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Abstract. The eccentricity transform associates to each point of a shape
the shortest distance to the point farthest away from it. It is defined in
any dimension, for open and closed manyfolds. Top-down decomposition
of the shape can be used to speed up the computation, with some par-
titions being better suited than others. We study basic convex shapes
and their decomposition in the context of the continuous eccentricity
transform. We show that these shapes can be decomposed for a more ef-
ficient computation. In particular, we provide a study regarding possible
decompositions and their properties for the ellipse, the rectangle, and a
class of elongated shapes.

1 Introduction

To extract the required information from a set of images, a frequently used
pattern is to repeatedly transform the input image while gradually moving from
the low abstraction level of the input data to the high abstraction level of the
output data. The idea is to have a reduced amount of (important) data at
these higher abstraction levels. A class of such transforms applied to 2D shapes,
associates to each point of the shape a value that characterizes in some way it’s
relation to the rest of the shape. This value in many cases is a distance between
important points i.e. features.

Examples include the distance transform [1], which associates to each point
the length of the shortest path to the border, the Poisson equation [2], which
can be used to associate to each point the average time to reach the border by
a random path (an average of the random shortest paths), and the eccentricity
transform [3] which associates to each point the longest of the shortest paths to
any other point of the shape. In this way one tries to come up with an abstracted
representation of the shape (e.g. the skeleton [4] or shock graph [5] build on
distance transform), which could be easily used in e.g. shape classification or
retrieval. Minimal path computation [6] as well as distance transform [7] are
used in 2D and 3D image segmentation.
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The eccentricity transform (ECC) has it’s origins in the graph based eccentric-
ity [8,9]. Defined in the context of digital images in [3,10], where properties and
robustness have been shown, it was applied for shape matching in [11]. The ECC
can be computed for of any dimension, discrete closed (e.g. 2D binary image)
or open sets (surface of an ellipsoid), and continuous (e.g. 3D ellipsoid or the
2D surface of the 3D ellipsoid, etc.). For discrete 2D shapes, a naive algorithm
(O(N3) in the number of pixels) and a more efficient one for 2D shapes without
holes, have been presented in [3].

This paper presents top-down approach for the efficient computation of the
ECC of basic convex shapes using decomposition. Section 2 gives a short recall
of the ECC. Section 3 shows its computation on an ellipse, rectangle and an
elongated shape. Section 4 concludes and gives an outlook of the future work.

2 Recall ECC

In this section basic definitions and properties of the ECC are introduced follow-
ing [3,11]. Let the shape S be a closed set in R

2 and ∂S be its border1. A path
π is the continuous mapping from the interval [0, 1] to S. Let Π(p1, p2) be the
set of all paths between two points p1, p2 ∈ S within the set S (Π(p1, p2) ⊂ S).
The geodesic distance d(p1, p2) between two points p1, p2 ∈ S is defined as the
length λ of the shortest path π(p1, p2), such that π ∈ S, more formally

d(p1, p2) = min{λ(π(p1, p2))|π ∈ Π} where λ(π(t)) =
∫ 1

0

|π̇(t)|dt (1)

where π(t) is a parametrization of the path from p1 = π(0) to p2 = π(1).
The eccentricity transform of S can be defined as, ∀p ∈ S

ECCS(p) = max{d(p, q)|q ∈ S} = max{d(p, q)|q ∈ ∂S} (2)

i.e. to each point p it assigns the length of the shortest geodesics to the points
farthest away from it. In [3] it is shown that this transformation is quasi-invariant
to articulated motion and robust against salt and pepper noise [10] (which cre-
ates holes in the shape). An eccentric point is then the point y that reaches a
maximum in Eq. 2. All the eccentric points lie on the border of S [3].

3 ECC of Basic Shapes

In the case of simply connected convex shapes S, geodesic distance equals Eu-
clidean distance, as no obstacles exist that have to be avoided. In the rest of the
paper, S denotes a simply connected convex shape, centered at the origin (center
of gravity). We will show some properties of shapes S regarding the eccentricity
transform, which will help designing new and faster algorithms. For clarity, we
introduce the following notations: the set of points (x, y) ∈ S such that x > 0,
is denoted Sr and called the right part of S, whereas the set of points (x, y) ∈ S
such that x < 0, is denoted Sl and called the left part of S.
1 This definition can be generalized to higher dimensions.
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Fig. 1. The sets of eccentric points of the ellipse are shown with a thick line

3.1 Ellipse

Ellipse Recalls. The elliptical curve of points (x, y) around the origin with
parameters a > 0 and b > 0 is defined by

x2

a2
+

y2

b2
= 1. (3)

In point (x, y) it has a tangent direction (ẋ, ẏ) satisfying

xẋ

a2
+

yẏ

b2
= 0. (4)

Bounding Extremal points. We consider an elliptical region S around the
origin, defined by x2

a2 + y2

b2 ≤ 1. In the following, we assume that a > b, thus
the small axis of S is the segment [−b, b], and the long axis of S is the segment
[−a, a].

As mentioned before, it has been shown that the eccentric point(s) of any point
(x, y) ∈ S, are on the border of S. We now provide two additional properties
regarding eccentric points on an elliptical region.

Property 1. Let (xe, ye) be an eccentric point for (x, y) ∈ S. Then, the tangent
to the ellipse at the point (xe, ye) is orthogonal to the line defined by (x, y) and
(xe, ye).

Proof. Suppose that the tangent is not orthogonal to the line defined by (x, y)
and (xe, ye), then there exists a point (x′

e, y
′
e) in the neighborhood of (xe, ye),

which is farther away from (x, y) than (xe, ye). This would contradict the fact
that (xe, ye) is an eccentric point for (x, y).

The following property is a general property for symmetric (having one axis of
symmetry), simply connected and convex shapes.

Property 2. Let S be a symmetric, simply connected and convex shape, with
A its axis of symmetry. Let S1 and S2 denote the two symmetric parts of S
delineated by A. Any point p ∈ S1 has its eccentric point pe in S2.
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Proof. Let p ∈ S1\A and pe ∈ S1. Then there exists the symmetric point p′e ∈ S2.
The straight line connecting p and p′e intersects A in point q ∈ A having the same
distance to pe and p′e: d(p, p′e) = d(p, q) + d(q, p′e) = d(p, q) + d(q, pe) > d(p, pe)
shows that pe is not eccentric due to the triangular inequality.

The ellipse is a simply connected convex shape and the smaller axis is an axis
of symmetry. For any ellipse S, we can choose S1 = Sl and S2 = Sr.

We compute the eccentric points of (0, b) and (0,−b). This allow us to partition
the ellipse into 4 subsegments alternating the property of being eccentric or not
(see Fig. 1). Let us consider the line l that goes through the point (0,−b) and
crosses the ellipse with orthogonal tangent at point (x0, y0), such that x0 ≥ 0
and y0 ≥ 0. This line l(τ) is defined by:

{
x = τ ẏ0

y = −b − τẋ0.
(5)

As (x0, y0) ∈ l, we can deduce from Eq. 5 that:
{

τ0 = x0
ẏ0

y0 = −b − ẋ0
ẏ0

x0.
(6)

From Eq. 4, we obtain − ẋ0
ẏ0

= y0a2

x0b2 . Using Eq. 5, we obtain y0 = −b−x0
y0a2

x0b2 =

−b − y0a2

b2 , so

y0 =
b3

a2 − b2
. (7)

The x-coordinate is then determined using the ellipse formula:

x2
0 = a2(1 − b4

(a2 − b2)2
). (8)

Similar calculations deliver the eccentric point for (0,−b) with x0 < 0 and
y0 ≥ 0, and the two eccentric points for the point (0, b).

One can directly deduce that any point (xc, yc) of the ellipse, s.t. x2
c < x2

0 has
normals that do not intersect the segment [−b, b]. Thus, according to Prop. 2,
all these points cannot be eccentric points for any point inside the ellipse. Hence
the points (x0, y0), (x0,−y0), (−x0,−y0), (−x0, y0) partition the ellipse into 4
subsegments alternating the property of being extremal or not.

Eccentric lines through the smaller axis. In this section, we show how
to efficiently compute the eccentricity transform of an elliptical region S, by
considering separately Sl and Sr. Using Prop. 1, we first show how to compute
the eccentricity of all the points of the small axis.

Let p = (0, µb), −1 ≤ µ ≤ 1 be a point on the small axis, and let pe = (xe, ye)
be its eccentric point in Sr. Using Prop. 1, the points (x, y) of the line l(τ)
defined by (p, pe) satisfy:
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Fig. 2. Efficient computation of eccentricity transform based on decomposition

p

Fig. 3. Ellipse decomposition along the bigger axis: more than one line, orthogonal to
the ellipse tangent at the point of intersection, can go through one point

{
x = τ ẏe

y = µb + τẋe.
(9)

In particular, pe ∈ l, so we have xe = τeẏe and ye = µb+τeẋe. Thus we deduce
that τe = xe

ẏe
and ye = µb + ẋe

ẏe
xe = µb3

b2−a2 .
The x-coordinate is then determined using Eq. 3

x2
e = a2(1 − b4µ2

(b2 − a2)2
). (10)

So, the eccentricity of any point (0, µb),−1 ≤ µ ≤ 1 of the small axis, can
directly be computed by the above formula using a, b and µ. The direction to
their eccentric point is also known and can be stored in each point.

As it is a convex shape, the eccentric path from any point of an elliptic region
to its eccentric point is a straight line. Moreover, from Prop. 2, we know that
the eccentric point pe of any point pl ∈ Sl is in Sr. Thus, for computing the
eccentricity of pl, we just have to find the point psa of the small axis, such that
the direction (pl, psa) is the same as the direction stored in psa (see Fig. 2).

Eccentric lines through the bigger axis. In the previous section, we have
shown that it is possible to decompose an ellipse S along its smaller axis to effi-
ciently compute the eccentricity ECCS . This is not the case when decomposing
S into Su and Sd along the bigger axis [−a, a] because
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Fig. 4. Eccentric paths inside a rectangle

– the eccentric points pe of any point pba ∈ [−a, a] are either (−a, 0) or (a, 0),
which is obviously not helpfull for deducing ECCS ;

– even if we associate to each point pba ∈ [−a, a] the point p′ ∈ ∂Su s.t. (p, p′)
is orthogonal to the tangent at p′, ∃p ∈ Sd with at least two points p′1 and p′2
in ∂Su s.t. (p, p′1) and (p, p′2) are orthogonal to the tangent at p′1 respectively
p′2. So we cannot make a one to one mapping for a direct computation of
ECCS(p) as d(p, p′1) and d(p, p′2) have to be compared. See Fig. 3.

Circle. In the special case where a = b, the shape S becomes a circle. Let
r = a = b be the radius and O the center. For all p ∈ ∂S the line orthogonal to the
tangent at p contains the center O. Thus all the eccentric paths go through the
center O and the eccentricity of a point p(x, y) ∈ S is ECCS(p) =

√
x2 + y2 +r.

Note that all the points of ∂S are eccentric points.

3.2 Rectangle

Even though the rectangle is a simple case, studying it’s decomposition in the con-
text of eccentricity is of importance. Compared to the ellipse, a one to one associa-
tion between points on the cut and eccentric paths cannot be made. In the case of
the rectangle, two eccentric point candidates exist for each point on the cut.

Let S be a rectangle with side lengths 2w and 2h (see Fig. 4). The four corners
of the rectangle v−w,−h, v−w,h, vw,−h, vw,h make up the set of eccentric points
of S.

The rectangle S can be decomposed in two subparts Sl and Sr (see Fig. 4),
along the cut C = [(0,−h), (0, h)]. The corners v−w,−h, v−w,h respectively vw,−h,
vw,h are the eccentric points of all the points p ∈ C.

The main difference compared to the ellipse, is that in the case of the rect-
angle we cannot associate to each point of C a single pair made of a direc-
tion and distance, because eccentric paths with more than one orientation can
pass though the same point of the cut (see pc2 in Fig. 4). To solve this, to
each point of C we associate two pairs of distances and directions, connect-
ing it to the corners v−w,−h, v−w,h respectively vw,−h, vw,h. Thus, for any
p ∈ Sl, ∃pc1 , pc2 ∈ C s.t. pc1 ∈ (p, vw,h) and pc2 ∈ (p, vw,−h). Then

ECCS(p) = max(d(p, pc1) + ECCS(pc1), d(p, pc2) + ECCS(pc2)).
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Fig. 5. Elongated shape formed of two half ellipses and a rectangle

3.3 Elongated Shape

Let S be an elongated shape obtained by gluing two oppsite sides of a rectangle
R with two halves of ellipses El and Er. Let us assume that: the width of R is
2w and its height is 2h; El is the half of the ellipse defined by the 2 parameters
al and h; Er is the half of the ellipse defined by the 2 parameters (ar, h) (See
Fig. 5).

Symmetric Shape S: Let’s assume that a = al = ar and decompose S along
the cut C = [(0,−h), (0, h)].

If a � h, we can extend Prop. 1 from Section 3.1 to elongated shapes. Thus,
for any point p ∈ Sl, its eccentric point pe is in Sr and is orthogonal to the
ellipse tangent at pe. Moreover, we can deduce that pe is the unique eccentric
point of p i.e. ep(p) = {p}.

Like in Section 3.1, we can compute the eccentricity and the eccentric path
orientation for all the points of C separately in Sl and Sr and for all p ∈ Sl

compute the eccentricity ECCS(p) = d(p, pc) + ECCSr (pc) where pc ∈ C and
(p, pc) has the same direction as the eccentric path of pc in Sr. These results can
directly be extended for the points of Sr. To find the eccentricity and eccentric
path orientation for C in Sl and Sr one can decompose Sl and Sr in the half-
ellipse together with half the rectangle R, and directly use the formulas provided
in Section 3.1.

Note that if a = h then El and Er are half circles and all the eccentric paths
will go through their centers.

If r > h, the ellipses El and Er correspond to ellipses that have been cut along
their bigger axis (see Section 3.1). In this case, as mentioned in Section 3.1,
there exist some points p ∈ Sl which have more than one associated points
{e1, e2, . . . , ek} ∈ Sr, such that (p, ei) is orthogonal to the ellipse tangent at ei.

Thus, we cannot associate each point in Sl with a single direction and distance
based only on the orthogonality with the ellipse tangent. We need to take the
maximum of the distances.

Nonsymmetric Shape S: If al �= ar, S is no longer symmetric and it cannot
be decomposed by a line segment s.t. for any point p ∈ S all its eccentric
points are contained in the part not containing p. An easy way to overcome
this problem is to take for each point, the maximum between the eccentricity
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computed separately on the part containing the point and the one obtained by
using the decomposition.

4 Outlook and Conclusion

In this paper we have studied top-down decomposition of basic shapes in order to
speed up the computation of the eccentricity transform. Some partitions proved
to be better suited than others. We showed that these shapes can be decomposed
for a more efficient computation and also derived some properties that could be
applied for more general shapes. In particular, we provide a study regarding
possible decompositions and their properties for the ellipse, the rectangle and a
class of elongated shapes. In the future we plan to extend this study to any 2D
shape followed by a study for 3D and nD shapes.
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