

Walter G. Kropatsch, Yll Haxhimusa, Adrian Ion

PRIP (183/2)

Pattern Recognition and Image Processing Institute of Computer Aided Automation Vienna Univ. of Technology- Austria

Graphs in Image Analysis

- Dual Graph Contraction
- Graph Pyramids

CONTENTS

- The Problem
- Partitions and Adjacencies
- How to Reduce the Descriptions
- Topology Preserving Operations
- Combinatorial Maps
- Abstract Cellular Complexes (ACC)
- Conclusions, Discussion

The PROBLEM

in 3D

From Pixels To Graphs

IMAGE PIXELS NEIGHBORHOOD GRAPH

PRIP

Properties/Relations between $(\mathcal{P}_0, \mathcal{A}_0)$ and $(\mathcal{P}_1, \mathcal{A}_1)$

$\overline{\mathcal{P}_0}$	partition	\mathcal{P}_1	partition (?)
. 0	1 Label/Cell	1	1 Cell/Label
$c \in \mathcal{P}_0$	unit square	$c \in \mathcal{P}_1$	arbitrary shape
	simply connected		(simply) connected
	simplex		simplex?
	no inclusion		inclusion (tree)
	1 Label/CC?		$ CC = \mathcal{P}_1 $
			minimal
$\overline{\mathcal{A}_0}$	4-connected?	\mathcal{A}_1	RAG (connected ?)
	well composed		connectivity preserved
	embedding		embedding
	Genus(CC(label))		Genus(CC(label))
	orientation		orientation
			artefacts?
(c_1, c_2)	$lab(c_1) \neq lab(c_2)$	(c_1,c_2)	multiple (lab_1, lab_2)
$\in \mathcal{A}_0$	$lab(c_1) = lab(c_2)$	$\in \mathcal{A}_1$	(lab_1, lab_1) (pseudo, self-loop)
	image edge		connected segment
	Jordan boundaries		Jordan boundaries

How to perform $T: (\mathcal{P}_0, \mathcal{A}_0) \mapsto (\mathcal{P}_1, \mathcal{A}_1)$?

$(\mathcal{P}_0,\mathcal{A}_0)$	$(\mathcal{P}_1,\mathcal{A}_1)$
Pixelarray:	Combinatorial 2-Maps
I(x,y)	$(\boldsymbol{\mathcal{D}}_1, \alpha_1, \sigma_1) + \text{Incl.Tree}$
ACC	Abstract Cellular Complex-graph?
	G-Maps + Incl.Tree
	$(\mathcal{D}_1, lpha_0, lpha_1, lpha_2)$
Dual Graphs:	Dual Graphs
$((V_0, E_0), (F_0, \overline{E_0}))$	$((V_1, E_1), (F_1, \overline{E_1}))$
2-Maps $(\boldsymbol{\mathcal{D}}_0, \alpha_0, \sigma_0)$	$(\mathcal{D}_1, lpha_1, \sigma_1)$

Possible Realizations of T:

1. direct construction

- (a) Connected Component Labeling
- (b) 2-Maps by Pixelscan
- (c) 2-Maps by Precode-Guided FUSION
- (d) G-Maps by Precode-Guided FUSION?

2. DS conversion + repeated reductions

- (a) 2-Maps by Precode-Guided (sequential) FUSION
- (b) Dual Graphs by Parallel Dual Contractions

 $\begin{array}{cccc} \operatorname{Common}(A,B) \ \operatorname{true} & \iff & \operatorname{Same \ Label} & \longrightarrow & \operatorname{CCL} \\ & \operatorname{Similar \ Color} & \longrightarrow & \operatorname{Segmentation} \\ & \operatorname{`belong \ together'} & \longrightarrow & \operatorname{Grouping} \end{array}$

next:

Contraction Kernel, Simplification

contract more

simplified

contraction kernel

self-loop

removed

Spanning tree

 $\deg(f) < 3$

Dual Graphs Maps VS.

Irregular Graph Pyramid

Building Algorithm

Dual Graph Pyramid Algorithm

Input: Graphs $(G_0, \overline{G_0})$

- 1: while further abstraction is possible do
- 2: select contraction kernels
- 3: perform graph contraction and simplification of dual graph (DGC [Kropatsch, 1995a])
- 4: apply reduction functions to compute new reduced level
- 5: end while

Output: Graph pyramid – $(G_k, \overline{G_k})$, $0 \le k \le h$.

• Graph pyramid is a stack of $(G_k, \overline{G_k})$, $0 \le k \le h$

What Remains..

What Remains...

Both Contraction Trees

Contraction Result

local characterization

1 cell/CC(label) $lab(c_1) \neq lab(c_2)$

≥ 3 regions meet or background removal/contraction

Dual Graph Contraction

Example 2

What Remains..

What Remains...

Both Contraction Trees

Contraction Result

local characterization

except

1 cell/CC(label)

$$lab(c_1) \neq lab(c_2)$$

self-loop, multi-edge with inclusion

 \geq 3 regions meet or background

removal/contraction

Topology Preserving Operations

in 2D

	Points	Lines	Faces	Cond.	PRE-CONDITION
Euler	# P	-#L	+#F	= const.	to preserve:
Incr.	ΔP	$-\Delta L$	$+\Delta F$	= 0	Euler; Orientation
$Contract(l, p_0)$	-1	-1		(p_1, l, p_0)	$p_1 \neq p_0;$
$Remove(l, f_0)$		-1	-1	(f_x, l, f_0)	$ (f_x \neq f_0); \deg(f_0) \le 2$
Any Incr.	(-a)	-b	-c)		b = a + c;
by a contr.	(-1)	-1)		$\times a$	
by c remov.		(-1	-1)	$\times c$	

A Few Comments

- 1. $p_0 \neq p_1 \Longrightarrow$ no contraction of self-loop.
- 2. (f_x, l, f_0) : self-loop in dual = bridge in primal, Removal \Longrightarrow Disconnection.
- 3. removal: l not bridge, since $(f_x, l, f_0 \neq f_x)$ not self-loop \implies removal does NOT disconnect.
- 4. $\deg(f_0) > 2 : (f_x, l, f_0, l_i), i = 1, 2, ...$ order of (f_x, l_i) may change.
- 5. Contraction and removal are the ONLY operations needed.
- 6. Any other topology-preserving operation can be achieved by appropriate combinations of contraction and removals.
- 7. Note that negative contractions and negative removals are possible as the inverse operations under certain pre-conditions.
- 8. Pre-conditions for individual operations can be extended to sets of operations: FOREST requirement (no cycle) for contraction.
- 9. CC: additional pre-condition: $lab(p_1) \neq lab(p_2)$.

Dual Graphs

VS.

Maps

Dual Graphs CANNOT distinguish,

MAPS can!

Reason: self-loops loose local orientation:

 $\{(1, 1; \Omega, \infty),$

Dual Graph Contraction

Example 1

\mathcal{D}	12	13	21	24	25	31	34	42	43	45	52	54
α	21	31	12	42	52	13	43	24	34	54	25	45
σ	13	12	25	21	24	34	31	45	42	43	54	52

	\mathcal{D}	12	13	21	24	25	31	34	42	43	45	52	54
_													45
_	σ	13	12	24	25	21	34	31	43	45	42	54	52

Envelope: Combinatorial Map $(\mathcal{D}, \beta_1, \beta_2)$

Envelope: Combinatorial Map $(\mathcal{D}, \beta_1, \beta_2)$

\mathcal{D}												
β_2												
β_1	13	12	25	21	24	34	31	45	42	43	54	52

	\mathcal{D}	12	13	21	24	25	31	34	42	43	45	52	54
_	β_2	21	31	12	42	52	13	43	24	34	54	25	45
	β_1	13	12	24	25	21	34	31	43	45	42	54	52

Topology Preserving Operations

in 3D

	Pts	Lin.	Fac.	Vol.	Cond.	PRE-CONDITION
Euler	# P	-#L	+#F	-#V	= const.	
Incr.	ΔP	$-\Delta L$	$+\Delta F$	$-\Delta V$	=0	pres.Euler
V-Fusion			-1	-1	(v_1, f, v_2)	$v_1 \neq v_2? \ (\deg f = 2)$
F-Fusion		-1	-1		(f_1, l, f_2)	$f_1 \neq f_2? \deg l \leq 2$
L-Fusion	-1	-1			(l_1, p, l_2)	$l_1 \neq l_2? \deg p \leq 2$
Any Incr.	(-a)	-b	-c	-d)	pres.Euler	see below
by V-Fus.			(-1)	-1)	$\times d$	
by F-Fus.		(-1	-1)		$\times (c-d)$	
by L-Fus.	$\left \begin{array}{c} (-1) \end{array} \right $	-1)			$\times a$	with $b + c = a + d$

A Few Comments

- 1. V-Fusion, F-Fusion and L-Fusion are the ONLY operations needed.
- 2. Any other topology-preserving operation can be achieved by appropriate combinations.
- 3. Pre-conditions for individual operations can be extended to sets of operations: FOREST requirement (NOTHING INSIDE) and ??.
- 4. Note that negative Fusions are possible under certain pre-conditions as the inverse operations.
- 5. Pre-conditions 2 in 3D are not trivial except for faces: a line may delimit more than 2 faces, and a point may be the intersection of more than 2 lines.
- 6. Note that the L-fusion in 3D eliminates a point along a line sequence whereas the contraction in 2D eliminates a line between two points. As result the 2D contraction produces a point while 3D l-fusion produces a line.
- 7. CC: additional pre-condition: $lab(v_1) \neq lab(v_2)$, no further pre-condition for F-Fusion and L-Fusion.

Some useful properties:

- 1. we need multi-edge and self-loop
- 2. combine operations (like ECK)
- 3. repeated contraction, termination criteria
- 4. pseudo/fictive elements characterize topological relations pseudo edge \longleftrightarrow hole, pseudo face \longleftrightarrow tunnel, . . .
- 5. independence of operations allows for:
 - parallelism
 - optimized scan
 - divide and conquer

Open problems:

- 1. 3D, 4D
- 2. interlaced thori
- 3. Re-insertion of removed edges/darts (a la wavelet)
- 4. pre-condition (single OP) \Longrightarrow pre-condition (set of OPs)
- 5. repeated contraction:
 - different selection criteria
 - different termination criteria
 - different attributes
 - different reduction functions
- 6. Betti numbers? homology groups? generators?
- 7. appropriate applications?

Thank you