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ABSTRACT

We review multilevel hierarchies under the special aspect of their potential for segmentation and grouping. The
one-to-one correspondence between salient image features and salient model features are a limiting assumption
that makes prototypical or generic object recognition impossible. The region’s internal properties (color, texture,
shape, ...) help to identify them and their external relations (adjacency, inclusion, similarity of properties)
are used to build groups of regions having a particular consistent meaning in a more abstract context. Low-
level cue image segmentation in a bottom-up way, cannot and should not produce a complete final “good”
segmentation. We present a hierarchical partitioning of images using a pairwise similarity function on a graph-
based representation of an image. This function measures the difference along the boundary of two components
relative to a measure of differences of the components’ internal differences. Two components are merged if there
is a low-cost connection between them. We use this idea to find region borders quickly and effortlessly in a
bottom-up way, based on local differences in a specific feature. The aim of this paper is to build a minimum
weight spanning tree (MST ) in order to find region borders quickly in a bottom-up ’stimulus-driven’ way based
on local differences in a specific feature.

Keywords: Hierarchical graph-based image partitioning, irregular graph pyramids, topology preserving con-
traction.

1. INTRODUCTION

Kesselman and Dickinson1 asked the following question referring to several research issues: ”How do we bridge
the representational gap between image features and coarse model features?” They identify the one-to-one
correspondence between salient image features (pixels, edges, corners,...) and salient model features (generalized
cylinders, polyhedrons, invariant models,...) as limiting assumption that makes prototypical or generic object
recognition impossible. They suggested to bridge and not to eliminate the representational gap, and to focus
efforts on: region segmentation, perceptual grouping, and image abstraction. Let us take these goals as
a guideline to consider multiresolution representations under the special viewpoint of segmentation and grouping.
Kropatsch2 considers the multiresolution representation under the abstraction viewpoint.

Wertheimer3 has formulated the importance of wholes and not of its individual elements as: “There are
wholes, the behaviour of which is not determined by that of their individual elements, but where the part-
processes are themselves determined by the intrisinic nature of the whole”,4 and introduced the importance of
perceptual grouping and organization in visual perception. Regions as aggregations of primitive pixels play an
extremely important role in nearly every image analysis task. Their internal properties (color, texture, shape,
...) help to identify them and their external relations (adjacency, inclusion, similarity of properties) are used to
build groups of regions having a particular meaning in a more abstract context. The union of regions forming
the group is again a region with both internal and external properties and relations.

Low-level cue image segmentation cannot and should not produce a complete final “good” segmentation,
because it is not clear what a “good” segmentation is. Without prior knowledge, segmentation based on low-level
cues will not be able to extract semantics in generic images. The segmentation process results in “homogeneity”
regions w.r.t the low-level cues using some similarity measures. Problems emerge because (i) homogeneity of
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low-level cues will not map to the semantics1 and (ii) the degree of homogeneity of a region is in general quantified
by threshold(s) for a given measure.5 The low-level coherence of brightness, color, texture or motion attributes
should be used to come up sequentially with hierarchical partitions.6 Mid and high level knowledge can be
used to either confirm these groups or select some further attention. A wide range of computational vision
problems could make use of segmented images, were such segmentation rely on efficient computation e.g. motion
estimation requires an appropriate region of support for finding correspondence. Higher-level problems such as
recognition and image indexing can also make use of segmentation results in the problem of matching. It is
important that a grouping method has following properties7: i) capture perceptually important groupings or
regions, which reflect global aspects of the image, ii) be highly efficient, running in time linear in the number of
image pixels, and iii) creates hierarchical partitions.6

The aim of this paper is to build a minimum weight spanning tree (MST ) in order to find region borders
quickly. The aim is reached by using the selection method for contraction kernels, proposed in Haxhimusa8

to achieve logarithmic tapering, local construction and shift invariance. Bor̊uvka’s algorithm9 with dual graph
contraction algorithm10 builds in a hierarchical way a MST (of the region) preserving the proper topology. The
topological relation seems to play an even more important role for vision tasks in natural systems than precise
geometrical position. Rather than trying to have just one “good” segmentation the method produces a stack of
(dual) graphs (a graph pyramid), which down-projected on the base level will give a multi-level segmentation.

After presenting related work and the pyramid representation, we recall the main idea of the Bor̊uvka’s MST
algorithm in Sec. 4. In Sec. 5 we give the definition of internal and external contrast and the merging decision
criteria. Building the hierarchy of image is given in Sec. 5. Sec. 6 reports results.

1.1. Related Work

A graph-theoretical clustering algorithm consists in searching for a certain combinatorial structure in the edge
weighted graph, such as a minimum spanning tree,7, 11 a minimum cut6, 12 and, among these methods a classic
approach to clustering (the complete linkage clustering algorithm13) reduces to a search for a complete subgraph
i.e. the maximal clique.14

Hierarchical structures describing data for clustering purposes13 or image segmentation15 have been studied
very early. Horowitz and Pavlidis15 define a consistent homogeneity criterion over a set as a boolean predicate
over its parts that verifies the consistency property. In image analysis this states that the subregions of a
homogeneous region are also homogeneous. Thus the joint use of hierarchy and homogeneity criteria allow to
define a partitioning in a natural way. A regular image pyramid may be an efficient structure for fast grouping
and access to image objects in top-down and bottom-up processes.16 However, the regular image pyramids
are confined to globally defined sampling grids and lack shift invariance. Bister17 concludes that regular image
pyramids have to be rejected as general-purpose segmentation algorithms. These drawbacks can be avoided
by irregular image pyramids,18, 19 the so called adaptive pyramids, where the hierarchical structure (vertical
network) of the pyramid is not known a priori but recursively built on the data. Meer20 in his consensus vision
uses n irregular pyramids to produce an image segmentation.

The clustering community has produced agglomerative and divisive algorithms21; in image segmentation the
region-based merging and splitting algorithms exist. Early graph-based methods22 use fixed thresholds and local
measures in computing a segmentation, i.e MST is computed. The segmentation criterion is to break the MST
edges with the largest weight. The idea behind is that edges in the MST reflect the low-cost connection between
two elements. The work of Urquhart23 attempts to overcome the problem of fixed threshold by normalizing
the weight of an edge using the smallest weight incident on the vertices touching that edge. The methods of
Felzenszwalb7 and Guigues11 use an adaptive criterion that depend on local properties rather than global ones.
Recent works have the MST as the base algorithm.7, 11, 24, 25

Gestalt grouping factors, such as proximity, similarity, continuity and symmetry, are encoded and combined in
pairwise feature similarity measures.6, 12, 26, 27 Another method of segmentation is that of splitting and merging
region based on how well the regions fulfill some criterion. These methods28, 29 use a measure of uniformity of
a region. Felzenszwalb7 and Guigues11 use, in contrast, in a graph-based method a pairwise region comparison
rather than applying a uniformity criterion to each individual region. It has been demonstrated that complex
grouping phenomena can emerge from simple computation on these local cues.30, 31
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Our method is related to the work of Felzenszwalb7 and Guigues11 in the sense of pairwise comparison of
region similarity. We create a hierarchy of graphs i.e of partitions. At each level of the pyramid a region adjacency
graph (RAG) is created, in an agglomerative way by edge contraction taking the proper topology into account.
A vertex of RAG is a representative of a region on the base level (it’s receptive field), creation of which takes
into consideration the integrity of the region.

2. VISUAL ABSTRACTION

By definition abstraction extracts essential features and properties while it neglects unnecessary details. Two
types of unnecessary details can be distinguished: redundancies and data of minor importance. Details may
not be necessary in different contexts and under different objectives which reflect in different types of abstraction.

In general, three different types of abstraction are distinguished: isolating abstraction: important aspects
of one or more objects are extracted from their original context; generalizing abstraction: typical properties of
a collection of objects are emphasized and summarized; idealizing abstraction: data are classified into a (finite)
set of ideal models, with parameters approximating the data and with (symbolic) names/notions determining
their semantic meaning.

These three types of abstraction have strong associations with well known tasks in computer vision: recog-
nition and object detection tries to isolate the object from the background; perceptual grouping needs a high
degree of generalization; and classification assigns data to ’ideal’ classes disregarding noise and measurement
inaccuracies. In all three cases abstraction drops certain data items which are considered less relevant. Hence
the importance of the data needs to be computed to decide which items to drop during abstraction. The im-
portance or the relevance of an entity of a (discrete) description must be evaluated with respect to the purpose or
the goal of processing. The system may also change its focus according to changing goals after knowing certain
facts about the actual environment, other aspects that were not relevant at the first glance may gain importance.
Representational schemes must be flexible enough to accommodate such attentional shifts in the objectives. For
an overview see Kropatsch.2

3. PYRAMIDS

In this section we summarize the concepts developed for building and using multiresolution pyramid16, 32 and
put the existing approaches into a general framework. The focus of the presentation is the representational
framework, its components and the processes that transfer data within the framework.

A pyramid (Fig. 1a,b) describes the contents of an image at multiple levels of resolution. The base level is a
high resolution input image. Successive levels reduce the size of the data by a constant reduction factor λ > 1.0
while local reduction windows relate one cell at the reduced level with a set of cells in the level directly below.
Thus local independent (and parallel) processes propagate information up and down in the pyramid. The contents
of a lower resolution cell is computed by means of a reduction function the input of which are the descriptions
of the cells in the reduction window. Sometimes the description of the lower resolution needs to be extrapolated
to the higher resolution. This function is called the refinement or expansion function. It is used in Laplacian
pyramids33 and wavelets34 to identify redundant information in the higher resolution and to reconstruct the
original data. The number of levels n is limited by the reduction factor λ: n ≤ log(image size)/ log(λ). The
main computational advantage of image pyramids is due to this logarithmic complexity. The reduction window
and the reduction factor relate two successive levels of a pyramid. In order to interpret a derived description
at a higher level this description should be related to the original input data in the base of the pyramid. This
can be done by means of the receptive field (RF) of a given pyramidal cell ci: RF (ci) collects all cells (pixels)
in the base level of which ci is the ancestor . This is the base of several pyramidal approaches, one of which is
chosen as representative: irregular graph pyramids.

3.1. Irregular Graph Pyramid Representation

In irregular pyramids, each level represents an arbitrary partition of the pixel set into cells, i.e. connected subsets
of pixels. The construction of an irregular pyramid is iteratively local8, 36: i) the cells have no information about
their global position, ii) the cells are connected only to (direct) neighbors, and iii) the cells cannot distinguish
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a) Pyramid concept b) Discrete levels
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Figure 1. (a,b) Multiresolution pyramid. (c) Partition of pixel set into cells. (d) Representation of the cells and their
neighborhood relations by a dual pair (Gk, Gk).

the spatial positions of the neighbors. This means that we use only local properties to build the hierarchy of
the pyramid. On the base level (level 0) of an irregular image pyramid the cells represent single pixels and the
neighborhood of the cells is defined by the connectivity of the pixels. A cell on level l + 1 (parent) is a union
of neighboring cells on level l (children). This union is controlled by so called contraction kernels (decimation
parameters10). Every parent computes its values independently of other cells on the same level. This implies that
an image pyramid is built in O[log(image diameter)] parallel steps. Neighborhoods on level k + 1 are derived
from neighborhoods on level k. Two cells c1 and c2 are neighbors if there exist pixels p1 in c1 and p2 in c2 such
that p1 and p2 are neighbors (Fig. 1c). In the base level (level 0) pixels are the vertices and two vertices are
related by an edge if the two corresponding pixels are neighbors. On each level k +1 (k ≥ 0) there exists at least
one cell not contained in level k. In particular, there exists a highest level h . In general the top of the pyramid
can have one vertex, i.e. an apex.

A graph pyramid is a pyramid where each level is a graph G(V, E) consisting of vertices V and of edges
E relating two vertices. In order to correctly represent the embedding of the graph in the image plane35 we
additionally store the dual graph G(V , E) at each level. We represent the levels as dual pairs (Gk, Gk) of
plane graphs Gk and Gk (Fig. 1d). The vertices of Gk represent the cells and the edges of Gk represent the
neighborhood relations of the cells on level k, depicted with square vertices and dashed edges in Figure 1d.
This graph is also called the region adjacency graph. The edges of Gk represent the borders of the cells on
level k, depicted with solid lines in Figure 1d, possibly including so called pseudo edges needed to represent the
neighborhood relation to a cell completely surrounded by another cell. Finally, the vertices of Gk , the circles
in Figure 1d, represent meeting points of at least three edges from Gk, solid lines in Figure 1d. Let us denote
the original graph as the primal graph. The sequence (Gk, Gk), 0 ≤ k ≤ h is called (dual) graph pyramid
(Figure 1b). Moreover the graph is attributed, G(V, E, attrv , attre), where attrv : V → R

+ and attre : E → R
+,

i.e. content of the graph is stored in attributes attached to both vertices and edges. Initially only the attributes
of the vertices receive the gray values of the pixels. We use a weight for attre measuring the difference between
the two end points.

In general a graph pyramid can be generated bottom-up as in Alg. 1. The complete formalism of dual graph
contraction is described by Kropatsch etal.32 Let us explain it here by means of our image example (Fig. 1c).
The second step determines what information in the current top level is important and what can be dropped.
A contraction kernel is a (small) sub-tree of the top level the root of which is chosen to survive (rooted trees in
Fig. 2b). Fig. 2a shows the window and Fig. 2b the selected contraction kernels N0,1. Selection criteria in this
case contract only edges inside connected components having the same gray value.

All the edges of the contraction trees are dually contracted during step 3. Dual contraction of an edge e
(formally denoted by G/{e}) consists of contracting e and removing the corresponding dual edge e from the
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Algorithm 1 – Contructing Graph Pyramid

Input: Graphs (G0, G0)

1: while further abstraction is possible do
2: determine contraction kernels, Nk,k+1.
3: perform dual graph contraction and simplification of dual graph, (Gk+1, Gk+1) = C[(Gk , Gk), Nk,k+1].
4: apply reduction functions to compute content attr : Gk+1 → R

+ of new reduced level.
5: end while

Output: Graph pyramid – (Gk, Gk), 0 ≤ k ≤ h .

a) G0

b) N0,1 c) G0/N0,1 d) S0,1

Legend: • survivors

◦ nonsurvivors

shaded areas illustrate receptive fields of survivors

Figure 2. a) Neighborhood graph G0, b) contraction kernel N0,1, c) edge contractin G0/N0,1 and d) redundant edges
S0,1.

dual graph (formally denoted by G \ {e}). In our example the graph shown in Fig. 2c is created. This preserves
duality and the dual graph needs not be constructed from the contracted primal graph G′ at the next level. Since
the contraction of an edge may yield multi-edges and self-loops there is a second phase of step 3 which removes
all redundant multi-edges and self-loops (edges S0,1 in Fig. 2d). Note that not all such edges can be removed
without destroying the topology of the graph: if the cycle formed by the multi-edge or the self-loop surrounds
another part of the data its removal would corrupt the connectivity! Fortunately this can be decided locally by
the dual graph since faces of degree two (having the double-edge as boundary) and faces of degree one
(boundary = self-loop) cannot contain any further elements in its interior. Since removal and contraction are
dual operations, the removal of a self-loop or a double edge can be done by contracting the corresponding dual
edges in the dual graph, wich are not depicted in our example for the simplicity of figures. The dual contraction
of our example graph G0 remains a simple graph G1 without self-loops and multi-edges (Fig. 3a).

Step 3 generates a reduced pair of dual graphs. Their contents is derived in step 4 from the level below using
the reduction function. In our example reduction is very simple: the surviving vertex inherits the color of its
son. The result of the dual contraction is shown as graph G2 in Fig. 4. The selection rules and the reduction
function are the same as in the first iteration. The result shows that the regions with the same color are brought
together. This fact could be used in a top-down verification step which checks the reliability of merging criterion
in a more general context. The result of the algorithm applied for this simply merging criterion is shown in
Fig. 4,(the dual graphs are not shown) together with contraction kernels and the equivalent contraction kernel.
See Sec. 5.2 for a complex merge criterion. By contracting the edges of the equivalent contraction kernel N0,2

one can reach G2 directly from the base.

There are lots of useful properties of the resulting graph pyramids. If the plane graph is transformed into a

a) G1 b) N1,2 c) G1/N1,2 d) S1,2

Figure 3. a) Region adjacency graph G1 after dually contracting G0, b) contraction kernel N1,2, c) edge contraction of
graph G1/N1,2 and d) redundant edges S1,2.
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Figure 4. The graph pyramid with contraction kernels N0,1, N1,2 and the equivalent contraction kernel N0,2. The
receptive field RF (v) of a vertex v ∈ G2 is shown for illustration.
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N0,1

G1

N1,2
G2

v

N0,2RF (v)

combinatorial map the transcribed operations form the combinatorial pyramid.37, 38 This framework allowed us
to prove several of the above mentioned properties and link dual graph pyramids with topological maps which
extend the scope to three dimensions. The following table summarizes dual graph contraction in terms of the
control parameters used for abstraction and the conditions to preserve topology:

Level representation contract / remove conditions

0 (G0, G0)
↓ contraction kernel N0,1 forest, depth 1

(G0/N0,1, G0 \ N0,1)
↓ redundant edges S0,1 deg v ≤ 2

1 (G1 = G0/N0,1 \ S0,1, G1 = G0 \ N0,1/S0,1)
↓ contraction kernel N1,2 forest, depth 1
...

4. MINIMUM WEIGHT SPANNING TREE: BORŮVKA’S ALGORITHM

Let G = (V, E) be the undirected connected plane graph consisting of the finite set of vertices V and the finite
set of edges E. Each edge e ∈ E is identified with a pair of vertices vi, vj ∈ V . Let each edge e ∈ E be
associated with a non-negative unique real weight w(e) := w(vi, vj). The problem is formulated as construction
of a MST of G. A deterministic solution is proposed by Bor̊uvka,9 Kruskal and Prim39 as the widely known
greedy algorithms. The weight of the subgraph of G is the sum of edge weights of subgraph, i.e. for T ⊆ G, the
weight of a the subgraph is w(T ) :=

∑

e∈T w(e).

Theorem 1. Consider a vertex v in a weighted connected graph G. Among all the edges incident on v, let e
be one of minimum weight. Then, G has a minimum weight spanning tree that contains e.

Theorem 2. Let T be an acyclic subgraph of a weighted connected graph G such that there exists a minimum
weight spanning tree containing T . If G′ denotes the graph obtained by contracting all the edges of T , and T ′

min

is a minimum weight spanning tree of G′, then T ′
min ∪ T is a minimum weight spanning tree.

These two theorems provide the basis of the MST Algorithm 2, see Thulasiraman40 for proofs. The idea of
the Bor̊uvka9 is similar to Prim’s algorithm but executed simulteonosly for the whole graph. We use Bor̊uvka’s
algorithm to build MST in parallel.41 This algorithm constructs a spanning tree as shown in Alg. 2. First
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Algorithm 2 – Bor̊uvka’s Algorithm

Input: Graph G(V, E).

1: MST := empty edge list.
2: all vertices v ∈ V make a list of trivial trees L.
3: while there is more than one tree in L do
4: each tree T ∈ L finds the edge e with the minimum weight which connects T to G \ T and add edge e to

MST .
5: using edge e merge pairs of trees in L.
6: end while

Output: Minimum weight spanning tree - MST .

create a list L of trivial trees, each a single vertex v ∈ V . For each tree T of L find the edge e with the smallest
weight, which connects T to G \ T . The trees T are then connected to G \ T with the edge e. In this way the
number of trees in L is reduced, until there is only one, the MST .

Theorem 3. Bor̊uvka’s algorithm constructs a minimum weight spanning tree.

The proof that this algorithm builds the minimum weight spanning tree is analogous to the proof of the
Kruskal’s MST algorithm given in.40 Algorithm 2 may fail to build MST if the edge weights are not distinct,
since the set of selected edges may contain cycles. If there are edges with minimal weight that touch a vertex v,
then choose the edge with the smallest random number, under the assumption that random numbers are unique.

In 3rd step of the Algorithm 2, each tree T ∈ L finds the edge with the minimal weight, and as trees become
larger, the process of finding the edge with the minimal weight for each tree T takes longer. A contraction of
the edge e, in the 4th step of Algorithm 2 will speed up the process of searching for minimum weight edges in
Bor̊uvka’s algorithm, since the search for the edge with the minimum weight would be a local search.

5. HIERARCHY OF PARTITIONS

The goal is to find partitions Pk := {CCk
1 , CCk

2 , ..., CCk
n} in kth level of the pyramid such that these elements

satisfy certain properties. We compare pairwise neighboring vertices, i.e. partitions to check for similarities.7, 11

Felzenszwalb7 defines a pairwise group merge criterion Comp(CCk
i , CCk

j ) that judges whether there is evidence

for a boundary between two partitions CCk
i , CCk

j ∈ P . Note that Comp(CCk
i , CCk

j ) is a boolean merge criterion

for pairs of partitions and it is not defined yet. Definition of Comp(CCk
i , CCk

j ) depends on the application.

Comp(CCk
i , CCk

j ) is true, if there is no evidence for a boundary between CCk
i and CCk

j , and false otherwise.

This criterion measures the difference along the boundary of two components relative to a measure of differ-
ences of components’ internal differences. This definition tries to encapsulate the intuitive notion of contrast: a
contrasted zone is a region containing two connected components whose inner differences (internal contrast) are
less than differences within it’s context (external contrast). We define an external contrast measure between
two components and an internal contrast measure of each component, like in Felzenszwalb7 and Guigues.11

5.1. Internal and External Contrast

Let G(V, E, attrv , attre) be a given attributed graph with vertex set V and edge set E on the base level (level
0). Vertices v ∈ V and edges e ∈ E are attributed, i.e. attrv : V → R

+ and attre : E → R
+. One possible way

to attribute the edges is given in Section 6. The graph on level k of the pyramid is denoted by Gk. Every vertex
uk ∈ Gk is a representative of a component CCk

i of the partition Pk. The equivalent contraction kernel32 of a
vertex uk ∈ Gk, N0,k(uk) ∈ E is e set of edges of the base level that are contracted; i.e. applying equivalent
contraction kernel on the base level, one contracts the subgraph G′ ⊆ G onto the vertex uk .

The internal contrast of the CCk
i ∈ Pk is the largest dissimilarity of component CCk

i i.e. the largest
edge weight of the N0,k(uk) of vertex uk ∈ Gk :

Int(CCk
i ) := max{attre(e), e ∈ N0,k(uk)}. (1)
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Let uk
i , uk

j ∈ Vk be the end vertices of an edge e ∈ Ek. The external contrast measure between two components

CCk
i , CCk

j ∈ Pk is the smallest dissimilarity between component CCk
i and CCk

j i.e. the smallest edge weight

connecting N0,k(uk
i ) and N0,k(uk

j ) of vertices uk
i ∈ CCk

i and uk
j ∈ CCk

j :

Ext(CCk
i , CCk

j ) := min{attre(e), e := (v, w) : v ∈ N0,k(uk
i ) ∧ w ∈ N0,k(uk

j )}. (2)

In Fig. 1e a simple example of Int(CCk
i ) and Ext(CCk

i , CCk
j ) is given. Int(CCk

i ) of the component CCk
i

is the maximum of weights of the solid line edges, whereas Ext(CCk
i , CCk

j ) is the minimum of weights of the

dashed line edges (bridges) connecting component CCk
i and CCk

j on the base level G0. Vertices uk
i and uk

j are

representative of the components CCk
i and CCk

j . By contracting the edges N0,k(uk
i ) one arrives to the vertex

uk
i , analogously N0,k(uk

j ) for the vertex uk
j .

The pairwise merge criterion Comp(·, ·) between two connected components CCk
i and CCk

j can now be
defined as:

Comp(CCk
i , CCk

j ) :=

{

True if Ext(CCk
i , CCk

j ) ≤ PInt(CCk
i , CCk

j ),
False otherwise,

(3)

where PInt(CCk
i , CCk

j ) is the minimum internal contrast difference between two components PInt(CCk
i , CCk

j ) :=

min(Int(CCk
i ) + τ(CCk

i ), Int(CCk
j ) + τ(CCk

j )). For the merge criterion Comp(CCk
i , CCk

j ) to be false i.e. for
the border to exist, the external contrast difference must be greater than the internal contrast differences. The
threshold function τ(CCk) controls the size of the components CCk, since Int(CCk) is not a good estimate
of the local characteristics of the data, in extreme case when |CCk| := 1, Int(CCk) := 0. Any non-negative
function of a single component CCk, can be used for τ(CCk).7 Note that we have not defined the function
τ(CCk) yet, this will be done in Sec. 6.

5.2. Construct a Hierarchy of Partitions

A consequence of contracting the edge e, which connects T and G\T in the 4th step of Algorithm 2 will speed up
the search for minimum weight edges in Bor̊uvka’s algorithm. Since each tree (on level k) after edge contraction
will be represented by a single vertex (in the level k + 1), the edge with the minimum weight would be in a local
neighborhood. The dual graph contraction algorithm10 contracts edges and creates “super” vertices with father-
son relations between vertices in subsequent levels (vertical relation) and at the same time preserves the topology,
whereas Bor̊uvka’s algorithm is used to create son-son relation between vertices in the same level (horizontal
relation). Internal and external contrast definition are used to find region borders quickly in a bottom-up based
on local differences.

Let Pk := CCk
i , CCk

j , ..., CCk
n be the partitions at level k of the pyramid. Alg. 3 collects smallest weighted

edges e (4th step) that could be part of MST , and then checks if the edge weight attre(e) is smaller than the
internal contrast of both of the components (MST of end vertices of e) (6th step). If these conditions are fulfilled
then these two components will be merged (7th step). Two regions will be merged if the internal contrast,
which is represented by its MST , is larger than the external contrast, represented by the weight of the edge,
attre(e). All the edges to be contracted form the contraction kernels Nk,k+1, which are used to create the graph
Gk+1 := C[Gk, Nk,k+1],

32 so that all neighborhood and inclusion relations are preserved. In general Nk,k+1 is a
forest. We update the attributes of those edges ek+1 ∈ Gk+1 with the minimum attribute of the edges ek ∈ Ek

that are contracted into ek+1 (11th step). This means that we do not recompute the attributes of the edges but
simply inherit it. The output of the algorithm is a pyramid where each level represents a set of sub trees of
the MST . Each vertex of these RAGs is the representative of a MST of a region in the image. In general the
top of the pyramid which represents the whole image. The algorithm is greedy since it collects only the nearest
neighbor with the minimal edge weights and merges them if the merge criterion holds (Eq. 3).

If we assume that the steps 6 to 8 of the Alg. 3 are left out, it can be shown, that this algorithm produces a
MST (Theorem 4). Each vertex uk ∈ Gk represents a connected region CCk on the base level of the pyramid,
and since the presented algorithm is based on Bor̊ovka’s algorithm,9 it builds a MST (uk) of each region, i.e
N0,k(uk) = MST (uk).

8
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Algorithm 3 – Construct Hierarchy of Partitions

Input: Attributed graph G0.

1: k := 0
2: repeat
3: for all vertices u ∈ Gk do
4: Emin(u) := argmin{attre(e) | e := (u, v) ∈ Ek or e := (v, u) ∈ Ek}
5: end for
6: for all e := (uk,i, uk,j) ∈ Emin with Ext(CCk

i , CCk
j ) ≤ PInt(CCk

i , CCk
j ) do

7: include e in contraction edges Nk,k+1

8: end for
9: contract graph Gk with contraction kernels, Nk,k+1: Gk+1 = C[Gk , Nk,k+1].

10: for all ek+1 ∈ Gk+1 do
11: set edge attributes attre(ek+1) := min{attre(ek) | ek+1 := C[ek, Nk,k+1]}
12: end for
13: k := k + 1
14: until Gk := Gk−1

Output: A region adjacency graph (RAG) at each level of the pyramid.

Theorem 4. The equivalent contraction kernel of a vertex uk
i in the level k of the graph pyramid is the

minimum spanning tree of its receptive field on the base level.

For a graph G(V, E) where |V | := n and |E| := m follows

Theorem 5. Alg. 3 finds the minimum spanning tree after at most log n iterations each of which involves
O(m + n) operations.

It can be shown that the Alg. 3 produces a hierarchy over V and partitions on each level which are
invariant under any monotone transformation of dissimilarity measure attre and that the hierarchy over V is
invariant under monotone transformation. See Haxhimusa42 for more details and for the proofs of the theorems.
The presented algorithm collects only the nearest neighbor partitions with the minimal edge weights and merges
two trees if they fulfill the criterion in Eq. 3, this is known as single linkage clustering.13

6. EXPERIMENTS ON IMAGE GRAPHS

We start with the trivial partition, where each pixel is a homogeneous region. The attributes of edges can be
defined as the difference between features of end vertices, attre(ui, uj) := |F (ui) − F (uj)|, where F is some

feature. Other distances could be used as well e.g.,6 attre(ui, uj) := e
−||F (ui)−F (uj )||22

σI , where F is some feature,
and σI is a parameter which controls the scale of proximity measures of F . F could be defined as F (ui) := I(ui),
for gray value intensity images, or F (ui) := [vi, vi · si · sin(hi), vi · si · cos(hi)], for color images in HSV color
space.6 However the choice of the definition of the weights and the features to be used is in general a hard
problem, since the grouping cues could conflict each other.31

For our experiments we use as feature F (u) pixel intensities I(u), for color images F (u) is the luminance in
the color space. To compute the hierarchy of partitions we define τ(CCk) to be function of the size of CCk e.g.
τ(CCk) := α/|CCk |, where |CCk| denotes the size of the component CCk and α is a constant. A larger constant
α sets the preference for larger components. More complex definition of τ(CC), which is large for certain shapes
and small otherwise would produce a partitioning which prefers certain shapes, e.g. using ratio of perimeter to
area would prefer components that are compact, e.g. not long and thin.

We use indoor and outdoor RGB images. We found that α = 300 produces the best hierarchy of partitions
of the images shown in Monarch∗1 Fig. 5, and Object452 Fig. 6 after the average intensity attribute of vertices is
down-projected onto the base grid. Fig. 5 and Fig. 6 show some of the partitions on different levels of pyramid
and the number of components. Note that the number of component decreases. In these images there are

∗1) Waterloo image database and 2) Coil 100 image database.
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Monarch 768× 512

a) Level 0 (393 216) b) Level 14 (108) c) Level 16 (57)

d) Level 18 (35) e) Level 20 (25) f) Level 22 (18)

Figure 5. Some levels of the partitioning of the image Monarch. In parenthesis the number of components.

regions of large intensity variability (area of flowers in Figure 5a) and gradient (monarch wings in Figure 5a
or in the cup example Fig. 6a). This algorithm copes with this kind of gradient and variability. In contrast
to Felzenszwalb7 the result is a hierarchy of partitions at multiple resolutions suitable for further goal driven,
domain specific analysis. On lower levels of the pyramid the image is over segmented (partitioned) whereas in
higher levels it is under segmented (partitioned). The help of mid and high level knowledge could select the
proper partitioning. Since the algorithm preserves details in low-variability regions, a noisy pixel would survive
through the hierarchy. Of course, image smoothing in low variability regions would overcome this problem. We,
however do not smooth the images, as this would introduce another parameter into the method. The hierarchy of
partitions can also be built from an oversegmented image to overcome the problem of noisy pixels. The influence
of τ in the decision criterion is smaller as the region gets bigger for a constant α. The constant α is used to
produce a kind of the oversegmented image and the influence of τ decays after each level of the pyramid. For an
oversegmeted image, where the size of regions is large, the algorithm becomes parameterless.

Object45 128× 128

a) Level 0 (16 384) b) Level 10 (43) c) Level 12 (13) d) Level 14 (3)

Figure 6. Some levels of the partitioning of the image Object45 . In parenthesis the number of components.
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7. CONCLUSION AND OUTLOOK

In this paper we introduced a method to build a hierarchy of graphs of an image by comparing in a pairwise
manner the difference along the boundary of two components relative to the differences of the components’
internal differences. Internal properties, in our case color, helps to identify regions and their external relations
to build groups of regions having a particular meanining in a more abstract context. Even though the algorithm
makes simple greedy decisions locally, it produces perceptually important groupings in a bottom-up ’stimulus-
driven’ way based only on local differences. It was shown that the algorithm can handle large variation and
gradient intensity in images. Since our framework is general enough, we can use RAGs of any oversegmented
image and build the hierarchy of graphs afterwards. External knowledge can help in a top-down segmentation
technique. A drawback is that the maximum and minimum criterion is very sensitive to noise, although in
practice it has a small impact. However, other criteria like median would lead to an NP-complete algorithm.
The algorithm has only one running parameter which controls the size of the regions. Our future work is to
automatically extract this parameter from the image and also to define different comparison functions which will
prefer learned regions of specific shapes. Being aware of the inherent limitations of pure bottom-up approach
we further investigate in methods fo experience-based top-down decomposition of receptive fields with a goal to
produce globally consistent interpretations.
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