
CHAPTER 2

Basics of Graph Theory

” For one has only to look around to see ’real-world graphs’ in abundance, either in nature
(trees, for example) or in the works of man (transportation networks, for example). Surely
someone at some time would have passed from some real-world object, situation, or problem
to the abstraction we call graphs, and graph theory would have been born.”1

by D. R. Fulkerson.

Summary In this chapter a short introduction of the basic definitions from graph theory will be given. These de-
finitions will help to follow the discussion given in rest of the document as well as for easy reference
to the nomenclature used afterward.

Keywords: Graph, multi-graph, vertex neighbor, edge adjacency, vertex degree, subgraphs, walk, paths, cycles,
connectivity, forest, tree, vertex removal, edge removal, vertex identifying, edge contraction.

2.1 Introduction

In 1736, Leonard Euler was puzzled whether it is possible to walk across all the bridges on the river
Pregel in Königsberg2 only once and return to the starting point (see Figure 2.1a)). This is how Euler
stated the problem in ”Solutio problematis ad geometriam situs pertinentis.” [Euler, 1736] (an English
translation of this paper can be found in [Biggs et al., 1976]):

”In Königsberg in Prussia, there is an island A, called Kneiphoff ; the river (Pregel) which
surrounds it is divided into two branches, as can be seen in Figure 2.1a), and these two
branches are crossed by seven bridges, a, b, c, d, e, f and g. Concerning these bridges, it
was asked whether anyone could arrange a route in such a way that he would cross each
bridge once and only once. I was told that some people asserted that this was impossible,

1From preface to Studies in Graph Theory, Part II, The Mathematical Association of America, 1975.
2Nowadays Pregoyla in Kaliningrad.
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a) The seven bridges on the river Pregel b) the abstracted graph
A, B, C and D – landmasses vA, vB , vC , and vD – vertices

a, b, c, d, e, f , and g – bridges ea, eb, ec, ed, ee, ef , and eg – edges

Figure 2.1: The seven bridges problem and the abstracted graph.

while others were in doubt; but nobody would actually assert that it could be done. On
the basis of the above, I have formulated the general problem: Given any configuration of
the river and the branches into which it may divide, as well as any number of bridges, to
determine whether or not it is possible to cross each bridge exactly once.”

In order to solve this problem, Euler in an ingenious way abstracted the bridges and the landmasses.
He replaced each landmass by a dot (called vertex) and the each bridge by an arch (called edge or line)
(Figure 2.1b)). Euler proved that there is no solution to this problem. The Königsberg bridge problem
was the first problem studied in what is later called graph theory. This problem was a starting point also
for another branch in mathematics, the topology. This example shows a connection between graph theory
and topology.

Unfortunately many books on graph theory have different notions for the same thing, or the same term
has different meanings. The main purpose of this chapter is to collect basic notions of the graph theory in
one place and to be consistent in terminology. This will help to follow the discussion given in rest of the
document as well as for easy reference to the nomenclature used afterward. The definitions are compiled
from the books [Diestel, 1997], [Thulasiraman and Swamy, 1992], [Harary, 1969], [Christofides, 1975]
and [Bondy and Murty, 1976], therefore the citations are not repeated. Interested reader can find all these
definitions and more in the above mentioned books. The erudite reader in graph theory can skip reading
this chapter.

2.2 Basic Definitions

The Webster dictionary [Webster, 1913] defines graphs as having two meanings:

Graph, n. (Math.)
1. A curve or surface, the locus of a point whose coordinates are the variables in the equation
of the locus.
2. A diagram symbolizing a system of interrelations by spots, all distinguishable from one
another and some connected by lines of the same kind.

The non-formal definition of the graph given in point 2 is the meaning used in this document. For-
mally, one can define graph G on sets V and E as:
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Definition 2.1 (Graph) A graph G = (V (G), E(G), ιG(·)) is a pair of sets of V (G) and E(G) and an
incidence relation ιG(·) that maps pairs of elements of V (G) (not necessarily distinct) to elements of
E(G).

The elements vi of the set V (G) are called vertices (or nodes, or points) of the graph G, and the
elements ej of E(G) are its edges (or lines). Let an example be used to clarify the incidence relations
ιG(·). Let the set of vertices of the graph G in Figure 2.1b) be given by V (G) = {vA, vB, vC , vD} and
the edge set by E(G) = {ea, eb, ec, ed, ef , eg}. The incidence relation is defined as :

ιG(ea) = (vA, vB), ιG(eb) = (vA, vB), ιG(ec) = (vA, vC),
ιG(ed) = (vA, vC), ιG(ee) = (vA, vD), ιG(ef ) = (vB, vD), (2.1)

ιG(eg) = (vC , vD).

For the sake of simplicity of the notation, the incidence relation will be omitted, therefore one can write,
without the fear of confusion:

ea = (vA, vB), eb = (vA, vB), ec = (vA, vC),
ed = (vA, vC), ee = (vA, vD), ef = (vB, vD), (2.2)

eg = (vC , vD).

i.e. the graph is defined as G = (V,E) without explicit mentioning of the incidence relation, even though
it is always understood. The vertex set V (G) and E(G) are simple written as V and E. There will be no
distinction between a graph and its sets, one may write a vertex v ∈ G or v ∈ V instead of v ∈ V (G), an
edge e ∈ G or e ∈ E, and so on. Vertices and edges are usually represented with symbols like v1, v2, ...
and e1, e2, ..., respectively. Note that in Equation 2.2, each edge is identified with a pair of vertices. If
the edges are represented with ordered pairs of vertices, than the graph G is called directed or oriented,
otherwise it is called undirected or non-oriented. Two vertices connected by an edge ek = (vi, vj) are
called end vertices or ends of ek. In the directed graph the vertex vi is called the source, and vj the target
vertex of edge ek. Since the elements of edge set E are distinct, more than one edge can join the same
vertices. Edges having the same end vertices are called parallel edges3. If ek = (vi, vi), i.e. the end
vertices are the same, then ek is called self-loop.

Definition 2.2 (Multigraph) A graph G containing parallel edges and/or self-loops is a multigraph.

A graph having no parallel edges and self-loops is called simple graph.
The number of vertices in G is called the order, written as |V |; its number of edges is given as |E|.

A graph of order 0 is called an empty graph4, and of order 1 is simply called trivial graph5. A graph is
finite or infinite based on its order. In this document all the graphs used are finite and not empty, if not
otherwise stated.

The usual way to visualize graphs is by drawing a circle (or a dot) for each vertex and a line con-
necting these dots (as it was done by Euler), and in oriented graphs an arrow depicts the order of vertices
(Figure 2.2). Just how these dots and lines are visualized is not important, what is relevant is the infor-
mation which vertices are paired with which edge. In the graph in Figure 2.2, edges e4 and e5 are parallel
edges; edge e7 is the self loop. Note that in non-oriented graphs the order of vertices defining the edge
does not matter, for example the edge e1 = (v1, v2) could have been defined also as e2 = (v2, v1) (see
Figure 2.2a)), whereas in oriented graphs the order of vertices defines the edge as well, i.e. e2 = (v2, v1);
the edge (v1, v2) does not exist in Figure 2.2b).

3Also called double edges.
4A graph with no vertices and hence no edges.
5A graph with one vertex and possibly with self-loops.
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G = (V, E) |V = {v1, v2, v3, v4, v5}, E = {e1, e2, e3, e4, e5, e6, e7}
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and e1 = (v1, v2), e2 = (v1, v3), e3 = (v2, v4), e4 = (v3, v4),
e5 = (v3, v4), e6 = (v3, v5), e7 = (v5, v5)

a) Non-oriented multi-graph
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and e1 = (v2, v1), e2 = (v3, v1), e3 = (v4, v2), e4 = (v3, v4),
e5 = (v4, v3), e6 = (v3, v5), e7 = (v5, v5)

b) Oriented multi-graph

Figure 2.2: Non-oriented and oriented multi-graph.

Definition 2.3 (Vertex neighbors) Two vertices vi and vj are neighbors or adjacent if they are the end
vertices of the same edge ek = (vi, vj).

Definition 2.4 (Edge adjacency) Two edges ei and ej are adjacent if they have an end vertex in com-
mon, say vk, i.e. ei = (vk, vl) and ej = (vk, vl).

For example, in the graph in Figure 2.2a) v1 and v2 are neighbors, since they are connected by edge
e1 = (v1, v2); edge e1 and e2 are adjacent since they have vertex v1 as a common end. If all vertices of
G are pairwise neighbors, then G is complete. A complete graph on m vertices is written as Km.

An edge is incident on its end vertices. The degree of a vertex v is defined as:

Definition 2.5 (Vertex degree) The degree (or valency) deg(v) of a vertex v is the number of edges
incident on it.

The vertex of degree 0 is called isolated; of degree 1 is called pendant vertex. Note that by Definition 2.5
a self-loop at a vertex v contributes twice in the deg(v). For example in the graph of Figure 2.2a)
deg(v1) = 2; deg(v3) = 4; deg(v5) = 3 and so on.

Let G = (V,E) and G′ = (V ′, E′) be two graphs:

12



2. Basics of Graph Theory

v1

v2

v3

v4

v5

e2

e3

e4

e6

v1

v2

v3

v4

e1

e2

e3

e4 e5

a) G1 b) G2

Figure 2.3: Subgraphs of graph G from Figure 2.2a).

Definition 2.6 (Subgraph) G′ = (V ′, E′) is a subgraph of G (G′ ⊆ G) if V ′ ⊆ V and E′ ⊆ E.

I.e. the graph G contains graph G′, graph G is called also a supergraph of G (G ⊇ G′). If either
V ′ ⊂ V or E′ ⊂ E, the graph G′ is called a proper subgraph of G. We say sometimes that G contains
G′. For example the graphs G1 and G2 in Figure 2.3 represent some of the subgraphs of graph G from
Figure 2.2a), graph G2 is a proper subgraph of G.

Definition 2.7 (Induced subgraph) If G′ ⊆ G and G′ contains all the edges of e = (vi, vj) ∈ E such
that vi, vj ∈ V ′, then G′ is the (vertex) induced subgraph of G and V ′ induces (spans) G′ in G.

The induced subgraph is usually written as G′ = G[V ′], i.e. since V ′ ⊂ G(V ), then G[V ′] denotes the
graph on V ′ whose edges are the edges of G with both ends in V ′. If not otherwise stated by induced
subgraph, the vertex-induced subgraph is meant. If there are no isolated vertices in G′, then G′ is called
the induced subgraph of G on the edge set E′ or simply edge-induced subgraph of G. An example of
vertex-induced subgraph is given in Figure 2.3b). Finally,

Definition 2.8 (Spanning subgraph) If G′ ⊆ G and V ′ spans all of G, i.e V ′ = V then G′ is a spanning
subgraph of G.

The subgraph in Figure 2.3a) G1 is a spanning subgraph of G since it contains all the vertices of G.

Definition 2.9 (Maximal(minimal) subgraph) A subgraph G′ of a graph G is a maximal (minimal)
subgraph of G with respect to some property Π if G′ has the property Π and G′ is not a proper subgraph
of any other subgraph of G having the property Π.

The minimal and maximal subsets with respect to some property are defined analogously. For example in
Figure 2.3b), the edge set E2 of G2, a vertex-induced subgraph of G, is the maximal subset of E such that
the end vertices of all of its edges are in V2 . This definition will be used later to define a component of
G as a maximal connected subgraph of G, and a spanning tree of a connected G is a minimal connected
spanning subgraph of G.

2.3 Paths and Cycles

Let G = (V,E) be a graph with sets V = {v1, v2, · · · } and E = {e1, e2, · · · }, then:

Definition 2.10 (Walk) A walk in a graph G is a finite non-empty alternating sequence v0, e1, v1, · · · , vk−1, ek, vk

of vertices and edges in G such that ei = (vi, vi+1) for all 1 ≤ i ≤ k
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Figure 2.4: A path P = P 4 and a cycle C = C5 in graph G.

This walk is called a v0 − vk walk with v0 and vk as the terminal vertices, all other vertices are internal
vertices of this walk. In a walk edges and vertices can appear more than once. If v0 = vk, the walk
is closed, otherwise it is open. For the graph in Figure 2.2a) an open walk could be the sequence
v1, e2, v3, e4, v4, e4, v3, e5, v4, e4, e6, v5 and a closed walk is v1, e1, v2, e3, v4, e5, v3, e4, v4, e5, e2, v1.

Definition 2.11 (Trail) A walk is a trail if all its edges are distinct.

A trail is closed if its end vertices are the same, otherwise it is opened. By the definition the walk can
contain the same vertex many times. For example the walk v2, e1, e2, v3, e4, v4, e5, v3, e6 is a trail in
graph shown in Figure 2.2a), even though the vertex v3 appears twice.

Definition 2.12 (Path) A path P is a trail where all vertices are distinct.

A path defined thus a sequence of vertices together with a sequence of edges which allow to connect each
vertex of the path to its sucessor. A simple path is defined as a sequence of vertices v0, v1, v2, · · · , vk,
each vertex being joint to its successor by some edge. Thus a simple path does not explicitly encode
which edge allows to pass from one vertex to the next one. Note that using simple graphs two vertices
are connected by at most one edge. The notion of path and simple path are thus equivalent on this graphs.
This is obviously not the case with more general graphs. Note that in a multigraph a path is not uniquely
defined by this nomenclature, because of possible multiple edges between two vertices. Vertices v0 and
vk are linked by the path P , also P is called a path from v0 to vk (as well as between v0 and vk).

Definition 2.13 (Path length) The number of edges in the path is called the path length.

The path length is denoted with P k, where k is the number of edges in the path. An example of the path
is given in Figure 2.4, and it can be written as P = v4, v1, v2, v5, v3. The length of this path is 4, i.e.
P = P 4. Note that by definition it is not necessary that a path contains all the vertices of the graph.

Analogously one defines the cycles as:

Definition 2.14 (Cycle) A closed trail is a cycle C if all its vertices except the end vertices are distinct.

14
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Cycles, like paths, are denoted by the cyclic sequence of vertices C = v0, v1, · · · , vk, v0. The length of
the cycle is the number of edges and it is called k-cycle written as Ck. The minimum length of a cycle in
a graph G is the girth g(G) of G, and the maximum length of a cycle is its circumference. In Figure 2.4
a cycle C5 is shown. Note that the girth of graph G in Figure 2.4 is g(G) = 3. The distance between
two vertices v and w in G denoted by d(u,w), is the length of the shortest path between these vertices.
The diameter of G, diam(G) is the maximum distance between any two vertices of G.

From the above one can note the following properties of paths and cycles:

• in a path the degree of each vertex is 2, except for the end vertices for which the degree is 1,

• in a cycle the vertex degree of each vertex is 2, and

• in a path the number of edges is one less than the number of vertices; in a cycle the number of
edges and of vertices are equal.

2.4 Connectivity and Graph Components

The connectivity is an important concept in graph theory and it is one of the basic concept used in this
document. Two vertices vi and vj are connected in a graph G = (V,E) if there is a path vi − vj in G. A
vertex is connected to itself.

Definition 2.15 (Connectivity) A non-empty graph is connected if any two vertices are joint by a path
in G.

In Figure 2.5 graphs G1, G2 and G3 are connected graphs.
Let graph G = (V,E) be a non-connected graph. The set partitioning is defined:

Definition 2.16 (Set partitioning) A set V is partitioned into subsets V1, V2, · · · , Vp if V1 ∪V2 ∪ · · · ∪
Vp = V and for all i and j, i 	= j Vi ∩ Vj = ∅. {V1, V2, · · · , Vp} is called a partition of V .

Since the graph G is not connected, the vertex set V can be partitioned into subsets V1, V2, · · · , Vp, and
each vertex induced subgraph G[Vi] is connected, then there exist no path between a vertex in subset Vi

and a vertex in Vj , j 	= i.

Definition 2.17 (Component) A maximally connected subgraph of G is called a component of graph
G.

A component of G is not a proper subgraph of any other connected subgraph of G. An isolated vertex
is considered to be a component, since it is connected to itself, by definition. Note that a component
is always non-empty, and that if a graph G is connected then it has only one component, i.e. itself.
Figure 2.5 shows a non-connected graph G, with its components G1, G2 and G3.

The following theorem is used in the Section 4.4 to show that after the edge removal from the cycle
the graph stays connected.

Theorem 2.1 If a graph G = (V,E) is connected, then the graph remains connected after the removal
of an edge e of a cycle C ∈ E, i.e. G′ = (V,E − {e}) is connected.

Proof: Suppose that removing edge e of a cycle C disconnects graph G′ into two graphs6 say G† and
G‡. This implies that there is no path between the vertices of G† and of G‡. By definition, a cycle C is a

6an edge with this properties is called a bridge

15



2. Basics of Graph Theory

G1 G2

G3

Figure 2.5: A non-connected graph G and its components G1, G2 and G3.

closed trail, therefore there are always two paths joining the vertices of the cycle. Therefore there must
be at least another edge e′′ between vertices of G† and G‡ if e ∈ C . This contradicts that graph G′ is
disconnected. �

From the above theorem one can conclude that edges that disconnect a graph do not lie on any cycle.
The definition of cut and cut-set are as follows. Let {V1, V2} be partitions of the vertex set V of a

graph G = (V,E).

Definition 2.18 (Cut) The set K(V1, V2) of all edges having one end in one vertex partition (V1) and the
other end on the second vertex partition (V2) is called a cut.

Definition 2.19 (Cut-set) A cut-set KS of a connected graph G is a minimal set of edges such that its
removal from G disconnects G, i.e. G−KS is disconnected.

If the induced subgraphs of G on vertex set V1 and V2 are connected then K = KS . If the vertex set
V1 = {v}, the cut is denoted by K(v). For example the removal of the set of edges K1 = {e6, e8, e9}
from the graph shown in Figure 2.4 is a cut-set as well as a cut, since it is minimal and disconnects the
graph into two connected components (by definition an isolated vertex is connected). The set of edges
K2 = {e3, e5, e6, e8, e9} also disconnects the graph into two components but it is not minimal since K1

is the a proper subset of K2 .

2.5 Trees and Forests

Trees as simple graph structure, are the most common structure used. Before the definition of the tree is
given, a definition of the acyclic graph is required.

Definition 2.20 (Acyclic graph) A graph G is acyclic if it has no cycles.

A simple example is shown in Figure 2.6a), whereas the graph under b) in the same figure is a cyclic
graph since it contains a cycle (v3, e7, v4, e9, v5, e8).

Definition 2.21 (Tree) A tree of graph G is a connected acyclic subgraph of G.

The vertices of degree 1 in a tree are called leaves, and all edges are called branches. A non-trivial tree
has at least two leaves and a branch, for example the simplest tree with two vertices joined by an edge.
Note that an isolated vertex is by the definition an acyclic connected graph, therefore a tree. In Figure 2.6
a), c) and d) examples of a trees are shown.
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a) and c) Trees of G b) and d) Spanning trees G

Figure 2.6: Trees and spanning trees of the graph G from Figure 2.4.

Definition 2.22 (Spanning tree) Spanning tree of graph G is a tree of G containing all the vertices of
G.

Edges of the spanning tree are called branches. The subgraph G′ containing all vertices of G and only
those edges not in the spanning tree, is called cospanning tree, these edges are called cords. Note that
a cospanning tree may not be connected. In Figure 2.6 a) and c) are depicted two spanning trees of the
graph G from Figure 2.4. An acyclic graph with k connected components is called a k-tree [Thulasiraman
and Swamy, 1992]. Each connected component of a k-tree is a tree by itself. If the k-tree is a spanning
subgraph of G, then it is called a spanning k-tree of G.

Definition 2.23 (Forest) A forest F of a graph G is a spanning k-tree of G, where k is the number of
component of F .

In other words a forest is a set of trees. In Figure 2.7, two examples of forest are shown, a) with two
and in b) three components, i.e. trees, and span all the vertices of graph G. Note that the trees shown in
Figure 2.6 a) and c) are also forest containing only one component, the tree shown in d) is not a forest
since it does not span all the vertices of G. A forest is simply a set of trees, spanning all the vertices of
G.

A connected subgraph of a tree T is called a subtree of T . If T is a tree then there is exactly one
unique path between any two vertices of T . For a tree T one can also say that it is

• minimally connected, i.e. T is connected but T − e is disconnected for every e ∈ T ; and

• maximally acyclic, i.e. T is acyclic but T +e is cyclic, for any two non-adjacent vertices vi, vj ∈ T
such that e = (vi, vj).

The proof of these assertion is found in [Thulasiraman and Swamy, 1992]. Note that spanning tree and
forest are synonymous if the graph has only one component.
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a) Two components b) Three components

Figure 2.7: Examples of forest of G from Figure 2.4.

2.6 Operations on Graphs

In this section shortly some basic binary and unary operations on graphs are described. Let G = (V,E)
and G′ = (V ′, E′) be two graphs. Three basic binary operation on two graphs are:

Union and Intersection

The union of G and G′ is the graph G′′ = G ∪ G′ = (V ∪ V ′, E ∪ E′), i.e. the vertex set of G′′ is the
union of V and V ′, and the edge set is the union of E and E′, respectively. The intersection of G and G′

is the graph G′′ = G ∩G′ = (V ∩ V ′, E ∩ E′), i.e. the vertex set of G′′ has only those vertices present
in both V and V ′, and the edge set contains only those edges present in both E and E′′, respectively. An
example in Figure 2.8 a) of union and b) of intersection of two graphs is given.

Symmetric Difference

The symmetric difference7 between two graphs G and G′, written as G⊕G′, is the induced graph G′′ on
the edge set E � E′ = (E \ E′) ∪ (E′ \ E)8, i.e. this graph has no isolated vertices and contains edges
present either in G or in G′ but not in both. In Figure 2.8 an example of the ring sum between two graphs
is given.

The four unary operations on a graph are:

Vertex Removal

Let vi ∈ G, then G − vi is the induced subgraph of G on the vertex set V − vi; i.e. G − vi is the graph
obtained after removing the vertex vi and all the edges ej = (vi, vj) incident on vi. The removal of a
set of vertices from a graph is done as the removal of single vertex in succession. An example of vertex
removal is shown in Figure 2.9a).

Edge Removal

Let e ∈ G, then G − e is the subgraph of G after removing the edge e from E. The end vertices of the
edge e = (vi, vj) are not removed. The removal of a set of edges from a graph is done as the removal of
single edge in succession. An example of edge removal is shown in Figure 2.9b).

7Called also ring sum.
8Where \ is the set minus operation and is interpreted as removing elements from X that are in Y .
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Figure 2.8: Binary graphs operations.

Vertex Identifying

Let vi and vj be two distinct vertices of graph G joined by the edge e = (vi, vj). Two vertices vi and
vj are identified if they are replaced by a new vertex v∗ such that all the edges incident on vi and vj are
now incident on the new vertex v∗. An example of vertex identifying is given in Figure 2.9c).

Edge Contraction

Let e = (vi, vj) ∈ G be the edge with distinct end points vi 	= vj to be contracted. The operation of
an edge contraction denotes the removing of the edge e and identifying its end vertices vi and vj into a
new vertex v∗. If the graph G′ results from G after contracting a sequence of edges, than G is said to
be contractible to a graph G′. Note the difference between vertex identifying and edge contraction, in
Figure 2.9c) and d). Vertex identifying preserves the edge ek, whereas edge contraction first removes
this edge. In Chapter 4, Section 4.4 a detailed treatment of edge contraction and edge removal in the dual
graphs context is given.

2.6.1 Homeomorphism

Let e = (u, v) and e′ = (v, u′) be the only edges incident on a vertex v. Removal of the vertex v and
replacing e and e′ by the edge (u, u′) is called series merger. Adding a new vertex v on an edge (u, u′)
creating edges (u, v) and (v, u′) is called series insertion.
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Figure 2.9: Operations on graph.

Definition 2.24 (Isomorphic graphs) Two graphs G = (V,E) and G′ = (V ′, E′) are isomorphic if
there exist a bijection β : V → V ′ with (u, u′) ∈ E ⇔ (β(u), β(u′)) ∈ E′ for all u, u′ ∈ V , and it is
written as G � G′.

The β is called an isomorphism. If the graphs are identical, i.e. G = G′, β is called automorphism.

Definition 2.25 (Homeomorphic graphs) Two graphs are homeomorphic if they are isomorphic and
can be made isomorphic by repeated series of insertion and/or mergers.

Note that if the graph G is planar then any homeomorphic graph to G is also planar.

2.7 Vector Spaces on Graphs

The duality concept of planar graphs is easily defined and explained using the vector spaces on graphs.
The vector space on graphs is used to give a definition of dual graphs in Chapter 4, Section 4.2, Defi-
nition 4.3, which is on the other hand, used to prove an important property of dual graphs with respect
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to the edge contraction and removal operation in Chapter 4, Section 4.2, Theorem 4.1, which states that
graphs during the process of dual graph contraction stay planar and are duals.

In this section the necessary definitions are given for building a vector space over a graph. Let
G = (V,E) be a graph with at least one edge, and let the set of all subsets of E (called also the power set
of E) including ∅ be denoted by EG. We use 2E as nomenclature for the power set9. Therefore we write
EG = 2E ∪ ∅ = {Ei|∀i = 0, . . . , 2|E| Ei ∈ 2E , i 	= j ⇒ Ei 	= Ej}. It follows the prove that EG under
the operation of addition � and of multiplication � is a vector space over the field F2 = {0, 1} (see
Appendix A for more details on how to build a vector space in general). Let the operation of addition �
be defined as the symmetric difference between two sets (see Section 2.6), and the scalar multiplication
operation as:

1 � Ei = Ei, (2.3)

and

0 � Ei = ∅. (2.4)

for any Ei ∈ EG. The symmetric difference (�) of any two elements Ei and Ej of EG is Ek = Ei�Ej =
(Ei − Ej) ∪ (Ej − Ei) and it must be an element of the collection of all subsets of E, i.e. Ek ∈ EG,
therefore EG is closed under the addition operation. The associativity also holds for all Ei, Ej and Ek

in EG since (Ei � Ej) � Ek = Ei � (Ej � Ek). Can be easily proved using some set algebra or Venn
diagrams and using (Ei − Ek) ∪ (Ek − Ei) = (Ei ∪ Ek) ∩ (ET

i ∪ ET
k ), where ET consist of all the

edges not in E and it is called the complement of E. The commutative property Ei � Ej = Ej � Ei is
proved in the same manner. For any element in EG there is an identity element

Ei � ∅ = Ei, (2.5)

and an inverse one

Ei � Ei = ∅. (2.6)

Therefore it is proved that EG is an abelian group under the addition operation �. Let a, b be elements
in the field F2 = {0, 1} with the additive identity element eF2⊕ = 0 and multiplicative identity element
eF2� = 1. Let the addition and multiplication in field F be defined as modulo 2 addition (⊕) and modulo
2 multiplication (�) (see Table A.1 in Appendix A for details). Ei and Ej are elements in EG, and a and
b are scalars from F2. From the definition of the additive and multiplicative operation one can prove that
the other axioms needed for a vector space are satisfied:

1. (a⊕ b) � Ei = (a � Ei) � (b � Ei) ,

2. a⊕ (Ei � Ej) = (a � Ei) � (a � Ej) ,

3. (a� b) � Ei = a � (b � Ei), and

4. eF2� � Ei = 1 � Ei = Ei

All necessary axioms needed for a vector space are proved, hence EG is a vector space over the field
F2, more precisely it is an edge space. If the set E = {e1, e2, . . . , en} than the vector set B =
{{e1}, {e2}, . . . , {en}} constitutes the basis of EG and this space has the dimension n = |E|. Every
element of EG can be expressed as the linear combination of elements of B with scalars from F2. The

9Sometimes P(E) is used.
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element of the edge space can be interpreted as functions of the form E → F2. In an analogous way a
vertex space VG over the field F2 can be build as a vector space of all function V → F2, VG can be con-
sidered as the power set over V , the sum is defined as the (vertex) symmetric difference. The zero vector
in VG is the empty (vertex) set, and inverse of Vi ∈ VG is the Vi itself. If the set V = {v1, v2, . . . , vm},
then set {{v1}, {v2}, . . . , {vm}} is the basis of vertex space VG, hence its dimension is m = |V |. The
discussion continues only on the edge vector space afterward and the terms vector space and edge space
are interchanging.

From the definition of the symmetric difference operators in Section 2.6, the symmetric difference
between two edge-induced subgraphs is the same as the symmetric difference of their edge sets, it follows
that the set of all edge-induced subgraphs of G is a vector space over F2 if the operations of scalar
multiplication is defined as:

1 � Gi = Gi, (2.7)

and

0 � Gi = ∅. (2.8)

where ∅ represents the empty graph.
The duals of the plane graph are easily defined using concept of cycle and cut subspaces of EG.

Let the cycle subspace CG represent the set of all cycles (including the empty graph) in G; and the cut
subspace KG represent the set of all cuts (including the empty graph) in G = (V,E). We show, that CG

and KG are subspaces in EG.

Proposition 2.1 The set of all cycles CG, is a subspace of the vector space EG of G.

Proof: The proof is due to [Thulasiraman and Swamy, 1992]. The idea of the proof is as follows. CG

is subspace of EG, if one prove that for all C,C ′ ∈ C also C � C ′ is in CG. From the definition of the
cycles, every vertex is of degree 2, therefore CG may be considered as the edge-induced subgraphs of G,
in which all vertices are of degree even. Let C and C ′ be in CG, be edge-induced subgraphs with the
degree of all their vertices even. Let C ′′ = C � C ′. In other words we should prove that every vertex in
C ′′ is of even degree. Consider a vertex v ∈ C ′′. This vertex must be present in at least one of subgraphs
C and C ′. Let X, X ′ and X ′′ denote the set of edges incident to v in C, C ′ and C ′′, respectively, and
deg(vX ), deg(vX′ ) and deg(vX′′ ) the degree of v in C, C ′ and C ′′. From above deg(vX ) and deg(vX′)
are even (and one of them may be zero), and hence deg(vX′′ ) is nonzero. Since C ′′ = C � C ′′ follows
that X ′′ = X � X ′. Hence deg(vX′′ ) = deg(vX ) + deg(vX′) − 2deg(X ∩ X ′), where deg(X ∩ X ′)
is the contribution to the degree of edges in X ∩ X ′ (see Figure 2.10a)) and note that these edges are
counted twice first in deg(vX ) and then deg(vX′ )). deg(vX′′) is even since deg(vX ) and deg(vX′) are
even i.e. the degree of v in C ′′ is even. Since this is ∀v ∈ C ′′, it follows that C ′′ is in CG. �

Proposition 2.2 The set of all cuts KG, is a subspace of the vector space EG of G.

Proof: The proof is due to [Diestel, 1997]. To prove that KG is subspace of EG, one must prove that
for all K,K ′ ∈ KG also K �K ′ is inKG. Since K �K = ∅ ∈ C, and K �∅ = K ∈ C (by the definition
of symmetric difference), it is assumed that K and K ′ are non-empty and distinct. Let {V1, V2} and
{V ′

1 , V ′
2} be the partition of the set V . Note that V1 ∪ V2 = V ′

1 ∪ V ′
2 = V . Then K � K ′ consists of

all the edge that cross one of these partitions but not the other (see Figure 2.10). These are precisely the
edges between (V1 ∩ V ′

1) ∪ (V2 ∩ V ′
2) and (V1 ∩ V ′

2) ∪ (V2 ∩ V ′
1), and by K 	= K ′ these two sets form

another partition of V . Hence K � K ′ ∈ KG and KG is a subspace of EG. �
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Figure 2.10: Cycle vertex in C � C ′ and cut edges in K � K ′.
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G = (V, E)
V = {v1, v2, v3, v4}
E = {e1, e2, e3, e4, e5}

Figure 2.11: Edge space on G is EG : E → F2 = {0, 1}.

Corollary 2.1 The space KG is created by cuts of form K(v).

Proof: Due to [Diestel, 1997]. Every edge e = (v1, v2) ∈ E lies in two cuts K(v1) and K(v2), thus
every partition {V1, V2} satisfies KG =

∑
v∈V1

K(v), where the sum is over the operator �. �

Let the concept of (vector) edge space be clarified with a simple example of the graph G = (V, e)
given in Figure 2.11. For the given edge set E, the set power is:

EG ={∅, {e1}, {e2}, {e3}, {e4}, {e5},
{e1, e2}, {e1, e3}, {e1, e4}, {e1, e5}, {e2, e3}, {e2, e4}, {e2, e5}, {e3, e4}, {e3, e5}, {e4, e5},
{e1, e2, e3}, {e1, e2, e4}, {e1, e2, e5}, {e1, e3, e4}, {e1, e3, e5}, {e1, e4, e5}, {e2, e3, e4},
{e2, e3, e5}, {e2, e4, e5}, {e3, e4, e5},
{e1, e2, e3, e4}, {e1, e2, e3, e5}, {e1, e2, e4, e5}, {e1, e3, e4, e5}, {e2, e3, e4, e5},
{e1, e2, e3, e4, e5}}.

Altogether EG contains 2|E| = 25 = 32 subsets. Let the vector addition � and scalar multiplica-
tion �, as well as the identity and inverse elements for the � and � respectively, be defined as de-
scribed above in this section. It is easily shown that EG is an edge space over the field F2. The set
B = {{e1}, {e2}, {e3}, {e4}, {e5}} is the basis of the edge space, understood this vectors are linearly
independent. This space has the dimension 5. Every element of the set EG can be represented as the
linear combination of the elements of B, e.g.

{e1, e2, e5} = (1 � {e1}) � (1 � {e2}) � (0 � {e2}) � (0 � {e3}) � (0 � {e4}) � (1 � {e5}) =
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based on the definition of the scalar multiplication �, it follows:

= {e1}� {e2}� ∅� ∅� ∅� {e5} = {e1, e2, e3}.

The set of all cycles for the graph G given is

CG ={∅, {e1, e2, e4}, {e3, e4, e5}, {e1, e2, e3, e5}},

with the base BC = {{e1, e2, e4}, {e3, e4, e5}}, and the set of all cuts in G is

KG ={∅, {e3, e5}, {e1, e2}, {e1, e4, e5}, {e1, e3, e4}, {e3, e4, e2}, {e2, e4, e5}, {e1, e2, e3, e5}}.

with the base BK = {{e3, e5}, {e1, e2}, {e1, e4, e5}}. One can easily prove that all elements of CG can
be described as a linear combination of vectors BC with scalar from F2, the same hold for KG and BK,
respectively. E.g. a cycle C1 = {e1, e2, e3, e5} = 1�{e1, e2, e4}�1�{e3, e5, e4} = {e1, e2}�{e3, e5},
and a cut K1 = {e1, e3, e4} = 1 � {e3, e5} � 1 � {e1, e4, e5} = {e3, e5} � {e1, e4, e5}. It is shown in
Appendix A that the set of n-vectors over F2, where such that each vector’s element in F2 form also a
vector space. For the enumeration of the edges E as in Figure 2.11, one writes e.g. instead of {e1, e2, e3}
an 5-vector of the form (1, 1, 1, 0, 0). 1 is put if the edge is present in the set and 0 otherwise. For example
the set of all cycles can be written as

CG ={(0, 0, 0, 0, 0), (1, 1, 0, 1, 0), (0, 0, 1, 1, 1), (1, 1, 1, 0, 1)},

This form of presentation of graphs is easier to manipulate in computers, even though for humans it is
hard to follow if the number of edges is large, since the vectors of the form (·, ·, . . . , ·) are cumbersome.
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