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Abstract This paper presents a novel image representa-
tion, which incorporates the principles of Laplacian Pyra-
mid into the irregular graph pyramid. The drawback of the
regular Laplacian Pyramid is their lack to keep the topolog-
ical structure of the image, due to the contraction process in
building the Gaussian Pyramid. Irregular graph pyramid is
able to hierarchically represent the topological structure of
an image with multiresolution, where each level is a graph
describing the image with various resolutions by contracting
the graph from the level below. We build irregular Laplacian
graph pyramid by storing the difference of levels in irregular
graph pyramid. Experiments and results are presented in the
paper to show the characteristic of the irregular Laplacian
graph pyramid and some immediate advantages in computer
vision applications.

1 Introduction
Image pixels are in generally highly correlated, it is common
to have several areas of an image sharing the same or similar
pixel values. Therefore, it is redundant to encode the image
information by each of its pixel values.

In order to design an efficient compression code, it is nec-
essary to find a representation that decorrelates the image
pixels.

Laplacian Pyramid is a versatile data structure with many
attractive features for image preprocessing. It represents an
image as a series of quasi-bandpassed images, each sampled
at successively sparser densities [1].

The bases of the Laplacian Pyramid depend on the Gaus-
sian Pyramid, in section 2 we will describe this process.
Gaussian Pyramid’s biggest drawback is their lack to keep
the topological structure of the image, leading to inaccurate
image structure from the original image over the contraction
process. And regular Gaussian Pyramid is not shift invariant.
Irregular graph pyramid overcomes this Gaussian Pyramid’s
drawback by keeping the topological structure of the image
within the contraction process, and hierarchically represents
the image with a parent-child relationship over all the pyra-
mid levels.

The properties of the irregular graph pyramid and its ap-
plications in image processing motivated us to use the advan-
tages of its topological/structural features in image encoding.

The main aim of this paper is to incorporate the regular
Laplacian Pyramid concept into the irregular graph pyramid.
A highly relevant property of the Laplacian Pyramid, is to

be able to have a progressive image transmission. In this type
of progressive image transmission a coarse rendition of the
image is sent first to give the receiver an early impression of
image content, then subsequent transmission provides image
detail of progressively finer resolution [2]. Due to the draw-
back of regular pyramid, the early impression of image con-
tent may show a different topology structure than the origi-
nal image, for example, one connected component could be
modified to appear as two connected components in coarse
rendition, see Fig 1. With the irregular Laplacian graph pyra-
mid, it is possible to solve this problem.

Major contributions of this paper are to incorporate the
Laplacian Pyramid principles into the irregular graph pyra-
mid, to overcome the major drawbacks of regular Laplacian
Pyramid, the drawback of structure inconsistency.

Figure 1: Fine to Coarse Images by Gaussian Pyramid

1.1 Organization of paper
In Section 2 we recall the regular Laplacian Pyramid. In
Section 3 we explain the concept of combinatorial pyramid,
which is pre-step of building irregular Laplacian Pyramid.
In Section 4 we describe the method of building irregular
Laplacian Pyramid, following by experiment and result dis-
cussion in section 5. In Section 6 we give the conclusion and
open questions.

2 Recall of Laplacian Pyramid
Predictive coding is the base of Laplacian Pyramid, pixels
are encoded sequentially in a raster format. However, prior
to encoding each pixel, its value is predicted from previously
coded pixels in the same way and proceding raster lines [1].

Laplacian Pyramid has been always related to Gaussian
Pyramid, which is a low-pass filtered image sequence which
is then subtracted from the original.
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2.1 Gaussian Pyramid
The first step to build a Laplacian Pyramid is to low-pass
filter the original image g0 to obtain the first image level g1.
This g1 image is decreased in resolution and sample density.
In the same way g2 is a reduced version of g1. To build a
Gaussian Pyramid this process continue from the reduced
image, and so on.

Suppose the original image, which is the base of the pyra-
mid, is represented as an array g0 containing C columns and
R rows of pixels. Each pixel represents the light intensity
at the corresponding image coordinate by an integer I with
values between 0 and K-1 [1].
g1 from pyramid level 1 consists of a low-pass filtered ver-

sion of the previous level, g0 from level 0 . Where each value
of the level 1 is computed as a weighted average of values
from level 0 within a 5-by-5 window. The size of the weight-
ing function is not critical [3]. In Fig. 2, is shown in 1D the
reduction process, in 1D the density of the nodes are reduced
by half while in 2D by fourth from level to level.

Figure 2: Gaussian Pyramid.

The reduction function from level to level is the averaging
process such that, for levels 0 < l < N and nodes i, j, 0 ≤ i
< Cl, 0 ≤ j < Rl.

Where N refers to the number of levels in the pyramid,
Cl and Rl are the dimensions of the lth level.

gl(i, j) =
2∑

m=−2

2∑
n=−2

w(m,n)gl−1(2i+m, 2j + n) (1)

The whole pyramid is only 4/3 the size of the original
image. Each higher level of the pyramid is about half as large
for each dimension as its previous level, as shown in Fig. 3.

The pyramid building process is equivalent to convolve
the base image g0 with a set of equivalent weighting func-
tions hl [1].
g1 = hl ? g0
The effect of convolving an image with one of the equiv-

alent weighting functions hl is to blur, or low-pass filter, the
image. The pyramid algorithm reduces the filter band limit
by an octave from level to level, and reduces the sample in-
terval by the same factor [1]. This is a very fast algorithm,
requiring fewer computational steps to compute a set of fil-
tered images than are required by the fast Fourier transform
to compute a single filtered image [3].
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Figure 3: The levels of Gaussian Pyramid of dragon head
(512x512), decreased half resolution by each level: 512x512,
256x256, 128x128, 64x64 and so on.

2.2 Laplacian Pyramid
The expansion function is the inverse of the reduction func-
tion.

It expands an (M + 1) by (N + 1) array into a (2M + 1)
by (2N + 1) array by interpolating new node values between
the given values of pixels.

The expansion applied to the array g1 of the Gaussian
Pyramid would result into an array gl,1 which is the same
size as gl−1.

For levels 0< l ≤N and 0< n nodes i, j, 0≤ i < Cl−n,
0 ≤ j < Rl−n

gl, n(ij) = 4
2∑

m=−2

2∑
n=−2

w(m,n) • gl−1

(
i−m

2
,
j − n

2

)
(2)

If we apply expansion function l times to the image gl, the
result is gl,l which is the same size as the original image g0.

The purpose of constructing the reduced image g1 is that
it will be used as a prediction for pixel values in the original
image g0.

To obtain a compressed representation, we encode the er-
ror image which remains when an expanded g1 is subtracted
from g0. This image becomes the bottom level of the Lapla-
cian Pyramid. The next level is generated by encoding g1 in
the same way.

The Laplacian Pyramid is a sequence of error images L0,
L1, ..., LN−1. Each is the difference between two levels
of the Gaussian Pyramid. Thus, for 0 ≤ 1 < N , Ll = gl -
EXPAND(gl+1) [1].

In Laplacian Pyramid, the value at each node is the differ-
ence between the convolutions of two equivalent weighting
functions hl, hl+1 with the original image.

Gaussian Pyramid can be seen as a set of filtered copies
of the original image, while the Laplacian Pyramid can be
seen as a set of bandpass filtered copies of the image. Im-
age features such as edges appear enhanced in the Laplacian
Pyramid as show Fig. 9. These enhanced features depend on
the size, where fine details are notable in L0,0 and progres-
sively vanish in the higher levels.

The original image can be recovered completely by ex-
panding. First, expand LN once and add it to LN−1, then
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expand this image once and add it to LN−2, and so on until
level 0 is reached and g0 is recovered [1].

3 Combinatorial Pyramid
An irregular graph pyramid combines graph structures with
hierarchies. Each level is a graph representation describing
the image with various resolutions by contracting the graph
from the level below. Graph representations have been inves-
tigated widely during last decades for representing structural
information in various domains in computer vision such as
image segmentation and object recognition.

The graph structure is defined as follows: graphG (V,E)
consists of vertices v ∈ V and edges e ∈ E. An edge e
connects two vertices,v, w, ei = (v, w). The vertices V and
edges E of the image graphs carry not only the structural
information, but also the additional information.

For this paper we consider using combinatorial maps to
present the graph in each level of the irregular pyramid. A
combinatorial map is a topological model which allows to
represent subdivided objects as planar graphs. A 2D com-
binatorial map is defined by a triplet M = (D,σ, α) where
D is a finite set of darts, σ is a permutation on D and α is
an involution on D without fixed point [7]. For each dart,
σ gives the next dart by turning around the vertex v in the
positive orientation (clockwise); For each dart, α gives the
other dart of the same edge e. There are always two darts
corresponding to a same edge, α allows to retrieve edge e,
and σ allows to retrieve the vertex v.

We can see in Fig. 4, the graph is an example of 2D
combinatorial map.

Figure 4: Combinatorial map, contraction/removal operations.

This map can be explicitly defined by giving the set of
darts, permutations σ and involutions α.

—————————————————–
D 0 1 2 3 4 5 6 7 8 9 10 11
σ 8 10 1 6 0 7 9 11 4 3 2 5
α 1 0 3 2 5 4 7 6 9 8 11 10
——————————————————
During the process of building up the irregular graph

pyramid, contraction process removes the edges from the in-
put graph while simultaneously merging together the vertices
it used to connect [7]. And reduction process is to take the at-
tributes of all children as input and then compute the parent’s
attribute as output.

Taking a simplified image of a cup as example (Fig 5), we
build the base graph as the input image, where each vertex
represent a pixel in the input image. Then use the contrac-
tion methods to build the irregular pyramid. Such approach
would lead to a pyramidal structures like Fig 5:

Figure 5: Irregular Graph Pyramid.

Level 0: The base level of the pyramid consists in a geo-
metric description of the underlying image (here a simplified
image of a cup).

Level 1: The second level of the pyramid, simpler bound-
aries are abstracted from base level (like the handle and the
logo of the cup).

Level 2: Adjacent parts of the cup are grouped in order to
represent compound abstract objects.

4 Irregular Laplacian Graph Pyramid
Similar as regular Laplacian image pyramid, the irregular
Laplacian Pyramid stores the difference of the child’s con-
tent with expanded content, but from irregular graph pyra-
mid instead of Gaussian Pyramid. However, the expansion
function is slightly different from regular Laplacian Pyramid.
In this section, we will formalize the process of building the
irregular Laplacian Pyramid.

4.1 Correction Vector
In the process of building up irregular graph pyramid, each
level graph is obtained by contracting the graph from the
level below. Parent inherits the position of the surviving
child. The property of the parent is computed from the
properties of all its children by a certain function, such as
weighted average. Depending on the concrete task, this func-
tion varies. Let Vp refers the parent vertex, and Vc refers the
child vertex:

pos(Vp) = pos(Vc) if Vc survives
d(Vc) = pos(Vc)− pos(Vp) if Vc does not survive

Each non-surviving vertex stores the difference between its
coordinate and the its parent’s coordinates. We call this dif-
ference as correction vector. Because the parent’s position is
equal to the surviving child’s position, those surviving ver-
tices have correction vector of value 0. As show in Fig 6,ver-
tex Vc1 is the surviving vertex. So its parent Vp has the same
3
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Figure 6: correction vector: Vertex Vc1 is the surviving vertex and
vertex Vc2 is contracted

coordinate as Vc1 . The correction vector of surviving vertex
Vc1 is 0. The correction vector of non-surviving vertex Vc2

is
√

2, which is the geometric distance of Vc1 and Vc2 .

4.2 Expansion Kernel
Expansion kernel expands (interpolates) the properties of the
parents cells into the children’s content at the higher resolu-
tion level. With correction vector, the position of the child
can be obtained by adding its correction vector to its parent’s
position. Gk refers the graph in level k, and Gk−1 refers to
the graph in one level below.

pos(Vc) = pos(Vp)
where Vp ∈ Gk, Vc ∈ Gk−1 ∩Gk

pos(Vc) = pos(Vp) + L(Vc)
where Vp ∈ Gk, Vc /∈∈ Gk−1 ∩Gk

Let’s call the irregular graph pyramid asG, and the irregular
Laplacian Pyramid as L. For the properties of vertices, each
level of the Laplacian Pyramid can be obtain by taking the
difference of the adjacent levels, same as in regular Laplacian
Pyramid.

Lk = Gk − Expand(Gk+1)

The reconstruction process is same as in the regular case.
The original image can be reconstructed by expanding. First,
expand Gk+1 once and add it to Lk, then expand this image
once and add it to Lk−1, and so on until level 0 is reached
and G0 is recovered.

Gk = Expand(Gk+1) + Lk

The main process of building irregular Laplacian Pyramid
is divided by three steps: 1). Build Irregular Graph Pyramid
G on the target image. 2). For each level k in the G, We
expand level Gk+1 using the correction vectors to have the
same size of content as the level k in Gk. 3). Take the dif-
ference of the expanded level Gk+1 with the level Gk.

5 Experiment
We take a gray image as example, to demonstrate the exper-
iment of building the irregular Laplacian Pyramid on it. For
initialization, we convert this gray image into a graph which
4

Figure 7: (a)Input Image. (b)Base graph converted from input im-
age.

is encoded as combinatorial map (Fig 7). This graph is the
base level of the irregular graph pyramid. The red crosses
represent the pixels in the input image, which are the faces
in the base graph. Faces are bounded by the blue lines pre-
senting the edges in the graph, and the intersections of the
blue lines present the vertices in the graph which are linked
by the edges. When the edges are contracted or removed dur-
ing the building process of irregular graph pyramid, the faces
would get merged. So in this pyramid, faces in the graphs
represents image regions and the edges of graphs represent
the boundaries of image regions.

Each level in the irregular graph pyramid is a graph, while
the vertices store their geometric coordinates from the sur-
viving children’s position in the original image. With the
geometric coordinates of the vertices, we convert the graph
in each level into the image of original size for the visual-
ization purpose, see the results in Fig 8. Fig 8 shows the
visualization of irregular graph pyramid built on this image.
The contraction kernel we select is Maximum Independent
Directed Edges Set [14]

Compared to the results from Gaussian Pyramid, the ir-
regular graph pyramid preserves the structure of the object
segments, while Guassian Pyramid simply blurred the ob-
ject by applying low pass filter. The high frequency infor-
mation, such as the shadow of the stick of the apple survives
until higher levels in the irregular graph pyramid. However
in Gaussian Pyramid, high frequency information is lost due
to low pass filtering building process. In the low resolution
(high level) of Gaussian Pyramid, it is nearly impossible to
define the shape of the target object while the shape is still
preserved in irregular graph pyramid.
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Figure 8: (1)Irregular Graph Pyramid (2) Gaussian Pyramid

Figure 9: (1) Irregular Laplacian Pyramid. (2) Regular Laplacian
Pyramid .

As shown in Fig 9, the results of the irregular Laplacian
Pyramid obtain the same advantage as irregular graph pyra-
mid, the advantage of adapting image data into structure,
keeping structural information in the pyramid and preserv-
ing the topology information.

We may view the regular Laplacian Pyramid as a set of
bandpass filtered copies of the original image. Irregular
Laplacian Pyramid shows the bandpass filter effect regard-
ing on the length of correction vectors of vertices. As pre-
sented in Fig 10, 11 and 12, the length of correction vectors
increases as the level of the pyramid increases.

For the graph Li of level i in the irregular Laplacian
Pyramid, Ni refers to the total number of vertices in Li.

The histograms of level i (Fig 10, Fig 11, Fig 12)show the
distribution of vertices with various correction vector length,
where horizontal axis presents the length of correction vec-
tors while the vertical axis presents the percentage of ver-
tices with certain length of correction vector respect to the
total number of vertices Ni. The histograms show the band
pass characteristic regarding to the length of correction vec-
tor, which is similar to regular Laplacian Pyramid, as regular
Laplacian Pyramid is also band pass filter regarding to the
frequency of the image.

In the first level of the pyramid, most of the vertices have
correction vector with length 1. Those vertices are the adja-
cent neighborhood of the surviving vertices, with distance of
1 pixel. The vertices of length 0 are surviving vertices. All
Figure 10: Level 1.

Figure 11: Level 2.

the correction vectors length fall in the range between 0 to 5.
In the second level of the pyramid, the overall length of

correction vectors increases compared to level 1, with the
maximum value exceeds 5.

In the third level of the pyramid, the overall length of
correction vectors increase considerably, with the maximum
value exceeds 20, because of large regions get merged.

6 Conclusion
This paper presents a novel image representation, irregular
Laplacian graph pyramid. It integrates the principles of reg-
ular Laplacian Pyramid with the main advantages of irregu-

Figure 12: Level 3.
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lar graph pyramid. In future work, irregular Laplacian graph
pyramid can be applied in image compression and other com-
puter vision problems. The irregular Laplacian Pyramid pre-
serves topological information of target objects. Therefore,
this representation may be applied in motion detection, as in
which one needs to find the objects movements in the scene.
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