresponds to an edge of the graph.

e Typdefs and constants:

e Member function index:

int Id ;

int attrib ;
double randomId ;
bool survive ;

20

void SetAttrib(u_long) ;
int GetAttrib(void) ;
void SetSurvive(bool) ;
bool GetSurvive(void) ;
void SetId(int) ;

int GetId(void) ;

void SetRandomId(double) ;
double GetRandomId(void

A
-

e Member function description:

int Id

Number attached to an edge for identification of the edge.
int attrib

see Section 3 for more details.

double randomId ;

The random number of the edge.

bool survive

True if the edge survives, false otherwise.

void SetAttrib(u_long) ;

int GetAttrib(void) ;
void SetSurvive(bool) ;
bool GetSurvive(void) ;
void SetId(int) ;

int GetId(void) ;

void SetRandomId(double) ;
double GetRandomId(void) ;

Methods to set, respectively to get the attribute, the state of surviving
of an edge, the unique edge Id and the random Id.

21

5 Where to find dgc_tool ?

The dgc_tool version 1.0 can be downloaded at the ftp://ftp.prip.tuwien.ac.at/
pub/dgc_tool/dgc_tool_v1.0, it was compiled with gcc [FSF02] version eges-
2.91.66 under Red Hat Linux 6.2/7.2 [RHI02]. An environment to draw and
test graph can be also found at our ftp server. The latest free version of LEDA
v3.8, can be downloaded from our ftp://ftp.prip.tuwien.ac.at/pub/dgc_tool/
LEDA or current licensed one at official LEDA site www.algorithmic-solutions
.com. Documentation about LEDA can be found at http://www.mpi-sb.mpg.de
/LEDA/MANUAL/MANUAL.html or in the book [MN99].

6 Conclusion

In this technical report a new version of the dgc_tool was presented. This
version is an intermediate version. In the future, we will redesign the dgc_tool
as follows:

We will make two categories of classes:

e classes which do not depend on the application, and
e classes which depend on the application.

Thus, each time we have a new application, we do not need to redesign
the whole dgc_tool. The application dependent classes will be derived from
the classes independent of the application (using the principle of reuse and
generalization).

7 Acknowledgment and Notes

We would like to thank prof. Walter G. Kropatsch for many discussions on
dual graph contraction and image pyramids, and technician Frank Mayer for
helping us to install the LEDA library and install and maintain the CVS
server. We also thank DI Mickeal Melki and Georg Langs for proofreading
and verifying Section 4 and 5.

22

References

[ASI02]

[BK93]

[BK99]

[FSF02]

[GEK99]

Adobe System Incorporated. http://partners.adobe.com/asn/dev-
eloper/graphics/. 345 Park Avenue San Jose,California 95110-
9704,USA, 2002.

Horst Bischof and Walter G. Kropatsch. Hopfield networks for ir-
regular decimation. In Wolfgang Polzleitner and Emanuel Wenger,
editors, Image Analysis and Synthesis, pages 317-327. OCG-
Schriftenreihe, Osterr. Arbeitsgemeinschaft fiir Mustererkennung,
R. Oldenburg, 1993. Band 68.

Mark J. Burge and Walter G. Kropatsch. A minimal line property
preserving representation of line images. Computing, 62:355 — 368,
1999.

Free Software Foundation. GCC Manual. 59 Temple Place - Suite
330 Boston, MA 02111-1307 US; http://gcc.gnu.org/, 2002.

Roland Glantz, Roman Englert, and Walter G. Kropatsch. Rep-
resentation of Image Structure by a Pair of Dual Graphs. In
Walter G. Kropatsch and Jean-Michel Jolion, editors, 2nd IAPR-
TC-15 Workshop on Graph-based Representation, pages 155—
163. OCG-Schriftenreihe, Band 126, Osterreichische Computer
Gesellschaft, May 1999.

[HGS™02] Y1l Haxhimusa, Roland Glantz, Maamar Saib, Langs, and Wal-

[KB9S)

ter G. Kropatsch. Reduction Factors of Image Pyramid on Udi-
rected and Directed Graph. In Proceedings of the 7th. Computer
Vision Winter Workshop, 2002.

Walter G. Kropatsch and Mark Burge. Minimizing the Topological
Structure of Line Images. In Adnan Amin, Dov Dori, Pavel Pudil,
and Herbert Freeman, editors, Advances in Pattern Recognition,
Joint IAPR International Workshops SSPR’98 and SPR’98, vol-
ume Vol. 1451 of Lecture Notes in Computer Science, pages 149—
158, Sydney, Australia, August 1998. Springer, Berlin Heidelberg,
New York.

23

[KBBS98] Walter G. Kropatsch, Mark J. Burge, Souheil Ben Yacoub, and

[KLB9Y]

[KMO5]

[Kro94]

[Kro95]

[Mee89]

[MNOY]

[RHI02]

Nazha Selmaoui. Dual graph contraction with LEDA. Computing,
Supplementum: Graph Based Representations in Pattern Recog-
nition, No. 12:pp. 101-110, 1998.

Walter G. Kropatsch, Ales Leonardis, and Horst Bischof. Hierar-
chical, Adaptive and Robust Methods for Image Understanding.
Surveys on Mathematics for Industry, No.9:1-47, 1999.

Walter G. Kropatsch and Herwig Macho. Finding the struc-
ture of connected components using dual irregular pyramids. In
Cinquieme Colloque DGCI, pages 147-158. LLAIC1, Université
d’Auvergne, ISBN 2-87663-040-0, September 1995.

Walter G. Kropatsch. Building Irregular Pyramids by Dual
Graph Contraction. Technical Report PRIP-TR-35, Institute
f. Automation 183/2, Dept. for Pattern Recognition and Image
Processing, TU Wien, Austria, 1994. Also available through
http://www.prip.tuwien.ac.at /ftp/pub/publications/trs/.

Walter G. Kropatsch. Building Irregular Pyramids by Dual Graph
Contraction. [EE-Proc. Vision, Image and Signal Processing,
142(6):366 — 374, 1995.

Peter Meer. Stochastic image pyramids. CVGIP, 45:269 — 294,
1989.

K. Mehlhorn and S. Naher. The LEDA Platform of Combina-
torial and Geometric Computing. Cambridge University Press,
Cambridge, U.K., 1999.

Red Hat Inc. http://www.redhat.com/. 1801 Varsity Drive
Raleigh, NC 2760659 US:, 2002,

24

8 Appendix: Some Snapshots of dgc_tool

DRl Terminal 2> [N

Eile Options Help -
1103 {yll} [159]modulary ../bin/dec_toolftRiff/circle_sobel,tif =

args ist 3

(C) Austrian Science Fund (FHFY, PRIP Group,

Gray Levels on Borders or into Faces (1 or 20 ==G
o TIFF File[tiff/circle_sohel.tif]

Reading file tiff/circle_sobel.tif ...

Inage size (width » height) = 69 » 69

inzide raster

Construction of the image graph and its dual...

Making sure the graph is bidirected ...

Making sure the DUAL is bidirected ...

Making the graph planar ...

Making the DUAL planar ...

Humber nodes/edges/faces in g (4761, 15768, 46250

Humber of nodes/fedges in dual (4625, 13T68)

Y

Select Mawxinum Independent Method
(Non-augment ing} DP((augme?tinﬁ stochastic decimation)?
1aor 4y ==
Choose the application:
1: Stochastic decimation (default)
21 Connected component analuysis
aHa'ter*shed segnentat ion

Figure 7: A snapshot from the command window.

Figure 8: The input image.

25

== Output Graph - O X

File Edit Graph Layoeut Window Opticns Help I gone|

1 Tl
AN | T
1

'l |

hodes: 256 edges: 1218 wndo: 670

Figure 9: The result of the dgc_tool doing connected commponent analysis,
input parameters: 1, 1, 2.

26

