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Image Pyramids

Multiresolution Pyramid Representation
Approach

Local to global: bottom-up reduction of resolution
Global to local: top-down solution refinement

Approximate the TSP solution using pyramid representation
The idea

1 partition the input space
preserve approximate location

2 reduce number of cities
3 repeat until solution becomes trivial
4 refine solution top down to the base level
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Image Pyramids

Image Pyramids
Introduction

Hierarchical structures in computer
vision
⇒ image pyramids, wavelets,
quad-trees ...
Characteristics of pyramids:

Structure
horizontal and vertical relations

Content of the cells
numeric, symbolic or both

Processing of a cells

2× 2/4 Regular pyramid
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Image Pyramids

Outline of the Talk

1 Image Pyramids

2 Minimum Spanning Tree

3 Approximate Traveling Salesman Problem

4 Summary
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Minimum Spanning Tree

How to Organize/Partition City-Space?

1 Raster cell with/without city
2 Graph G = (V , E): city = vertex v ∈ V ; edges e ∈ E?

Complete graph: E = V × V
Delaunay triangulation E ⊂ V × V and Voronoi Diagram
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Minimum Spanning Tree

Traveling Salesman Problem (TSP)

Fully connected graph G = (V , E , w) and attributed by
weight w

costs w : e ∈ E → R+

Goal : Find the tour τ with the smallest weight∑
e∈τ

w(e)→ min.

If the weights are (2D) Euclidean distances→ (2D) E-TSP
TSP (E-TSP) is hard optimization problem
→ solution: approximation algorithms
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Minimum Spanning Tree

TSP with triangle inequality

Fakts:
MST is a natural lower bound for the length of the optimal
route.
In TSP with triangle inequality, it is possible to prove upper
bounds in terms of the minimun spanning tree→
’Christofides Heuristics’ [Christofides, 1976] . . .
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Minimum Spanning Tree

Minimum Spanning Tree (MST)

Graph G = (V , E , w) connected and attributed by weight w

w : e ∈ E → R+

Goal : Find the spanning tree T with the smallest weight∑
e∈T

w(e)→ min.

Easy optimization problem→ solution: greedy algorithms
Kruskal’s [Kruskal, 1956] and Prim’s
algorithms [Prim, 1957]
Borůvka’s algorithm [Borůvka, 1926] (O(|E | log |V |))

Yll Haxhimusa (TU Wien) MST based Pyramid Model of TSP 8 / 24



Minimum Spanning Tree

MST Algorithm
Borůvka’s Version

MST Algorithm [Borůvka, 1926]

Input: graph G = (V , E , w)

1: MST := empty edge list
2: ∀v ∈ V make a list of trees L
3: while there is more than one tree in L do
4: each tree T ∈ L finds the edge e with the minimum weight which

connects T to G \ T and add edge e to MST
5: using edge e merge pairs of trees in L
6: end while

Output: minimum spanning tree of G
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Minimum Spanning Tree

Borůvka’s Algorithm and Dual Graph Pyramid

Graph contraction merges all trees T ∈ L in step 3.
Step 4: called Borůvka’s step

G0

G1

G2

graph contraction

graph contraction

MST (apex)

Apex
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Approximate Traveling Salesman Problem

Pyramid Solution

MST based approximate Algorithm for TSP

Input: graph G = (V , E , w)

1: while there is more than 3 cities do
2: merge no more than k cites using Borůvka’s step
3: end while
4: Find the trivial tour τ∗

5: repeat
6: refine τ∗: τ ← τ∗

7: until the bottom of the pyramid
Output: (approximated) tour τ

k ∈ N and k ≥ 2
+ invariant to shifts of the input
– Borůvka’s step on fully connected graph→
O(|V |2)
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Approximate Traveling Salesman Problem

Top-down flow

Tour Refinement

super verticestrivial tour τ∗
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Approximate Traveling Salesman Problem

Top-down flow

Tour Refinement

approximated tour τ

trivial tour τ∗
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Approximate Traveling Salesman Problem

Solution Errors on Random Instances

MST Pyramid implementation issues
k = 7
super vertices on gravitational center of clusters

Tested on 6, 10, 20, 50 random instances
Human subjects
MST pyramid
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Approximate Traveling Salesman Problem

Solution Errors on Random Instances

Subjects vs MST-based Pyramid
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Approximate Traveling Salesman Problem

Comparing Solutions of Pyramid Algorithms

Compared
Concorde algorithm [Applegate et al., 2001]
Adaptive binary pyramid [Pizlo et al., 2006]
MST-based pyramid

Input
Random instances of 200, 400, 600, 800, 1000

Code: http://bigbird.psych.purdue.edu/∼pizlo/ and
http://www.tsp.gatech.edu/concorde/index.html
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Approximate Traveling Salesman Problem

Comparison of the Algorithms

Pyramid Approximation

Solution Error Running Time
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Approximate Traveling Salesman Problem

Special TSP Instances

When subjects are tested on random instances they always
produce close to optimal solutions

Hypothesis 1
Subjects minimize the total length of the tour

Hypothesis 2
Subjects optimize something else than the length
(this is how pyramid models work)

To tell between these two hypotheses nonrandom problems
should be used?
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Approximate Traveling Salesman Problem

Two Rings

<

ZigZag

40 city instance

<

2596.42 3013.6
16% difference

Optimal: 2594.07
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Approximate Traveling Salesman Problem

Two Ring’s length

Two concentric circles with radii R > r > 0
If density of cities along circle is high:

1 the optimal tour follows one circle,
2 switches then to the other circle
3 which it follows in the opposite orientation
4 and returns then back to the starting city.

tour length (approx.): LR = 2πR + 2πr + 2(R − r)

Solution by nearest neighbor possible
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Approximate Traveling Salesman Problem

ZigZag’s length

If density of cities along circle is low:
1 the shorter tour follows the two circles
2 jumping forth and back between the 2 circles in a zigzag

fashion.

tour length with n cities (approx.): LZ = π(R + r) + n
2(R− r)
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Approximate Traveling Salesman Problem

Two Rings = ZigZag

If LR = LZ both solutions have the same (optimal) tour
length:
let n0 denote the number of cities for this case.
Then n0 = 2 + 2π R+r

R−r

LZ < LR LR < LZ
n < n0 n = n0 n > n0
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Approximate Traveling Salesman Problem

Two Rings

>

ZigZag

20 city instance

>

2440.28 2127.77
14% difference
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Approximate Traveling Salesman Problem

Two non-concentric Rings < ZigZag

20 city instance

<

2209.15 2501.91
13% difference
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Summary

Summary

MST based TSP approximation algorithm
shows similar results as the other pyramid models on
random instances

Non-random instances suggest that humans do not
minimize the total length of the tour

Subjects and models will be tested on non-random
instances

e.g. two circles with parameters: Radii R, r, number of cities
n, circle offset
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Summary

Thanks to ...

Andreas Lehrbaum, Vienna University of Technology
Emil Stefanov and Jack Saalweachter, Purdue University

Human Problem Solving Symposium
Vancouver, BA, Canada 1st of August 2006
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