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Abstract A framework for mapping a polar-like coordi-
nate system to a non-rigid shape is presented. Using a
graph pyramid, a binary shape is decomposed into con-
nected parts, based on its structure as captured by the ec-
centricity transform. The decomposition is used to derive
domains for the angular like coordinate. A closest point
search is employed to find point correspondences. We dis-
cuss aligning the angular like coordinate to optimize the
mapping quality.

1 Introduction

Most shape matching methods output a similarity value (e.g.
[4, 5, 17, 8]), some also give correspondences of the used
signature, usually border points/parts [15, 1, 21], but finding
all point correspondences based on the obtained information
is in most of the cases not straightforward.

This work maps a coordinate system to an articulated
shape, with the purpose of addressing the corresponding
point (or a close one) in other instances of the same shape. It
is mainly motivated by observations like: ’one might change
his aspect, alter his pose, but the wristwatch is still located
in the same place on the hand’.

For correspondences of all points of the shape, the task
is similar to the non-rigid registration problem used in the
medical image processing community [3]. Differences in-
clude the usage of gray scale information to compute the
deformation vs. the usage of a binary shape and, the regis-
tration of a whole image (in most cases) vs. the registration
of a (in this approach) connected 2D shape. In [4], a triangu-
lation of the shape is used as a model, which could be used
to find corresponding points, but an a priory known model is
still needed. In the surface parametrization community [2]
a coordinate system for shapes is defined, but articulation
is not considered. In [10], for small variations, correspon-
dences between points of 3D articulated shapes are found.
Recently shape matching has also moved toward decompo-
sition and part matching, e.g. [17], mainly due to occlusions,
imperfect segmentation or feature detection.

In this paper, we use the Euclidean eccentricity trans-
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form [7] as a basis for a 2D polar like coordinate system.
To support the mapping of the coordinates, a method for de-
composing a shape into connected parts is first introduced.
This paper is an extention of [6] and disuses in detail align-
ing the angular like coordinate (θ), Section6. Refinements
have been made throughout the whole paper.

The structure of the paper is as follows. Section2 re-
calls the eccentricity transform and graph pyramids and their
properties relevant for this paper. Sections3 and4 describe
the proposed methods, with the experiments given in Sec-
tion 5, followed by discussion in Section6. Section7 con-
cludes the paper.

2 Recall

In this section basic definitions and properties of the eccen-
tricity transform and graph pyramids are given.

2.1 Eccentricity Transform

The following definitions and properties follow [7].
Let the shapeS be a closed set inR2 and∂S be its bound-

ary1. A (geodesic) pathπ is the continuous mapping from
the interval[0, 1] to S. Let Π(p1,p2) be the set of all paths
within the setS, between two pointsp1,p2 ∈ S.

The geodesic distanced(p1,p2) betweenp1,p2 is de-
fined as the lengthλ(π) of the shortest pathπ ∈ Π(p1,p2),
more formally:

d(p1,p2) = min{λ(π(p1,p2))|π ∈ Π}, (1)

whereλ(π(t)) =
∫

1

0
|π̇(t)|dt, π(t) is a parametrization of

the path fromp1 = π(0) to p2 = π(1), and π̇(t) is the
differential of the arc length. A pathπ ∈ Π(p1,p2) with
λ(π) = d(p1,p2) is called ageodesic.

Theeccentricity transform(ECC) ofS can be defined as:

ECC(S,p) = max{d(p,q)|q ∈ S} (2)

∀p ∈ S i.e. to each pointp it assigns the length of the
shortest geodesic path(s) to the points farthest away. The
transform is quasi-invariant to articulated motion and robust
against Salt & Pepper noise [14] (which creates holes in the
shape).

1It can be generalized to any continuous and discrete space.
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In this paper, the class of 4-connected, planar, and simply
connected discrete shapesS defined by points on the square
grid Z

2 are considered. Paths are contained in the area ofR
2

defined by the union of the support squares for the pixels of
S. The distance between any two pixels whose connecting
segment is contained inS is computed using theL2-norm.

Computation:
In [7], efficient computation algorithms are given. The shape
bounded single source distance transform2, DT (S,p), com-
putes the geodesic distance of all points of a shapeS to the
pointp, and is the main tool used for computingECC(S).
DT (S,p) can be efficiently computed using discrete cir-
cles [7] or fast marching [20].

Terminology: An eccentric pointof a shapeS is a point
e ∈ S that is farthest away from at least one other pointp ∈
S i.e. ∃p ∈ S such thatECC(S,p) = d(p, e). Thecenter
C ⊆ S is the set of points with the smallest eccentricity i.e.
c ∈ C iff ECC(S, c) = min{ECC(S,p) | ∀p ∈ S}. If S
is simply connected,C is a single point. Otherwise it can be
a disconnected set of arbitrary size (e.g. forS = the points
on a circle, all points are eccentric and they all make up the
center). The smallest eccentricity is called theradiusof the
shape, and the highest one is called thediameter.

Properties: Due to using geodesic distances, the varia-
tion of ECC is bounded under articulated deformation to the
width of the ’joints’ [15]. The transform is robust with re-
spect to Salt & Pepper noise, and the positions of eccentric
points and center are stable [14]. Figure1 shows two hand
shapes (taken from the Kimia99 database [19]) and their ec-
centricity transform.

2.2 Irregular Graph Pyramids

A graph pyramid[9] P = {G0, . . . , Gt} is a stack of suc-
cessively reduced graphs (Gi, i = 1, . . . , t, whereG0 is the
base level, andGt is the top of the pyramid). Each level
Gk = (Vk, Ek), 1 ≤ k ≤ t, is obtained bycontractingand
removingedges in the levelGk−1 below. Successive levels
reduce the size of the data byγ > 1. Edges and vertices of
Gk can be attributed. Thereduction windowrelates a vertex
at a levelGk with a set of vertices in the level directly below
(Gk−1). Higher level descriptions are related to the original
input data by so called thereceptive field(RF) of a given
vertexv ∈ Gk, which aggregates all vertices inG0 of which
v is an ancestor.

Each level represents a partition of the base level into
connected subgraphs i.e.connected subsets of pixelsif the
pyramid is build in the context of an image. The construc-
tion of an irregular pyramid is iteratively local [16]. In the
base levelG0 of an irregular pyramid the vertices represent
single pixels and the neighborhood of the cells is defined by
the 4-connectivity of the pixels (higher connectivity can be
used locally, but graph planarity should be kept). The union
of neighboring vertices on levelk − 1 (children) to a vertex
on levelk (parent) is controlled by trees calledcontraction

2Also calledgeodesic distance function[22].
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Figure 1: Eccentricity transform of two shapes from [19]. The
grayvalues are the eccentricity value modulo a constant.

kernels(CK) [12] chosen by the algorithm (e.g. segmen-
tation, connected component labeling, etc.). Every vertex
computes its values independently of other vertices on the
same level. Thus local independent (and parallel) processes
propagate information up and down and laterally in the pyra-
mid [13].

In [13], methods for optimally building irregular pyra-
mids are presented. Methods like MIS and MIES ensure
logarithmic height of the pyramid by choosing efficient con-
traction kernels i.e. contraction kernels achieving high re-
duction factors.

3 ECC Isoheight Lines - Decomposition

The level set[23] of a functionf : R
n → R, corresponding

to a valueh, is the set of pointsp ∈ R
n such thatf(p) = h.

A level setof the ECC ofS is the set

LS(e) = {q ∈ S |ECC(S,q) = e},

with e ∈ [min{ECC(S,p)}, max{ECC(S,p)}]. ForS ∈
R

2, LS(e) can be a closed curve or a set of disconnected
open curves. The connected components ofLS(e) are called
isoheight lines, IL ⊆ LS(e), IL is connected.

For a shapeS, HD(S) = {R1, . . . ,Rn} is a a decom-
position ofS based on the connectivity of the ECC isoheight
lines(Figure3) if:

• HD is a partition ofS into simply connected regions;

• ∀Ri and∀e ∈ [min{ECC(S,p)}, max{ECC(S,p)}]
⇒Ri

⋂
LS(e) is connected; and

• the numbern of regions isminimal.
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Algorithm 1 HD - DecomposeS based on ECCLS

Input: Discrete shapeS .

1: iECC = ⌊ECC(S)⌋ /*at least 8 connectedIL*/
2: G0 ← oriented neighborhood graph ofiECC

/* pixels with same iECC connected,G0 planar,
orient from small to high iECC*/

3: k← 0
4: ∀v ∈ V0 do

v.maxlength← 1, v.ecc← [ECC(v), ECC(v)]
/* init max length of isoheight lines and ecc. interval*/

5: repeat
6: A← {e = (v, w) ∈ Ek | v.ecc = w.ecc}

/* merge isoheight line parts*/
7: A ← A

S

{e = (v, w) | out-deg(v) = in-deg(w) = 1 and
closed(v)=closed(w)}
/* closed(v)=trueiff RF(v) contains only closedIL*/

8: if |A| > 0 then
9: K ← CK as subset ofA

/*choose optimal subset of A with e.g. MIS [13] */
10: Gk+1 ← contract(Gk, K) /* also simplify*/
11: ∀v ∈ Vk+1 compute v.maxlength, v.ecc from Gk /*

use reduction window*/
12: k ← k + 1
13: end if
14: until |A| = 0
15: t← k

Output: Graph PyramidP = {G0, . . . , Gt}.

HD(S) exists for any connected shapeS.
The top levelGt of the graph pyramid created by Algo-

rithm 1 is a region adjacency graph describing the topol-
ogy of the decompositionHD(S). Edges ofGt are oriented
from regions with lower eccentricity to regions with higher
eccentricity. Each vertex contains the length of the longest
isoheight line in its RF. The result is similar to building the
Reeb graph [18] of S with ECC(S) as the Morse function.

The top levelGt corresponds to the following decom-
position: one can imagine following the isoheight lines
from the minimum eccentricity to the maximum eccen-
tricity. Whenever an isoheight line gets disconnected, or
merged, new regions are started for the formed isoheight line
part(s). This approach is more intuitive, but needs building
the adjacency graph for the decomposition over it. In addi-
tion, it is lacking the fast access advantages when searching
for the pixel with a known coordinate.

If S is simply connected, the obtained region adjacency
graph (top level of the pyramid) is a tree (Theorem 7.9
in [11]), with the RF of the root vertex containing the
(unique) center pixel. Such a decomposition can be done
for other transforms also (e.g. theDT (S,p)). The eccen-
tricity transform is used because its center is a robust starting
point [14].

4 The Non-rigid Coordinate System

A system ofcurvilinear coordinates[23] is a system com-
posed of intersecting surfaces. If all intersections are atan-
gle π/2, then the coordinate system is calledorthogonal
(e.g. polar coordinate system). If not, askewcoordinate
system is formed.

Figure 2: Mapping of points from neighboring isoheight lines

To define a planar system of curvilinear coordinates, two
classes of curves need to be defined - one for each coordi-
nate. For any pointp ∈ S there exists exactly one curve
of each class passing through it. Any defined coordinates
identify one curve of each class which intersect at a unique
point.

The proposed coordinate system is intuitively similar to
the polar coordinate system, but forms a skew coordinate
system. We focus on simply connected shapes and their
properties. The decomposition of non simply connected
shapes is much more complex (general graph with cycles,
etc.) and more complex algorithms are required. Note thatθ
is not really an angle, just denoted intuitively so. Theradial
coordinateis a linear mapping from the eccentricity value
and theangular coordinateθ is mapped to the isoheight
lines of the ECC based on the structure of the shape.

Theradial coordinateis:

r(p) = (ECC(S,p) −m)/(M −m), (3)

wherem = min{ECC(S)}, M = max{ECC(S)}. Fig-
ure3 shows the isoheight lines of the eccentricity transform
i.e. of r(p).

4.1 Setting the angular coordinate

As mentioned above, the angular coordinateθ is not really
an angle - it has been intuitively named like this. The pre-
sented approach focuses on simply connected shapes and
their properties. For non simply connected shapes, the re-
sult of the decomposition is much more complex (general
graph with cycles, etc.) and more complex algorithms are
required.

Figure2 shows three adjacent isoheight lines (A, B, G)
of different regions.A has eccentricitye, andB, G have
e + k. If k → 0 thend → 0, and maximum smoothness
of θ is achieved when each point ofB has the sameθ as
his projection onA. This assumption puts the valuesθ for
A andB into relation. An approximation is to project the
endpoints ofB ontoA, to find theirθ values, and interpolate
alongB:

θ′
1

= θ1 +
(θ2 − θ1)

∫ p

s
dl

∫ e

s
dl

(4)

The obtained relation can be used to control the smooth-
ness ofθ along region boundaries. Inside regions, the values
of θ are computed using linear interpolation along the iso-
line, from the given start and end values forθ.

The root vertex ofGt (Section3), contains only closed
isoheight lines and is the only such vertex. Its associatedθ
interval is2π. Other vertices have an ’input interval’ and 0
or more ’output intervals’ (edge orientation inG). Smooth-
ness along region boundaries is assumed, and intervals of
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Algorithm 2 CtoP - Assignθ to ∀v ∈ G

Input: G = (V, E) from Algorithm 1, vertexv, interval[θ1, θ2].

1: v.θ1 ← θ1, v.θ2 ← θ2

2: A← isoheight line ofv with highest ecc.
3: for all e = (v, vo) ∈ E /*all edges oriented away*/ do
4: B ← isoheight line ofvo with lowest ecc.
5: [θ′

1, θ
′

2]← projectB to A and compute from[θ1, θ2] (Equa-
tion 4)

6: call CtoP (G,vo, [θ
′

1, θ
′

2])
7: end for

Output: G, with θ intervals[v.θ1, v.θ2] for each region

θ inside each region are kept constant. Inside each region,
values ofθ are interpolated along the isolines as mentioned
above. Algorithm2 assigns theθ intervals to each vertex.
The parameters are the top level of the pyramid from Algo-
rithm 1, the root vertex ofGt, and[0, 2π]. This approach
works only with real valuedθ, as two isoheight segments of
the same region can contain a different number of pixels and
still get the same interval assigned.

For the origin ofθ, a path connecting the center (min-
imum eccentricity) with a point having the maximum ec-
centricity can be used. This path is called thezero path. (the
zero path does not have to be a part of the diameter, as the di-
ameter does not always pass through the center). It is used in
the inner most region (root vertex ofGt) to set the0 for theθ
of each isoheight line. Outside this region, linear interpola-
tion is used (Equation4). A point with maximum ECC can
be selected using any shape orientation method (e.g. [24])
- taking into consideration the possible deformations would
be optimal (see Section6 for a detailed discussion).

Figure 3 shows the results of Algorithm1 and 2, and
Equation3 and 4 for the two hands. The jagged isoheight
lines ofθ are due to the smoothness/roughness of the shape
boundary i.e. curvature of the shape boundary at the end-
points of isoheight lines, and partly due to the simple imple-
mentation (point projection by closest point search and in-
tegral along line estimation by sum of line segment lengths
for Equation4, etc.).

5 Experiments

To get a feeling of the “stability” of the mapping w.r.t. ar-
ticulation we have applied the algorithms on the shapes in
Figure 1. A pattern was laid on each hand - thesource,
and copied to the other one - thedestination, by finding for
each pixelpd(rd, θd) of the destinationthe “closest” pixel
ps(rs, θs) in thesource(images in the last two rows in Fig-
ure3). The local variation ofθ is not constant over the whole
shape, making the Euclidean metric not the best option for
finding the closest pixel to a given pointpd(rd, θd).

To avoid compensating for this variation, a two step ap-
proach is used.First, normalizer in both shapes to[0, 1].
This makes findingeccd → r → eccs a linear scaling prob-
lem. L ← (eccs ≤ ECC(source) < eccs + 1) gives at
least8 connected isoheight lines ofr. Second, the pixel ofL
which minimizes|θd−θs| is chosen. The results are promis-
ing (see Figure3) with the texture of the “articulated” finger
being nicely copied from one shape to the other i.e. points

are copied to their corresponding region in the articulated
version of the shape.

The noise like errors on the pattern are due to the approx-
imations mentioned above and to using “nearest point” for
finding the color of each pixel when copying the pattern (in-
stead of interpolating gray values). Errors on the boundaries
of fingers are due to certain coordinates not existing in both
shapes. The more global perturbation (palm of the hands in
Figure3) is mainly due to the slightly different position of
the centers and isoheight line shape. Improvements can be
made by considering both shapes when mapping the coordi-
nates to them, or by a more complex method for finding cor-
responding points. Finding a matching between the regions
of the decomposition of the two shapes is an important step
and is planned in the future.

Quantitative error measurements for the mapping from
one pose to the other are planned.

6 Discussion - aligning the angular like
coordinate (θ)

The option of connecting the center (point with ECC global
minimum) with a point having the maximum ECC is not
always the best option. All shapes have at least two points
with the maximum ECC and discriminating between them is
an open problem. Also depending on the intra-class defor-
mation of the shape and on segmentation errors, these points
can shift (usually only in the local neighborhood).

The mapping in Algorithm2 does not specifically use the
zero value. It assigns angle intervals. The zero value is just
used to set a starting point (origin) in the region containing
the center. Thus, using a zero path that shifts the angles with
k degrees is equivalent with computing the mapping on the
whole shape, and then shifting the angles withk degrees.

The present coordinate mapping is usefull if wanting to
associate points from two different poses of the same shape
(for one single shape in the exact same pose, using the Carte-
sian coordinate system of the space in which the shape is
embedded is faster). Instead of fully computing the coor-
dinate system separately on each shape, one could consider
aligning theθ values to optimize the mapping quality. For
this we compute the coordinate system as proposed in Sec-
tion 4, using any global ECC maximum to choose the zero
path. Following this, we can alignθ of one of the shapes
(calledprimary) to the other one (calledsecondary), by one
of the following options.

The first option is to minimize the number of pixels with-
out any correspondence. As presented in Section5, the point
of the sourceps = (rs, θs) ∈ S corresponding to a pair of
coordinates(rd, θd) is found by:

ps = argminp∈L{|θ(p)− θd|},

whereL is the at least 8 connected isoline with the eccen-
tricity computed from Equation3, for a givenrs = rd.

For any r ∈ [0, 1] we getL 6= ∅, and the equation
above will produce a result. To decide whether a satisfying
correspondence has been found, we can consider setting a
threshold on the distance between the coordinates requested
(rd, θd) and the coordinates of the point found(rs, θs). The
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decomposition used zero path radial:r angular:θ pattern on thesource on thedestination

Figure 3: Results for the shapes in Figure1 (θ increases counter-clockwise).
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Figure 4: Rotation ofθ of hand1 vs. number of pixels without a
successful correspondence (minimum value is shown).

L2-norm cannot be used asr andθ are very different in na-
ture. r has bounded local variation, while the variation of
θ can differ a lot between different parts of the same shape
(e.g. two fingers of the same hand, one very thing and one
many times thicker). Alsoθ is a periodic value.

As θ values are assigned inside regions using linear inter-
polation along the isolines (Section4.1), we can also com-
pute and store the local variation along the isoline. A mul-
tiple of this value (in our experiments 2) can be used as the
threshold to differentiate between a successful correspon-
dence and a failed one. Figure4 shows the result of shifting
θ of hand1 (left in Figure1) and counting the number of pix-
els without a successful correspondence. The source ’role’
is played by hand2 and the destination by hand1. In the
case of hand1 and hand2 the original angle is very close to
the minimum as corresponding ECC maxima where chosen
as reference points and their position was stable. The dis-
advantage of this approach is its computational complexity.
For every tested shift ofθ, the correspondences for all pixels
have to be computed.

To overcome this complexity, one could consider a sim-
pler alignment. Every boundary pixel has an ECC value
which if considered along the boundary, produces a 1D sig-

nal. One can consider aligning the two 1D signals of the
ECC of the boundary points, to obtain a maximum overlap,
and shiftθ with the offset of the initial and obtained position
for a certain boundary point (e.g. the starting one). Fig-
ure 5.b shows the ECC ’signals’ of the boundary pixels of
hand1 and hand2 for starting points withθ = 0 (Figure5.a).
Figure6 shows the correlation and angle offset of the start-
ing point for different offset positions of the ’circular’ 1D
signal of hand1 (correlation computed to the 1D signal of
hand2). The maximum correlation is achieved for an offset
of 41 pixels (clockwise) which brings the starting point of
hand1 over the one of hand2, and recommends an offset of
-7.98 degrees (θ was assigned counter clockwise). Due to
the fact that many boundary points can have the same ec-
centricity, and for a certain offset in the 1D signal of hand1
there are many shifts in the respective angles of the bound-
ary points, between the original position and the offset-ed
one, this approach has to be considered in more detail.

7 Conclusion

In this paper we discuss a framework for using the eccen-
tricity transform to map a polar-like coordinate system onto
a non-rigid binary shape and find corresponding points be-
tween two shapes. Promising initial results are presented.
The alignment of the coordinates is discussed in more de-
tail for optimizing the mapping quality. More global de-
cisions will provide smoother angular isoheight lines, and
additional correspondences between part structures can help
to solve failed correspondences. Further quantitative eval-
uation and extension to non simply connected shapes is
planned.
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