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Abstract

We present a hierarchical partitioning of images using a pairwise similarity function on
a combinatorial map based representation. We used the idea of minimal spanning tree to
find region borders quickly and effortlessly in a bottom-up way, based on local differences
in a color space. The result is a hierarchy of partitions with multiple resolutions suitable
for further goal driven analysis. The algorithm can handle large variation and gradient
intensity in images. Dual graph pyramid representations lack the explicit encoding of edge
orientation around vertices i.e they lack an explicit encoding of the orientation of planes,
existing in combinatorial maps. Moreover with combinatorial maps, the dual must not be
explicitly represented because one map is enough to fully characterize the partition.

1 Introduction
The authors in [12] asked: ”How do we bridge the representational gap between image fea-
tures and coarse model features?” They identify the 1-to-1 correspondence between salient
image features (pixels, edges, corners,...) and salient model features (generalized cylinders,
polyhedrons,...) as a limiting assumption that makes prototypical or generic object recognition
impossible. They suggested to bridge and not to eliminate the representational gap, and to fo-
cus efforts on region segmentation, perceptual grouping, and image abstraction. The union of
regions forming the group is again a region with both internal and external properties and rela-
tions. Low-level cue image segmentation cannot and should not produce a complete final good
segmentation, because there is an intrinsic ambiguity in the exact location of region boundaries
in digital images. Problems emerge because homogeneity of low-level cues will not map to the
semantics [12], and the degree of homogeneity of a region is in general quantified by thresh-
old(s) for a given measure [7]. The low-level coherence of brightness, color, texture or motion
attributes should be used to come up sequentially with hierarchical partitions [20].
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A grouping method should have the following properties [6]: capture perceptually important
groupings or regions which reflect global aspects of the image, be highly efficient, running in
time linear in the number of image pixels (e.g Minimal spanning tree), and creating hierarchical
partitions [20].

In a regular image pyramid the number of pixels at any level l, is r times higher than the
number of pixels at the next reduced level l + 1. The so called reduction factor r is greater
than one and it is the same for all levels l. If s denotes the number of pixels in an image I , the
number of new levels on top of I amounts to logr(s). Thus, the regular image pyramid may
be an efficient structure for fast grouping and access to image objects in top-down and bottom-
up processes. However, regular image pyramids are confined to globally defined sampling
grids and lack shift invariance [1]. Bister et.al. [1] concludes that regular image pyramids
have to be rejected as general-purpose segmentation algorithms. In [18, 11] it was shown how
these drawbacks can be avoided by irregular image pyramids, the so called adaptive pyramids,
where the hierarchical structure (vertical network) of the pyramid was not a priori known but
recursively built based on the data. Moreover in [5, 17], was shown that irregular pyramids can
be used for segmentation and feature detection.

Each level represents a partition of the pixel set into cells, i.e. connected subsets of pixels.
The construction of an irregular image pyramid is iteratively local [16, 10]. This means that we
use only local properties to build the hierarchy of the pyramid. On the base level (level 0) of
an irregular image pyramid the cells represent single pixels and the neighborhood of the cells
is defined by the 4 (8)-connectivity of the pixels. A cell on level l + 1 (parent) is a union of
neighboring cells on level l (children). This union is controlled by so called contraction kernels
(decimation parameters, see [14]). Every parent computes its values independently of other cells
on the same level. This implies that an image pyramid is built in O[log(image diameter)] time.
Neighborhoods on level l + 1, are derived from neighborhoods on level l. Two cells c1 and c2

are neighbors if there exist pixels p1 in c1 and p2 in c2 such that p1 and p2 are 4-neighbors. We
assume that on each level l + 1 (l ≥ 0) there exists at least one cell not contained in level l. In
particular, there exists a highest level h . In general the top of the pyramid can have one vertex,
i.e. an apex.

Region adjacency graphs (RAG), dual graphs [9] and combinatorial maps have been used
before [3] to represent the partitioning of 2D space. From these 3 structures, the combinatorial
map seems to be the most adequate because, RAGs cannot correctly encode multiple boundaries
and inclusions, and dual graphs lack the explicit encoding of edge orientation around vertices,
present in a combinatorial map [3]. Moreover with combinatorial maps, the dual must not be
explicitly represented because one map is enough to fully characterize the partition, and also
the dual can be easily deduced anytime.

In this paper we present the hierarchical image partitioning method introduced in [9] us-
ing combinatorial maps (Section 2) and combinatorial pyramids. The building of the mini-
mum weight spanning tree (MST ) using Borůvka’s algorithm [2], which is an efficient parallel
method, and (dual) combinatorial map contraction is presented in Section 3. We will end with
some experimental results (Section 4) and conclusions (Section 5).
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Figure 1: Example combinatorial map

2 Combinatorial Maps
We will recall here some information about combinatorial maps: definitions and some proper-
ties. For a more detailed description of combinatorial maps see [4].

Definition 1 Combinatorial map. A combinatorial map G is the triplet G = (D, σ, α), where
D is a set called the set of darts and σ, α are two permutations defined on D such that α is an
involution:

∀d ∈ D α2(d) = d

If the darts are encoded by positive and negative integers, the permutation α can be implic-
itly encoded by α(d) = −d (see Figure 1). In the following, we will use alternatively both
notations. A combinatorial map may be seen as a planar graph encoding explicitly the orienta-
tion of edges around a given vertex. Thus all graph definitions used in irregular pyramids [13]
such as end vertices, self loops, or degrees may be retrieved easily. The symbols α∗(d) and
σ∗(d) stand, respectively, for the α and σ orbits of the dart d. More generally, if d is a dart and
π a permutation we will denote the π-orbit of d by π∗(d). The cardinal of this orbit will be
denoted |π∗(d)|.

Definition 2 End vertices Given a dart d, we call the end vertices of the edge α∗(d) = (d,−d)
the orbits σ∗(d) and σ∗(−d).

Some topological notions can be defined on G:

• α∗(d) is a self loop iff −d ∈ σ∗(d)

• α∗(d) is a self-directed loop iff σ(d) = −d or σ((α(d)) = d

• α∗(d) is a bridge iff α(d) ∈ φ∗(d).

• α∗(d) is a pendant edge iff σ(d) = d or σ((α(d)) = d



Using combinatorial maps each vertex is implicitly defined by its set of darts. Thus a vertex
partition of a combinatorial map may be defined by encoding each vertex by one of its dart (see
definition 3).

Definition 3 Partition. Given a combinatorial map G = (D, σ, α), D1, . . . , Dn ⊂ D is a
vertex-partition of G iff:

1. ∀i ∈ {1, . . . , n} Di 6= ∅. All Di are non-empty.

2. ∀d ∈ D ∃i ∈ {1, . . . , n}, ∃d′ ∈ Di | d ∈ σ∗(d′). Each vertex may be retrieved
thanks to a dart in one Di.

3. ∀i, k ∈ {1, . . . , n}2 σ∗(Di) ∩ σ∗(Dk) = ∅. The set of darts of one vertex is included in
only one Di.

Note that we do not have
⋃n

i=1
Di = D. Condition 2, only requires that each vertex has at

least one of its darts in one Di.

Lemma 1 The Restriction Operator. Given a combinatorial map G = (D, σ, α) and D
′ ⊂ D

the application :

p
D,D

′

(

D
′ → D

d 7→ σn−1(d) with n = Min{p ∈ IN∗ | σp(d) ∈ D
′}

is an injective function.

Definition 4 Partition into Connected Components. Given a combinatorial map G =
(D, σ, α), and a partition D1, . . . , Dn. This partition will be called a partition into connected
components iff:

∀i ∈ {1, . . . , n}

{

Gi = (Di, σ ◦ pD,Di

, α) is connected
σ∗(Di) = α(σ∗(Di))

The second equality means that there is no edge which connects Di to Dj.

Definition 5 Dual Combinatorial Map. Given a combinatorial map G = (D, σ, α), the com-
binatorial map G = (D, ϕ, α) is called the dual of G. The permutation ϕ is defined by:

ϕ = σ ◦ α

The orbits of ϕ encode the faces of G. Note that the function ϕ is a permutation, since it is the
composition of two permutations on the same set.

The connectivity is preserved by the dual transformation [4].

Definition 6 Removal Operation. Given a combinatorial map G = (D, σ, α) and d ∈ D. If
α∗(d) is not a bridge, the combinatorial map G′ = G \ α∗(d) is the sub-map defined by:



• D
′ = D − α∗(d) and

• σ′ = σ ◦ p
D,D

′ .

This operation will be denoted Rd.

Definition 7 Contraction operation. Given a combinatorial map G = (D, σ, α) and one dart
d, in D which is not a self loop. The contraction of dart d creates the graph:

G′ = G/α∗(d) = G \ α∗(d)

This operation will be denoted Cd. Note that this operation is well defined since d is a self-loop
in G iff it is a bridge in G.

Definition 8 Contraction Kernel. Given a connected combinatorial map G = (D, σ, α), the
forest [4] F = (D1, . . . , Dn) will be called a contraction kernel N iff:

SD = D −
n

⋃

i=1

Di 6= ∅

The set SD is called the set of surviving darts.

Definition 9 Equivalent Contraction Kernel. Given a combinatorial map G0 = (D, σ, α),
a contraction kernel N1 of G0, the contracted combinatorial map G1 = G0/N1, and N2 a
contraction kernel of G1, the contraction kernel K3 of G0 for witch G0/N3 = (G0/N1)/K2, is
called the equivalent contraction kernel of N1 and N2.

The successive application of N1 and N2 forms a new operator on G0 denoted by N2 ◦ N1.
A combinatorial pyramid is a stack of successively reduced combinatorial maps, where

each map is build from the one below by selecting a set of vertices named surviving vertices
and mapping each non surviving vertex to a surviving one.

3 Image Partitioning
Let G = (D, σ, α) be a given attributed combinatorial map with the vertex set V = σ∗(D) and
edge set E = α∗(D). We will discuss later about the attributes. The goal is to find partitions
P = {CC1, CC2, ..., CCn} such that these elements satisfy certain properties. The author
in [6] defines the function, Comp(·, ·), which measures the difference along the boundary of
two components relative to a measure of the differences of components’ internal differences.
This definition tries to encapsulate the intuitive notion of contrast: a contrasted zone is a region
containing two connected components whose inner differences (internal contrast) are less than
differences within it’s context (external contrast). We define an external contrast measure
between two components and an internal contrast measure of each component. These measures
are defined in [6, 8], analogously.

Let G = (D, σ, α, attrv, attre) be a given attributed combinatorial map with the vertex set
V = σ∗(D) and edge set E = α∗(D) on the base level (level 0). Vertices v ∈ V and edges



e ∈ E are attributed, i.e. attrv : V → R
+ and attre : E → R

+. One possible way to attribute
the edges is given in Section 4. The combinatorial map on level k of the pyramid is denoted by
Gk(Dk, σk, αk). Every vertex u ∈ Vk = σ∗

k(Dk) is a representative of a component CCi of the
partition Pk. The equivalent contraction kernel of a vertex u ∈ Vk, N0,k(u) is e set of darts (a
subtree) of the base level d ∈ D that are contracted; i.e. applying equivalent contraction kernel
on the base level, one contracts the sub combinatorial map G′ ⊆ G onto the vertex u.

The internal contrast measure of the CCi ∈ Pk is the largest dissimilarity measure of
the component CCi i.e. the largest edge weight of the N0,k(u) of a vertex u ∈ Vk:

Int(CCi) = max{attre(e), e ∈ α∗(N0,k(u))}. (1)

Let ui, uj ∈ Vk be the end vertices of an edge e ∈ Ek. The external contrast measure between
two components CCi, CCj ∈ Pk is the smallest dissimilarity measure between component
CCi and CCj i.e. the smallest edge weight connecting N0,k(ui) and N0,k(uj) of vertices ui ∈
CCi and uj ∈ CCj:

Ext(CCi, CCj) = min{attre(e), e = (d,−d) : d ∈ N0,k(ui) ∧ −d ∈ N0,k(uj)}. (2)

The pairwise comparison function Comp(·, ·) between two connected components CCi and
CCj can now be defined as:

Comp(CCi, CCj) =

{

True if Ext(CCi, CCj) > PInt(CCi, CCj),
False otherwise, (3)

where PInt(CCi, CCj) is the minimum internal contrast difference between two components:

PInt(CCi, CCj) = min(Int(CCi) + τ(CCi), Int(CCj) + τ(CCj)). (4)

For the function Comp(CCi, CCj) to be true i.e. for the border to exist, the external contrast
difference must be greater than the internal contrast differences. The reason for using a thresh-
old function τ(CC) in Equation (4) is that for small components CC, Int(CC) is not a good
estimate of the local characteristics of the data, in extreme case when |CC| = 1, Int(CC) = 0.
Any non-negative function of a single component CC, can be used for τ(CC) [6]. One can
define τ to be function of the size of CC: τ(CC) = α/|CC|, where |CC| denotes the size of
the component CC and α is a constant. More complex definition of τ(CC), which is large for
certain shapes and small otherwise would produce a partitioning which prefers certain shapes,
e.g. using ratio of perimeter to area would prefer components that are not long and thin.

Let Pk = CCk
i , CCk

j , ..., CCk
n be the partitions on the level k of the pyramid i.e Pk is the

combinatorial map Gk(Dk, σk, αk). Algorithm 1 shows how to build the hierarchy of partitions.

4 Experiments on Image Maps
In the following paragraphs we will comment about some implementation issues and results.
Because having a combinatorial map, one can always deduce/obtain it’s dual. There is no need
of storing both. All the details here (as in the whole paper) are given for the map in which
vertices represent regions. In it’s dual, instead of vertices, faces are used to represent regions,



Algorithm 1 – Construct Hierarchy of Partitions
Input: Attributed combinatorial map G0.

1: k = 0
2: repeat
3: for all vertices u ∈ Vk = σ∗

k(Dk) do
4: Emin(u) = argmin{attre(e) | e = (d,−d) ∈ Ek and u = σ∗

k(d)}
5: end for
6: for all e = (d,−d) ∈ Emin, uk,i = σ∗

k(d), uk,j = σ∗
k(−d) with Ext(CCk

i , CCk
j ) ≤

PInt(CCk
i , CCk

j ) do
7: include d and −d in contraction kernel Nk,k+1

8: end for
9: contract combinatorial map Gk with contraction kernel, Nk,k+1: Gk+1 = C[Gk, Nk,k+1].

10: for all ek+1 ∈ Ek+1 = α∗
k+1

(Dk+1) do
11: set edge attributes attre(ek+1) = min{attre(ek) | ek+1 = C[ek, Nk,k+1]}
12: end for
13: k = k + 1
14: until Gk = Gk−1

Output: A region adjacency combinatorial map at each level of the pyramid.

and also instead of ’end vertices of an edge’ we are interested in the neighboring faces of an
edge (the 2 faces separated by that edge).

Choosing which map to represent is more a subjective matter because both store the same
information in a not so different way (the same framework could be used to store and manage
both). Because the base entity in a combinatorial map is the dart, we cannot have a map con-
taining only one vertex and no edges. So one notable difference would be that if vertices are
chosen to represent the regions, a one region map, without self loops is not possible until the
background (the infinite region) is represented explicitly (darts have to be specially added for
that). On the dual, where regions are represented by faces, the background/infinite region also
exists, but no special darts have to be added to accommodate it, so a one region map would be
made out of 2 darts that are ‘sewed’ together by α and by σ.

We start with the trivial partition, where each pixel is a homogeneous region. The at-
tributes of edges are defined as the difference of its end point vertices. The attributes of edges
can be defined as the difference between end point features of end vertices , attre(ui, uj) =
|F (ui)−F (uj)|, where F is some feature. F could be defined as F (ui) = I(ui), for gray value
intensity images, or F (ui) = [vi, vi · si · sin(hi), vi · si · cos(hi)], for color images in HSV color
distance [20]. However the choice of the definition of the weights and the features to be used is
in general a hard problem, since the grouping cues could conflict each other [15].

For our experiments we used as attributes of edges the euclidean distance between pixel
RGB values,

attre(ui, uj) =
√

red(ui) ∗ red(uj) + green(ui) ∗ green(uj) + blue(ui) ∗ blue(uj). (5)

We choose this simple color distance to study the properties of the algorithm. To compute the



Tulips (cropped)

(a) 0 (160 000) (b) 21 (2387) (c) 27 (321) (d) 37 (41) (e) 42 (9)

Figure 2: Some levels of the partitioning of “Tulips(cropped)”: level (number of components).

hierarchy of partitions we also need to define τ(CC) = α/|CC|, where α = const and |CC|
is the number of elements in CC, i.e. the size of the region. The algorithm has one running
parameter α, which is used to compute the function τ . A larger constant α sets the preference
for larger components. A more complex definition of τ(CC), which is large for certain shapes
and small otherwise would produce a partitioning which prefers certain shapes, e.g. using ratio
of perimeter to area would prefer components that are compact, e.g. not long and thin. For
computational efficiency the internal contrast PInt() and the size of the connected component
|CC| (receptive field) is stored.

Image Tulips (cropped) is a cropped version (top-left 400 by 400 pixels) of the Tulips image
from the Waterloo image database and Obj18 355, and Obj59 0 from the Coil 100 image
database. We found that α = 300 produces the best hierarchy of partitions of the images shown
in Tulips.cropped 1 Figure 2, Obj18 355 2 Figure 3, and Obj59 0 2 Figure 4. Figures 2, 3 and
4 show some of the partitions on different levels of the pyramid and the number of components.
In general the top of the pyramid will consist of one vertex, an apex, which represents the whole
image.

Note that in all images there are regions of large intensity variability and gradient. This
algorithm copes with this kind of gradient and variability. In contrast to [6]3 the result is a hi-
erarchy of partitions with multiple resolutions, suitable for further goal driven, domain specific
analysis 4. On the lower level of the pyramid the image is over segmented (partitioned) whereas
in upper it is under segmented (partitioned), the help of mid and high level knowledge would
select the proper partitioning. Since the algorithm preserves details in low-variability regions, a
noisy pixel would survive through the hierarchy. Of course, image smoothing in low variability
regions would overcome this problem. We, however do not smooth the images, as this would
introduce another parameter into the method. The hierarchy of partitions can also be built from
an over segmented image to overcome the problem of noisy pixels. Note that the influence of
τ in decision criterion is smaller as the region gets bigger for a constant α. The constant α is

1Waterloo image database
2Coil 100 image database
3In [19] results of different segmentation methods, including the ones in [6] and [15], are shown and compared.
4Please note that a whole class of partitions is created, where a partition is not limited to a certain level of

the pyramid, but can be constructed of components from different levels (the receptive fields of the vertices of a
multilevel partition occupy the whole image, and do not overlap)



Obj18 355

(a) 0 (16 384) (b) 23 (512) (c) 32 (65) (d) 39 (10) (e) 42 (4)

Figure 3: Some levels of the partitioning of “Obj18 355”: level (number of components).

Obj59 0

(a) 0 (16 384) (b) 24 (291) (c) 34 (23) (d) 37 (6) (e) 39 (2)

Figure 4: Some levels of the partitioning of “Obj59 0”: level (number of components).

used to produce a kind of the over segmented image and the influence of τ is smaller after each
level of the pyramid. For an overexerted image, where the size of regions is large, the algorithm
becomes parameterless.

5 Conclusion
In this paper we presented a method for building hierarchical image partitions using Borůvka’s
minimal spanning tree algorithm. The hierarchy is presented as a combinatorial pyramid, where
each level is a 2D combinatorial map. Combinatorial maps are defined in any dimension, thus
the current work should lead the way to segmentation of digital video streams using contraction
in 3D combinatorial maps/pyramids. It was shown that the algorithm can handle large variation
and gradient intensity in images. Even though the algorithm makes greedy decisions locally, it
produces perceptually important partitions in a bottom-up way based only on local differences.
A drawback is that maximum and minimum criterion is very sensitive to noise, although in
practice it has a small impact. To overcome the problem of noise, one could start with an
oversegmented image produced by a robust method e.g. watershed method. A comparison
between the classes of partitions produced by the presented method, and some of the well known
methods (e.g. [6]) is planned.
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