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Abstract The Bounded Irregular Pyramid (BIP) is a hierarchical structure for image rep-
resentation whose aim is to combine concepts from regular and irregular pyramids. The
data structure is a combination of the simplest regular and irregular structures: the 2× 2/4
regular one and the simple graph representation. However, simple graphs only take into
account adjacency relationships, being unable to correctly encode the topology of the im-
age. This paper proposes a new version of the BIP, where the regular decimation process
is now merged with a stochastic graph decimation strategy. Experiments demonstrate that
this new irregular pyramid is able to provide qualitative good segmentation results and to
preserve the topology of the input image at higher levels of its hierarchy.

Keyworks image segmentation; regular pyramid; irregular pyramid; dual graph data struc-
ture.

1 Introduction

Image understanding aims for analysing an input image into its constituent patterns. Depending
on the task, we could be interested on decomposing the image into regions which are homogeneous
according to some criteria such as colour or texture [9]. This problem is called image segmentation.
The low-level features, like brightness, colour, texture and/or motion attributes, should be used to
build sequentially a hierarchy of segmentations [11]. A grouping method should have the following
properties [5]: i) to capture perceptually important groupings or regions, which reflect global
aspects of the image, ii) to be highly efficient, running in time linear in the number of pixels, and
iii) to create hierarchical segmentations [11]. In general, low-level cue image segmentation cannot
produce a complete final ’good’ segmentation [3].

A pyramid representation consists of a stack of layers, each layer involving a number of pro-
cessors (nodes). Each processor has information about one part of the image, called its receptive
field. The bottom layer (layer 0) corresponds to the level of elements on the sensor (e.g. number
of pixels) . The number of processors in the second layer (layer 1) is smaller by a factor of λ - this
factor is called a reduction ratio, and it is greater than one. Specifically, one processor (a ’parent’)
receives input from λ ’children’ in the layer below. Processors on higher layers receive only some
information about the content of their receptive fields. Pyramids are hierarchical structures which
have been widely used to address the image segmentation task [9]. In the pyramid hierarchy,
each level is built by computing a set of local operations over the level below. These local opera-
tions adapt the hierarchy to the topology of the image, allowing interesting features such as the
detection of global features of interest at higher levels of the hierarchy and the reduction of the
complexity of the image segmentation task. If each level of the pyramid is encoded as a graph,
then the nodes of any level over the base will be linked to the nodes of the level above. That
is, the pyramid provides multiple representations with different levels of details (i.e. resolution)
for each region of the segmented image. This property can be very interesting for certain tasks:
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global relationships of the image can be analysed at higher levels of the hierarchy where the whole
image is encoded using a reduced set of nodes; but detailed versions of the regions associated to
these nodes are simultaneously available at low levels.

The efficiency of the pyramid in image segmentation is strongly influenced by two character-
istics: the data structure used to encode every level of the pyramid (horizontal relations) and the
decimation scheme employed to build one level from the level below (vertical relations) [4]. The
data structure determines the information which may be encoded at each level of the pyramid
(e.g., simple graphs, dual graphs, combinatorial maps...). Thus, it roughly defines the horizontal
relations of the entities within the same level of the pyramid. On the contrary, the decimation
scheme employed to build the pyramid sets the dynamic properties of the pyramid (height, preser-
vation of details, etc.). It corresponds to the vertical relations between the entities between two
subsequent levels of the pyramid. Taking into account these two characteristics, pyramids can be
classified as regular or irregular ones. Regular pyramids have a rigid structure where the rela-
tionships among nodes of the same level are fixed and the reduction ratio between the number of
nodes of two consecutive levels are constant and bigger than one. In these hierarchies, the pyra-
mid structure can be adapted to the image topology by means of the relationships among nodes
of consecutive levels. As it was pointed out by Bister et al [2] or Antonisse [1], this is typically
inadequate to preserve the topology of the input image at higher levels of the hierarchy. On the
other hand, irregular pyramids can adapt their spatial relationships (among nodes of the same
level and among nodes of consecutive levels) to the content of the input image. Besides, although
the original proposals presented a serious drawback with respect to computational efficiency, this
problem has been resolved by the last proposed strategies [4, 8].

With the objective of having the best properties of both types of pyramids, the bounded
irregular pyramid (BIP) was proposed by Marfil et al [10]. The BIP is a hierarchical structure
whose data structure combines the simplest regular and irregular structures: the 2 × 2/4 regular
one and the simple graph irregular representation. The decimation scheme is also decomposed into
two stages, one of them dealing with the regular structure and the other one with the irregular
structure. Both decimation processes employ the sequential union-find scheme [4]. The aim is to
apply the regular decimation in the homogeneous parts of the image, meanwhile the heterogeneous
parts are decimated using the irregular process. Thus, the BIP approximates or even outperforms
previously proposed hierarchical segmentation approaches, yet it can be computed much faster [9].
However, it was originally highly affected by the shift variance problem, i.e. it provides an image
segmentation which varies when the image is shifted slightly. This problem has been recently
solved [12]. However, the new versions of the BIP employs still the simple graph to encode the
relationships among nodes of the same level. Simple graphs only take into account adjacency
relationships, being unable to distinguish from the graph an adjacency relation from an inclusion
relation between two regions. Besides, if there is two non-connected boundaries which will join
one region to another one, the simple graph only joins these nodes by one arc. These limitations
can be raised if dual graphs are employed because their structure is adapted to the processed data
and they correctly encode the topology in 2D. In this paper, the dual graph data structure and
the maximal independent edge set (MIES) decimation process proposed by Haxhimusa et al [6]
are used to deal with the heterogeneous parts of the image. The use of the dual graph allows to
preserve the topology of the image and to correctly encode the relation of adjacency and inclusion
between image regions.

The rest of the paper is organised as follows: Section 2 describes the proposed segmentation
approach, analysing the decimation processes employed to deal with the regular and irregular parts
of the pyramid. Section 3 presents some preliminar experimental results. Finally, conclusions and
future work are unfolded at Section 4.

2 Segmentation procedure

The aim of the proposed segmentation approach is to maintain the topological advantages of the
dual graph pyramid but reducing its computational load. To do that, this paper propose to use

2



a 2 × 2/4 regular decimation in the homogeneous areas of the input image and a dual graph
contraction scheme in the rest of the image. Following the BIP strategy, the obtained pyramid
can be seen as a combination of regular and irregular structures presenting two types of nodes:
nodes belonging to the regular structure (regular nodes) and nodes belonging to the irregular one
(irregular nodes). The mixture of both regular and irregular structures generates an irregular
configuration which is described as a graph hierarchy in which each level Gl = (Nl, El) consists
of a set of nodes, Nl, linked by a set of intra-level edges El. Two nodes ni ∈ Nl and nj ∈ Nl

which are neighbours at level l are linked by an intra-level edge eij ∈ El. These edges define the
horizontal relationships of the pyramid.

Each graph Gl+1 is built from Gl by computing the nodes of Nl+1 from the nodes of Nl and
establishing the inter-level edges El,l+1. Therefore, each node ni of Gl+1 has associated a set of
nodes of Gl, which is called the reduction window of ni. This includes all nodes linked to ni by
an inter-level edge. The node ni is called parent of the nodes in its reduction window, which are
called children. Two nodes ni and nj of Nl are said to be adjacent or neighbours at level l, if
their corresponding reduction windows wi and wj are neighbours at level l − 1. Two reduction
windows wi ∈ Nl−1 and wj ∈ Nl−1 are neighbours if there are at least two nodes nr ∈ wi and
ns ∈ wj which are connected by an intra-level edge er,s ∈ El−1. The set of nodes in Nl which are
neighbours of a node ni ∈ Nl is called the neighbourhood of ni. The receptive field ri of a node
ni ∈ Nl is the set of its children at level 0.

The value of each parent is computed from the set of values of its children using a reduction
function. Using this general framework, the procedure to build the level Gl+1 from level Gl consists
of three steps:

1. Selection of the nodes Nl+1 of Gl+1 among Nl : This selection step is a decimation procedure
and selected nodes Nl+1 are called the surviving nodes.

2. Inter-level edges definition: Each node of Gl is linked to its parent node in Gl+1. This step
defines a partition of Nl.

3. Intra-level edges definition: The set of edges El+1 is obtained by defining the spatial rela-
tionships between the nodes Nl+1.

In the proposed irregular structure, the regular part is built using a union-find procedure [4] and
the irregular part uses the dual graph contraction scheme proposed by Haxhimusa and Kropatsch
in [6]. Therefore, the Algorithm 1 shows the process to build the graph pyramid. Next Sections
describe the regular decimation process implemented following the union-find strategy and the
decimation process employed to deal with the irregular part of the pyramid.

Algorithm 1 Process to build the proposed structure
1: k = 0, Input: graph map G0

2: repeat
3: Regular decimation on the regular nodes of Gk

4: Find the edges of the irregular part of Gk with the smallest weight and build the equivalent
contraction kernel (ECK)

5: Dual graph contraction on the edge contraction kernel
6: k = k + 1
7: until Gk = Gk−1

end

2.1 Regular decimation process

Although regular pyramids can be explained as a graph hierarchy, it is more usual to represent
them as a hierarchy of image arrays due to their rigid structure. Therefore, in the regular part
of this proposed pyramid, each regular node is represented by (i, j, l), where l represents the level
and (i, j) are the x- and y-coordinate within the level. In each of these arrays two nodes are
neighbours if they are placed in adjacent positions of the array in an 8-neighbourhood.
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Figure 1: a) Regular nodes and their inter-level edges after the generation step, and b) regular
nodes and their inter-level edges after the parent search step.

The first step to build the 2×2/4 structure is a 4 to 1 decimation procedure. In order to perform
this decimation, each regular node has associated two parameters: homogeneity Hom(i, j, l) and
parent link Parent(i, j, l). Regular nodes have Hom(i, j, l) = 0 or Hom(i, j, l) = 1. Hom(i, j, l)
of a regular node is set to 1 if the four nodes immediately underneath are similar according to
some criteria and their homogeneity values are equal to 1. Otherwise, it is set to 0. If the node
(i, j, l) is a node of the regular structure with Hom(i, j, l) = 1, then the parent link of the four
cells immediately underneath (sons) is set to (i, j). It indicates the position of the parent of a
regular node in its upper level. A regular node without parent has its parent link set to a NULL
value. Parent links represent the inter-level edges of the regular part of the proposed pyramid.

All the regular nodes presenting a homogeneity value equal to 1 form the regular structure.
Regular nodes with an homogeneity value equal to 0 are removed from the structure. Fig. 1a
shows the regular part of the BIP data structure after being built. White nodes are the non-
homogeneous ones. In this example the used similarity criteria is the colour distance. Two nodes
are similar if they have similar colour. The base level of the structure is formed by the pixels of
the 8x8 original image. The 4 to 1 decimation procedure generates a 4× 4 level and a subsequent
2 × 2 level.

Once the regular structure is generated using the 4 to 1 decimation procedure, there are some
regular orphan nodes (regular nodes without parent). From each of these nodes, a search is made
for a node (i1, j1, l) in its 8-neighbourhood ξ(i,j,l) which satisfies the following conditions:

• Hom(i1, j1, l) = 1

• Parent(i1, j1, l) = (ip, jp, l + 1)

• d((i, j, l), (i1, j1, l)) < T (1)

• d((i, j, l), (i1, j1, l)) ≤ d((i, j, l), (ik, jk, l)) ∀(ik, jk, l) ∈ ξ(i,j,l)

being d(ni, nj) a similarity measurement between the nodes ni and nj and T a similarity threshold.
(i, j, l) is linked to (ip, jp, l+1) (parent search step). For example, in Fig. 1b, there are four orphan
nodes at level 1, but only for two of them a suitable parent node is found that satisfies (1).

Specifically, the proposed approach employs the similarity criterion proposed in [6], which is
based on the internal and external contrast measurements. This pairwise group merge criterion
will be briefly explained in Section 2.2.
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2.2 Dual graph contraction

A simple graph is a non-weighted and undirected graph containing no self-loops. In this hierarchy,
the graph edges El represent adjacency relationships among pyramidal nodes of the level l. Simple
graphs encode the adjacency between two nodes by only one edge, although their receptive fields
may share several boundary segments. Therefore, a graph edge may thus encode a non-connected
set of boundaries between the associated receptive fields. Moreover, the lack of self-loops in simple
graphs does not allow to differentiate an adjacency relationship between two receptive fields from
an inclusion relationship. In a dual graph pyramid, a level consists of a dual pair (Gl, G̃l) of planar
graphs Gl and G̃l. If level l defines a partition of the image into a connected subsets of pixels,
then the nodes of Gl are the representatives of these subsets and the edges of Gl represent their
neighborhood relationships. The edges of G̃l represent the boundaries of these connected subsets
in level l and the nodes of G̃l define meeting points of boundary segments of G̃l.

Within the dual graph pyramid framework, the set of edges that define the adjacency relation-
ships among nodes of the level l+1 is generated in two steps. First, the set of edges that connects
each non-surviving node to its parent is contracted using a contraction kernel. A contraction
kernel of a level l is the set of surviving nodes of l and the edges that connect each non-surviving
node with its parent. The edge contraction operation collapses two adjacent nodes into one node,
removing the edge between them. This operation may create redundant edges such as empty
self-loops or double edges. The removal of these redundant edges constitutes the second step of
the creation of the set of edges El+1. These redundant edges are characterized in the dual of the
graph and removed by a set of edge removal kernels [7]. The key idea of the dual graphs is that
a contraction in a graph implies a removal in its dual, and vice versa, in order to maintain the
duality between the newly generated graphs. Thus, the generation of the edges in level l + 1 can
be resumed as follows:

1. Contraction of edges in Gl which connect non-surviving nodes with their parents. Removal
of their corresponding edges in G̃l. Fig. 2b shows the reduction performed by the contraction
kernel in Fig. 2a.

2. Contraction of redundant edges in G̃l and removal of their corresponding edges in Gl. In
Fig. 2c, the dual node a has a face defined by nodes A and B. The boundary between the
regions defined by these nodes is artificially split by this dual node. Then, the two dual
edges incident to this dual node (e′1 and e′2) can be contracted. The contraction of these
dual edges has to be followed by the removal of one associated edge (e1 or e2) in order to
maintain the duality between both graphs. In the same way, the dual node b encodes an
adjacency relationship between two nodes contracted in the same node. This relationship
can be removed by eliminating this direct self-loop and contracting the associated dual edge.

Using such a reduction scheme each edge in the reduced graph corresponds to one boundary
between two regions. Moreover, inclusion relationships may be differentiated from adjacency ones
in the dual graph.

In this proposal, the process to build the dual graph in each level is based on the Hierarchy of
Partitions (BoruSeg) algorithm [6]. Let Gk be the graph on level k of the pyramid. Every node
ni ∈ Gk is a connected component CC(ni) of the partition Pk. The attributes of every edge
e ∈ Gk, attre(ni, nj), is defined in this work as the difference of RGB colour between the end
nodes ni and nj of edge e. The goal is to find partitions Pk := {CC(n1); CC(n2); · · · , CC(nn)}
in kth level of the pyramid such that these elements satisfy certain properties. Neighboring nodes
(partitions) are compared pairwise to check for similarities [5]. A pairwise group merge criterion
Comp(CC(ni), CC(nj)) is defined to decide whether there is a boundary between two partitions
CC(ni), CC(nj) ∈ Pk, i.e. the difference along the boundary of two components is defined relative
to a measure of differences of components’ internal differences. Note that this defines an intuitive
notion of contrast: a contrasted region containing two connected components whose inner differ-
ences are less than differences within this two regions. K0,k(ni) [7] is the equivalent contraction
kernel (ECK) of a node ni ∈ Gk. The internal contrast of the CC(ni) ∈ Pk is the largest
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Figure 2: Contraction and removal kernels: a) contraction kernel composed of three nodes (sur-
viving nodes are marked in black); b) reduction performed by the equivalent contraction kernel in
a); c) redundant edges characterization; and d) dual graph pair (G, G̃) after dual decimation step.

dissimilarity of component CC(ni), i.e. the largest edge weight of the K0,k(ni) of node ni. Let
ni, nj ∈ Vk be the end nodes of an edge e ∈ Ek. The external contrast between two com-
ponents CC(ui), CC(uj) ∈ Pk is the smallest dissimilarity between component CC(ni) and
CC(nj), i.e. the smallest edge weight connecting N0,k(ni) and N0,k(nj) of nodes ni ∈ CC(ni) and
nj ∈ CC(nj). Formal definition of internal and external contrast can be found in [6]. One can
use the internal and the external contrast to define a merging criterion, which check if there is a
border or not between to components.

The algorithm to build the hierarchy of partitions (segmentations) is as follows. The idea is
to collect the smallest weighted edges (minimum spanning tree principle) e that could be part of
the ECK and then to check if the edge weight (attre(e)) is smaller than the internal contrast of
both of the components (internal and the external contrast defined over the ECK of end nodes of
e). If the internal contrast of the two components is larger than the external contrast, represented
by the weight attre(e) of the connecting edge, then the these components are merged. After that
all the edges that are going to be contracted form the contraction kernels Kk,k+1, which is then
used to create the graph Gk+1 = C[Gk, Nk,k+1] by using the DGC algorithm [7]. The DGC
algorithm [7] contracts edges and creates ’super’ nodes with parent-children relations between
nodes in subsequent levels of the pyramid, whereas Bor̊uvka’s minimum spanning tree principle
is used to find edges with the smallest weight and create horizontal relation between nodes in the
same level. The algorithm iterates until there are no more edges to contract. Each level of the
pyramid is represented by a region adjacency graph (RAG) which is created in an agglomerative
way by topology-preserving edge contraction.

3 Experimental results

Fig. 3 illustrates the results obtained from the segmentation of one image using the proposed
approach, the original BIP [9] and the hierarchy of partitions (HP) [6]. In all cases, we have
chosen as segmented image the lower level of the hierarchy where the leaf is represented as an
unique connected component. It must be noted that in the case of the proposed approach this
level is the level 12 meanwhile in the case of the HP this level is the level 20. As it is shown in
Fig. 4.a, the proposed approach provides higher reduction factors than the HP at low levels of the
hierarchy. At these levels, these factors are very similar to the ones provided by the original BIP.
Besides, the total height of the hierarchical representation provided by the proposed approach for
this image is also lower than the total height of the hierarchy obtained using the HP, specifically
these total heights are 12 and 22, respectively. It must be noted that, while in the case of the HP
the level for a ’good’ segmentation of the leaf is lower than the uppest level of the structure, in the
case of the proposed approach both levels are the same. Similar remarks can be concluded when
other images are employed for comparison purposes. Finally, Fig. 4.b represents, at logarithmic
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Figure 3: Segmentation example: a) Original image; and b-d) segmentation regions obtained using
the proposed approach, the BIP and the HP, respectively.

Figure 4: Segmentation statistics associated to the segmentation example shown in Fig. 3: a)
Reduction factors; and b) number of regular and irregular nodes with respect to the total number
of nodes per level (see text for details).

scale, the total number of nodes of each hierarchy level. It can be noted how the percentage
of irregular nodes, with respect to the total number of nodes, increases for higher levels of the
pyramid. In fact, at higher levels, the pyramid is only composed by irregular nodes.

4 Conclusions and Future work

This paper presents a novel approach for image segmentation which extends the hybrid decimation
scheme employed inside the BIP framework. As in the previous version of the BIP, the regular
decimation process encodes the homogeneous parts of the image in a set of connected components,
each one of them will be finally linked to an irregular node. The level at which this irregular node
is located will depend on the size and shape of its associated receptive field and, at this level, this
node will be correctly related to its neighbour irregular nodes. The main novelty of this proposal
is that, instead of a simple graph, it now uses a dual graph to encode the irregular part of the
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pyramid. This will allow to preserve the topology of the original image at upper levels of the
hierarchy.

The main drawback of the proposed approach is the use of a sequentially conducted regular
decimation process. Future work will be focused on managing the hierarchy using a mixture of
regular and irregular decimation processes which could run in a parallel way. Other research
line could be focused on studying the possibility of combining the fast original BIP with other
topology-preserving strategy in a different way. The BIP could be used at low levels to divide the
image in a set of superpixels, which will be then employed by a second topology-preserving stage
conducted at higher levels of the hierarchy.
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