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CHAPTER 1

Image Pyramid

” We think too small, like the frog at the bottom of the well. He thinks the sky is
only as big as the top of the well. If he surfaced, he would have an entirely different
view. ”

by Mao Tse-Tung.

Summary Pyramids are hierarchical structures that are able to transform local information into global
one. Two processing paradigms are used in pyramids: fine-to-coarse and coarse-to-fine
information processing. The pyramid is a trade off between parallel architecture and the
need for a hierarchical representation of an image at several resolutions. In this chapter an
overview of basic concepts of image pyramid are presented. Their structure, content and
information processing are discussed in more detail.

Keywords: Image pyramids, regular pyramid, irregular pyramid, structure of pyramid.

1.1 Introduction
The visual data are characterized with a large amount of data and high redundancy, relevant
information are clustered in space and time, all this indicates for a need of organization and
aggregation principles, in order to cope with computational complexity and to bridge the gap
between raw data and symbolic description. Local processing is important in early vision, since
operation like convolution, thresholding, mathematical morphology etc. belong to this class of
operations. However, this approach is not efficient for high or intermediate level vision, such
as symbolic manipulation, feature extraction etc., because these processes need both local and
global information. Therefore a data structure must allow the transformation of local informa-
tion (based on sub-images) into global information (based on the whole image), and be able to
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1. Image Pyramid

handle both local distributed and global centralized information. This data structure is known
as hierarchical architecture [Jolion and Rosenfeld, 1994], and allows distribution of the global
information to be used by local processes.

The earliest uses of hierarchical methods in image analysis are the work of [Rosenfeld and
Thurston, 1971], finding edges by using differences of average gray levels in neighborhoods
of many sizes, and selecting the best size at each pixel. The work of [Kelly, 1970] uses edgel
detection in reduced resolution to guide the search for edges in a full-resolution image. This
approach was one of the first to use a two level (5 × 5/25) multi-resolution hierarchy for edge
detection. First, edges and lines are found in the reduced resolution and then used as a plan to
constrain the search in the higher resolution. The name pyramids were first coined in [Tanimoto
and Pavlidis, 1975] as solution of contour detection and delineation in digital images, and in
conjunction with the merge and split segmentation algorithm of [Horowitz and Pavlidis, 1976]
are used extensively in image segmentation.

The hierarchy is a stack of levels of reduced abstraction. There are two types of hierar-
chies [Jolion and Rosenfeld, 1994]:

• visual hierarchy, and

• conceptual hierarchy.

The conceptual hierarchy represent object relationship, like class inclusion or neighborhood
relations. An example of a possible hierarchy of abstraction is given in Figure 1.1.

Usually, the bottom layer of the pyramid, is the image and the top layer or apex is related
to more abstraction levels. Information flows up, down and laterally in the hierarchy and is
transformed between layers. In hierarchies there are two kind of processes:

• bottom-up, and

• top-down.

In bottom-up or fine to coarse processes, the information is transported from the bottom
to the top of the hierarchy. Information of the local data set is transformed into global one
recursively. Bottom-up or data driven analysis process data in the uniform matter and aggregate
data into more abstract higher level of representation. This allows extraction and detection
of important features in image. During this bottom-up processes the data volume is reduced,
meaning that levels toward the top will contain less data.

In the top-down process or fine to coarse feature values are propagated from the top to
the bottom of the hierarchy. The top-down processed use knowledge (in form of a model) to
search for the image data in an nonuniform manner to find support or against the presence of
particular structure in the image. This process allows to delineate features extracted by bottom-
up processes by propagating the global information to lower levels or in the coarse to fine
strategy the higher (coarse) levels propose hypothesis that are used by lower (finer) levels to
verify these hypothesis.

The pyramid is a trade off between parallel architecture and the need for a hierarchical repre-
sentation of an image at several resolutions [Jolion and Rosenfeld, 1994]. There are other multi-
resolution approaches, just to mention some without trying to be complete. [Witkin, 1986] in-
troduced the continuous scale-space theory and [Lindeberg, 1990] proposed a discrete version
of this theory. [Mallat, 1989] introduced the wavelet theory, another hierarchical processing
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1.2 Discrete 2D Images

Original image

Density, color

Fist level transformation
Edges and lines

Second level transformation
Curvature

Third level transformation

Object outlines→ ←

Fourth level transformation
Relations between objects

⇒

Figure 1.1: Conceptual representation of an image as an abstract hierarchy [Granlund, 1999].

paradigm. For an overview and the relation between different hierarchical approaches con-
sult [Kropatsch, 1991].

In this chapter we summarize the concepts and definition developed for building and using
multi-resolution pyramids [Rosenfeld, 1984], [Jolion and Rosenfeld, 1994], [Kropatsch, 1999].
First a definition of the image is presented in Section 1.2. Section 1.3 presents the architecture
consideration of image pyramids. This chapter closes with a short summary in Section 1.4.

1.2 Discrete 2D Images
Almost every image processing technology processes the discrete spatial data by a computer.
The function of mapping continuous space R2 into a discrete space Z2 is called spatial quan-
tization or digitisation (in general one can think of a mapping from Rn into Zn). Seldom the
sampling scheme is adapted to the local variability of the signal. Usually a regular sampling
grid is considered, either a triangular or a square. In practice almost all capturing devices have
a square regular sampling scheme, since the image sensors are arranged in 2D arrays located
in the nodes of the regular grid. So the digital image is the result of sampling the continuous
signal at location of the sampling points. A discrete representation of an image associates a
numerical countable value with each point (x, y) in the digitization grid. Since it is practically
impossible to measure the signal in the infinite small surface area and in an infinite small time
step, each value is in fact an average over a sampling window and over a time. Thus sampling
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1. Image Pyramid

points can be considered as the centers of convex polygons [Soille, 1994], which tessellate the
signal space. For non-regular grids these polygons are referred as Voronoi polygons, whereas
for triangular grid this polygons have all hexagonal shape. In the case of square grids these
polygons are called meshes. Usually these polygons are called in the digital image processing
pixels (picture elements). The set of all pixels cover the entire image [Sonka et al., 1999].

The most primitive discrete representation assigns to each pixel an average measurement,
which is in general a continuous value, but in image processing this value is quantized. The
number of quantization levels should be high enough to allow humans a satisfactory perception
of the image. Based on how many quantization levels are used to express the values of the pixel
brightness (g), images are said to be binary or gray. In (multi-spectral) color images, vectors of
scalar values are associated for each pixel. Hence a digital image is a finite set of triples:

(x, y, g) ∈ Z3, (1.1)

where (x, y) is the location of the pixel in the digitization grid and g is the quantized brightness
function. x, y are usually called coordinated and are represented by using integer values. If g
is a scalar of two values (0 and 1) the image is called a binary images; if g is an integer from
the interval [0, 255], the image is called a gray value image; if g is a vector of scalars from the
interval [0, 255] representing red, green and blue color, the image is called a color image and so
on. Detailed definition of the image types are found in [Soille, 1994, Sonka et al., 1999].

To summarize, discretization process maps any object of the continuous image into a dis-
crete version if it is sufficiently large to be captured by the sensors at the sampling points.
Resolution relates the unit distance of the sampling grid with a distance in reality. The proper-
ties of the continuous object, i.e. color, texture, shape, as well as its relations to other (nearby)
objects are mapped into the discrete space, too.

In this document only binary, gray and color images are analyzed, it is supposed that images
are quantized with enough brightness levels such that problem with false contour do not occur. It
is also assumed that during the spatial digitization the proper topology of the image object is also
captured. For techniques of spatial digitization that preserves the topology consult [Stelldinger
and Ullrich, 2005]. Note that the framework presented in this document is general enough and
is not limited in using only images as inputs.

1.3 Pyramid Architecture
Image pyramid have been defined as a stack of images of decreasing resolutions [Burt et al.,
1981], [Rosenfeld, 1982]. This framework is used for efficient data processing in may areas of
computer vision [Rosenfeld, 1984, Jolion and Rosenfeld, 1994]. Usually, higher levels of the
pyramid are computed successively by a filtering operation followed by a re-sampling opera-
tor [Rosenfeld, 1984].

Image pyramid have these advantages [Bister et al., 1990, Kropatsch et al., 1999]:

• details are removed in lower resolutions, thus reducing the influence of noise,

• resolution independent processing of regions of interest,

• transformation of local information to global one,
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1.3 Pyramid Architecture

Table 1.1: Image qualities at different resolutions [Kropatsch et al., 1999]
Characteristics Resolution

high low
data amount huge smaller
computing times long short
details rich and many very few
overview bad good
precision hight low

• divide-and-conquer principle applied to reduce the computational complexity, and

• finding models at lower resolution, thus ignoring details, and employing these models in
a low cost top-down model based analysis.

In Table 1.3 some qualities of different resolutions are shown (adapted from [Kropatsch et al.,
1999]).

Image pyramids are characterized by these important properties [Jolion and Rosenfeld,
1994, Bischof, 1995]:

• structure1, e.g. vertical and horizontal neighborhood relations

• content of the cell, e.g. pixel, region, edge, curve or more, and

• processing of the cells, e.g. filtering, symbolic processing.

A pyramid (Fig. 1.2a,b) describes the contents of an image at multiple levels of resolution.
High resolution input image is at the base level. Successive levels reduce the size of the data
by reduction factor λ > 1.0. Reduction windows relate one cell at the reduced level with a set
of cells in the level directly below. Thus local independent (and parallel) processes propagate
information up and down and laterally in the pyramid. The contents of a lower resolution cell
is computed by means of a reduction function the input of which are the descriptions of the

1also called communication network.

s
λn

λ2

λ
1

level 0

1

h

reduction window

(a) Pyramid concept (b) Discrete levels

Figure 1.2: Multiresolution pyramid.
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1. Image Pyramid

(a) 4-neighborhood (b) 8-neighborhood

Figure 1.3: Neighborhood in a square grid graph.

cells in the reduction window. Two successive level of a pyramid are related by the reduction
window and the reduction factor. Higher level description should be related to the original input
data in the base of the pyramid. This is done by the receptive field (RF) of a given pyramidal
cell ci. The RF (ci) aggregates all cells (pixels) in the base level of which ci is the ancestor. In
the sections below these notions are explained in more detail following the work of [Jolion and
Rosenfeld, 1994], [Bischof, 1995] and [Kropatsch et al., 1999].

1.3.1 Structure
The structure of the image pyramid is made of two types of neighborhood: the horizontal, i.e.
intra-level neighborhood, and the vertical, i.e. inter-level neighborhood are defined in the image
pyramid. Each cell of the pyramid is related with its neighbors in the same level and with other
cells in the level above and below, except cells on the base and cell(s) on top of the pyramid.
Cells on the base have only relation with the level above, and the cell(s) on the top has(ve) only
relations with the level below. Let each cell (e.g. pixel, edge, region etc.) of the pyramid be
represented by a vertex of the graph, and each level k of the pyramid by represented by a graph.
Thus the horizontal and vertical network can be defined using graphs.

Horizontal neighborhood

Let level k of the image pyramid be represented by Gk = (Vk, Ek), where Vk represent the set
of cells, and Ek the set of edges joining cells Every vertex v ∈ Vk on level, say k, is related to
its neighbors on the same level by edge(s) e ∈ Ek. Two vertices, v, w ∈ Vk are neighbors if they
are joint by an edge e = (v, w) ∈ Ek (Definition ??). This defines the horizontal neighborhood.
If the image plane is regularly tessellated, say by a regular grid mesh, than on the base level one
can define 4 or 8 connectivity of cells, as shown in Figure 1.3, the cell (vertex) in gray in (a)
has 4-neighborhood and under (b) 8-neighborhood. Note that 8-neighborhood grid graph is not
planar. Other neighborhoods are possible, and are discussed in more detail in Chapter 2.

Vertical neighborhood

Every vertex in level k is linked with vertices on level directly below k − 1, its children(s),
and vertices on level directly above k + 1, its parent(s). Vertices on the base level have no
children(s), and those on the top have no parent(s). The number and form of these links define
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1.3 Pyramid Architecture

the vertical neighborhood, and this neighborhood be defined by an undirected (vertical) graph
GV

k = (Rk, Lk), where Rk = (Vk ∪ Vk+1), and Lk ⊆ (Vk × Vk+1). The children relation of
vertex v ∈ Vk+1 is defined as:

Ch(v, w) = {∃w|e = (v, w) ∈ Lk}; (1.2)

we say vertex w is a children of v. Analogously, the parent relation of a vertex w ∈ Vk as:

P (w, v) = {∃v|e = (w, v) ∈ Lk}; (1.3)

we say vertex v is a parent of w. Note that these relations, are non-reflexive, anti-symmetric,
and non-transitive. A parent has one or more children and in general a child can have many
parents. If a child has many parent, the pyramid is called an overlapping pyramid. Based on
these definition, through the transitive closure of these graphs, the ancestor(s) and descendant(s)
of a given vertex can be defined. Let h be the height of the pyramid. The ancestor of a vertex
v ∈ Vk is vertex w ∈ Vl, h ≥ l > k if and only if:

A(v, w) = {∃zn ∈ Vn |P (zn, zn+1)∀n = k, ..., l − 1}, where v = zk and w = zl (1.4)

Analogously, the descendant of a vertex w ∈ Vl is vertex v ∈ Vk, l > k ≥ 0 if and only if:

D(w, v) = {∃zn ∈ Vn |Ch(zn, zn−1)∀n = l, ..., k − 1}, where w = zl and v = zk (1.5)

These definition can be used to define the receptive field of a vertex, as the set of all its descen-
dants on the base level of the pyramid. Formally, the receptive field is the set of vertices on the
base level G0 = (V0, E0) which influence the cell v ∈ Vk:

RF (v) = { all vertices v′ ∈ V0 |D(v, v′)} (1.6)

One can define also the projective field [Bischof, 1995] of vertex v ∈ Vm on a given level Vn,
(n > m) as:

PF (v) = { all vertices v′ ∈ Vn |A(v, v′)} (1.7)

In Figure 1.4, pictorially the concepts of parent-children, and ancestor-descendant relation are
given with solid line. If we assume that Gk−1 = G0 is the bottom of the pyramid, then in
this figure all the cells w′ at the bottom enclosed in the gray area are the receptive field of
v : RF (v).

Two types of pyramid exist, based on how the vertical neighborhood is defined:

• regular, and

• irregular pyramids.

These concepts are strongly related to ability of the pyramid to represent the regular and irreg-
ular tessellation of the image plane.
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1. Image Pyramid
v

P (v, w) : v
parent→ w

w
Ch(w, v) : w

child→ v

w′

A(w′, v) : v
ancestor→ w′

D(v, w′) : w′ descendant→ v

Gk+1

Gk

Gk−1

RF (v)

Figure 1.4: Vertical neighborhood.

Regular Pyramids

The constant reduction factor and constant size reduction window completely define the struc-
ture of the regular pyramid. The decrease rate of cells from level to level is determined by
the reduction factor. The number of levels h is limited by the reduction factor λ > 1: h ≤
log(image size)/ log(λ). The main computational advantage of regular image pyramids is
due to this logarithmic complexity. Usually regular pyramids are employed in a regular grid tes-
sellated image plane, therefore the reduction window is usually a square of n×n, i.e. the n×n
cells are associated by a cell on a higher level directly above. Regular pyramid are denoted us-
ing notation n×n/λ. The vertical structure of a classical 2×2/4 is given in Figure 1.5a. In this
regular pyramid 2 × 2 = 4 cells are related to only one cell in the higher level directly above.
Since the children have only one father this class of pyramids is also called non-overlapping
regular pyramids. Therefore the reduction factor is λ = 4. An example of 2 × 2/4 regular
image pyramid is given in Figure 1.5b. The image size is 512 × 512 = 29 × 29 therefore the
image pyramid consist of 1 + 2 · 2 + 4 · 4 + ... + 28 × 28 + 29 × 29 cells, and the height of
this pyramid is 9. The pyramid levels are shown by a white border on the left upper corner of
image. The 2 × 2/4 regular pyramid is called also the quad pyramid, because of the similarity
with the quad tree representation [Samet, 1990]. See [Kropatsch, 1991] for extensive overview
of other pyramid structures with overlapping reduction windows, e.g. 3 × 3/2, 5 × 5/4. It is
possible to define pyramids on other plane tessellation, e.g. triangular tessellation [Jolion and
Rosenfeld, 1994]

Thus, the regular image pyramid are efficient structure for fast grouping and access to im-
age objects across the input image, because of the rigid vertical structure. globally defined
sampling grids and lack shift invariance [Bister et al., 1990]. The regular pyramid representa-
tion of a shifted, rotated and/or scaled image is not unique, and moreover it does not preserve
the connectivity. Thus, [Bister et al., 1990] concludes that regular image pyramids have to be
rejected as general-purpose segmentation algorithms. This major drawback of the regular pyra-
mid motivated a search for a structure that is able to adapt on the image data. It means, that the
regularity of the structure is to be abandon.

8



1.3 Pyramid Architecture

(a) Vertical structure (b) Image pyramid

Figure 1.5: 2× 2/4 regular pyramid.

Irregular Pyramids

Abandoning the regularity of the structure means that the horizontal and vertical neighborhood
have to be explicitly represented, usually by using graph formalism. These not-regular struc-
tures are usually called irregular pyramids. One of the main goals of irregular pyramids is
to achieve the shift invariance, and to overcome this major drawback of regular counterparts.
[Kropatsch et al., 1999] list other motivations why one has to use irregular structures:

• arrangement of biological vision sensors is not completely regular,

• the CCD cameras cannot be produced without failure, resulting into an irregular sensor
geometry,

• perturbation may destroy the regularity of regular pyramid, and

• image processing to arbitrary pixels arrangement (e.g. log-polar geometries [Bederson,
1992])

Two main processing characteristics of the regular pyramids should be preserved by building
irregular ones [Bischof, 1995]:

• operation are local, i.e. the result is computed independently of the order, this allows
parallelization, and

• bottom-up building of the irregular pyramid, with an exponentially decimation of the
number of cells.

The structure of the regular pyramid as well as the reduction process is determined by the
type of the pyramid (e.g. 2 × 2/4). Removing this regularity constraint one has to define a
procedure to derive the structure of the reduced graph Gk+1 from Gk, i.e. a graph contraction
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1. Image Pyramid

method has to be defined. Irregular pyramid can be build by parallel graph contraction [Rosen-
feld, 1985], or graph decimation [Meer, 1989]. Parallel graph contraction has been developed
only for special graph structures, like trees, and will not be analyzed in this thesis.

[Meer, 1989] introduced an efficient random decimation algorithm for building regular pyra-
mid, called stochastic pyramid. A detailed discussion of this and similar methods is postponed
until Chapter ??. It is shown that stochastic pyramid in some cases is not logarithmically ta-
pered, i.e. the decimation process does not exponentially reduce the number of cell successively.
The main reason for this behavior is that the cell’s neighborhood is not bounded, for some cases
the degree of the cell increases exponentially. In Chapter ?? we discuss methods that overcome
this drawback.

An overview of properties of regular and irregular pyramid are found in [Kropatsch and
Montanvert, 1991]. In irregular pyramids the flexibility is paid by less efficient data access.

1.3.2 Contents

The type of information stored into cells defines also the the content of the pyramid. Numeric
and/or symbolic information can be stored into the cells. A cell store the information that it is
gathered (e.g. by a bottom-up process) from its receptive field. [Kropatsch, 1991] defines two
conditions to be fulfilled by the representation of the cell:

• the receptive field of the cell covers the pictorial entity (e.g. primitive object parts, ob-
jects) completely, and

• no smaller cells (in lower levels) fulfill the above property

A unique cell in the pyramid is allocated for each pictorial entity. Usually, a cell stores only
one numeric value, e.g. a gray value. This pyramid is called numeric pyramid. More complex
numeric values can be stored as well, e.g. parameters of a model. Symbolic information can
be stored into cells as well, e.g. curve information [Kropatsch, 1986, Kropatsch and Burge,
1998]. This class of pyramid is called symbolic pyramid. It is also possible to mix numeric and
symbolic information into a cell as well.

1.3.3 Processing

The type of the information stored into cells of the pyramid conditioned also the processing
that can be carried out by the pyramid. Therefore, two types of information processing are
performed:

• numeric, and

• symbolic processing

Note that one of the major properties of the pyramid is the capability of local processing,
i.e. the information in the cells is computed using only other cells in their horizontal and ver-
tical neighborhood, thus these processing can be done in parallel. For an overview of pyramid
hardware implementations see [Jolion and Rosenfeld, 1994].
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1.4 Summary

Numeric Processing

Filtering is usually used as a reduction function in numerical pyramids. Different types of filters
are used: 1) linear filters, 2) non-linear filters, and 3) morphological filters. Most commonly
used filters are the low-pass ones. Gaussian filter is one of the most used low-pass linear filters in
regular pyramid architecture, since it is the only filter that preserves the zero crossings across the
scales [Yuille and Poggio, 1986]. An example of the Guassian pyramid is given in Figure 1.5b.
The resulted pyramid is called Gaussian pyramid [Burt and Adelson, 1983]. Minimum and the
maximum filter are most commonly used non-liner filters.These filters compute the minimum,
respectively maximum, of the receptive field of the cell. One can also use other non-linear
filters, e.g. median. The morphological operators [Serra, 1982] are introduced into pyramids as
well. A large body of the literature exist of using different filters integrated into a pyramid.

Symbolic Processing

In symbolic pyramid one has to define also symbolic reduction functions. A finite state machine
can be used to compute the symbolic reduction. E.g. [Kropatsch, 1986, Kropatsch and Burge,
1998] introduces a set of rules as reduction function.

1.4 Summary
All pyramids are characterized by three properties: its structure (horizontal and vertical neigh-
borhood), its cell content and the way it processes the information content of the cells. We
distinguish two main types of pyramids based on the structure: if the structure is beforehand
defined the pyramid is called regular; if the structure is adapted on the image data it is called an
irregular pyramid. Numeric or/and symbolic information can be stored into the pyramid, there-
fore one can differentiate between numeric pyramids and symbolic pyramids. Different filters
can be used in the pyramid framework, which allows also symbolic computations. In the rest
of the chapters we will intensify the discussion on irregular graph pyramids. We will discuss
how to optimize the structure of the irregular pyramid, trying to archive a logarithmic height,
and how to apply efficiently these structures in image segmentation.
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CHAPTER 2

Irregular Dual Graph Pyramids

” Beauty is the first test: there is no permanent place in the world of mathematics
for ugly mathematics. ”

by G.H. Hardy.

Summary The duality concept in planar graphs is presented. It is shown how the dual graphs can
encode a topology properly. The transformation of image plane into a dual graph is de-
scribed. The dual graph contraction, as a topology preserving graph contraction is presented
in depth. This graph contraction method contains basic operations to build a stack of hier-
archical graphs, called dual graph pyramid. The construction of the dual graph pyramid is
shown by an example.

Keywords: Topology, dual graph, planar graph, dual graph contraction, dual graph pyramids, topology
preserving contraction.

2.1 Introduction
Most information in vision today is in the form of array representation. This is advantageous
and easily manageable for situations having the same resolution, size, and other typical proper-
ties equivalent. Various demands are appearing upon more flexibility and performance, which
makes the use of array representation less attractive [Granlund, 1999]. The increasing use of
actively controlled and multiple sensors requires a more flexible processing and representation
structure [Kropatsch et al., 1999, Kropatsch, 2002]. Cheaper CCD sensor could be produced
if defective pixels would be allowed, which yields in the resulting irregular sensor geome-
try [Bederson, 1992], [Wallace et al., 1994]. Image processing functions should be generalized
to arbitrary pixel geometries [Rojer and Schwartz, 1990], [Bederson, 1992]. The conventional
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2. Irregular Dual Graph Pyramids

array form of image is impractical as it has to be searched and processed every time if some
action is to be performed and that

• features of interest my be very sparse over parts of an array, leaving a large number of
unused positions in the array;

• a description of additional detail can not be easily added to a particular part of an array.

It is desirable to have information in some partly interpreted form to fulfill its purpose to rapidly
evoke actions. Information in interpreted form, implies that it should be represented in terms
of content or semantic information, rather than in terms of array values. Content and semantics
implies relations between units of information or symbols. [Granlund, 1999] calls the relations
between object as linked objects. These object could be represented as a graph [Haralick and
Shapiro, 1993].

In order to express the connectivity or other geometric or topological properties the image
representation must be enhanced by a neighborhood relation. In the regular square grid arrange-
ment of sampling points it is implicitly encoded as 4- or 8-neighborhood with the well known
paradox in conjunction with Jordan’s curve theorem. The neighborhood of sampling points can
be represented explicitly, too: in this case the sampling grid is represented by a graph con-
sisting of vertices corresponding to the sampling points and of edges connecting neighboring
vertices. Although this data structure consumes more memory space it has several advantages,
as follows [Kropatsch et al., 1999]:

• the sampling points need not be arranged in a regular grid,

• the edges can receive additional attributes too, and

• the edges may be determined either automatically or depending on the data.

Planarity and duality of graph are two closely related concepts. Planar graph separates the plane
into regions called faces. This idea of separating the plane into regions is helpful in defining the
dual graphs (Section 2.2). Duality of a graph brings together two important concepts in graph
theory: cycles and cut-sets. Kirkoff’s laws of voltage and current in electrical engineering
are the real wold problem of this duality concept. The law of voltage is in term of cycles
and the law of current is in term of cut-sets. This concept of duality is also encountered in
graph-theoretical approach of image region and edge extraction. The definition of dual graphs
representing the partitioning of the plane, allows one to apply transformation on these graphs,
like edge contraction and/or removal to simplify graphs in the sense of less vertices and edges.
Edge contraction and removal introduces naturally a hierarchy of dual graphs, the so called dual
graph pyramid.

Hence the dual graph representation presented in this chapter addresses primarily the struc-
ture, on which a dual graph hierarchy is built, by reducing the number of descriptive elements
by applying the dual graph contraction successively. In this chapter, the graph-based image
representation and the operation on these graphs are given. In Section 2.3 the transformation of
image plane into a dual graph is shown. The analogy of dual graphs with abstract cellular com-
plexes, and the equivalence with combinatorial maps is given in Section 2.3.1, and Section 2.3.2
respectively. The dual edge contraction algorithm is described in Section 2.4 and the hierarchy
of graphs build by this algorithm in Section 2.5.
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2.2 Planar and Dual Graphs

2.2 Planar and Dual Graphs

A graph G̃ of finite sets of vertices V and edges E is called a plane graph if it is drawn in a
plane in R2 such that [Diestel, 1997]:

• all V ⊂ R2

• every edge is an arc1 between two vertices,

• no two edges are crossed.

Note that R \ G̃ is an open set and its connected regions are faces f of G̃. It is said that the
plane graph divides the plane into regions. Since G̃ is finite, one of its faces in an unbounded
one (infinite area). This face is called the background face2. Other faces enclose finite areas,
and are called interior faces. Edges and vertices incident with the face are called the boundary
elements.

Definition 2.1 An embedding of a graph G on a plane is an isomorphism between G and a
plane graph G̃.

G̃ is called a drawing of G. When G is drawn, we do not care whether its edges intersect on
vertices only or each other. This is in contrast to drawing G̃ where its edges intersect only on
vertices. The graph G can be considered as an abstraction of G̃. An example of a planar graph
and its planar embedding is shown in Figure 2.1. The edge e5 in Figure 2.1b is drawn such that
it does not intersect with other edges, whereas in Figure 2.1b we do not ask strictly for edges
not to intersect. In this figure f represent faces, and a background face is denoted by b. For
example the edges e1, e2 and e5 form the face f1 and they make the cycle Cf1 = {e1, e2, e5},
which enclose the region f1. The cycle that enclose the background face b in this figure is
Cb = {e5, e8, e6}.

Definition 2.2 (Planar graphs) A graph G is planar if it can be embedded on the plane.

The concept of embeddings can be extended to any surface. A graph G is embeddable in
surface S if it can be drawn in S so that its edges intersect only on their end vertices. A
graph embeddable on the plane is embeddable on the sphere too. It can be shown by using the
stereoscopic projection of the sphere onto a plane [Thulasiraman and Swamy, 1992]. Note that
the concept of faces is also applicable to spherical embeddings.

A planar graph G = (V, E) with m vertices, n edges and l faces satisfies the condition:

m− n + l = 2. (2.1)

This is called Euler’s formula3. Another nice property of simple planar graph is that if G has
m ≥ 3 vertices and n edges than n ≤ 3m − 6 edges. The so called Kuratowski graphs K5

1An arc is a finite union of straight line segments, and a straight line segment in the Euclidean plane is a subset
of R2 of the form {x + λ(y − x)|0 ≤ λ ≤ 1},∀x 6= y ∈ R2.

2Called also exterior face.
3Called also Euler characteristic.
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(a) G = (V, E) (b) G̃

Figure 2.1: A planar graph G and its embedding in a plane, the plane graph G̃.

(complete graph on 5 vertices) and K3,3 are not planar. The planar graph can be characterized
also using the Kuratowski graphs [Harary, 1969].

Let G in Figure 2.1a represent a plane graph, in general with parallel edges and self-loops.
Since the graph is embedded onto a plane, it divides the plane into faces. Let each of these
faces be denoted by a new vertex say fs, and let these vertices be put inside the faces, as shown
in Figure 2.1b. From this point on the notion of face vertices and face are synonymous. Let
the faces that are neighbors, i.e. that share the same edge e2 (incident on the same edge), be
connected by the edge, say e2, so that edge e and e are crossed. At the end, for each edge e2 ∈ G
there is an edge e2 of the newly created graph G, which is called the dual graph of G. If the e is
incident only with one face a self-loop edge e2 is attached to the vertex on the face in which the
edge e2 lays, of course e2 and the self-loop edge e2 have to cross each other (see Appendix ??
for a procedure for building dual graph out of plane ones). The adjacency of faces is expressed
by the graph G.

More formally one can define dual graphs for a given plane graph G = (V, E) in this
form [Thulasiraman and Swamy, 1992]:

Definition 2.3 (Dual graphs) A graph G = (V , E) is a dual of G = (V, E) if there is bijection
between the edges of G and G, such that a set of edges in G is a cycle vector of G if and only if
the corresponding set of edges in G is a cut vector.

There is a one-to-one correspondence between the vertex set V of G and the face set F
of G, therefore sometimes graph G = (V , E) is written as G = (F, E) instead, without
fear of confusion. In order to show that G is a dual of G, one has to prove that vectors
forming a basis of the cycle subspace of G correspond to the vectors forming a basis of the
cut subspace of G. The edges ei of graph G in Figure 2.2 correspond to edges ei in graph
G. The cycles {e1, e3, e4}, {e2, e3, e6}, {e4, e5, e8}, and {e6, e7, e8} form a basis of the cy-
cle subspace of G (see Chapter ??, Section ??). These cycles correspond to the set of edges
{e1, e3, e4}, {e2, e3, e6}, {e4, e5, e8}, and {e6, e7, e8}, which form a basis of cut subspace of G.
It follows according to the definition of the duality, that graph G is a dual of G. By convention,
the graph G is called the primal graph and G dual graph. If a planar graph G′ is the dual of G,
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2.2 Planar and Dual Graphs

G = (V,E)
G = (F,E)
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Figure 2.2: A plane graph G and it dual G.

then a planar G is a dual of G′ as well, and every planar graph has a dual [Diestel, 1997, Harary,
1969]. Therefore the dual of a dual graph is the primal graph. Dual graphs are denoted by a bar
above the capital letter.

In the following two important properties of dual graphs with respect to the edge contrac-
tion and removal operation are given, the proofs are due to [Thulasiraman and Swamy, 1992].
These properties are used in Section 2.4 to prove that graphs during the process of dual graph
contraction stay planar and are duals. Let G and G be two graphs. Let edge e ∈ G correspond
to edge e ∈ G. Note that a cycle in G corresponds to a cut in G and vice versa [Thulasiraman
and Swamy, 1992]. Let G′ denote the graph G after the contraction of the edge e, and G′ the
graph after the removal of the corresponding edge e from G.

Theorem 2.1 A graph and its dual are duals also after the removal of an edge e in the primal
graph G and the contraction of the corresponding edge e in the dual graph G.

Proof: Let C and C be the corresponding set of edges in G and G, respectively. Assume that
C is a cycle in G′. Since it does not contain e, it is also a cycle in G. Hence C is a cut, say
{V1, V2} in G. Since cut C does not contain e = (v1, v2), the vertices v1 and v2 are both either
in V1 or in V2, implying C is a cut in G′. Therefore every cycle in G′ is a cut in G′.

Suppose that C is a cut in G′. Since C does not contain e, it is also a cut in G. Hence C is a
cycle in G′. Since it does not contain e, it is also a cycle in G. Thus every cut in G′ is a cycle in
G′. �

Corollary 2.1 If a graph G has a dual, then every edge-induced subgraph of G has also a dual.

Proof: Every edge-induced subgraph G′ of G can be obtained by removing from G the edges
not in G′ and using the Theorem 2.1, the proof follows. �

17



2. Irregular Dual Graph Pyramids

This section is concluded by the a topological characterization of graphs that have duals.
The duality property of a graph is as important as planarity, and these properties are symbiotics.

Theorem 2.2 (Whitney 1933) A graph is planar if and only if it has a dual.

Proof: The proof can be found in [Diestel, 1997]. �

A detailed discussion of the data structures for the dual graph are given in Appendix ??.

2.3 Dual Image Graphs
An image is transformed into a graph such that, for each pixel a vertex is associated, and pixels
that are neighbors in the sampling grid are joint by an edge . Note that no restriction in the
sampling grid is made, therefore an image of regular as well as non-regular sampling grid can
be transformed into a graph. The gray value or any other feature is simply considered as an
attribute of a vertex (and/or an edge). Since the image is finite and connected, the graph is
finite and connected as well. The graph which represent the pixels is denoted by G = (V, E)
and is called primal graph4. Note that pixels represent finite regions, and the graph G is rep-
resenting in fact a graph with faces as vertices. The dual of a face graph (see Section 2.2) is
the graph representing borders of the faces, which in fact are inter-pixel edges and inter-pixel
vertices [Braquelaire and Brun, 1998, Kropatsch, 1994]. This graph is denoted by G and is
called simply dual graph. This discussion, which is done on purpose here to show the dual-
ity concept, is not in contradiction with the presentation of dual graphs given in Section 2.2,
because of the property of dual graphs to be dual of each other. The above discussion could
have been started by defining the primary graph as the graph denoting borders of faces, and its
dual would have been the graph representing the faces. An example of image with square grid
sampling transformed into a graph is given in Figure 2.3, where square vertices represent faces,
the bold square vertex represents the background face, circle vertices represent meeting points
of at least three boundary segments.

Based on the Theorem 2.2 dual graphs are planar, therefore images with square grid are
transformed into 4− connected square grid graphs, since 8− connected square grid graphs are
in general not planar 5.

The same formalism as is done for the pixels can be used at intermediate levels in image
analysis i.e. for region adjacency graphs (RAGs). RAGs are the results of image segmentation
processes. Region are connected sets of pixels, and are separated by region borders. Its geomet-
ric dual causes problems [Kropatsch, 1995a]. Let a simple example, adapted from [Kropatsch,
1994], clarifies this claim and motivate the usage of pair of graph (duals of each other) to repre-
sent an image or in general adjacency of regions. Note that in this presentation the graph and its
duals are depicted as in Section 2.2, and is different with the above presentation of dual graphs.
In the example of the house in Figure 2.4a the graph G′ representing regions of the house, like
door, windows etc., is depicted by square vertices and dashed edges. To reconstruct the bound-
ary graph G′ out of the face graph G′, circle vertices are put where at least three boundary
segments intersect. The edges of G are drawn between these vertices following the boundary

4Called also neighborhood graph.
5This hold for square grid graphs of grid size ≥ 4× 4.
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2.3 Dual Image Graphs

Image
Primal graph G

Dual graph G

Figure 2.3: Image to dual graphs.

of the house regions such that these edges cross the edges of the graph G′ (as shown with bold
lines in Figure 2.4b. As can be seen from the Figure 2.4b there are two problems:

• one boundary of the front side of the house is not crossed by any edge in G′, and

• the above described procedure will not produce an edge for the window since there is no
crossing of the border of the window with the surrounding region of the front side, and
therefore no clear answer where to put a vertex of G′.

The problems are encountered due to the fact that the border of the front side consists of two
parts not connected to each other: the inner part of the window, and the outer part which is also
fragmented into pieces separating the front from the roof, from the background and from the
door. A resolution to these problems is given in Figure 2.4c: a self loop is put in G′ surrounding
the window, a circle vertex is put in G′ arbitrarily in the window border and this vertex is
connected by a fictive edge 6 such that it connects the boundary of the window with the front

6Called a bridge in [Kropatsch, 1994].

(a) RAG G′ (b) the dual of G′ : G′ = G′ (c) dual image graphs (G, G)

Figure 2.4: A house example and the dual image graph [Kropatsch, 1994].
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2. Irregular Dual Graph Pyramids

side of the house, and front side and background are connected by parallel edges in G. The
resulting pair of graph (G, G) are plane, dual of each other, and in general not simple, it contains
self-loops and parallel edges. This section is concluded by a formal definition of the dual image
graphs:

Definition 2.4 (Dual image graphs [Kropatsch, 1994]) The pair of graphs (G, G), where G =
(V, E) and G = (V , E) are called dual image graphs if both of the graphs are finite, planar,
connected, not simple in general and duals of each other.

Dual graphs can be seen as an extension of the well know region adjacency graphs (RAG).
Note that this representation is capable to encode multiple boundaries between neighboring
regions. See the outside border of the house in Figure 2.4c connected multiple times (roof, left
wall, part of the door and right wall) with the background.

2.3.1 Dual Image Graph and Cellular Complexes
In this section a relation between dual graphs and 2D-abstract cellular cells (ACC) is shown.
[Kovalevsky, 1989] showed that on the abstract cellular cells one can define a topological space.
Topology is formally defined as:

Definition 2.5 (Topology) Let X be a non-empty set, the universe. A topology on X is a family
T of subsets of X such that:

(T1) X and ∅ belong to T ,

(T2) the union of any number of sets of T belongs to T ,

(T3) the intersection of any two sets of T belongs to T .

A set X for which a topology T has been specified is called a topological space. The mem-
bers of T are called open sets. A subset C of X is called closed set if its compliment Cc is
in T . Analogously to the previous definition one can define a topological space using only
closed sets. If the set X contains finite number of elements then it is called finite topol-
ogy. A set X = {1, 2, 3} with T = {{∅}, {1, 2, 3}} is a trivial topology and X a topolog-
ical space. The trivial topology is the smallest topology on the set X . The largest topol-
ogy on X is called discrete topology. For the set example above the discrete topology is
T = {{∅}, {1, 2, 3}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}}. A detailed treatment of topological
spaces can be found in [Munkres, 1993].

Definition 2.6 (Abstract cell complex [Kovalevsky, 1989]) An abstract cell complex
C = (O, B, dim) is a set O of abstract elements, with a binary relation B ⊂ O × O called
bounding relation, which is antisymmetric, irreflexive and transitive; and with dimension map-
ping dim : O → I, from O into a set of non-negative integers I such that dim(o) < dim(o′) for
all (o, o′) ∈ B.

If the dimension of cell o is d then o is called d-dimensional cell or simply d-cell, and ACC is
n dimensional if one of the cells is n-cell. An example of the 2-dimensional ACC is shown in
Figure 2.5, where 0-cells are vertices, 1-cells are edges, and 2-cells are faces. Formally,

O = V ∪ E ∪ F, (2.2)
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f

f ′

e
v v′

e′

e′′

Figure 2.5: A 2-dimensional cellular model.

and

dim(o) =


0 if o ∈ V,
1 if o ∈ E,
2 if o ∈ F.

(2.3)

A simple example of a 2D finite topological space is given in Figure 2.5; it consists of three
types of elements: faces (�), edges (−) and vertices (m). As can be seen from the figure, an
edge bounds two faces, say f and f ′. An edge e is bounded by two vertices, say v and v′; two
faces f and f ′ are bounded by these two vertices as well. Let any subset O of faces, edges and
vertices be called open set, such that every element o ∈ O of the surface bounded by o is also
in O. From this definition a face is not bounded by any element, therefore it is an open subset;
an edge e with the two faces f and f ′ that it bounds is an open subset; a vertex v with all the
edges (e, e′, e′′) that it bounds and all the couple of faces (f, f ′) bounded by these edges is an
open set. A set of cells containing o and all higher dimensional cells bounded by o is called the
open star of cell o [Ahronovitz et al., 1995]. The open sets defined like this satisfy the axioms
(T1), (T2) and (T3) and define a topological space [Kovalevsky, 1993, Ahronovitz et al., 1995].

Note that abstract cells should not be regarded only as Euclidean point set. For a square grid
image, the pixels could be considered as square faces, inter-pixels boundaries as edges, and the
intersection of two or more inter-pixel boundaries could be represented with vertices. Note that
this is exactly the same representation for the 2D space as the dual image graphs [Kropatsch,
1994]. The cell model is more general and can be used to represent space element of higher
dimension, whereas the dual graph representation for higher dimension is not defined yet. In
2D space a dual graphs representation is able to encode any subdivision of the 2D topological
space. Encoding higher dimension with (dual) graphs is a difficult problem.

2.3.2 Dual Image Graph and Combinatorial Map
The usage of dual graph framework for 3 or higher dimension is cumbersome and not well de-
fined. These problems are alleviated by using the combinatorial maps or generalized maps. N-
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2. Irregular Dual Graph Pyramids

dimensional combinatorial maps [Lienhardt, 1989] may be seen as a graph with an embedding
in an N -dimensional space i.e in the case of 2D [Brun and Kropatsch, 2001b], combinatorial
maps are planar graphs encoding the orientation of edges around vertices. The base elements of
a N-dimensional combinatorial map are the darts, also called half edges, which are connected
together (sewed) by the orbits of 1 permutation and N − 1 involutions. In the case of 2D [Brun
and Kropatsch, 2001b] the permutation is called σ and forms vertices, and the involution is
called α and specifies edges. One of the advantages of combinatorial maps is that in the 2D
case, unlike dual-graphs, they explicitly encode the orientation of the plane, correctly handling
all the complicated cases with self-loops and parallel edges.

Like combinatorial maps, n-dimensional Generalized maps [Lienhardt, 1991] are defined
in any dimension and correctly represent all topological configurations of the n-dimensional
space (including 2D). Their base elements are darts and use only involutions to represent the
connections between them, that describe cells in any dimension.

Combinatorial maps and generalized combinatorial maps define a general framework which
allows to encode any subdivision on nD topological spaces orientable or non-orientable with
or without boundaries. Using 2D images, combinatorial maps my be understood as a particular
encoding of a planar graph, where each edge is split into two half-edges called darts. Since each
edge connects two vertices, each dart belongs to only one vertex. A 2D combinatorial map is
formally defined by the triplet G = (D, σ, α) [Brun and Kropatsch, 2001b] where D represent
the set of darts and σ(d) is a permutation on D encountered when turning clockwise around
each vertex. Finally α(d) is an involution onD which maps each of the two darts of one edge to
the other one. Given a combinatorial map G = (D, σ, α), its dual is defined by G = (D, ϕ, α),
with ϕ = σ ◦ α. The cycles of permutation ϕ encode the faces of the combinatorial map. In
what it follows, the cycles of α, σ(d) and ϕ containing a dart d will be respectively denoted by
α∗(d), σ∗(d) and ϕ∗(d). An example of the combinatorial map is given in Figure 2.6a and (b).

Thus all graph definitions used in irregular graph pyramids [Kropatsch, 1994] are analo-
gously defined with combinatorial maps [Brun and Kropatsch, 2003].

2.3.3 Dual Graphs versus Combinatorial Maps

Advantages of combinatorial maps over dual graphs come form the embedding, that is inher-
ently present at the former ones. Let us analyze the ’flower’ example given in Figure 2.6b,
and (c) with respect to uniqueness of topological representation. The combinatorial map of this
’flower’ is shown and defined in Figure 2.6b by G = (D, σ, α)7. If the leafs of the ’flower’
exchange position for e.g. leafs 1 and 3, a different σ = (3,−3, 2,−2, 1,−1, 4,−4) will be de-
fined, hence uniquely encoding the topology. The dual graphs are encoded by a pair of graphs,
the (planar) primal graph vertices) and its dual. For each edge in the primal graph there is a
corresponding one in the dual, that crosses it (Figure 2.6c). Since there is no ordering of the
edges around the vertices, the dual graph representation does not uniquely encode the topology
of the ’flower’, as can be easily seen if we exchange the position, for e.g. of leafs 1 and 3,
the dual graph describing this configuration is identical to the previous one (the one without
exchanging the position of leafs.) The presence of similar cases happens very rare in 2D, thus
the dual graph representation is used as the representation in the rest of discussion.

7σ is encoded clockwise, shown with the arrow in Figure 2.6b.
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Combinatorial maps (c) Dual graphs
(a) D = (1,−1, 2,−2, 3,−3, 4,−4, (b) D = (1,−1, 2,−2, 3,−3, 4,−4)
5,−5, 6,−6, 7,−7, 8,−8, 9,−9)
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Figure 2.6: Combinatorial map and correctly handling topology.

2.4 Dual Graph Contraction
The irregular (dual graph) pyramids are constructed in bottom-up way such that subsequent
level (say k + 1) results by (dually) contracting precedent level (say k). In this section a short
exposition of dual graph contraction algorithm is given, following the work of [Kropatsch,
1995a], and building the dual graph pyramid using this algorithm is presented in the next sec-
tion. Dual graph contraction (DGC) [Kropatsch, 1994], [Kropatsch, 1995a] proceeds in two
steps:

I. primal-edge contraction and removal of its dual, and

II. dual-edge contraction and removal of its primal.

In Figure 2.7 examples of these two steps are shown in three possible cases. Note that these two
steps correspond in [Kropatsch, 1995a] to the steps (I) dual edge contraction, and (II) dual face
contraction.

The base of the pyramid consists of the pair of dual image graphs (G0, G0). In order to
proceed with the dual graph contraction a set of so called contraction kernels (decimation pa-
rameters) must be defined. The formal definition is postponed until the Section 2.4.1. Let the
set of contraction kernels be 〈Sk, Nk,k+1〉. This set consists of a subset of surviving vertices
Sk = Vk+1 ⊂ Vk, and a subset of non-surviving primal-edges Nk,k+1 ⊂ Ek (where index
k, k + 1 refer to contraction from level k to k + 1). Surviving vertices in v ∈ Sk are vertices
not to be touched by the contraction, i.e. after contraction these vertices make up the set Vk+1

of the graph Gk+1; and every non-surviving vertex v ∈ Vk\Sk must be paired to one surviving
vertex in a unique way, by non-surviving primal-edges (Figure 2.8). In this figure, the shadowed
vertex s is the survivor and this vertex is connected with arrow edges (ns) with non-surviving

23



2. Irregular Dual Graph Pyramids

Pair of dual graphs (Gk, Gk) at level k of the pyramid
↙ ↘

primal graph dual graph

Gk = (Vk, Ek)
duals↔ Gk = (V k, Ek)

⇓
I. Primal-edge contraction and removal of its dual

↙ ↘
primal-edge contraction in Gk and corresponding dual-edge removal in Gk

↓ ↓
G′ = (Sk, Ek \Nk,k+1)

duals↔ G′ = (V k, Ek \Nk,k+1)

⇓
II. Dual-edge contraction and removal of its primal

↙ ↘ Remove all v with deg(v) ≤ 2
primal-edge removal in G′ and corresponding dual-edge contraction in G′

↓ ↓
Gk+1 = (Vk+1, Ek+1)

duals↔ Gk+1 = (V k+1, Ek+1)

⇓
Pair of dual graphs (Gk+1, Gk+1) at level k + 1 of the pyramid

Figure 2.7: Dual graph contraction procedure (DGC).

vertices. Note that a contraction kernel is a tree of depth one, i.e. there is only one edge between
a survivor and a non-survivor, or analogously one can say that the diameter of this tree is two.

The contraction of a non-surviving primal-edge consists in the identification of its endpoints
(vertices) and the removal of both the contracted primal-edge and its dual edge (see Chapter ??,
Section ?? for more details on these operations). Figure 2.9a shows the normal situation, Fig-
ure 2.9b the situation where the primal-edge contraction creates multiple edges, Figure 2.9c
and self-loops. Redundancies (lower part) in case Figure 2.9c are decided through the corre-
sponding dual graphs and removed by dual graph contraction. In Figure 2.9, the primal graph
is shown with square (�) vertices and broken lines (- -) and its dual with circle vertices (m) and
full lines (-).

[Kropatsch, 1995a] shows that 〈Sk, Nk,k+1〉 determine the structure of an irregular pyramid.
The relation between two pairs of dual graphs,(Gk, Gk) and (Gk+1, Gk+1), is established by
dual graph contraction with the set of contraction kernels 〈Sk, Nk,k+1〉 as:

(Gk+1, Gk+1) = C[(Gk, Gk), 〈Sk, Nk,k+1〉]. (2.4)

Dual-edge contraction and removal of its primal (second step) has a role of cleaning the
primal graph by simplifying most of the multiple edges and self-loops8, but not those enclosing

8Called also redundant edges.
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s

n1n3

n4

n2

tree of depth one

s ∈ Sk and n1, n2, n3, n4 ∈ Nk,k+1

Figure 2.8: Contraction kernel with s as a survivor and arrow edges (n-s) to be contracted.

any surviving parts of the graph. They are necessary to preserve correct structure [Kropatsch,
1995a]. So, the dual graph contraction reduces the number of vertices and edges of a pair
of dual graphs, while preserving the topological relations among surviving parts of the graph.
In [Kropatsch, 1994, Willersinn, 1995, Kropatsch, 1995b], a detailed presentation of dual graph
contraction with some computational aspects (time and space complexity) are given. Moreover,
in [Willersinn, 1995] different implementation details are presented.

2.4.1 Contraction Kernels

Let S be the set of surviving vertices, and N the set of non-surviving primal-edges. The con-
nected components 9 CC(s), s ∈ S, of subgraph (S, N) form a set of tree structures T (s) that
if contracted would collapse into vertex s of the contracted graph. The number of this trees is
|S|. The union of trees T (s) contain the non-surviving primal-edges N . T (s) is a spanning
tree of the connected component CC(s), or equivalently, (V, N) is a spanning forest of graph
G = (V, E).

In order to decimate the graph G = (V, E) a set of surviving vertices S ⊂ V and a set of
non-surviving primal-edges N ⊂ E must be selected, such that the following conditions are
satisfied:

• graph (V, N) is a spanning forest of graph G = (V, E), and

• the surviving vertices s ∈ S ⊂ V are the roots of the forest (V, N).

Definition 2.7 (Contraction kernels) The set of disjoint rooted trees with length two of path
going through the root is called a set of contraction kernels.

Analogously, the trees T (v) of the forest (V, N) with root v ∈ V are contraction kernels.

9Neglected level index refer to contraction from level k to level k + 1.
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(a) Normal case (b) Multiple edges (c) Self loops

⇓ ⇓ ⇓
I. Primal-edge contraction and removal of its dual

⇓ ⇓ ⇓

deg(v) > 2,∀v

vi
vi

deg(vi) ≤ 2
⇓ ⇓

II. Dual-edge contraction and removal of its primal
⇓ ⇓

Figure 2.9: Dual graph contraction of a part of a graph.
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e
s s′

CP (s, s′)T (s) T (s′)

middle partfirst part second part
Gk = (Vk, Ek)

↓
DGC
↓

e′ = (v, v′)

Gk+1 = (Vk+1, Ek+1)

Figure 2.10: Connecting path CP (v, v′), e is the bridge of this path.

After deploying the dual graph contraction algorithm on a graph one has to establish a path
connecting between two surviving vertices on the resulted new graph. Let G = (V, E) be a
graph with decimation parameters (S, N).

Definition 2.8 (Connecting path [Kropatsch, 1994]) A path in G = (V, E) is called a con-
necting path between two surviving vertices s, s′ ∈ S if it consists of three subsets of edges:

• the first part is a possibly empty branch of contraction kernel T (s).

• the middle part is an edge e ∈ E \ N that bridges the gap between the two contraction
kernels T (s) and T (s′).

• the third part is a possibly empty branch of contraction kernel T (s′).

See Figure 2.10 for explanation. Connecting path is denoted by CP (s, s′). Edge e is called the
bridge of the connecting path CP (s, s′). Each edge e′ = (v, v′) ∈ Ek+1 has a corresponding
connecting path CPk(s, s

′), where s, s′ ∈ S ⊂ Vk are survivors in graph Gk = (Vk, Ek). This
means that two surviving vertices s, and s′, s 6= s′ that can be connected by a path10 CPk(s, s

′)
in Gk are connected by an edge in Ek+1. If the graph Gk is connected, than after the dual graph
contraction the connectivity of the graph Gk+1 is preserved [Kropatsch, 1994].

Dual edge contraction can be implemented by (1) simply renaming all the non-surviving
vertices to their surviving parent vertex (e.g. by using a find union set algorithm [Cormen et al.,
2001]), (2) deleting all non-surviving edges N and (3) their duals N . The question on how
to build contraction kernels is given in Chapter ??, where different methods are presented and
their properties are analyzed.

2.4.2 Equivalent contraction kernels
[Burt and Adelson, 1983] combines two or more successive reductions in one equivalent weight-
ing function in order to compute any level of any regular pyramid directly from the base level.

10By definition of connectivity of graph, there exist always a path between any two vertices of graph, see
Chapter ??.
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2. Irregular Dual Graph Pyramids

(Gk, Gk)

DGC ↓

(Gk+1, Gk+1)

DGC ↓

(Gk+2, Gk+2)

→

←

〈Sk+1, Nk,k+2〉
DGC

〈Sk+1, Nk+1,k+2〉

〈Sk, Nk,k+1〉

Figure 2.11: Equivalent contraction kernel.

Similarly, [Kropatsch, 1995b] combines two (or more) dual graph contractions (as shown in Fig-
ure 2.11) of graph Gk = (Vk, Ek) with decimation parameters 〈Sk, Nk,k+1〉 and 〈Sk+1, Nk+1,k+2〉
into one single equivalent contraction kernel (ECK) Nk,k+2 = Nk,k+1 ◦Nk+1,k+2

11:

C[C[Gk, 〈Sk, Nk,k+1〉], 〈Sk+1, Nk+1,k+2〉] = C[Gk, 〈Sk+1, Nk,k+2〉]
= Gk+2 (2.5)

The structure of Gk+1 is determined by Gk and the decimation parameters 〈Sk, Nk,k+1〉. Simple
overlaying the two sets of contraction kernels, 〈Sk, Nk,k+1〉 (the one from level k to k + 1)
and 〈Sk+1, Nk+1,k+2〉 (the one from level k + 1 to k + 2) will not yield a proper equivalent
contraction kernel 〈Sk+1, Nk,k+2〉. The surviving vertices from Gk to Gk+2 are Sk+1 = Vk+2.
The edges of the searched contraction kernels must be formed by edges Nk,k+2 ⊂ Ek. An edge
ek+1 = (vk+1, v

′
k+1) ∈ Nk+1,k+2 corresponds to a connecting path CPk(vk+1, v

′
k+1) in Gk

12.
By Definition 2.8, CPk(vk+1, v

′
k+1) consists of one branch of Tk(vk+1), one branch of Tk(v

′
k+1),

and one surviving edge ek ∈ Ek connecting the two contraction kernels Tk(vk+1), and Tk(v
′
k+1).

Definition 2.9 (Bridge [Kropatsch, 1994]) Function bridge: Ek+1 7→ Ek assigns to each edge
ek+1 = (vk+1, wk+1) ∈ Ek+1 one of the bridges ek ∈ Ek of the connecting paths CPk(vk+1, wk+1):

bridge(ek+1) = ek. (2.6)

Connecting two disjoint tree structures by a single edge results in a new tree structure. Now,
Nk,k+2 can be defined as the result of connecting all contraction kernels Tk by bridges as:

Nk,k+2 = Nk,k+1 ∪
⋃

ek+1∈Nk+1,k+2

bridge(ek+1) (2.7)

This definition satisfies the requirements of a contraction kernel [Kropatsch, 1994]. Analo-
gously, the above process can be repeated for any pair of levels k and k′ such that k < k′. If

11Only for Gk is shown instead of (Gk, Gk)) for simplicity.
12If there are more than one connecting paths, one is selected.
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2.4 Dual Graph Contraction

k = 0 and k′ = h, where h is the level index of the top of the pyramid, than with the resulted
equivalent contraction kernel (N0,h), the base level (0) is contracted in one step into an apex
Vh = {vh}. ECKs are able to compute any level of the pyramid directly from the base.

2.4.3 Homotopy Preserving Transformations
As already discussed in Section 2.2, the plane graph partitions the plane into faces. Faces can
have holes which are represented by connected components, and have to be connected by the
fictive edges with the connected component which surrounds it (see the Figure 2.4c where the
window is connected by a fictive edge with the front of the house). The notion of homotopy on
(dual) graphs, i.e. for the 2D case, is derived from [Serra, 1982, page 187]. Let G be the set of
all graphs.

Definition 2.10 (Homotopy graphs) A mapping Ψ from G into itself is said to be homotopic
(or preserves the homotopy) if it transforms a graph G into a graph Ψ(G) such that there is
a one-to-one and onto correspondence between connected components and the holes of G and
Ψ(G).

Two finite graphs G and G′ are said to be homotopic when there exist a homotopic transforma-
tion Ψ such that G′ = Ψ(G). [Marchadier et al., 2003] proved that the set of transformation
that preserves the homotopy of (dual) graphs are:

• contraction of an edge, which is not a self loop,

• removal of a pendant edge, and

• contraction of redundant edges.

All these transformation do not change the number of connected components and holes of the
dual graphs, therefore they preserve the graph homotopy. In the case of the 2D, the homotopy
can be defined also using the homotopy tree (or adjacency tree) [Soille, 1994, page 56]. Two
set are homotopic if their homotopy trees are identical.

2.4.4 Graph Minors with Dual Graph Contraction
Two containment relations between graphs: the subgraph relation and the induced subgraph
relation are exposed in Chapter ??, Section ??. The graph contraction operation is described
in details in this section and in Chapter ??, Section ??. In this section the minor relation is
presented. Minor relation is closely related with the graph contraction operation, as will be
shown.

Let G′ = (V ′, E ′) be a graph and {Vv | v ∈ V ′} a set partition of V ′ into connected subset
such that for any two vertices v, v′ ∈ V ′ there is an edge between two connected subsets Vv and
Vv′ in G if and only if (v, v′) ∈ E ′. Then G is called a µG′ and it is written13 as G = µG′.
The sets Vv are the contraction kernels (called also branch sets [Diestel, 1997]) of µG′. One can
think of obtaining G′ from G by contracting every contraction kernel to a single vertex.

13µG′ denotes a whole class of graphs and G = µG′ means that G belongs to this class.
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G′
G

Vv Vv′

G′′

v

v′

Figure 2.12: G = µG′ and G ⊆ G′, then G′′ is minor of G′.

Proposition 2.1 ([Diestel, 1997]) G is an µG′ if and only if G is contractible to G′, i.e. if there
exist graphs G0, G1, ..., Gh and edges ei ∈ Gi such that G0 = G, Gh ' G′ and Gi+1 = Gi/ei

for all i < h.

Intuitively, G is created by repeated contraction and deletion (or vice versa) of edges in the
graph G′. If G = µG′ is a subgraph of another graph G′′, then G′′ is a minor of G′ and it is
written as G′′ 4 G′. Every subgraph of a graph is its minor, moreover every graph is its own
minor. In general any graph derived from another by repeated deletion and contraction (in any
order) is its minor [Diestel, 1997]. The Figure 2.12 clarifies the minor relation.

Proposition 2.2 (Partial orderings of minors [Diestel, 1997]) The minor relation 4 is a par-
tial orderings on the class of finite graphs, i.e. they are reflexive, antisymmetric and transitive.

Proof: Can be found in [Diestel, 1997] �

Note that the minor relation in Proposition 2.1 is defined only for an edge contraction.
Moreover this relation is defined for many edge contractions as well, because of the transitivity
of the minor relation (Proposition 2.2).

In the previous section it is shown that dual graph contraction consists in repeated contrac-
tion and removal operations. The graph, say Gk+1 at level k + 1 is obtained by contracting and
removing edges in Gk at level k, thus based on Proposition 2.1 and 2.2 graph Gk+1 is a minor
of Gk, i.e. Gk+1 4 Gk for all 0 ≤ k ≤ h, all higher levels Gk are minors of the base graph G0.

2.5 Dual Graph Pyramid
A graph pyramid is a pyramid where each level is a graph G = (V, E) consisting of vertices V
and of edges E relating two vertices. In order to correctly represent the embedding of the graph
in the image plane [Glantz and Kropatsch, 2000] additionally store the dual graph G = (V , E)
at each level.

In irregular pyramids, each level represents a partition of the pixel set into cells, i.e. con-
nected subsets of pixels. The construction of an irregular image pyramid is iteratively lo-
cal [Meer, 1989], [Bischof and Kropatsch, 1993], [Jolion, 2003], [Haxhimusa et al., 2002]:
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2.5 Dual Graph Pyramid

• the cells have no information about their global position,

• the cells are connected only to (direct) neighbors, and

• the cells cannot distinguish the spatial positions of the neighbors.

This means that we use only local properties to build the hierarchy of the pyramid. Usually,
on the base level (level 0) of an irregular image pyramid the cells represent single pixels and
the neighborhood of the cells is defined by the 4 -connectivity of the pixels. A cell on level
k + 1 (parent) is a union of neighboring cells on level k (children). As shown in Section 2.4
this union is controlled by contraction kernels (decimation parameters). Every parent computes
its values independently of other cells on the same level. This implies that an image pyramid
is built in O[log(image diameter)] parallel steps. Neighborhoods on level k + 1 are derived
from neighborhoods on level k. Two cells c1 and c2 are neighbors if there exist pixels p1 in c1

and p2 in c2 such that p1 and p2 are 4-neighbors.
The levels are represented as dual pairs (Gk, Gk) of plane graphs Gk and Gk. See Sec-

tion 2.3 for more details on this representation. The sequence (Gk, Gk), 0 ≤ k ≤ h is called
dual graph pyramid, where 0 is the base level index and h is the top level index, also called
the height of the pyramid. Moreover the graph is attributed, G = (V, E, attrv, attre), where
attrv : V → R+ and attre : E → R+ are functions, i.e. content of the graph is stored in
attributes attached to both vertices and edges. In general a graph pyramid can be generated
bottom-up as follows:

Algorithm 1 – Constructing Dual Graph Pyramid
Input: Graphs (G0, G0)

1: while further abstraction is possible do
2: select contraction kernels
3: perform dual graph contraction and simplification of dual graph
4: apply reduction functions to compute content of new reduced level
5: end while

Output: Graph pyramid – (Gk, Gk), 0 ≤ k ≤ h.

In the previous section it is shown that Gk+1 is minor of Gk, i.e. Gk+1 4 Gk for all 0 ≤ k ≤
h, therefore graphs in a pyramid belong to a class of graphs related by a minor relation. One
can say that a dual graph pyramid is a set of partial order graphs.

Let the building of the dual graph pyramid be explained by using the simple 5 × 5 gray
value image in Figure 2.3. For the sake of simplicity of the presentation in the figures after-
ward the dual graphs as well as inter-level relations are not shown explicitly. An example of
this inter-level relation is shown in Figure 2.13 with solid lines. In this figure a contraction
kernel (shadowed) on level k is shown, with its surviving vertex s (dark shadowed) and its
non-surviving vertices (white). After the dual graph contraction a new vertex v on the level
k is created as well as the child-parent relations. In this example initially the attributes of the
vertices receive the gray values of the pixels, and the cell in the new level (the parents) becomes
the gray value of its children.
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k

k + 1

s

v

contraction kernel

s ∈ Vk and v ∈ Vk+1

Creation of a new vertex v in the level k + 1 of the pyramid.

Figure 2.13: Parent-child relation.

The first step determines what information in the current top level is important and what
can be dropped. A contraction kernel is a (small) sub-tree of the top level the root of which
is chosen to survive (black circles in Figure 2.14b. Figure 2.14a shows the window and the
selected contraction kernels each shown with gray. Selection criteria in this case contract only
edges inside connected components having the same gray value.

All the edges of the contraction trees are dually contracted during step 3. Dual contraction
of an edge e (formally denoted by G/{e}) consists of contracting e and removing the corre-
sponding dual edge e from the dual graph (formally denoted by G\{e}). This preserves duality
and the dual graph needs not be constructed from the contracted primal graph G′ at the next
level.

Since the contraction of an edge may yield multi-edges (an example shown with arrow in

(a) Image to graph G0 (b) Contraction kernel N01

double edges

(c) G′ after dual-edge contraction of G0 (d) G1 after the removal of redundant edges in G′

Figure 2.14: Dual graph contraction in G0 and the creation of the G1 of the pyramid.
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(a) Dually contracted graph G1 (b) Contraction kernel N12

redundant edges

(c) Edge contraction of graph G1 (d) Removal of the shown redundant edges

Figure 2.15: Dual graph contraction in G1 and the resulting G2.

Figure 2.14c and self-loops there is a second simplification phase of step 3 which removes all
redundant multi-edges and self-loops. Note that not all such edges can be removed without
destroying the topology of the graph: if the cycle formed by the multi-edge or the self-loop
surrounds another part of the data its removal would corrupt the connectivity! Fortunately this
can be decided locally by the dual graph since faces of degree two (having the double-edge
as boundary) and faces of degree one (boundary = self-loop) cannot contain any connected
elements in its interior. Since removal and contraction are dual operations, the removal of a
self-loop or of one of the double edges can be done by contracting the corresponding dual
edges in the dual graph, which are not depicted in our example for the sake of the simplicity.
The dual contraction of our example remains a simple graph G1 without self-loops and multi-
edges (Figure 2.15a).

Step 3 generates a reduced pair of dual graphs. Their contents is derived in step 4 from the
level below using the reduction function. In our example reduction is very simple: the surviving
vertex inherits the color of its son.

The resulted graph G2 of another dual contraction step is shown in Figure 2.16. The se-
lection rules and the reduction function are the same as in the first iteration. The result shows
that the regions with the same color are brought together. This fact could be used in a top-
down verification step which checks the reliability of merging criterion in the more general
context. Figure 2.17 depicts an overview of the results produced by the algorithm, by using a
simple merging criterion, in which vertices having the same attributes (gray value) are merged.
Moreover in this figure, contraction kernels and the equivalent contraction kernel are shown.

Figure 2.16: Graph G2 after two steps of dual graph contraction.
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(a) Dual graph pyramid (b) Contraction kernels (c) Equivalent contraction
kernels

G0
N01

from level 0 to 1
N02

G1
N12

from level 0 to 2

from level 1 to 2

G2

Figure 2.17: Dual graph pyramid with three levels: G0, G1, and G2.

Table 2.1: Graph contraction parameters [Kropatsch, 1994]
Level representation contract / remove conditions

0 (G0, G0)
↓ contraction kernel N0,1 forest, depth 1

(G0/N0,1, G0 \N0,1)
↓ redundant multi-edges, self-loops deg v ≤ 2

1 (G1, G1)
↓ contraction kernel N1,2 forest, depth 1
· · · · · · · · ·

By contracting the edges of the equivalent contraction kernel N0,2 one can reach the top of the
pyramid G2 directly from the base G0. A more complex merge criterion is shown in Chapter ??.
The following Table 2.1 summarizes dual graph contraction in terms of the control parameters
used for abstraction and the conditions to preserve topology (from [Kropatsch, 1994]).

In this section every level of the dual irregular pyramid is presented explicitly. An implicit
representation can be done if vertices and edges of ECK of the apex (V0, N0,h) are labeled, such
that vertices and edges are labeled with the highest level in which they survive. This labeled
spanning tree uniquely defines the structure of the dual irregular pyramid [Kropatsch, 1995b].
If the plane graph is transformed into a combinatorial map the transcribed operations form
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the combinatorial pyramid [Brun and Kropatsch, 2001a, Brun and Kropatsch, 2001b]. This
framework allows to link dual graph pyramids with topological maps (especially combinatorial
maps) which enable to extend the scope to three (or more) dimensions.

2.6 Summary
In order to express the connectivity or other geometric or topological properties the image rep-
resentation must be enhanced by a neighborhood relation. The neighborhood relation can be
represented explicitly by a graph consisting of vertices corresponding to the sampling points
and of edges connecting neighboring vertices. To represent not only neighborhood relations
but also the inclusion relations, the planarity and the duality concepts come very good in hand.
Since every planar graph has a dual, one can use dual graphs to represent the partitioning of
the (image) plane, encoding the neighborhood and inclusion relations. One can define trans-
formation of these graphs, like the dual graph contraction to simplify graphs in the sense of
less vertices and edges. Edge contraction and removal introduces naturally a hierarchy of dual
graphs, the dual graph pyramid.
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List of Symbols and Abbreviations

If not stated otherwise in the text the symbol and abbreviations applies throughout the document.

Abbreviations
DGC Dual Graph Contraction
ECK Equivalent contraction kernel
Symbols
Nk,k+1 contraction kernel from k to k + 1
G dual graph
E dual edge set
e dual edge
F face set
f face
(Gk, Gk) pair of dual graphs
Gk graph at level k
h height of pyramid
k level k of the pyramid
R, Z number sets
G̃ plane graph
λ reduction factor
V dual vertex set
v dual vertex
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The first page number is usually, but not always, the primary reference to the indexed topic.

ancestor, 7
apex, 2

children, 6
connecting path, 27

bridge, 27
contraction kernels, 25

descendant, 7
dual graph contraction, 23

minor, 30
dual graph pyramid, 31
dual graphs

dual, 18
primal, 18

dual image graphs, 20

face, 15
background face, 15
interior, 15

graph
dual, 16
primal, 16
planar, 15
plane, 15

hierarchy, 2

overlapping pyramid, 7

parent, 6
pyramid, 2

content, 10
dual graph pyramid, 14

Gaussian pyramid, 11
irregular pyramid, 9
processing, 10
regular pyramid, 8
structure

horizontal neighborhood, 6
vertical neighborhood, 6

receptive field, 7

topological space, 20
topology, 20

closed sets, 20
discrete topology, 20
open sets, 20

44


	Contents
	Image Pyramid
	Introduction
	Discrete 2D Images
	Pyramid Architecture
	Summary

	Irregular Dual Graph Pyramids
	Introduction
	Planar and Dual Graphs
	Dual Image Graphs
	Dual Graph Contraction
	Dual Graph Pyramid
	Summary

	Bibliography
	List of Symbols and Abbreviations
	Index

