MST based Pyramid Model of TSP

Walter G. Kropatsch¹, Yll Haxhimusa¹ and Zygmunt Pizlo²

¹Pattern Recognition and Image Processing Vienna University of Technology ²Department of Psychological Sciences Purdue University

Supported by Austrian Science Founds P18716-N13 and S9103-N04

Air Force of Scientific Research

4 D N 4 **D** N 4 **D** N 4 **D** N

Multiresolution Pyramid Representation

- Local to global: bottom-up reduction of resolution
- Global to local: top-down solution refinement

Approximate the TSP solution using pyramid representation The idea

- partition the input space
 - preserve approximate location
- Preduce number of cities
- repeat until solution becomes trivial
- refine solution top down to the base level

Image Pyramids

- Hierarchical structures in computer vision
 - \Rightarrow image pyramids, wavelets, quad-trees ...
- Characteristics of pyramids:
 - Structure
 - horizontal and vertical relations
 - Content of the cells
 - numeric, symbolic or both
 - Processing of a cells

Image Pyramids

 Hierarchical structures in computer vision

 \Rightarrow image pyramids, wavelets, quad-trees ...

- Characteristics of pyramids:
 - Structure
 - horizontal and vertical relations
 - Content of the cells
 - numeric, symbolic or both
 - Processing of a cells

Outline of the Talk

Approximate Traveling Salesman Problem

Minimum Spanning Tree

How to Organize/Partition City-Space?

- Raster cell with/without city
- Sraph G = (V, E): city = vertex $v \in V$; edges $e \in E$?
 - Complete graph: $E = V \times V$
 - Delaunay triangulation $E \subset V \times V$ and Voronoi Diagram

Traveling Salesman Problem (TSP)

- Fully connected graph *G* = (*V*, *E*, *w*) and attributed by weight *w*
 - costs *w* : *e* ∈ *E* → *R*⁺
- Goal : Find the tour τ with the smallest weight $\sum_{e \in \tau} w(e) \rightarrow \min$.
 - If the weights are (2D) Euclidean distances \rightarrow (2D) E-TSP
 - TSP (E-TSP) is hard optimization problem
 - \rightarrow solution: approximation algorithms

Minimum Spanning Tree

TSP with triangle inequality

Fakts:

- MST is a natural **lower bound** for the length of the optimal route.
- In TSP with triangle inequality, it is possible to prove upper bounds in terms of the minimun spanning tree → 'Christofides Heuristics' [Christofides, 1976] ...

Minimum Spanning Tree (MST)

• Graph G = (V, E, w) connected and attributed by weight w

• $w: e \in E \rightarrow R^+$

- Goal : Find the spanning tree T with the smallest weight $\sum_{e \in T} w(e) \rightarrow \min$.
 - Easy optimization problem → solution: greedy algorithms
 - Kruskal's [Kruskal, 1956] and Prim's algorithms [Prim, 1957]
 - Borůvka's algorithm [Borůvka, 1926] ($\mathcal{O}(|E|\log|V|)$)

MST Algorithm Borůvka's Version

MST Algorithm [Borůvka, 1926]

Input: graph G = (V, E, w)

- 1: MST := empty edge list
- 2: $\forall v \in V$ make a list of trees L
- 3: while there is more than one tree in L do
- 4: each tree $T \in L$ finds the edge *e* with the minimum weight which connects *T* to $G \setminus T$ and add edge *e* to *MST*
- 5: using edge *e* merge pairs of trees in *L*
- 6: end while

Output: minimum spanning tree of G

Minimum Spanning Tree

Borůvka's Algorithm and Dual Graph Pyramid

- Graph contraction merges all trees $T \in L$ in step 3.
- Step 4: called Borůvka's step

Pyramid Solution

MST based approximate Algorithm for TSP

Input: graph G = (V, E, w)

- 1: while there is more than 3 cities do
- 2: merge no more than k cites using Borůvka's step
- 3: end while
- 4: Find the trivial tour τ^*
- 5: repeat
- 6: refine τ^* : $\tau \leftarrow \tau^*$
- 7: until the bottom of the pyramid

Output: (approximated) tour τ

 $k \in \mathcal{N}$ and $k \geq 2$

- + invariant to shifts of the input
- Borůvka's step on fully connected graph $\rightarrow O(|V|^2)$

Top-down flow

Top-down flow

Solution Errors on Random Instances

MST Pyramid implementation issues

- *k* = 7
- super vertices on gravitational center of clusters

Tested on 6, 10, 20, 50 random instances

- Human subjects
- MST pyramid

Solution Errors on Random Instances

Yll Haxhimusa (TU Wien)

MST based Pyramid Model of TSP

Comparing Solutions of Pyramid Algorithms

Compared

- Concorde algorithm [Applegate et al., 2001]
- Adaptive binary pyramid [Pizlo et al., 2006]
- MST-based pyramid

Input

• Random instances of 200, 400, 600, 800, 1000

Code: http://bigbird.psych.purdue.edu/~pizlo/ and http://www.tsp.gatech.edu/concorde/index.html

Comparison of the Algorithms

Yll Haxhimusa (TU Wien)

MST based Pyramid Model of TSP

Special TSP Instances

When subjects are tested on random instances they always produce close to optimal solutions

Hypothesis 1

Subjects minimize the total length of the tour

Hypothesis 2

Subjects optimize something else than the length (this is how pyramid models work)

To tell between these two hypotheses nonrandom problems should be used?

Two Rings ZigZag

(日)

Two Rings < ZigZag

< => < => < => < =>

Two Rings < ZigZag

Yll Haxhimusa (TU Wien)

MST based Pyramid Model of TSP

Two Ring's length

- Two concentric circles with radii R > r > 0
- If density of cities along circle is high:
 - the optimal tour follows one circle,
 - 2 switches then to the other circle
 - which it follows in the opposite orientation
 - and returns then back to the starting city.
- tour length (approx.): $L_R = 2\pi R + 2\pi r + 2(R r)$

Solution by nearest neighbor possible

ZigZag's length

- If density of cities along circle is low:
 - the shorter tour follows the two circles
 - jumping forth and back between the 2 circles in a zigzag fashion.
- tour length with *n* cities (approx.): $L_Z = \pi (R + r) + \frac{n}{2}(R r)$

Two Rings = ZigZag

- If L_R = L_Z both solutions have the same (optimal) tour length:
- let n_0 denote the number of cities for this case.
- Then $n_0 = 2 + 2\pi \frac{R+r}{R-r}$

•
$$\frac{L_Z < L_R}{n < n_0} | \begin{array}{c} L_R < L_Z \\ n = n_0 \\ n > n_0 \end{array}$$

Two Rings ZigZag

Yll Haxhimusa (TU Wien)

MST based Pyramid Model of TSP

Two Rings > ZigZag

Two Rings > ZigZag

Two non-concentric Rings < ZigZag

- MST based TSP approximation algorithm
 - shows similar results as the other pyramid models on random instances
- Non-random instances suggest that humans do not minimize the total length of the tour
- Subjects and models will be tested on non-random instances
 - e.g. two circles with parameters: Radii R, r, number of cities n, circle offset

- Andreas Lehrbaum, Vienna University of Technology
- Emil Stefanov and Jack Saalweachter, Purdue University

Human Problem Solving Symposium Vancouver, BA, Canada 1st of August 2006

References I

Jolion, J.-M. and Rosenfeld, A. (1994). *A Pyramid Framework for Early Vision.* Kluwer.

Bister, M., Cornelis, J., and Rosenfeld, A. (1990).

A critical view of pyramid segmentation algorithms. *Pattern Recognition Letters*, 11(9):605–617.

Kropatsch, W. G. (1995a).

Building irregular pyramids by dual graph contraction. IEE-Proc. Vision, Image and Signal Processing, 142(6):366–374.

Felzenszwalb, P. F. and Huttenlocher, D. P. (2004).

Efficient graph-based image segmentation. International Journal of Computer Vision, 59(2):167–181.

S. M. Graham, Z. Pizlo and A. Joshi.

Problem Solving in Human Beings and Computers. Annual Meeting of the Society for Mathematical Psychology, Ivine, CA, 1995.

Z. Pizlo, E. Stefanov, J. Saalweachter, Z. Li, Y. Haxhimusa and W. G. Kropatsch.

Traveling Salesman Problem: a Foveating Pyramid Model. Journal of Problem Solving in press, 2006.

Borůvka, O. (1926).

O jistém problému minimálnim (about a certain minimal problem). Práce Moravské Přírodvědecké Společnosti v Brně (Acta Societ. Scienc. Natur. Moravicae), 3(3):37–58.

References II

Kruskal, J. B. J. (1956).

On the shortest spanning subtree of a graph and the travelling salesman problem. In *Proc. Am. Math. Soc.*, volume 7, pages 48–50.

Prim, R. C. (1957).

Shortest connection networks and some generalizations. *The Bell System Technical Journal*, 36:1389–1401.

A. Aggrawal, L. J. Guibas, J. Saxe, and P.W. Shor.

A Linear-Time Algorithm for Computing the Voronoi Diagram of a Convex Polygon. *Discrete & Comput. Geometry*, 4(6):591–604, 1989.

C. H. Papadimitriou and S. Vempala.

On the approximability of the traveling salesman problem). *Proceedings of STOC'2000*, extended abstract, 2000.

N. Christofides.

Worst-case analysis of a new heuristic for the travelling salesman problem. Graduate School of Industrial Administration, Carnegie-Mellon University, 1976, 388.

D. Applegate, R. Bixby, V. Chvatal, and W. Cook

TSP cuts which do not conform to the template paradigm.

Computational combinatorial optimization: optimal or provably near optimal solutions, Lecture Notes in Computer Science, 2241, M. Jünger and D. Naddef, eds., Springer, 2001, pp. 261–303.

Z. Pizlo, E. Stefanov, J. Saalweachter, Z. Li, Y. Haxhimusa and W. G. Kropatsch.

Adaptive Pyramid Model for the Traveling Salesman Problem. Workshop on Human Problem Solving, June 2005.

Yll Haxhimusa (TU Wien)

MST based Pyramid Model of TSP